
Extraction of the Sivers function with deep neural networks

I. P. Fernando * and D. Keller †

Department of Physics, University of Virginia, Charlottesville, Virginia 22904, USA

(Received 10 March 2023; accepted 9 August 2023; published 8 September 2023)

Deep neural networks (DNNs) are a powerful and flexible tool for information extraction and modeling.
In this study, we use DNNs to extract the Sivers functions by globally fitting semi-inclusive deep inelastic
scattering (SIDIS) data. To make predictions of this transverse momentum-dependent distribution, we
construct a minimally biased model using data from COMPASS and HERMES. The resulting Sivers
function model, constructed using SIDIS data, is also used to make predictions for Drell-Yan kinematics
specific to the valence and sea quarks, with careful consideration given to experimental errors, data sparsity,
and complexity of phase space.
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I. INTRODUCTION

The development of modern information extraction
techniques has far outpaced experimental progress. Even
with decades of experimental results, there is limited data
on transverse momentum dependent parton distribution
functions (TMDs) for global analyses that can be applied to
a 3D phenomenological interpretation. Theoretical efforts
are providing an ever-evolving framework and toolbox to
interpret the data, leading to new areas of research that
optimize information extraction unique to spin physics and
the internal structure of hadrons. Artificial intelligence (AI)
is accelerating data-driven research with the superior
capacity of deep neural networks (DNNs) to be used as
function approximators. DNNs can learn to approximate
any relationships contained within data, provided there are
no limits to the number of neurons, layers, and computing
power. With enough data and training, such approximations
can be made to nearly any desired degree of accuracy.
The Sivers function is the most studied of the eight

leading-twist TMD distributions that pertain to polarized
nucleons. The Sivers distribution is naively time-reversal
odd and is expected to be process dependent, which leads to
a distribution equal in magnitude but opposite in sign in
semi-inclusive deep inelastic scattering (SIDIS) compared
with the Drell-Yan (DY) process [1,2]. The Sivers distri-
bution, as measured from the transverse single-spin asym-
metries, provides information on the correlation between

the nucleon’s spin and the angular distribution of outgoing
hadrons in SIDIS or the dimuons in DY. The quark Sivers
function, ΔNfq=N↑ , describes the number density in
momentum space of unpolarized quarks inside the trans-
versely polarized target nucleon with nuclear spin (N↑). A
nonzero Sivers function indicates a contribution of quark
orbital angular momentum to the target’s spin.
TMD extraction and modeling with sensitivity to TMD

evolution and factorization is critical and provides predic-
tive power in the collinear limit characterizing the non-
perturbative effects. Representing evolution also accounts
for the momentum-dependent QCD interactions between
partons inside the hadron, which affect their distribution
and can significantly impact observables. Some theoretical
approaches use the parton model approximation without
TMD evolution and demonstrate good agreement with
experimental results. At the time of their origin, these
calculations assumed that evolution effects in asymmetries
are suppressed, as asymmetries are ratios of cross sections
where evolution and higher-order effects should cancel out
[3–5]. The more modern picture [6] implies this is likely an
oversimplification. There is now strong evidence that the
main effect of evolution takes place at lower energies
(< 10 GeV) [6,7], so it is precisely this domain that offers
the best opportunity to capture these important QCD
relations in TMD distributions. On the other hand, studies
that incorporated TMD evolution, as seen in [8,9], encoun-
tered difficulties and did not achieve better agreement with
the Drell-Yan data compared with earlier analyses [4,5,10].
This situation poses a challenge in confirming the validity
of any theoretical implementation with respect to the TMD
factorization theorem or modern utilities required to pre-
serve it, particularly the scale-dependent universal non-
perturbative evolution kernel, the so-called Collins-Soper
(CS) kernel. However, the work in [7,11] demonstrated the
conditional universality of the Sivers function using a
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simultaneous fit to SIDIS, Drell-Yan, and W/Z boson
production data, including TMD evolution and the univer-
sal nonperturbative CS kernel extracted in [12] from
unpolarized measurements. In contrast, the working prin-
ciple of DNNs as a means of extraction can facilitate the
necessary flexibility to capture not only the TMD and
Dokshitzer-Gribov-Lipatov-Altarelli-Parisi (DGLAP) evo-
lution features but also the full complexity of QCD. In this
regard, a carefully designed DNN model accompanied by a
systematic method of extraction can incorporate not only
the evolution features but other components not yet
quantifiable in the formalism. The inherent capacity for
DNNs to reduce dimensionality and organize intricate
correlations in the data can be used to help determine
the correct theoretical implementation. The challenge, of
course, is that once captured in a DNN model, disentan-
gling these features into formal expressions consistent with
factorization is nontrivial, and we expect it to be the focus
of much future work.
The approach outlined in this article highlights the

inherent flexibility of employing specialized DNNs in
combination with candidate multiplicative expressions hold-
ing some type of separate parametrization which may carry
incorrect Ansäätze or assumptions (biases). This can be done
while still rendering a high-quality numerical model encod-
ing all information available in the data. These types of biases
can be managed by training the model with the biased term
included. The DNN term then becomes uniquely parame-
trized to account for the biases. Consequently, the resulting
combination of terms in the model remains largely unbiased,
even though each individual term may not be independently
meaningful. The schema can not only facilitate the explora-
tion of the existing formalism found in the literature but also
provide a means to derive and test novel phenomenology
using a technique that can directly manage and study the
biases in individual terms. This will be discussed in more
detail in Sec. VI.
The phenomenology used to interpret and analyze exper-

imental data relies on TMD factorization [13–22], proven for
single-spin asymmetries described in terms of convolutions
of TMDs. The Sivers function has been previously extracted
from SIDIS data by several groups, with generally consistent
results [4,23–27]. All previous phenomenological fits of the
Sivers function (and other TMDs) require an Ansatz char-
acterizing the shape of the distribution combined with an
assumed form of the Bjorken-x dependence. This can lead to
ambiguity in determining both the quantitative results from
the fit and the qualitative features of the momentum
distributions and their associated dynamics. The function
formof theBjorken-x dependence is usually offered only as a
placeholder and is assumed to at least contain the appropriate
ingredients to facilitate the extraction. This is undoubtedly a
considerable oversimplification but one that has permitted
significant progress. In the following analysis, we perform a
global fit with the goal of illustrating a method that can also

permit significant progress even with data limitations, and
with assumptions, andAnsäätze in place.We focus on testing
the extraction ability of a DNN representing a single term to
maximize information extraction and minimize both the fit
error and the analytical ambiguity associated with the
interpretation of a generic Bjorken-x dependence, N qðxÞ.
There are, of course, broader implications of how these tools
can be used to accelerate the field, some ofwhichwewill also
touch on through our extraction of the Sivers function.
The exceptional capacity of DNNs to be ideal for function

approximation is rigorously provable through the universal
approximation theorem [28,29]. This is the advantage of
DNNs over other machine learning approaches. In this
regard, even the mere existence of a function implies that
DNNs can be used to represent it and work with it without
actually knowing the function form. With such a high-level
abstraction, one can make use of the available data andmake
assessments not otherwise possible, even given an arbitrary
degree of complexity. The complexity can be contained in the
data relationships aswell as in the experimental uncertainties.
In order to make optimal use of experimental uncertainties, a
detailed analysis must be provided on their estimated scale
and correlations.
DNNs are also Turing complete, implying the potential to

simulate the computational aspects of any real-world gen-
eral-purpose computing process. The implications are that
there is potential for a type of generalizable framework that
can be utilized and further developed over time without the
knowledge of the exact rigorous details of the underlying
mechanisms. Provided appropriately detailed global models,
higher-level symbolic regressions can then be performed to
infer the strict mathematical form. However, such an
approach requires access to a significant amount of exper-
imental data that hold the necessary information.Without the
necessary amount of quality data, no matter the number of
nodes or sophistication of architecture, DNNs are limited in
what useful information they can extract, along with any
other technique. Even with this constraint, DNNs can make
considerable advancements with the use of sparse data with
large experimental uncertainties. Generally, fittingwith large
errors or performing computational tasks with inherent fuzzy
logic are tasks that are difficult to make optimal use of
modern computational resources. DNNs are uniquely suited
for such challenges.
In the remainder of this paper, a first-level DNN extraction

ofN qðxÞ is performed to deduce the Sivers function from a
global analysis using HERMES and COMPASS data. This
investigation is exploratory, with the intention of developing
tools and techniques that minimize error and maximize
utility, which we hope to expand upon in further work.
The choice in this paper is to focus on the Sivers function,
rather than the unpolarized TMD fq=Nðx; k⊥Þ, and to more
clearly demonstrate the power of the method even given the
limitations in data. Our global fit of fq=Nðx; k⊥Þ will be
presented in later work. The examination ofN q in relation to
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x is prioritized over other possibilities only to illustrate how
generating functions can be utilized to measure and analyze
systematics arising from the extraction produced. As we
demonstrate in this work, this technique enables a systematic
enhancement of information extraction.
In Sec. II, we present the formalism of the Sivers

function and the kinematics for both SIDIS and DY. In
Sec. III, a discussion of the fitting techniques of N qðxÞ is
presented with a focus on the methodology of the DNN
approach. Section IV explains in detail the extraction
technique, starting with model testing. We perform a
baseline fit using the classical MINUIT χ2 minimization
algorithm and then perform the DNN fit, demonstrating
with pseudodata the fidelity of the procedure. We then walk
through the final DNN fit to experimental data for the
polarized proton and the deuteron separately. The results of
the fits are presented in Sec. V. Some further analysis and
systematic studies are reported in Sec. VI. Then in Sec. VII
we present the implication of the results in terms of the 3D
tomography of the proton. In Sec. VIII, we perform a
preliminary analysis on TMD evolution and finally, in
Sec. IX, some concluding remarks are provided.

II. KINEMATICS AND FORMALISM

With the spin of the proton perpendicular to the trans-
verse plane, the Sivers function is expected to reflect an
anisotropy of quark momentum distributions for the up and
down quarks, indicating that their motion is in opposite
directions [1,2]. This is manifestly due to quark orbital
angular momentum (OAM). The most interesting and
relevant aspects of the OAM, such as magnitude and
partonic distribution shape as a function of the proton’s
state, cannot be determined by the Sivers effect alone.
However, systematic studies can be performed to investigate
the full 3D momentum distribution of the quarks in a
transversely polarized proton, which can be used in concert
with other information to exploit multidimensional partonic
degrees of freedom using a variety of hard processes. Here,
we focus specifically onSIDIS andDY, but it should be noted
that there is significant potential for broader model develop-
ment that can come from combining all available data from
multiple processes with additional constraints using the
simultaneous DNN fitting approach presented here.
The Sivers function describes a difference in probabil-

ities, which implies that it may not be positive definite.
Making a comparison between the Sivers function from the
DY process and the SIDIS process is still the focus of much
experimental and theoretical effort. Under time reversal, the
future-pointing Wilson lines are replaced by past-pointing
Wilson lines that are appropriate for factorization in the DY
process. This implies that the Sivers function is not
uniquely defined and cannot exhibit process universality,
as it depends on the contour of the Wilson line. This feature
of the Sivers function is directly tied to the QCD inter-
actions between the quarks (or gluons) active in the

process, resulting in a conditional universality, as shown
in [30],

ΔNfq=N↑ðx; k⊥ÞjSIDIS ¼ −ΔNfq=N↑ðx; k⊥ÞjDY: ð1Þ

This fundamental prediction still needs to be tested. Direct
sign tests [4,10,31] can be performed, but experimental
proof would require an analysis over a broad phase space of
both SIDIS and DY, with consideration given to flavor and
kinematic sensitivity for both valence and sea quarks. Our
analysis will, in part, rely on this relationship rather than
making direct tests of the validity of the sign change.

