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We present the first full analytic results of next-to-next-to-leading order (NNLO) QCD corrections to the
top-quark decay width I'( — Wb) by calculating the imaginary part of three-loop top-quark self-energy
diagrams. The results are all expressed in terms of harmonic polylogarithms and valid in the whole region
0 < m?, < m?. The expansions in the m}, — 0 and m%, — m? limits coincide with previous studies. Our
results can also be taken as the exact prediction for the lepton invariant mass spectrum in semileptonic
b — u decays. We also analytically compute the decay width including the off shell W boson effect up to
NNLO in QCD for the first time. Combining these contributions with electroweak corrections and the
finite b-quark mass effect, we determine the most precise top-quark width to be 1.331 GeV for
m; = 172.69 GeV. The total theoretical uncertainties including those from renormalization scale choice,
top-quark mass renormalization scheme, input parameters, and missing higher-order corrections are

scrutinized and found to be less than 1%.
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I. INTRODUCTION

As the heaviest elementary particle in the standard model
(SM) of particle physics, the top quark plays an important
role in studies of fundamental interactions. Its properties
have been investigated in great detail since its discovery at
the Tevatron [1,2]. Among them, the top-quark decay width
I'; is one of the most important parameters. The large value
of this quantity indicates that the top quark has a lifetime
much shorter than the period for its hadronization [3]. Thus,
we can measure directly the properties of the top quark
itself, rather than the hadrons formed by top quarks. Such
studies on top quarks provide an excellent playground for
the precision test of the SM and the search for new physics
signals.

The top quark can be produced via both strong and
electroweak interactions but decays only by electroweak
interaction. In the SM, it decays almost exclusively to Wb,
and therefore, its decay width is determined by this decay
mode, i.e., I, =T'(t > Wb).

The top-quark decay width can be measured in various
ways. In the first method, one could compare the shape of
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the reconstructed mass distribution of top quarks with
samples in which the top-quark width is already known.
This method relies on detector resolution and precise
calibration of the jet energy scale. The missing momentum
of the neutrino from top quark decay causes large uncer-
tainties in the determination of the width. The ATLAS
Collaboration has measured the width to be I, =
1.9 £ 0.5 GeV using this method [4].

One may also take an indirect approach by combining
the information of the branching fraction ratio B(t - Wb)/
B(t — Wq) from top-quark pair production and that of the
t-channel single top-quark cross section. The CMS
Collaboration has performed such a measurement and
determined the top-quark total decay width I', = 1.36 &
0.02(stat) 711 (syst) GeV [5].

Novel methods have been proposed recently. The top-
quark decay width can be directly probed by measuring the
on/off shell ratio of b-charge asymmetry from pp — bW},
and a 0.2-0.3 GeV precision is expected at the high
luminosity LHC [6]. Applying the same idea to the
top-quark pair production, the top-quark width can be
constrained with an uncertainty of 12% assuming an
experimental accuracy of 5% [7]. A more realistic analysis
of the ATLAS differential cross section measurement
shows that a result of 1.28 £0.31 GeV for the width
can be obtained [8].

The top-quark width can also be measured at a future
ete™ collider. Following a multiparameter fit approach, it
can be extracted with an uncertainty of 30 MeV [9].
The sensitivity would be further improved by using
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polarized beams or an optimized scan strategy, and an
accuracy of 21 (26) MeV can be obtained at the ILC [10]
(CEPC [11]). The measurement at the CLIC will be at the
same level [12].

On the theoretical side, the next-to-leading order (NLO)
quantum chromodynamics (QCD) corrections to the ¢ —
Wb decay were first computed analytically in Refs. [13—15]
before the discovery of the top quark. The NLO electroweak
(EW) corrections were presented around the same time
[16,17]. The next-to-next-to-leading order (NNLO) QCD
corrections to the top-quark decay width have been calcu-
lated in Refs. [18-21] and Ref. [22] about twenty years ago
using asymptotic expansion in the w = m$,/m? — 0 and
w — 1 limit, respectively. Later, the total and differential
decay widths were calculated numerically [23,24], and
polarized decay rates were also studied [25,26]. Recently,
the renormalization scheme and scale uncertainties in
this process were discussed in [27]. However, the full
analytic results of NNLO QCD corrections valid for any
w from O to 1 are still unknown. They are helpful not only in
understanding the mathematical structure of the scattering
amplitude at the multiple-loop level but also in providing
fast and accurate numerical results for phenomenological
analyses.