A. SIDIS process

The SIDIS process involves scattering a lepton off of a
polarized nucleon and measuring the scattered lepton and a
fragmented hadron. In the nucleon-photon center of mass
frame, the nucleon three-momentum p⃗ is along the z axis,
and its spin polarization S⃗T is on the plane perpendicular
(transverse) to the ẑ axis. In Fig. 1 the struct quark, virtual
photon (with four-momentum q⃗), and the lepton belong to a
plane called the “lepton plane” (represented in yellow). The
fragmented hadron with momentum p⃗h and its projection
onto the x̂ − ŷ (i.e. p⃗hT) belong to the so-called “hadron
plane” (represented in transparent green). Thus, the trans-
verse momentum k⃗⊥ of the struck quark and p⃗hT are falling
onto the transverse plane (represented in transparent blue)
perpendicular to both the lepton plane and hadron plane.
The azimuthal angle ϕh of the produced hadron h is the
angle between the lepton plane and the hadron plane [32].
To perform a global analysis using a generalized DNN

approach, it is not necessary to postulate an expression or
function form for the shape of the partonic distributions or
any aspects of the nonperturbative contribution which
encodes information about the intrinsic quark-gluon corre-
lations within the nucleon. But to provide a more careful
demonstration we do not generalize and focus directly on

FIG. 1. Kinematics of the SIDIS process in the nucleon-photon
center-of-mass frame.
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N qðxÞ to explore using quality metrics in combination with
techniques to improve the overall extraction. It is useful to
demonstrate this using a very standard approach that is
alreadywell-developed in the literature.With this inmind the
TMDs (fragmentation functions) x and k⊥ (z and p⊥)
dependence are decoupled. It is common to apply a
Gaussian parametrization for the transverse momentum
dependence, but this imposes a bias implying that the
transverse momentum is nonperturbative and primarily
driven by the intrinsic properties of the colliding hadrons
rather than hard gluon radiation. Such biases can bemanaged
by the technique itselfwhichweexpect to comeclear through
the examples to come. There are several options for the
choice of formalism, and there is still much ongoing debate
on how formalism should correctly be implemented for
single-spin asymmetries to best respect factorization theory.
Our choice of formalism is purely illustrative. There remains
much ongoing debate about this, andwe intend no favoritism
in one strategy over another. The focus of the present work is
the demonstration of how the methods and tools can be
implemented for arbitrary formalism. There are however
some very useful characteristics in one of the traditional
descriptions of the TSSA [33] that offer a clear means of
detailing the necessary steps.However,we stress that the type
of parametrization used in [4,34] does not have the complete
features of TMD evolution but is comparable to full TMD
evolution at next-to-leading logarithmic accuracy.
The differential cross section for the SIDIS process

depends on both collinear parton distribution functions
(PDFs) fq=Nðx;Q2Þ and fragmentation functions Dh=qðz;
Q2Þ, where q is the quark flavor, N represents the target
nucleon, h is the hadron type produced by the process, and z
is the momentum fraction of the final-state hadron with
respect to the virtual photon. A simplified version of the
SIDIS differential cross section can be written up to
Oðk⊥=QÞ as [26,35]

d5σlN→lhX

dxdQ2dzd2p⊥
¼
X
q

e2q

Z
d2k⊥

�
2πα2

x2s2
ŝ2 þ û2

Q4

�

× f̂q=N↑ðx; k⊥ÞDh=qðz; p⊥Þ þOðk⊥=QÞ;
ð2Þ

where ŝ; û are partonic Mandelstam invariants, and
f̂q=p↑ðx; k⊥Þ is the unpolarized quark distribution,

f̂q=N↑ðx;k⊥Þ¼ fq=Nðx;k⊥Þþ
1

2
ΔNfq=N↑ðx;k⊥ÞS⃗T · ðp̂× k̂⊥Þ

¼ fq=Nðx;k⊥Þ−
k⊥
mp

f⊥q
1T ðx;k⊥ÞS⃗T · ðp̂× k̂⊥Þ

ð3Þ

with transverse momentum k⊥ inside a transversely polar-
ized (with spin S⃗T) proton with three-momentum p⃗, where

ΔNfq=p↑ðx; k⊥Þ denotes Sivers functions that carry the
nucleon’s spin-polarization effects on the quarks which
can be considered as a modulation to the unpolarized quark
PDFs [4],

ΔNfq=N↑ðx; k⊥Þ ¼ 2N qðxÞhðk⊥Þfq=Nðx; k⊥Þ; ð4Þ

where

fq=Nðx; k⊥Þ ¼ fqðxÞ
1

πhk2⊥i
e−k

2⊥=hk2⊥i; ð5Þ

hðk⊥Þ ¼
ffiffiffiffiffi
2e

p k⊥
m1

e−k
2⊥=m2

1 : ð6Þ

HereN qðxÞ is considered a factorized x-dependent function
with a form that has yet to be formally established. In fact the
form of fq=Nðx; k⊥Þ and hðk⊥Þ are also assumed, and these
expressions should be considered embedded biases. For the
best quality model of the Sivers function, the form of
fq=Nðx; k⊥Þ could be determined and parametrized sepa-
rately using unpolarized data; however it is instructive to
preserve these original forms for this exercise. The parameter
m1 allows the k⊥Gaussian dependence of the Sivers function
to be different from that of the unpolarized TMDs [4].
fqðx;Q2Þ is the collinear PDF for flavor q that is obtained
from theCTEQ6l [36] grid throughLHAPDF [37] initially to
be consistent with [4] during method testing and later
improved using NNPDF4.0 [38] for the real extraction,
whereas the fragmentation functions for π�;0 are from [39],
and for K� are from [40] (DSS formalism), from recent
global analyses of fragmentation functions at next-to-
leading-order accuracy in QCD.
In terms of the cross section ratios, the Sivers asymmetry

in the SIDIS process can be written as

Asinðϕh−ϕSÞ
UT ðx; y; z; phTÞ ¼

dσl↑N→hlX − dσl↓N→lhX

dσl↑N→hlX þ dσl↓N→hlX ð7Þ

and can be parametrized [4] and further rearranged as

Asinðϕh−ϕSÞ
UT ðx; z; phTÞ

¼ A0ðz; phT; m1Þ
�P

qN qðxÞe2qfqðxÞDh=qðzÞP
qe

2
qfqðxÞDh=qðzÞ

�
; ð8Þ

where

A0ðz; phT; m1Þ

¼
ffiffiffiffiffi
2e

p
zphT

m1

½z2hk2⊥i þ hp2⊥i�hk2Si2
½z2hk2Si þ hp2⊥i�2hk2⊥i

× exp

�
−

p2
hTz

2ðhk2Si − hk2⊥iÞ
ðz2hk2Si þ hp2⊥iÞðz2hk2⊥i þ hp2⊥iÞ

�
; ð9Þ
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hk2Si ¼
m1hk2⊥i

m2
1 þ hk2⊥i

; ð10Þ

and fragmentation functions Dh=qðz; p⊥Þ (before p⊥ inte-
gration),

Dh=qðz; p⊥Þ ¼ Dh=qðzÞ
1

πhp2⊥i
exp−p

2⊥=hp2⊥i; ð11Þ

with hk2⊥i¼0.57�0.08GeV2 and hp2⊥i¼0.12�0.01GeV2

from the fits [41,42] to HERMES multiplicities [43]. Note
that we use the shorthand notation for the PDFs and
fragmentation functions as well as TMDs by omitting
Q2 in the expressions for the sake of convenience as is
done in the literature.
Through this azimuthal asymmetry, the SIDIS process

provides information about the correlations between the
transverse momentum of the partons leaving through the
fragmented target and the spin of the target itself. In this
regard, SIDIS allows one to study the structure of individ-
ual hadrons by selecting these decay fragments at the
detection level. In general, SIDIS provides access to a wide
range of TMDs, and allows for studying TMDs of hadrons
carrying different flavors and polarizations.
For our present analysis, HERMES and COMPASS have

the best-polarized proton target data for SIDIS, while
COMPASS has the best-polarized neutron target data. In

the COMPASS data, the neutron target is actually a
polarized deuteron, but the neutron carries over 90% of
the deuteron polarization when polarized in solid-state
form. The JLab data on polarized 3He is of a different
class of experiments and will not be combined with the
polarized deuteron data from COMPASS. It is worth noting
that the uncertainties in the experimental data can greatly
differ depending on the choice of polarized target.

B. DY process

Consider the Drell-Yan process A↑B → lþl−X, where A↑

is a transversely polarized target, and B is the hadron beam.
In the hadronic c.m. frame (see Fig. 2), the 4-momentum q
and the invariant mass squared (QM) of the final-state
dilepton pair, Feynman x (xF) and the Mandelstam variable
s are related as

q ¼ ðq0; qT; qLÞ; q2 ¼ QM; xF ¼ 2qLffiffiffi
s

p ;

s ¼ ðpA þ pBÞ2: ð12Þ

In the kinematical region of

q2T ≪ QM; k⊥ ≃ qT; ð13Þ

at order Oðk⊥=QMÞ, and in the hadronic c.m. frame, the
Sivers single spin asymmetry can be given as [3,33]

A
sinðϕγ−ϕSÞ
N ðxF;QM; qTÞ ¼

R
2π
0 dϕγðdσA↑B→lþl−X − dσA

↓B→lþl−XÞ sinðϕγ − ϕSÞ
1
2

R
2π
0 dϕγðdσA↑B→lþl−X þ dσA

↓B→lþl−XÞ ; ð14Þ

¼
R
2π
0 dϕγð

P
q

R
d2k⊥2d2k⊥1δ

2ðk⊥1 þ k⊥1 − qTÞΔNfq=A↑ðx1; k⊥1Þfq̄=Bðx2; k⊥2Þσ̂qq̄0 Þ sinðϕγ − ϕSÞR
2π
0 dϕγð

P
q

R
d2k⊥2d2k⊥1δ

2ðk⊥1 þ k⊥1 − qTÞfq=Aðx1; k⊥1Þfq̄=Bðx2; k⊥2Þσ̂qq̄0 Þ ;

ð15Þ

where

σ̂qq̄0 ¼ e2q
4πα2

9QM
; ð16Þ

x1;2 ¼
�xF þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2F þ 4QM=s

p
2

: ð17Þ

Note that here we follow the same convention as in
[3,25,44,45] for the azimuthal angle in the A − B center-
of-mass framewith the hadron A↑ moving along the positive
z axis and hadron B along the negative z axis. Thus
the mixed product S⃗T · ðp̂ × k̂⊥iÞ upon integration in k⊥i

(where i ¼ f1; 2g) yields a sinðϕγ − ϕSÞ ¼ cosϕγ (when

ϕS ¼ π=2) dependence for the Sivers asymmetry, which
implies an overall ½− sin2ðϕγ − ϕSÞ� in Eq. (15). For the case
in which polarized hadron A↑ moves along the −ẑ axis (i.e.
for the processes BA↑ → lþl−X), the corresponding overall
factor is ½þ sin2ðϕγ − ϕSÞ�. The analytical integration of the
numerator and denominator of Eq. (15) can be written as

A
sinðϕγ−ϕSÞ
N ðxF;QM; qTÞ

¼
R
dϕγCðxF;QM; qT;ϕγÞ sinðϕγ − ϕSÞR

dϕγDðxF;QM; qTÞ
; ð18Þ

where
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CðxF;QM; qT;ϕγÞ≡ d4σ↑

dxFdQMd2qT
−

d4σ↓

dxFdQMd2qT
ð19Þ

¼ 4πα2

9sQM

�
qT
m1

ffiffiffiffiffi
2e

p hk2Si2 exp½−q2T=ðhk2Si þ hk2⊥2iÞ�
πðhk2Si þ hk2⊥2iÞ2hk2⊥2i

�
sinðϕγ − ϕSÞ

X
q

e2q
x1 þ x2

ΔNfq=A↑ðx1Þfq̄=Bðx2Þ;

ð20Þ

and

DðxF;QM; qTÞ≡ 1

2

�
d4σ↑

dxFdQMd2qT
þ d4σ↓

dxFdQMd2qT

�

¼ 4πα2

9sQM

�
exp½−q2T=ðhk2⊥1i þ hk2⊥2iÞ�

πðhk2⊥1i þ hk2⊥2iÞ
�X

q

e2q
x1 þ x2

fq=Aðx1Þfq̄=Bðx2Þ; ð21Þ

and it can be further simplified as

AN
sinðϕγ−ϕSÞðxF;M; qTÞ ¼ B0ðqT;m1Þ

P
q

e2q
x1þx2

N qðx1Þfq=Aðx1Þfq̄=Bðx2ÞP
q

e2q
x1þx2

fq=Aðx1Þfq̄=Bðx2Þ
; ð22Þ

where

B0ðqT;m1Þ ¼
qT

ffiffiffiffiffi
2e

p

m1

Y1ðqT; kS; k⊥2Þ
Y2ðqT; k⊥1; k⊥2Þ

; ð23Þ

and

Y1ðqT; kS; k⊥2Þ ¼
� hk2Si2
hk2⊥2iðhk2Si þ hk2⊥2iÞ2

�
exp

�
−q2T

hk2Si þ hk2⊥2i
�
; ð24Þ

Y2ðqT; k⊥1; k⊥2Þ ¼
�

1

hk2⊥1i þ hk2⊥2i
�
exp

�
−q2T

hk2⊥1i þ hk2⊥2i
�
; ð25Þ

1

hk2Si
¼ 1

m2
1

þ 1

hk2⊥1i
; ð26Þ

with the assumption hk2⊥1i ¼ hk2⊥2i ¼ hk2⊥i ¼ 0.25 GeV2

as in [3].
Through this azimuthal asymmetry, the Drell-Yan proc-

ess allows one to preferentially probe from the target and
beam hadrons to create the quark antiquark annihilation
process of interest resulting in a dimuon pair in the detector.
SIDIS only permits the measurement of a convolution of
the TMDs function with a fragmentation function, whereas
Drell-Yan allows the direct measurement of the TMDs
without the complications of fragmentation functions and
final-state interactions. Coupled with its innate sensitivity

to sea quarks, Drell-Yan is a critical process for determining
the TMDs of the sea quarks.

III. FITTING N qðxÞ
To obtain accurate three-dimensional tomographic infor-

mation on quarks and gluons inside the nucleon, it is critical
to extract TMDs with minimal model dependence and little
to no unknown biases. Fitting with statistical analysis tools
such as MINUIT [46] relies on χ2 minimization or log-
likelihood functions to compute the best-fit parameter
values and uncertainties, including correlations between
parameters. This class of algorithms has well-established
statistical methods that have been used for decades in
various scientific fields, making them a reliable and trusted
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tool. In frequentist statistics, the reliability of a χ2 mini-
mization fitting method can be evaluated through the
concept of hypothesis testing. The fitting method mini-
mizes the difference between the observed data and the
expected theoretical model, expressed through a χ2 statistic.
The χ2 statistic follows a known distribution, and the
probability of obtaining a value as extreme as the obser-
vation can be directly calculated. The reliability of the χ2

minimization fitting method depends greatly on the ability
to accurately estimate the theoretical uncertainties and the
degree to which the model approximates the observed data.
When these conditions are met, the method can provide a
reliable estimate of the parameters that describe the model
and its uncertainties. However, chi-square fits can be
sensitive to the choice of initial parameter values and
may not always converge to the correct solution. Fitting
with DNNs can provide considerable advantages and does
not inherently sacrifice the statistical framework provided
by chi-square fits, but it is worth touching on some key
attributes needed in the method in order to best maintain
quality statistical relevance and interpretation of result-
ing fits.
To preserve the statistical robustness and reliability of

traditional χ2 minimization fitting when using a DNN, it is
important to carefully consider the data quality, model
selection, validation, interpretation, and testing criteria. The
quality of the data used to train the DNN should be as high
as possible to ensure the DNN learns the correct relation-
ships between inputs and outputs. This is crucial because
the reliability of the DNN is only as good as the quality of
the data it is trained on. Quantifying differences between
the training data and the real data used in the fit can be
challenging and can lead to unknown biases and systematic
errors. In the method used here, Monte Carlo data, which
has been tuned and matched to the experimental data, is
utilized. This is done by successively extracting informa-
tion from the experimental data to impose into the
generated Monte Carlo data and then using the improved
Monte Carlo data to further refine the extraction technique.
The choice of DNN architecture, activation functions,

regularization techniques, and other hyperparameters
should be carefully selected to minimize overfitting and
maximize generalization performance. Cross-validation
techniques can be used to tune these hyperparameters
and ensure the best possible fit to the data. The quality
of the fit should be quantified with a metric that is well-
defined and can be interpreted statistically. This could still
be the χ2 statistic but may also be a variety of possible loss
functions. The trained DNN should be validated on an
independent test dataset to ensure that it generalizes well to
new data and that it does not overfit the training data. This
is critical because overfitting can lead to an unreliable and
unstable model.
When interpreting the results of the DNN fit, it is

important to carefully examine the relationships between

the inputs and outputs. To better understand how the DNN
makes its predictions, techniques such as feature impor-
tance and attention mechanisms can be used. While DNNs
can have a reliable statistical interpretation, it requires a
more detailed analysis than traditional algorithms like
MINUIT.
Directed testing of the model predictions and verification

of reliability through multiple trials are crucial. Studies to
test accuracy and precision are useful along with quantify-
ing the robustness of the extraction method itself once a
DNN architecture has been chosen. In this regard, it is
important to prove that the method can be flexible as well as
correct. It is most useful to have a model and method that
yield consistently accurate results for a broad phase space.
The conventional chi-square minimization routines are

limited in their flexibility and applicability to more com-
plex problems because they assume a specific functional
form of the relationship between inputs and outputs. In
contrast, DNNs can learn complex and nonlinear relation-
ships, making them suitable for tasks that require some
degree of abstraction and where there is no known specific
functional form of the relationship. DNNs are proven to be
universal approximators and can handle large amounts of
data while generalizing well to new data, which improves
their accuracy and robustness. This is especially helpful in
the present application, where DNNs can be used to build
better models with new experimental data as they become
available.
The ambiguity in the literature around N qðxÞ and the

accompanying factorized terms in the Sivers function
(hðk⊥Þ and fq=Nðx; k⊥;Q2Þ) makes it a good candidate
for a DNN extraction. In most Sivers function extractions
[5,8,23,25–27,35,47–51], N qðxÞ differs either by its para-
metrization or by the treatment of q inN qðxÞ. For example,
in [7,11,26,27], all antiquarks (ū, d̄, and s̄) were treated the
same (or combined) and referred to as the “unbroken sea.”
Our first step is a generalization of the MINUIT fit

parametrization of N qðxÞ for all light-quark flavors.
Section IV B summarizes the corresponding MINUIT fit
results using iminuit (Python version of MINUIT) [46]. In
these fits we use the same dataset as in [4], and obtained the
fit parameters for N qðxÞ defined as

N qðxÞ ¼ Nqxαqð1 − xÞβq ðαq þ βqÞðαqþβqÞ

α
αq
q β

βq
q

: ð27Þ

This expression is generalized for all light-quark flavors,
where Nq is a scalar for quark flavor q. After our
consistency check, this parametrization is used as a
pseudodata generator to train and test the DNN model.
We emphasize that our original MINUIT fit parametrization
is used as a tool to demonstrate that the DNN model is
capable of predicting (or confirming) the 19-parameter
model used to generate pseudodata, as illustrated in
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Section IV C. It should be clarified that we do not rely on
the form of Eq. (27) in any way and any function that can be
used to generate quality1 pseudodata could be used. After
building confidence in the DNN model from these pre-
liminary tests, we move toward extracting the Sivers
functions from experimental data from the SIDIS process
with a polarized-proton target (see Sec. IV D). Previous
work on global fits to SIDIS data considered the data
from polarized-proton targets, polarized-deuteron targets,
and polarized 3He gas targets as a combined dataset.
This is usually motivated only by the overall lack of
separate polarized target data. In [7], isospin symmetry
was assumed for f⊥1T;u and f⊥1T;d for COMPASS2009 [52]
and COMPASS2017 [53] datasets. However, these are very
different polarized targets with very different results, so we
explore if our method will be sensitive to flavor and target
dependence by fitting each polarized target data independ-
ently. As the nuclear effects on the Sivers functions are not
very well understood, separately extracting the same
observable with different types of polarized targets that
contain different flavor dominance and different nuclear
effects could provide valuable insight. Significant data
would be required for each target type, so there are clear
limitations at the moment, and our fits can only be
considered preliminary in this regard.
The DNN’s unique capacity to manage abstraction

allows for the capture of additional complexity in a
semi-model-independent way. To obtain the most informa-
tion from the data and fit results we attempt to decompose
some of this abstraction using the following conditions:
(1) DNN fits to SIDIS data from proton and deuteron

targets are performed independently to obtain sep-
arate models.

(2) No kinematic cuts are applied to take full advantage
of the available data and to allow the DNN to build
implicit inclusion of the necessary corrections re-
lated to TMD factorization.

(3) A Sivers function for each light-quark flavor is
obtained to ensure the SUð3Þflavor breaking effects
in QCD are also contained.

The technique to achieve the extraction under the
aforementioned conditions is somewhat novel, so explicit
details are provided step by step for clarity in the next
section.

IV. THE EXTRACTION TECHNIQUE

The factorized form, N qðxÞhðk⊥Þfq=Nðx; k⊥Þ assumes
the validity of Eq. (4), leading to model dependencies
associated with this assertion and the Gaussian interpreta-
tion for the k⊥ distributions of the partons. This introduces
a bias to the analysis, but it is a known bias and can be

managed. Within the construction of a DNN model in the
fit function,

N DNN
q ðxÞhðk⊥Þfq=Nðx; k⊥Þ; ð28Þ

there could be considerable variation in definitions (or
assumptions) of hðk⊥Þ or fq=Nðx; k⊥Þ still leading to a
quality fit of N DNN

q ðxÞ to the data due to its considerable
flexibility and high number of parameters with respect to
either of the other two terms in the function. This makes the
finalN DNN

q ðxÞ highly dependent on the choice of hðk⊥Þ and
fq=Nðx; k⊥Þ so the resultingN DNN

q ðxÞmodel must always be
used with the same definitions of hðk⊥Þ and fq=Nðx; k⊥Þ it
was trained with. However, no particular definition of hðk⊥Þ
or fq=Nðx; k⊥Þ is required to make the combination of
N DNN

q ðxÞhðk⊥Þfq=Nðx; k⊥Þ nonbiased and perform well in
the fit. From this standpoint, we do not consider this to be a
fully model-independent extraction, but every attempt is
made to make it minimally model dependent while still
preserving the original assumptions relevant to the phenom-
enology for transparency of the schema. The DNN treatment
of N qðxÞ enables the flexibility of handling all the light-
quark flavors q ¼ fu; ū; d; d̄; s; s̄g independently. The
method presented is intended to be somewhat analogous
to the approach of treating N qðxÞ as a fit function to be
parametrized for the sake of illustrating the advantages. It is
natural to extend this study toward a symbolic regression of
N qðxÞ or the full expression of the Sivers function, but that is
not the scope of the present work.
We use a relationship for N qðxÞ, similar to the seminal

work [4], as a tool to generate our pseudodata for testing
accuracy and reproducibility only. This definition is not
used in any aspect of the final DNN fit results. The generic
feedforward DNN structure for N qðxÞ that we use in this
work is represented in Fig. 3. As we consider the

FIG. 2. Kinematics of the DY process in the hadronic center-of-
mass frame.

1The term quality here refers to how well it can represent the
real experimental data.
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SUð3Þflavor symmetry breaking in QCD, we have N uðxÞ,
N ūðxÞ,N dðxÞ,N d̄ðxÞ,N sðxÞ, andN s̄ðxÞ to handle the six
light-quark flavors independently. Bjorken x is the only
input as the initial layer of eachN qðxÞ, and the final layer is
a single-node output. The m1 in A0ðz; phT;m1Þ as defined
in Eq. (9) is treated as a free parameter, with the initial-
ization obtained from our first chi-square minimization fit
(discussed in Sec. IV B), and then allowed to vary through-
out the DNN training process with SIDIS data, as shown in
Fig. 4. The DNN model results are then used to infer the
projections for both SIDIS kinematics and DY kinematics
(see Fig. 5).
There are many open-source software libraries for

machine learning and artificial intelligence. For this par-
ticular extraction, we use TensorFlow [54]. A deep feedfor-
ward architecture is used with the hidden layers expanded
with multiple numbers of nodes which are initialized
randomly with Gaussian sampling of weights around zero
with a standard deviation of 0.1. The degree of potential
nonlinearity is introduced into the network by the choice of
the activation function. The selection of the activation
function can have a substantial impact on DNN perfor-
mance and training dynamics. We chose the ReLU6
activation function. This activation is a variant of the

rectified linear unit (ReLU) function. The ReLU6 activation
function has been shown to empirically perform better
under low-precision conditions by encouraging the model
to learn sparse features earlier, which is beneficial for
learning complex patterns and relationships from the
experimental data. We also use least absolute shrinkage
and selection operator regression which is a regularization
technique used to prevent overfitting and improve the
model’s performance and generalization ability, while also
encouraging sparsity and feature selection. We also use L1
regularization. L1 regularization encourages sparsity in the
activation by adding a penalty term to the loss function that
is proportional to the absolute value of the weights [55]. By
adding this regularization term, the most important inputs
are weighted the most, so that noisy or redundant infor-
mation is discarded. The strength of the regularization is
controlled by the magnitude of the regularization coeffi-
cient, which is set to 10−12. Additionally, we use a
dynamically decreasing learning rate. The learning rate
is automatically reduced by 10% if the training loss has not
decreased within the last 200 epochs2 (i.e. patience¼ 200).
The optimizer used was Adam while the loss function used
was mean squared error. During the hyperparameter
optimization process, there were slight deviations in the
number of layers, nodes per layer, initial learning rate,
batch size, and the number of epochs, but the basics of the
scheme just described remain consistent for all DNNs used.
Data shuffling is used to randomly organize the data into

batches that pass through the training process. When
training, it is crucial to expose the DNN to a diverse range
of training samples. Shuffling the training data ensures that
the DNN does not learn patterns based on the sequential
order of data. Instead, it promotes a more randomized and
representative distribution of the data, preventing the model
from becoming biased toward any specific subset or order.
This randomization helps the model generalize better and
makes it more robust to variations in the input data,
ultimately improving its overall performance and accuracy.
Batch size is a critical component of successful training as

FIG. 3. A generic representation of the DNN architecture for

N qðxÞ, where q ¼ fu; d; s; ū; d̄; s̄g, and aðnÞm represent the node
m in the hidden layer n. The figure represents only up to n ¼ 3 for
demonstration purposes.