II. CALCULATION METHODS

We calculate the top-quark decay width I', by using the
optical theorem to relate it to the imaginary part of top
quark self-energy diagrams X for the process t - Wb — t,

r, = . (1)

In this way, we are not bothered by the divergences that
exist in the virtual and real corrections separately and the
complicated phase space integration.

The amplitudes of the self-energy diagrams X can be
generated by using the packages FeynArts [28] and FeynCalc
[29]. Due to the angular momentum conservation, the final-
and initial-state top quarks have the same spin. Performing
summation over all the spins of the external top quarks,
each amplitude is converted to a trace along the fermion
line and thus, consists of scalar loop integrals. They are
reduced to a minimal set of integrals called master integrals
(MIs) using the identities induced from integration by parts
[30,31]. In this step, we have made use of the package FIRE
[32]. There are nine integral families at the three-loop level.
After reduction, however, we are left with six kinds of
topologies, as shown in Fig. 1.

The imaginary part of X receives contributions from cut
diagrams where some of the internal propagators can be put
on shell simultaneously [33]. In particular, the W boson
propagator and at least one b quark propagator should be
cut. The MIs containing such cuts are labeled cut Mls.
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FIG. 1. The topologies of three-loop Feynman diagrams that
contribute to the top-quark decay + — bW at NNLO in QCD. The
thick and thin black lines stand for the top quarks and massless
particles, respectively. The red lines represent the W bosons.

Then we construct canonical differential equations for
the cut MIs by choosing a proper basis I(w, ¢) such that the
dimensional regularization parameter €= (4 —d)/2,
where d is the space-time dimension, decouples from the
kinematic variables [34-36],

4
dI(w,e) =ed [Z R; log(l,-)} I(w,e), (2)

with the letters /; € {w —2,w — 1,w,w + 1} and R; being
rational matrices. The explicit form of the canonical basis I
and the differential equations in Eq. (2) are available upon
request from the authors. It is highly nontrivial to achieve
the canonical form for a three-loop integral basis that
contains two different masses in the propagators.

In order to solve the above differential equations, boun-
dary conditions have to be provided. Most of the basis
integrals are regular at w = 0; i.e., they do not contain any
logarithmic structure log(w) and thus can be obtained from
the results for heavy-to-light decay processes [21,37], or by
using the regularity conditions of the differential equations
at w = 0. The calculation of the basis integrals that are not
regular is more technical. Some of them can be calculated
directly. The others can be determined up to a constant after
solving the differential equations. This constant is firstly
computed numerically with an over 50-digit accuracy
employing the AMFlow package [38,39] and then recon-
structed in analytic form using the PSLQ algorithm [40,41].

The results of the basis integrals are all expressed in
terms of multiple polylogarithms [42] with arguments /;. In
particular, we find that the letter [, = w — 2 appears always
along with w —1 and w. Therefore, we can change the
variable w — 1 — w in those integrals containing the letter
w — 2, making all the analytic results of the master integrals
written simply in terms of harmonic polylogarithms (HPLs)
as defined in [43].

Combining the cut Mls and their corresponding coef-
ficients, we obtain analytical results for the imaginary part
of three-loop top-quark self-energy diagrams, which are
free of infrared divergences but still ultraviolet divergent.
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We then calculate the contribution of the counterterms
following the standard renormalization procedure and find
that the ultraviolet divergences cancel out exactly.

III. ANALYTICAL AND NUMERICAL RESULTS

The top-quark decay width for + - Wb at NNLO in
QCD can be expressed as

Xo= 2w+ 1)(w-1)%

X, =Cp (XO (—ZHO’I(W) + Hy(w)H, (

where ') =

aS aS 2
I(t > Wb) =T, {Xo +2X, + (—) Xz] . ()
T T

Grm |Vl
8\/27[
the strong coupling a, read

and the coefficients at each order of

2

) =5 ) 5 (w50 = 1P )

1
+w(2w? +w—1)Hy(w) + Z(6WS — 15w + 4w + 5)),

Xy = Cp(TrmX; + TrnpX;, + CpXp + C4Xy). (4)