FIG. 4. The block diagram for SIDIS Sivers asymmetry [see
Eq. (8)]: N q denote the DNN models for each quark flavor
q ¼ fu; d; s; ū; d̄; s̄g, and h ¼ fπþ; π−; π0; Kþ; K−g.

FIG. 5. The block diagram for DY Sivers asymmetries [see
Eq. (22)]. N q denotes the DNN models for each quark flavor
q ¼ fu; d; s; ū; d̄; s̄g obtained by training to SIDIS Sivers asym-
metries.

2An epoch is a complete cycle of the passing of training data
through the algorithm.
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well. A batch size too large for a small dataset, even well-
shuffled, can also lead to a biased model. In what follows,
we train two dedicated DNN models: one for the SIDIS
data with a polarized proton target and one for the data with
a polarized deuteron (neutron) target. Since the number of
available data points for the deuteron target is significantly
smaller than the amount of data for the proton target, care is
taken to find the optimum configuration of shuffling and
batch size for the case of deuteron whereas for the proton
the shuffling and batch size’s impact are nearly negligible.
Our strategy is to first perform an exercise using only

pseudodata to verify the extraction method that will
ultimately be used on the real experimental data. First,
we devise a generating function for the SIDIS Sivers
asymmetry data using a conventional χ2-minimization
routine (MINUIT in this case), without following the
popular assumption of “unbroken sea” [4] in order to
generalize the treatment of quarks and antiquarks. We
perform a series of conventional MINUIT fits stepwise to
obtain the final 19 parameters for the case of broken
SUð3Þflavor symmetry in QCD. Then, we produce pseudo-
data (or replicas) for the SIDIS asymmetry by sampling
from the mock experimental errors using the generating
function with kinematics and binning in x, z and phT as in
the experimental data. Then a DNN model is constructed
with all hyperparameters tuned in order to achieve the
highest possible accuracy and precision. Here our nomen-
clature becomes quite specific, and we refer to the resulting
distribution of DNN fits as a DNN model. The first model
obtained with the method for a particular set of data is
referred to as the First Iteration. At this stage, we use the
distribution of fit results to obtain the mean and the error
band from the initial DNN model to reparametrize the
generating function so that it produces more realistic
pseudodata. The DNN fits are performed again improving
the quality (both accuracy and precision) of the resulting
fits to result in a Second Iteration DNN model. One can
repeat the number of iterations until the resulting model is
no longer improving within the experimental uncertainties.
In this way, the DNN model approaches the best approxi-
mation of the Sivers functions in comparison to the true
values put into the generating function.
After confirming that the method works well, an extrac-

tion of the Sivers function using the SIDIS experimental
data is performed. We treat the data for a polarized proton
target and deuteron target separately for two reasons. First,
fitting these together would introduce bias that would need
to be managed directly. This is the case even assuming
isospin symmetry in the u and d quarks’ Sivers functions.
Second, our approach leaves open the possibility to explore
the nuclear dependence of the Sivers functions. The
construction of the DNN models for proton and deuteron
is analogous. To perform the fit another First Iteration, as
previously described, is performed by developing and
tuning a DNN model using the data from the real

experiment rather than pseudodata from the generating
function. In the proceeding iterations, we use the generating
function in order to tune the hyperparameters to achieve the
highest possible quality of fit in comparison with the results
from the First Iteration. Once a tuned model is obtained,
we perform an extended study for evaluating the algorith-
mic uncertainty3 as well as the systematic uncertainty of the
DNN extraction method.
To elaborate on the pedagogy of this method, we

organize the remainder of this section into the following
subsections: (IVA) Data selection, (IV B) MINUIT fits for
the case of SUð3Þflavor, (IV C) DNN model training with
pseudodata, and (IV D) DNN model training with real
experimental data.

A. Data selection

Generally, TMD factorization is considered valid only
under the kinematics restriction of Λ ≪ Q, and phT ≪ zQ.
The first of these requirements is important because it is only
in this limit one can apply massless-hadron kinematics
resulting in near-negligible contamination from power cor-
rections work whereQ > 2 GeV is common. The second of
these requirements provides the kinematic range in which a
traditional factorization scheme will work. Additionally, the
transverse mass scale should generally be preserved around
ðm=Q=zÞ2. We do not strictly adhere to any of these
guidelines but instead, study the consequence of using
progressively less restrictive cuts. For global data selection,
we focus our attention on the fixed target SIDIS andDYdata.
For the proton DNN fits, kinematically 3D binned data from
HERMES2020 [56] are left out for validation and only 1D
binned HERMES2020 data are used for the training. For the
neutron DNN fits, the polarized 3He data from Jefferson Lab
[57,58] are left out and used to test the new projections of the
DNN model trained on the deuteron COMPASS data only.
Table I summarizes the kinematic coverage, the number

of data points, and reaction types of the datasets that are
considered in this work. In addition to the SIDIS datasets
that are used in the fits, the polarized DY dataset from the
COMPASS experiment is also listed in Table I as we
demonstrate the predictive capability of the DNN model by
comparing the projections with the real data points. The DY
projections are made using the trained SIDIS DNN model
assuming a sign change expected from conditional univer-
sality. For the case of training the DNNmodel related to the
proton target we use HERMES2009 [59], COMPASS2015
[60] and HERMES2020 [56] data points associated with
1D kinematic binning, leaving the HEREMES2020 [56]
data associated with the 3D kinematic binning to compare
with the projections from the trained model. The
COMPASS2009 [52] dataset with a polarized-deuteron

3Algorithmic uncertainty is the degree of increase in the
distribution of the resulting fits that is not directly from
propagated experimental error.
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target is used for the neutron Sivers extraction as a separate
DNN model.
For the initial χ2-minimization fit with MINUIT the

same datasets are used as in [4] for consistency which
is HERMES2009 [59], COMPASS2009 [52], and
COMPASS2015 [60]. This fit is described in the next
subsection. The error in Fit 1 of Table II is quite large,
and many of the parameters are consistent with zero. This
highlights the challenges of reproducing this type of ana-
lytical fit with a standard χ2 minimization fit. The last
column, Fit 5, is a fit from our generating function to the
proton-DNN model which provides the most accurate para-
metrization ofN q to date. Again, we point out we do not use
this parametrization for any physics extraction but only to
generate pseudodata.

B. MINUIT fits for SUð3Þflavor
The analysis begins with a χ2-minimization fit with

MINUIT similar to the approach in [4] except we expand

the number of parameters to treat each of the light-quark
flavors separately. The results of the MINUIT fits are
shown in Table II. Fit 1 is from the original fit results from
Anselmino et al. directly from [4]. Here theN qðxÞ for the u
and d quark used is Eq. (27) but N q̄ðxÞ ¼ Nq̄ for
antiquarks. In this fit, there are three parameters, αq and
βq and Nq for each quark flavor, and for each antiquark it is
just Nq̄ plus m1. This results in a nine-parameter fit. Fit 2 is
a test to reproduce the same parametrization as in Fit 1. We
note that in Fit 2 none of the nine parameters are fixed or have
bounds imposed. Both of these first columns only consider u
and d quarks and antiquarks. The Fit 1 parameters were used
as the initial values to perform Fit 2. The difference in these
two sets of fit parameters demonstrates the challenge of
systematic consistency with this method though some
parameters match reasonably well. For Fit 3 we use the
same convention but add in the strange quark so there is an
additional four parameters,Ns, αs, βs, andNs̄, which leads to
a 13-parameter fit. In order to initialize the 13 parameters in

TABLE I. The SIDIS and DY datasets considered in the fits include the DY data, which are used to demonstrate
the predictive capability of the DNN model. Specifically, we make projections using the trained SIDIS DNN model,
assuming a sign change to predict the real experimental DY data points. For the HERMES2020 dataset, data are
available with both 1D and 3D kinematic bins. The 3D bin numbers are indicated in bold font.

Dataset Kinematic coverage Reaction Data points

HERMES2009 0.023 < x < 0.4 p↑ þ γ� → πþ 21
(SIDIS) 0.2 < z < 0.7 p↑ þ γ� → π− 21
[59] 0.1 < phT < 0.9 p↑ þ γ� → π0 21

Q2 > 1 GeV2 p↑ þ γ� → Kþ 21
p↑ þ γ� → K− 21

HERMES2020 0.023 < x < 0.6 p↑ þ γ� → πþ 27, 64
(SIDIS) 0.2 < z < 0.7 p↑ þ γ� → π− 27, 64
[56] 0.1 < phT < 0.9 p↑ þ γ� → π0 27

Q2 > 1 GeV2 p↑ þ γ� → Kþ 27, 64
p↑ þ γ� → K− 27, 64

COMPASS2015 0.006 < x < 0.28 p↑ þ γ� → πþ 26
(SIDIS) 0.2 < z < 0.8 p↑ þ γ� → π− 26
[60] 0.15 < phT < 1.5 p↑ þ γ� → Kþ 26

Q2 > 1 GeV2 p↑ þ γ� → K− 26

COMPASS2009 0.006 < x < 0.28 d↑ þ γ� → πþ 26
(SIDIS) 0.2 < z < 0.8 d↑ þ γ� → π− 26
[52] 0.15 < phT < 1.5 d↑ þ γ� → Kþ 26

Q2 > 1 GeV2 d↑ þ γ� → K− 26

JLAB 0.156 < x < 0.396 3He↑þ γ� → πþ 4
2011, 2014 0.50 < z < 0.58 3He↑þ γ� → π− 4
(SIDIS) 0.24 < phT < 0.43 3He↑þ γ� → Kþ 4
[57,58] 1.3 < Q2 < 2.7 3He↑þ γ� → K− 1

COMPASS2017 0.1 < xN < 0.25 p↑ þ π− → lþl−X 15
(DY) [53] 0.3 < xπ < 0.7

4.3 < QM < 8.5
0.6 < qT < 1.9
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Fit 3, we use the corresponding values for those parameters
from Fit 2 and zeros for the rest. Fit 4 uses Eq. (27) for both
quarks and antiquarks so that the treatment of all three light-
quark flavors is the same. In addition to the parameters from
Fit 3, Fit 4 contains six more parameters for the antiquarks.
The result of Fit 4 leads to a largerNq̄ value to compensate for
the fact that αs̄ and βs̄ are now present in the fit. However, the
motivation behind performing Fit 4 in this way is to
generalize the N qðxÞ in a flavor-independent fashion for
both quarks and antiquarks. Fit 4 is the final fit that we will
use to generate pseudodata for testing the DNN fits and for
calculating themodel’s accuracy. The last column, Fit 5, uses

the analytical generating function to fit the proton-DNN
model in fine bins. The error of the model is propagated to
each bin, and a MINUIT fit is performed providing a highly
accurate parametrization of Nq represented in this particular
function form. We provide this as a basis for comparison.

C. DNN method testing

We develop a systematic method of constructing, opti-
mizing, and testing the DNN fits by using pseudodata to
ensure a quality extraction from the experimental data. Our
approach uses a combination of Monte Carlo sampling and
synthetic data generation. The pseudodata points are
randomly generated by sampling within multi-Gaussian
distributions centered around each experimental data point,
with variance given by the experimental uncertainty. Many
pseudodata DNN fits (instances) are performed together to
obtain the uncertainty of the resulting DNN model (mean
and distribution). The general approach is to use existing
experimental data to parametrize a fit function and then use
it to generate new synthetic data (replicas) with similar
characteristics. The pseudodata are generated with a known
Sivers function so that the extraction technique can be
explicitly tested. An error bar is assigned to each new data
point which is taken directly from the experimental
uncertainties reported for the complete set of kinematic
bins. This approach aims to produce pseudodata that
simulate the experimental data as closely as possible with
particular sensitivity to phase space. It does this so that the
test metrics are also relevant for the real experimental
extraction. To do this the pseudodata generator must be
very well-tuned to the kinematic range of the experimental
data. Hence, the generating function contains as much
feature space information as possible. It is important to
emphasize here that the metrics that we use to quantify the
improvement in the Second Iteration compared with the
First Iteration are sensitive to phase space. The accuracy
(proximity of the mean of the DNN fits to the true Sivers) is
defined as

ϵqðx; k⊥Þ ¼
 
1 −

jΔNfðtrueÞ
q=p↑ − ΔNfðmeanÞ

q=p↑ j
ΔNfðtrueÞ

q=p↑

!
× 100%; ð29Þ

and precision (the standard deviation of replicas) as

σqðx; k⊥Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
iðΔNfðiÞ

q=p↑ − ΔNfðmeanÞ
q=p↑ Þ2

N

s
: ð30Þ

The generating function used to produce the true value
of the Sivers is improved in the process of optimizing the
DNN hyperparameters. This approach improves the gen-
erating function and the DNN fit with each iteration. As a
result, more realistic data can be generated in each iteration,
which enables better hyperparameter optimization and

TABLE II. Collection of MINUIT fit results. Fit 1 is from
Anselmino et al. [4], Fit 2: refit as similar to [4], Fit 3: fit results
including strange quarks, Fit 4: fit results with the same treatment
for all three light-quark flavors.

Parameter Fit 1 Fit 2 Fit 3 Fit 4 Fit 5

m1 0.8 3.9 7.0 7 3.63
δm1 �0.9 �0.3 �0.6 �4 �0.03
Nu 0.18 0.48 0.89 0.89 1.08
δNu �0.04 �0.03 �0.05 �0.06 �0.02
αu 1.0 2.41 2.78 2.75 2.85
δαu �0.6 �0.16 �0.17 �0.11 �0.02
βu 6.6 15.0 19.4 20 12.4
δβu �5.2 �1.4 �1.6 �2 �0.1
Nū −0.01 −0.032 −0.07 −0.12 11.8
δNū �0.03 �0.017 �0.06 �0.60 �0.3
αū � � � � � � � � � 0.4 1.90
δαū � � � � � � � � � �0.5 �0.03
βū � � � � � � � � � 20 1.28
δβū � � � � � � � � � �16 �0.07
Nd −0.52 −1.25 −2.33 −2.4 −2.81
δNd �0.20 �0.19 �0.31 �0.4 �0.07
αd 1.9 1.5 2.5 2.7 1.21
δαd �1.5 �0.4 �0.4 �0.6 �0.02
βd 10 7.0 15.8 17 3.58
δβd �11 �2.6 �3.2 �4 �0.11
Nd̄ −0.06 −0.05 −0.29 −0.7 −32.9
δNd̄ �0.06 �0.11 �0.27 �0.5 �0.7
αd̄ � � � � � � � � � 1.5 5.2
δαd̄ � � � � � � � � � �0.6 �0.7
βd̄ � � � � � � � � � 20 12.9
δβd̄ � � � � � � � � � �17 �0.3
Ns � � � � � � −14 −20 −15.2
δNs � � � � � � �10 �40 �0.8
αs � � � � � � 4.9 4.7 2.9
δαs � � � � � � �3.3 �3.0 �0.1
βs � � � � � � 3 2.3 3.2
δβs � � � � � � �4 �3.1 �0.3
Ns̄ � � � � � � −0.1 20 −19.90
δNs̄ �0.2 �5 �0.09
αs̄ � � � � � � � � � 9.5 7.35
δαs̄ � � � � � � � � � �1.4 �0.05
βs̄ � � � � � � � � � 20 19.80
δβs̄ � � � � � � � � � �14 �0.02
χ2=Ndata 1.29 1.59 1.69 1.66 � � �
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testing for the experimental data in the subsequent iteration.
Note that experimental data still refers to pseudodata
replicas that are generated using the real experimental data
rather than the generating function.
In the pseudodata test, the same number of replicas are

used in the First Iteration and in the Second Iteration. The
number of replicas should be kept the same across
consecutive iterations to control statistical error variation
from the replicas. To most accurately propagate the
experimental uncertainty using the replica approach
requires a sufficient number of replicas so that only
negligible statistical error from the replicas is added. For
the present study, our pseudodata uncertainty is simplified
and is represented by a single error bar which contains the
experimental statistical error and systematic error provided
by the data publication.4

These are the steps to perform the DNN method testing
with pseudodata using the generating function:
(1) Generate pseudodata for the SIDIS Sivers asymme-

try using the generating function (The initial func-
tion used is from Fit 4 in Table II).

(2) First Iteration: construct a DNN fit and tune its
hyperparameters by training with the pseudodata
from Step 1. Use 10% of the pseudodata for the
validation in each epoch.

(3) Determine the optimum number of epochs by
analyzing the training and validation losses for each
replica in Step 2.

(4) Improve the generating function:
(a) Perform an intermediate DNN fit to the exper-

imental data. This fit is performed using the
optimized hyperparameters from the above Steps
2 and 3.

(b) Use the trained DNN fit from (a) to infer the
asymmetry over the 3D kinematics ðx; z; phTÞ
in fine bins.5

(c) Perform a MINUIT fit on the fine-binned data to
obtain the new generating function parametri-
zation.

(5) Perform Step 1 again using the improved generating
function.

(6) Second Iteration: Perform Step 2 again with the
pseudodata generated from Step 5.

(7) Perform a comparison of the Sivers functions ex-
tracted at the First Iteration vs Second Iteration in
terms of the accuracy, precision and the magnitude
of the loss function at the final epoch.

The accuracy metric is a critical part of the testing and is
used to understand the resulting extraction methods’
strengths and weaknesses. A truly robust method would
be consistently able to make accurate predictions for any
generating function parametrization over the relevant
kinematic range. To verify the robustness of our extraction
method, we test it with many artificial Sivers functions and
their corresponding pseudodata at the final stage.
The hyperparameters’ optimization process is a system-

atic process of trial and error with architecture changes like
adding or subtracting layers and the number of nodes per
layer. The initial learning rate varies as does the batch size.
Care is taken to achieve the lowest training and validation
loss. We monitor the stability of the loss by examining the
magnitude and frequency of fluctuations. A more moderate
and even trend downward is optimal. After the generating
function is improved, in principle, it holds more informa-
tion. The number of layers and nodes is increased to make a
better fit to the new, more realistic, pseudodata in the
Second Iteration. If there are too few hidden layers and
nodes, it becomes apparent when the training loss does not
decrease compared with previous fits. Too many additional
layers and nodes result in instability in the training loss.
Tuning continues until little improvement in accuracy and
precision can be determined.

FIG. 6. A comparison of the DNN model before (left column)
and after (right column) hypertuning with the improved gen-
erating function. In the First Iteration, the DNN model is based
on Fit 4, whereas in the Second Iteration, the model is based on
the hypertuned DNN fit. Additionally, hypertuning optimization
leads to higher accuracy and precision with the same number of
epochs. The dotted line in each case represents the generating
function or the true value while the solid line represents the mean
of DNN fits. In the top two plots, u is blue, s is green and d is red.
Similarly for the antiquark in the lower two plots.

4A more detailed analysis could be performed if a full
covariance matrix from the experimental analysis was provided,
but this type of information is often difficult to obtain after
the experiment results are published.

5When generating fine-binned kinematics for the Sivers
asymmetry data for a given kinematic variable, the averaged
values are used for other variables including Q2 as the Q2

evolution is near negligible over the considered kinematics.
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Figure 6 illustrates the results from the First Iteration
(two plots on the left-hand side) and the Second Iteration
(two plots on the right-hand side). The sets of hyper-
parameters in the First Iteration and the Second Iteration
are given in the columns for each DNN model in Table III.
The indications in the table are Ci0 and Cf0 for results from
the pseudodata from the generating function, Cip, and C

f
p for

results from SIDIS data from experiments associated with
the polarized-proton target, and Cid and Cfd for results from
SIDIS data from experiments associated with the polarized-
deuterium target. Here i and f indicate the First Iteration
and Second Iteration respectively. The listed learning rate
(multiplied by 10−4) is the initial learning rate as a
dynamically decreasing learning rate is used. (This is
explained in Sec. IV). The accuracy εqðx; k⊥Þ is defined
in Eq. (29), and the results in this table correspond to the
maximum deviation of the mean of the replicas from the
true values εmax

q , whereas the precision σqðx; k⊥Þ is defined
in Eq. (30), and the results are the maximum standard
deviations of the replicas σmax

q and are in the units of ×10−3.
It is worth noting that the improvement in both accuracy

εmax
q and precision σmax

q can be observed from the closeness
of the solid line (mean of the 1000 DNN replicas) to the
dashed line (generating function) for quarks (upper plots)
and antiquarks (lower plots). The improvement of the DNN
model in each case is significant to the point where it is
difficult to distinguish the solid line and the corresponding

dashed line, indicating a high degree of accuracy and
precision. Also, we observed that the training loss in the
Second Iteration is about 1 order of magnitude less than the
one from the First Iteration.

D. DNN model from real data

In contrast to the testing of the DNN model with
pseudodata from the generating function, we now describe
the steps to apply the DNN fit method to real experimental
data. The pseudodata test from Sec. IV C is using the
combined proton and deuteron data as in all previous work
on global fits of the Sivers function. In the following
extraction with real experimental data, the proton and
deuteron data are fitted separately. To take full advantage
of the information provided by the model testing in the
previous section, the steps from Sec. IV C are performed
again separately for proton and deuteron data. The starting
hyperparameters for the first DNN fit in this section
including the architecture, initial learning rate, batch size,
as well as optimal number of epochs, are all determined
based on the best accuracy and precision using the well-
tuned pseudodata from the generating function first in each
case. They provide more information on the initial hyper-
parameter so that even the First Iteration is a quality fit. In
the following steps, two distinct DNN models are devel-
oped, one for the proton quarks Sivers asymmetry and one
for neutron quark Sivers asymmetry. The following pro-
cedure is common to both.

TABLE III. The summary of the optimized sets of hyperparameters: The indications in the table are Ci0 and C
f
0 for

results from the pseudodata from the generating function, Cip, and Cfp for results from SIDIS data from experiments

associated with the polarized-proton target, and Cid and Cfd for results from SIDIS data from experiments associated
with the polarized-deuterium target, where i and f indicate the First Iteration and Second Iteration respectively. The
initial learning rate is also listed (×10−4) as is the final training loss (×10−3). The accuracy and precision in each
case are the maxima over the phase space.

Hyperparameter Ci0 Cf0 Cip Cfp Cid Cfd

Hidden layers 5 7 5 7 5 8
Nodes/layer 256 256 550 550 256 256
Learning rate 1 0.125 5 1 10 1
Batch size 200 256 300 300 100 20
Number of epochs 1000 1000 300 300 200 200
Training loss 0.6 0.05 1.5 1 2 1
εmax
u 95.67 99.27 55.21 94.04 56.80 93.02
εmax
ū 42.62 98.09 52.57 96.70 34.83 91.40
εmax
d 80.46 98.89 55.69 93.13 52.44 89.27
εmax
d̄

74.59 97.08 55.37 95.04 46.60 92.58
εmax
s 45.53 79.27 49.54 90.64 36.34 93.41
εmax
s̄ 59.27 91.13 33.89 82.51 65.57 91.45
σmax
u 3 0.1 5 2 2 0.4

σmax
ū 2 0.2 6 2 8 2

σmax
d 10 1 20 6 2 1

σmax
d̄

7 4 20 8 7 1
σmax
s 2 0.2 4 1 6 2

σmax
s̄ 1 0.1 4 2 6 3
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(1) First Iteration: Construct a DNN fit and tune its
hyperparameters by training with the experimental
data. Use 10% of the data for the validation in each
epoch.6

(2) Identify the optimum number of epochs when the
validation loss exceeds the training loss [see Fig. 7 as
an example].

(3) Perform a DNN fit, with the optimized hyperpara-
meters from Step 1 and the number of epochs
determined from Step 2, using all the data without
leaving any for validation.

(4) Improve the generating function:
(a) Use the tuned DNN model in Step 3 to infer the

asymmetry over the 3D kinematics ðx; z; phTÞ in
fine bins.

(b) Perform a MINUIT fit to obtain the new gen-
erating function.

(c) Produce pseudodata for the SIDIS asymmetry
using the generating function in the previous step.

(5) Perform Step 1 and Step 2 with the pseudodata from
Step 4 (from the improved generating function).

(6) Second Iteration: perform a DNN fit with the
optimized hyperparameters from Step 5 using
experimental data without leaving any data for
validation.

(7) Perform a comparison of the Sivers functions ex-
tracted at the First Iteration vs Second Iteration in
terms of the accuracy, precision and the magnitude
of the loss function at the final epoch. See Fig. 8 for
the qualitative improvement of the Second Iteration
compared with the First Iteration.

Although the architectural specifics such as the number
of hidden layers, nodes per layer, and learning rate may be
modified in the hyperparameter optimization step, the
number of epochs and the number of replicas remain the
same. The overall feedforward architecture structure
remains consistent as well for simplicity. Table III shows
the optimized set of hyperparameter configurations are
represented with Cfi;fgf0;p;dg where i, f represent the First
Iteration and the Second Iteration, and f0; p; dg represent
with pseudodata, with proton data and with deuteron data
respectively.
Clearly, the pseudodata from the generating function still

play a critical role in the tuning and testing of the fit of the
real experimental data. Accuracy is necessarily determined
using pseudodata so that the mean of the final DNN model
can be compared directly to the true Sivers asymmetry.
This procedure for determining accuracy assumes that the
true Sivers asymmetry from the experiment can be approxi-
mated by the well-tuned generating function after the final

iteration. There is a systematic error associated with
analyzing accuracy this way, but this type of error can
be estimated.
After completing the extraction method described above,

we perform a systematic uncertainty assessment on the
overall method of extraction. To test the reliability of the
extraction, we adjust the parameters of the generating
function and repeat the extraction process by again following
the full set of steps for several variations of pseudodata. By
using the Sivers asymmetry generated from the optimized
generating function, the absolute differences between the

FIG. 7. An example for the determination of the optimum
number of epochs (about 300 in this case, marked by the vertical
red dashed line) at the First Iteration based on crossover
coordinates between the train (blue curve) and the validation
(orange curve) losses. Then, the train-loss behaviors until the
optimum number of epochs with all data points at the First
Iteration and at the Second Iteration are represented by the green
curve and the red curve respectively.

FIG. 8. The qualitative improvement of the extracted Sivers
functions for u (blue), d (red), and s (green) quarks at x ¼ 0.1 and
Q2 ¼ 2.4 GeV2 using the optimized proton-DNN model at the
Second Iteration (solid lines with dark-colored error bands with
68% C.L.), compared with the First Iteration (dashed lines with
light-colored error bands with 68% C.L.).

6For this section we list this as First Iteration though the real
experimental data have already been fit to improve the generating
function for the pseudodata test. With every subsequent iteration,
the pseudodata test and the DNN fit to the experimental data
improve.
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FIG. 9. The DNN fit results of the SIDIS Sivers asymmetries (red) accompanied by 68% C.L. error bands in comparison with the
actual data (blue). The proton-DNN model is trained with HERMES2009, HERMES2020, and COMPASS2015, whereas the deuteron-
DNN model is trained with the COMPASS2009 data. The calculated partial χ2 values are provided as quantitative assessments for all
kinematic bins.
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mean of theDNNmodel and the truevalue over k⊥were used
to estimate the systematic uncertainties of the final DNN
model from this extraction technique.

V. RESULTS

In this section, we present the results from two separate
DNN models: the proton-DNN and the deuteron-DNN,
along with their optimized hyperparameters. The number of
parameters in the optimized proton-DNN model is 11 mil-
lion, whereas the deuteron-DNNmodel is 2.8 million. Only
SIDIS data were used to train the DNN models in this
exploratory AI-based extraction technique. The optimized
hyperparameter configurations are provided for both mod-
els in columns CiðfÞp and CiðfÞd , with the subscripts p and d,
respectively, in Table III. To quantitatively represent the
improvement made by performing the steps mentioned in
the previous section, we present our accuracy and precision
results in the lower part of Table III.

A. DNN fit to SIDIS data

We now explore the results and compare some of our
final fits and projections with those of other global fits.
Note that the χ2 values are calculated values for each
kinematic bin based on Pearson’s reduced χ2 statistic, and
indicated in our plots are calculated after the analysis is
complete, rather than as a part of the minimization process.
The plots of SIDIS Sivers asymmetry data and our

resulting DNN models (for proton and deuteron) are shown
in Fig. 9. Each plot includes the partial χ2 values for the
particular x, z, and phT bins for each hadron type.
HERMES2009 [59] (top left), HERMES2020 [56] (top
right), and COMPASS 2015 [60] (bottom left) are described
with the proton-DNN model with root mean square error
(RMSE) of 0.0225, whereas the COMPASS2009 [52]
(bottom right) dataset is described with the deuteron DNN
with RMSE of 0.0220. In comparison with [4], there are
some improvements in describing the proton SIDIS data
on π� and Kþ in HERMES 2009, which can be noticed
quantitatively based on the partial χ2 values from the DNN
model. This indicates that the possible effects attributed to the
TMD evolution [6,8,48] and assumed to be the cause of the
larger χ2 values in [4] for proton data on πþ may have been
somewhat integrated into the DNN model. Although
HERMES 2020 [56] reported SIDIS data in 1D kinematic
bins as well as with 3D kinematic bins, in our fits we use the
data in the formof 1Dkinematic bins to be consistentwith the
rest of the datasets in our fits.
The deuteron-DNN model’s description of

COMPASS2009 [52] data is shown in the bottom left
subfigure of Fig. 9. Without applying any cuts on the data,
the DNNmodel yields a RMSE of 0.0220, covering the full
range in x, z, and phT kinematic projections from the

COMPASS2009 dataset. This is in contrast to the limited
kinematic coverage considered in [5,7,9,51]; notably, the
data points at phT > 1 GeV are described somewhat better
by the deuteron-DNN model compared with the fits in
[4,26]. This suggests that performing dedicated fits to data
specific to polarized nucleon targets enables better infor-
mation extraction, which is true for both DNN and other
fitting approaches. The advantage of DNNs in this case is to
perform well even with limited data.
We did not include JLab [57,58] data in our deuteron-

DNN model fits to use it as a projection test for the neutron
Sivers asymmetry. Our projection indicates good agree-
ment with the 3He data, but both the data and the projection
are largely consistent with zero. It is also important to note
that in this work we are not imposing any isospin symmetry
condition (f⊥u

1T ¼ f⊥d
1T and/or f⊥ū

1T ¼ f⊥d̄
1T ) for the SIDIS

data with the deuteron target as was done in [7]. The
successful construction of the two different proton and
neutron Sivers functions may indicate that our DNN
approach can be particularly useful for analyzing data
from polarized nucleons in different nuclei, potentially
opening up a new way of exploring the nuclear effects
associated with TMDs.

B. Sivers in momentum space

The extracted Sivers functions, including the systematic
uncertainties from the DNN models at x ¼ 0.1 and
Q2 ¼ 2.4 GeV, are shown in Fig. 10 represented by the
mean with 68% C.L. error bands. The corresponding
optimized hyperparameter configurations for the proton-
DNN model and deuteron-DNN model are Cfp and Cfd,
respectively, as given in Table III. The Sivers functions
extracted using the deuteron-DNNmodel show consistency
with zero, considering the accompanying systematic uncer-
tainties. However, this is still a significant result, given the
limitation in statistics from the SIDIS data with a deuteron
target. The Sivers functions extracted using the proton-
DNN model have small systematic uncertainties. Note that
we use ΔNfq=p↑ðx; k⊥Þ notation, as in [4], to represent the
Sivers functions in our plots, and one can use Eq. (3) to
convert to f⊥q

1T ðx; k⊥Þ notation.
Comparing the extracted Sivers functions in k⊥ space to

other extractions in the literature can also be useful,
although we have not included those curves in our plots.
In summary, the proton-DNN model extractions are rela-
tively precise, with narrower error bands compared with
those in [3,4,7–9,11,26].

C. Sivers first transverse moment

The first transverse moment of the Sivers functions
can be obtained through d2k⊥ integration of the Sivers
functions [4],
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ΔNfð1Þ
q=p↑ðxÞ ¼

Z
d2k⊥

k⊥
4mp

ΔNfq=p↑ðx; k⊥Þ

¼ −f⊥ð1Þq
1T ðxÞ

¼
ffiffi
e
2

p hk2⊥im3
1

mpðhk2⊥i þm2
1Þ2

N qðxÞfqðx;Q2Þ: ð31Þ

The extracted first transverse moments of the Sivers
functions including the systematic uncertainties from the
DNN models are given in Fig. 11 with 68% C.L. error
bands using the optimized hyperparameter configurations
C2 and C3 in Table III respectively for the proton-DNN
model and deuteron-DNN model. The calculated moments
using the deuteron-DNN model are consistent with zero,
based on the systematic uncertainties.
Comparing the results in Fig. 1 of [51] as shown in

Fig. 12, we see that the xf⊥ð1Þu
1T from the DNN model is

more consistent with [5,8] in the vicinity of x ¼ 0.1,
although it is consistent with [27] at x ¼ 0.01. The

xf⊥ð1Þd
1T , in general, is consistent with the extractions from

]4,5,8,26,27,51,61 ]. Additionally, the extracted behavior of

xf⊥ð1Þu
1T and xf⊥ð1Þd

1T is consistent with the qualitative
observation in [26],

ΔNfð1Þ
u=p↑ðxÞ ¼ −ΔNfð1Þ

d=p↑ðxÞ
or f⊥ð1Þu

1T ðxÞ ¼ −f⊥ð1Þd
1T ðxÞ; ð32Þ

which was originally a prediction from the large-Nc limit of
QCD [62]. Most importantly, the DNN model is able to
capture the feature of the u and d quarks orbiting in
opposite directions without imposing this constraint
directly as done in [45]. In terms of the quantitative
assessment, Eq. (32) could be accurate at the large-Nc
limit, if the isospin breaking effects are also included at the
next to leading order in Oð1=NcÞ.
In regard to the light sea quarks, the proton-DNN model

extracts the features such as ΔNfð1Þ
ū=p↑ðxÞ > 0 and

ΔNfð1Þ
d̄=p↑ðxÞ < 0, even considering the scale of the uncer-

tainties. Additionally, the proton-DNN model is consistent
with

ΔNfð1Þ
ū=p↑ðxÞ ¼ −ΔNfð1Þ

d̄=p↑ðxÞ; ð33Þ

FIG. 11. The extracted first transverse moments of Sivers
functions from the proton-DNN model (upper) and deuteron-
DNN model (lower) at x ¼ 0.1 and Q2 ¼ 2.4 GeV2 with
68% C.L. error bands, including systematic uncertainties.

FIG. 10. The extracted Sivers functions from the proton-DNN
model (upper) and deuteron-DNN model (lower) at x ¼ 0.1 and
Q2 ¼ 2.4 GeV2 with 1-σ (68%) C.L. error bands, including
systematic uncertainties.
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which was also a similar observation from a theoretical
calculation based on SUð2Þ chiral Lagrangian [63] and the
predictions at large-Nc limit of QCD [62]. The central
values extracted in [27] are qualitatively similar to the
features seen in Fig. 11 which are small but nonzero within
the uncertainties. Additionally, the corresponding central
values extracted in [4] are both negative but consistent
with zero.
The first transverse moments xf⊥ð1Þq

1T ðxÞ, in the case of
SUð3Þflavor, from our DNN result, are more precise
(narrower error bands) than those in [4,23,26]. However,
the error bands are slightly larger than those in JAM20 [5],
which includes more data from SIDIS, DY and SIA, pp
collisions, and parametrizations for Sivers, Collins, and
transversity TMDs together.

D. Projections

1. SIDIS Projections

In Fig. 13, we compare the SIDIS Sivers asymmetries (in
red) projected onto the HERMES2020 3D kinematic bins
with the experiment measurements (in blue). These results
are obtained using our proton-DNN model and are accom-
panied by 68% C.L. error bands. We also provide calcu-
lated partial χ2 values for each kinematic bin as a
quantitative assessment. Unlike in [7], we have made
projections for all the data points since we have not applied
any data cuts. There are relatively larger partial χ2=Npt (as
was also observed in [7]), but only in a couple of Kþ and
K− bins. In Fig. 14, we present the projected SIDIS Sivers
asymmetries for the JLab kinematics [57,58], obtained
using our deuteron-DNN model. The figure includes
68% C.L. error bands and a comparison with the JLab

neutron Sivers asymmetry data. These results are consistent
with those reported in [4,8,9,61].

2. DY Projections

The resulting DNN model based on the SIDIS Sivers
asymmetries is capable of projecting the Sivers asymme-
tries in DY experiments which could be sensitive to either
valence quarks or sea quarks depending on the relevant
kinematic coverage. For example, the COMPASS2017-
polarized DY Sivers asymmetry measurements [53] are
dominated by the valence quarks, and the upcoming
SpinQuest (E1039) experiment’s polarized DY asymmetry
measurements [64] will be dominated by the sea quarks.
For these DY projections, we follow the block diagram
represented in Fig. 5, which includes the assumption of
the sign-change of the Sivers function in DY relative to the
SIDIS process mentioned in Eq. (1). Therefore, using the
trained proton-DNN model, we make projections for
the DY Sivers asymmetries for the COMPASS2017 experi-
ment [53] with a proton target and a pion beam using
CTEQ6l [36] and JAM21PionPDFnlo [65] for proton PDFs
and pion PDFs respectively. Meanwhile, using both the
proton-DNN model and deuteron-DNN model, we make
predictions for the SpinQuest experiment.7 The kinematic
inputs are x1 (beam), x2 (target), xFð¼ x1 − x2Þ, qT (trans-
verse component of the virtual photon), and QM (dilepton
invariant mass).
The projected DY Sivers asymmetries for the

COMPASS2017 kinematics using the trained proton-
DNN model in comparison with the data [53] points are
represented in the Fig. 15. Although the projections are
based on the assumption of conditional universality, it is
worth noting that without this assumption, negative asym-
metry projections were observed. However, for clarity, the
projections without assuming conditional universality are
not shown in Fig. 15. When comparing the projections of
the proton-DNN model with the predictions from [4,8,49],
it is evident that the mean of the proton-DNN model
projection, in terms of xF, is more consistent with the
measured mean Sivers asymmetry in the experiment (refer
to Fig. 6 in [53]). At the same time, the proton-DNN model
projection has relatively smaller uncertainty. It is important
to note that the predictions mentioned in the cited works
were based on different Q2-evolution schemes, while the
proton-DNN model incorporates DGLAP evolution
through LHAPDF [37]. In [7], only two data points from
the COMPASS2017 [53] data were included in their fits,
resulting in larger uncertainties in the projected asymmetry
values for the remaining data points when compared with
the projections generated by the proton-DNN model. The
increasing trend of the projected DY Sivers asymmetries
with respect to the qT kinematic variable in [7] is consistent

FIG. 12. The extracted Sivers functions for valence uðdÞ quarks
from the proton-DNNmodel represented in the upper (lower) half
of the figure, with the results from PV22 [51], JAM20 [5], EIKV
[8], TC18 [61].

7The kinematic bins from the SeaQuest experiment are
used [66].
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with the projections presented in the middle-right plot of
Fig. 15 generated by the proton-DNN model, while in [9],
the corresponding trend exhibits a very small negative slope
in relation to qT .
A nonzero sea-quark Sivers asymmetry is inferring that

the sea quarks have nonzero orbital angular momentum.
The proton-DNN model predictions exhibit consistency
with the nonzero Sivers asymmetry from the sea quarks,
with higher precision compared with existing predictions

[4,8,49], for the SpinQuest kinematics [64,67].
Additionally, in this work, we report our projections for
the polarized Drell-Yan Sivers asymmetries for a deuteron
target at the SpinQuest experiment, as shown in Fig. 16 by
the orange-colored bands. The mean of the deuteron DNN
model in all kinematic projections x1; x2; xF, and qT are
consistent with zero. The proton-DNN model predicts a
positive slope with respect to qT for a proton target as
shown in the lower-right plot of Fig. 16. To date, with the

FIG. 13. Projections of the of HERMES 2020 data for 3D kinematic bins, using the proton-DNN model including 68% C.L. error
bands (in red) in comparison with the actual data points (in blue).
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exception of this work, no predictions have been made for
the polarized DY Sivers asymmetry using a deuteron target,
which will be measured during the SpinQuest experiment.
A noteworthy aspect of the forthcoming SpinQuest experi-
ment is that, in addition to measuring the Sivers asymmetry
from proton and deuteron targets, it will also ascertain the
transversity distributions of both quarks and gluons, utiliz-
ing a tensor-polarized deuteron Spin 1 target, as proposed
in [68].

VI. SYSTEMATIC STUDIES

Using DNNs in global fits following a similar schema as
laid out in this work may afford the loosening of some of
the strict kinematic cuts to the experimental data while still
preserving the validity of TMD factorization. The meth-
odology is still very new, but some distinct advantages are
clear with our DNN approach compared with standard
analytical fitting.

A. Systematic study of data cuts

Neural networks, especially deep neural networks, have a
profound capacity for learning complex patterns and rela-
tionships in data to model nonlinear and high-dimensional
functions without any prior information on the function
dimensionality or form. When performing global fits the
kinematic dependencies can be intricate and difficult to
capture using conventional analytical approaches leading
to the need to limit the data to achieve a decent fit. DNNs can
adapt to these complexities and, in some cases, benefit from

FIG. 14. The deuteron-DNN model projections (red) with
68% C.L. error bands, for JLab kinematics [57,58] in comparison
with measured data (blue) without the systematic uncertainty.

FIG. 15. The proton-DNN model’s predictions (red) including
68% C.L. error bands, for Sivers asymmetries in x1; x2; xF; qT ,
and QM kinematic projections for COMPASS DY kinematics
[53] in contrast with the measured data (blue).

FIG. 16. The proton-DNN model (red) and the deuteron-DNN
model (orange) predictions including 68% C.L. error bands, for
Sivers asymmetries in x1; x2; xF, and qT kinematic projections for
the SpinQuest DY kinematics [64,66].
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the lack of kinematic cuts, making the resulting model more
robust and still sensitive to a range of kinematic variables.
The TMD factorization formula for the SIDIS hadronic

tensor Wμν was defined in [6,16],

Wμν ¼
X
f

jHfðQ2; μÞjμν

×
Z

d2k⊥d2p⊥δð2Þðzhk⊥ þ p⊥ − phTÞ

× Ff=N↑ðx; zhk⊥; S; μ; ζFÞDh=fðzh; p⊥; μ; ζDÞ
þ YðphT;Q2Þ; ð34Þ

where all nonperturbative information (the soft part) is
encoded in Ff=N↑ and the Dh=f whereas the perturbatively
calculable hard part is denoted by jHfðQ2; μÞjμν. For
preserving the validity of TMD factorization normally
strict kinematic cuts are applied. However, applying strin-
gent cuts to already limited experimental data reduces the
statistical significance of the model and may lead to the loss
of valuable information. We explore a range of possible
cuts with the intention of preserving as much data as
possible and taking care to not introduce bias by only
selecting data that lead to better fits. The unique feature of
DNNs to perform well even when trained on a broader
range of data with complex correlations serves as a major
advantage over fitting analytically. It then serves, whenever
there is not a direct conflict with the necessary factorization
theorem, to include data points from regions that might
otherwise be excluded in traditional kinematic cuts
allowing the DNN model to build implicit inclusion of
the necessary corrections.
DNNs have the ability to implicitly capture higher-order

effects that would be near impossible to obtain using a
direct analytical fit unless the initial Ansatz is very lucky or
the function form has been proven to contain the necessary
physics. TMD factorization relies on specific assumptions
about the dominance of certain terms in the cross section
calculation. One critical limitation is qhT ≪ Q which is
required for the derivation of the factorization property
suitable for the case of relatively low transverse momen-
tum. In this factorization scheme approximations are made
that have errors of order (qhT=Q). For qhT greater than Q,
the conventional formalism, with integrated fragmentation
functions, would no longer be valid. This directly leads to
the restriction of SIDIS data to a region where phT ≪ zQ,
which can severely reduce the available data. TMD
factorization loses accuracy at large qhT , with fractional
errors characterized as ðqhT=QÞα. The Collins and Soper
approach [16] gives (m=Q) errors for the full range of qhT
which treats the TMD term as a first approximation to the
cross section and allows for the application of a correction
by applying an additive approximation from the ordinary
collinear factorization. Such corrections can be implicitly

captured when training a DNN model over the full range of
phT . This is the case even if the assumptions such
corrections are based on are not relevant in all kinematic
regions of the applicable data. The only requirement is that
TMD factorization does not break down at a rigid boundary
but instead, remains valid but at a cost to the models’
accuracy. The scale of such errors can be numerically
estimated so there is an advantage to using as much data as
possible and then studying the systematic effects of certain
limitations. This approach allows the implicit inclusion of
higher-order effects in the DNN model, providing the
means for a more comprehensive analysis that can handle
a wider kinematic range without sacrificing factorization
validity. However, careful consideration and validation are
necessary to ensure the reliability of the model as well as
accurate quantification of the systematic error as a function
of phT .
The applicability of TMD factorization was ensured by

applying cuts to SIDIS data based on various criteria in the
literature. Although the limit qT ≪ Q [12,13,15,16,69–72]
covers the conventional TMD factorization formalism, the
large-Q requirement is needed for suppressing the power
corrections ∼m2=Q2 and ∼Λ2=Q2, where Λ is a general
nonperturbative scale of QCD. Sincem and Λ are ∼1 GeV,
the Q > 2 GeV condition was applied on top of the δ ¼
phT=ðzQÞ ≤ 0.3 condition in [7,11] although the phenom-
enological region for δ is 0.2–0.3 in order for the TMD
factorization to be valid. It is practically well known by the
effort on global fits, that accommodating more data points
is a bigger challenge when using a smaller lower bound for
δ. Therefore, a more conservative limit qT=Q < 0.75 was
used in [9] to retain a large enough dataset to perform a
meaningful fit. On the other hand, a combination of cuts,
Q2 > 1.63 GeV2, 0.2 < z < 0.6, 0.2 < phT < 0.9 GeV,
was applied in [5], and also discussed in detail in [73]
with the standpoint that data which satisfy phT ≪ Q may
not satisfy qT ≪ Q depending on the value of zh because
qT ≃ phT=zh, and therefore be difficult to describe in a
TMD approach. In addition to Sivers function extractions
this is also the case for other TMDs extractions [74].
In this exploratory effort with DNNs, such later-

mentioned power corrections are not directly imposed.
In addition to the data basic cut Q2 > 1 GeV2 we per-
formed Q2 > 2 GeV2 and phT < zQ cuts separately with
the proton-DNN model to understand the impact on the
extracted Sivers functions. In addition, a dedicated DNN fit
has been performed with the JAM20 [5] cuts: i.e.
Q2 > 1.63 GeV2, 0.2 < z < 0.6, 0.2 < phT < 0.9 GeV
as a demonstration of impact from such a selective
combination of cuts on the extracted Sivers functions.
The results are plotted in Fig. 17 only representing the

Sivers functions for u, d flavors. In summary, all cuts
analyzed which respect Q2 > 2 GeV2 and phT < zQ,
except the JAM20 [5] cuts, are consistent with the DNN
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model that only contains theQ2 > 1 GeV2 cut which is the
same as without any cuts at all. Note that Q2 > 1 GeV2 is
the recommended generic cut in [16] assuming the appli-
cation of corrections and error estimates for increasing qT .
The deviation measured in this study of cuts that is strictly
dependent on qT is only of ∼2% so it is clearly advanta-
geous to incorporate a wide range of qT to ensure that there
is implicit inclusion of these corrective contributions to the
hadronic tensor from the Y term built into the DNN model.
Figure 18 shows the resultant Sivers functions from proton
DNN for all six light-quark flavors with relatively small
uncertainty bands caused by the selection of cuts in JAM20
[5]. Note that the uncertainty band represents the statistical
component with 68% C.L. from 1000 replica models.

B. Systematic study on choice of hðk⊥Þ
In the original framework [4], the Sivers function is

written as the factorized form, Eq. (4), where hðk⊥Þ is
understood to be of an unknown form that is simply
postulated by the authors (in [4]) based on the assumed
kinematic response. Indeed, the analytical expression of
hðk⊥Þ has been treated with various types of ansatz and
mostly with the Gaussian type of parametrization
[4,5,7,35,51]. It is also entirely possible that this term
has nothing to do with the proper theoretical treatment as
suggested in [6]. When a term in the factorized TMD
expression is required to manage some kinematic behavior
but has not been formally derived, the DNN analysis
presented can be particularly useful as it allows for a
high-quality fit despite the dependence of hðk⊥Þ. After the
determination of the other terms using the DNN, like
N qðxÞ in this case, the terms can then be separated and
studied independently to determine the interpretation. If
hðk⊥Þ or any of the multiplicative terms are biases then the
DNN can be used to compensate for the bias. This is done
by building an architecture that has orders of magnitude
more parameters (usually thousands) than the expression in
question, hðk⊥Þ in this case. This effectively reduces the
weight of hðk⊥Þ in the fit. This can be done progressively
and systematically with intentional control of how much
each term contributes to the fit. In the fit performed for this
analysis, we build the DNN to optimize the loss directly so
the contribution of hðk⊥Þ to the final fit is small though the
DNN becomes specialized to the particular hðk⊥Þ. In this
way, the DNN directly mitigates any type of incorrect
Ansatz if the final number of DNN parameters is very large
with respect to hðk⊥Þ. This can be done while still
rendering a high-quality numerical model encoding all
information available in the data. The DNN term becomes
uniquely parametrized to account for the biases while the
resulting combination of terms in the model remains largely
unbiased, even though each individual term may not be
independently meaningful. It should be noted that for our
analysis the choice of having the DNN modelN qðxÞ rather
than N qðxÞhðk⊥Þ or some other choice is arbitrary and
done purely as an exercise to demonstrate the flexibility of
the technique. To study the systematic variation of the
choice of hðk⊥Þ, we used the same candidate functions for
hðk⊥Þ that were also used in [35]. Those are

hðk⊥Þ ¼
ffiffiffiffiffi
2e

p k⊥
m1

e−k
2⊥=m2

1 ð35Þ

and

hðk⊥Þ ¼
2k⊥m1

m2
1 þ k2⊥

: ð36Þ

The model must be trained separately with each hðk⊥Þ
creating entirely different models for N qðxÞ that result in

FIG. 18. Sivers functions from a retrained DNN model using
the cuts [65] to the data demonstrating that being selective with
the data can reduce the error bands of the fit but may also add an
unintentional bias.

FIG. 17. Solid lines with light band represent the u (in blue), d
(in red) Sivers functions using the cut Q2 > 1 GeV2. These
resulting DNN models made from the cuts from all tests are also
shown.
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the same Sivers function as shown in Fig. 19. The solid line
with a dark band represents the Sivers functions with
hðk⊥Þ ¼

ffiffiffiffiffi
2e

p k⊥
m1
e−k

2⊥=m2
1 , whereas the dashed line with a

light band represents the Sivers functions with
hðk⊥Þ ¼ 2k⊥m1

m2
1
þk2⊥

. It is clear that the DNN N qðxÞ is capable
of incorporating both types of hðk⊥Þ without affecting the
Sivers functions in the final model as well as the asymme-
tries (with deviation less than 1%).

VII. THE 3D TOMOGRAPHY OF THE PROTON

The TMD density of unpolarized quarks inside a proton
polarized in the ŷ direction can be graphically represented
using the relation [7,51],

ρap↑ðx; kx; ky;Q2Þ ¼ fa1ðx; k2⊥;Q2Þ − kx
mp

f⊥a
1T ðx; k2⊥;Q2Þ;

ð37Þ

where k⊥ is a two-dimensional vector ðkx; kyÞ, and the
unpolarized TMD and the Sivers function for quark flavor a
are respectively represented as fa1ðx; k2⊥;Q2Þ, and
f⊥a
1T ðx; k2⊥;Q2Þ. The corresponding quark density distribu-

tions from our proton-DNN model for all light-quark
flavors in SUð3Þflavor at x ¼ 0.1 and Q2 ¼ 2.4 GeV2 are
shown in Fig. 20. The observed shifts in each quark flavor
are linked to the correlation between the OAM of quarks
and the spin of the proton. The results shown in Fig. 20
provide evidence of nonzero OAM in the wave function of
the proton’s valence and sea quarks. The proton-DNN
model calculations for the u and d quarks are similar to
those reported in [7,51], where the distortion has a positive
shift for the u quark and a negative shift for the d quark with
respect to the þx direction. From the results in Fig. 20, the

proton-DNN model demonstrates that a virtual photon
traveling toward a polarized proton “sees” an enhancement
of the quark distribution, in particular more u; ū quarks to
its right-hand side and more d; d̄ quarks to its left-hand side
in the momentum space. Moreover, the resultant shifts for
ū; s quarks from the proton-DNN model are also in
agreement with [7]. In the low-x region, the momentum
space quark density becomes almost symmetric [51], and it
indicates that the Sivers effect becomes smaller and the
corresponding experimentally observed asymmetry is
small.
The forthcoming data from Jefferson Lab at 12 GeV,

Fermilab SpinQuest experiment, and the anticipated future
data from the Electron-Ion Collider [75–77], along with
their extensive kinematic coverage, are expected to provide
invaluable insights into the 3D structure of the nucleon.
Obtaining a model-independent estimate of quark angular
momentum requires parton distributions that simultane-
ously depend on both momentum and position [78–81]. In
addition to experimental observations, lattice QCD
(LQCD) computations provide a valuable tool for QCD
phenomenology from first principles. For instance, LQCD
has been utilized to investigate the Sivers effect and other
TMD observables at different pion masses [82] as well as
the generalized parton distribution at the physical pion
mass [83]. Additionally, LQCD results on the Collins-
Soper kernel over a range of bT (the Fourier transform of
the transverse momentum) are useful for global fits of TMD
observables from different processes [84]. In this way,
LQCD could complement the experimental data and open

FIG. 19. Using two different hðk⊥Þ. Solid line with dark band
represents the Sivers functions with hðk⊥Þ ¼

ffiffiffiffiffi
2e

p k⊥
m1

e−k
2⊥=m2

1 ,
whereas the dashed line with light band represents the Sivers
functions with hðk⊥Þ ¼ 2k⊥m1

m2
1
þk2⊥

.

FIG. 20. Quark density distributions ρap↑ from the proton-DNN
model (average of 1000 replicas) for the light-quark flavor a ¼
fu; ū; d; d̄; s; s̄g inside a proton polarized along the þy direction
and moving toward the reader, as a function of ðkx; kyÞ at x ¼ 0.1
and Q2 ¼ 2.4 GeV2.
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up an avenue to enhance the DNN method to explore the
3D structure of nucleons more directly.

VIII. EXPLORING EVOLUTION

The solution of the TMD evolution equations [12,16],

μ2
dFðx; b; μ; ζÞ

dμ2
¼ γFðμ; ζÞ

2
Fðx; b; μ; ζÞ ð38Þ

ζ
Fðx; b; μ; ζÞ

dζ
¼ −Dðb; μÞFðx; b; μ; ζÞ; ð39Þ

can be written as the following simplified form in terms of
the Fourier transform of k⊥ (i.e., b) [7] where F can be any
TMD distribution

Fðx; b; μ; ζÞ ¼
�

ζ

ζμðbÞ
�

−Dðb;μÞ
Fðx; bÞ; ð40Þ

and DðbÞ is the nonperturbative Collins-Soper kernel. Also
in the literature, these scales were generally selected as

μ ∼Q; ζFζD ∼Q4; μ2 ¼ ζ2 ¼ Q2 ð41Þ

[6–8,16,85], and the global fits have been performed using
some form of evolution factor as a function of the Collin-
Soper kernel. Although the full analysis of incorporating
TMD evolution from the DNN fit is beyond the scope of
this work, a preliminary DNN fit has been performed by
modifying the N qðxÞ as N qðx;Q2Þ by adding a separate
input node for Q2 in addition to x. Figure 21 shows the

percentage of the Sivers asymmetry (Asinðϕh−ϕSÞ
UT ) vs Q2

(GeV2) in comparison with [6]. The preliminary version of

the TMD evolution from DNN is in agreement with the
observation in [6] within 68% C.L. (with 1000 replica
models) regarding the suppression of the full asymmetry
faster than ∼1=

ffiffiffiffi
Q

p
, but slower than ∼1=Q2. Moreover, the

dynamic trend and consistency with the evolution behavior
seen in [6] indicates that a complete evolution treatment at
large Q may be a collective effect and worthy of a deeper
investigation with our DNN approach.
As presented the Sivers function satisfies DGLAP

evolution but not a TMD evolution. We have however
introduced the first steps of how this analysis could be
performed. However, in order to perform the best evolution
analysis it would be best to start with no prior analytical
Ansatz.

IX. CONCLUSION AND DISCUSSION

In conclusion, this paper demonstrates the effectiveness
of using specialized DNNs as part of a fit function used to
obtain a global extraction of the Sivers function from
transverse single-spin asymmetry experimental data. It has
been clearly shown that these tools are incredibly flexible
and can be used to build accurate models even under the
condition that the factorized terms contain biases. By
training the model with these terms present, the DNN
can account for these biases, resulting in a largely unbiased
final model. This approach enables the exploration of
existing formalism and the testing of new phenomenology
while managing and studying biases in individual terms.
The proposed method can provide a means to minimize
errors and ambiguity associated with the ill-defined expres-
sions normally constructed to meet the factorization
requirements.
Our proposed method leverages AI to perform global fits

and extract the Sivers distributions of unpolarized quarks in
both polarized protons and neutrons. We use a generating
function to ensure robustness and accuracy in the extraction
process. Progressive improvement in the extracted infor-
mation can be achieved by optimizing architecture and the
corresponding hyperparameters using pseudodata gener-
ated in the same kinematic bins as the real data and then
translating that improvement to real experimental data
extraction. Our schema handles complex and sparse data
effectively, with the generating function providing addi-
tional quality control and the means to quantify accuracy
and precision.
As the first attempt to extract the Sivers function using

AI techniques, we chose the N qðxÞ parametrization of the
deep neural net to incorporate all x-dependent features.
This initial DNN extraction ofN qðxÞ uses SIDIS data from
HERMES and COMPASS to build a Sivers function model
which can then be used to make predictions for the Sivers
asymmetries for both SIDIS and DY processes. The fitting
method successfully extracts the Sivers function for valence
quarks and light-quark flavors in a flavor-independent
manner. This investigation is exploratory, with the intention

FIG. 21. The Sivers asymmetry evolution in Q2 compared to
the result from [6]. The red-colored solid line and the band

represent the mean and standard deviation of the Asinðϕh−ϕSÞ
UT from

1000 replica models of the proton DNN at x ¼ 0.12, z ¼ 0.32,
phT ¼ 0.14 GeV.
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of developing tools and techniques that minimize error and
maximize utility, which we hope to expand upon in further
work. The trained model predicts results consistent with
experimental data, demonstrating its predictive capability.
Projections for the sea-quark Siver function are made for
the SpinQuest experiment with polarized proton and
deuteron targets.
There are two key challenges when using data to extract

TMDs. One is the applicability of TMD factorization and
the other is achieving meaningful fit results. An exploratory
effort has been performed to address this with our schema
along with a variety of data cuts. As a result, the DNN
shows the variation of qT dependent cuts, resulting in small
deviations in the extracted Sivers functions compared with
the result with a wide range of qT , and simultaneously
following the TMD factorization theorem. We also analyze
the TMD evolution of the Sivers asymmetry, which aligns
with previous work and indicates the potential of the DNN
approach. Further analysis in this direction is warranted.
Our method and techniques are intended to be simple

and reproducible, highlighting the potential of AI for data
analysis and information extraction. Cooperation between

experimentalists, theorists, and the growing computational
efforts is crucial for accelerating advancements in the field.
A global effort to standardize data collection, organization,
and storage in an unbinned format with detailed covariance
information must be developed to take full advantage of the
AI tools now available. AI and its emerging technologies
will continue to accelerate the progress of data-driven
physics, but the speed of that progress largely depends
on the level of foresight and cooperation within the
community.
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