Here, we have taken a massless b quark for simplicity.
The results for X and X; have been well-known [13-15].
The full analytic form of X, is new and constitutes one
of the main results of the present work. It has been
decomposed in gauge-invariant color structures, which

|

Xy

X, = —?[Hom( w) = Hog(w)
%, = = B0 103y 000+ g4,
Xr = %Xo[—6(2H0,1.0,1( ) +6H, 01(w) =

—2Hg (W) +2H, 1 o(w) — 7*H (W)

3Hy0.10(w) —12{(3)H

|

are specified in QCD by Cr=4/3,Cy =3,Tzg =1/2,
and n,(n;) the number of massless (massive) quark species.
The coefficients of each color structure at the renormaliza-
tion scale y = m, are given by

=3¢(3)] + gi(w),

1(w) = ﬂzHl,o(W)]

1
+ (X ) (= g2 () = 21010

1
12(18w —3w? + 76w + 15)7°H  (w )—5(4w3—2w2—|—4w+3)H0,0Y0,1(w)

+ = (4w =2w? + 16w + 3)Hg g1 0(w) + w(2w? = Tw — 16)Hg 911 (W)

NI'—N|—~

1
(2w = 11w? = 28w — 1)Hg 1 1 o(w )+m7z (42w — 191w? — 328w — 11) + gp(w),

1
X, = §X0[—ﬂ2H1.0(w) +8H,001(w) —2H,010(w) = 12L(3)H, (w)]

1 1
+ ﬁ (10W3 + 33W2 + 44W + 11)77:2H0’1(W) - Z (8W2 + 16W + I)H0.0’O’I(W)

1 1
+ (XO + 4W) (E”ZHO,—I (W) + HO,—],O,] (W)> + mﬂ' (86W3 - 385W2 - 312W + 11)

1
— Z (8W2 + 4w + 1)(21‘10’0‘1’1 (W)

—Hop10(w)) + 2 (2W3 + 13w? + 12w + 3)Hy 1 1 o(W) + ga(w). (5)
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Here, we have shown explicitly in each coefficient the
results of maximal transcendental weight of HPLs, which is
defined by the dimension of the vector m in Hj(w). The
transcendental weight can be added in each term and the
ubiquitous constants 7z and Riemann zeta function {(n)
should be considered of weight one and n, respectively,
since 7 = —iHy(—1+i0) and {(n)= H()H‘l(l). The
results of lower transcendental weight are denoted by
the functions g;(w), g,(w), gr(w), and g4(w), of which
the explicit forms can be found in the Appendix. The above
results are obtained at the renormalization scale y = m;.
The scale dependent part in these coefficients can be
recovered using the fact the total decay width is scale
independent.

We have made multiple checks at various stages of the
calculation. All the analytic results for the master integrals
have been confirmed against the numerical AMFlow package
[39]. The amplitudes have been calculated in two different
gauges for the W boson propagator, i.e., the Feynman-
’t Hooft gauge and the unitary gauge, and perfect agree-
ment is found. The particles appearing in the loops and the
renormalization constants are all different, and thus, the
agreement between the results in these two gauges provides
a strong check of the correctness of our calculation. Our
analytic results can be expanded to any fixed order around a
w from 0 to 1. The expansion up to O(w?) coincides with
the result reported in [20,21], and the expansion around
w = 1 reproduces the asymptotic expansion result given
in [22].

Though the decay width at w = 0 and w = 1 is finite, it
exhibits logarithmic structures near these boundaries. We
have extracted such logarithmic terms by making use of the
shuffle algebra properties of the HPLs. They are shown in
the Appendix. It would be interesting if these logarithms
could be reproduced and resummed to all orders from
effective field theory.

To illustrate the difference between our exact results and
the approximations in series expansions, we show the
numerical values in Fig. 2. The expansion up to order
w3, which was given explicitly in Refs. [20,21], agrees with
the exact result very well for w < 0.5 but begins to deviate
from it for larger w. The expansion value near w = 1 is not
approaching zero and is thus irrational, since the phase
space is nearly prohibited in this region. At the other end,
the difference between the series up to (1 — w)>, which was
collected in Ref. [21], and the exact result is negligible for
w > 0.5, but becomes sizable when w decreases. The most
obvious deviation is about 10% at w = 0. Our analytic
results unify the two expansions and are valid in the entire
interval 0 <w < 1.

The top quark decay is closely related to other important
processes. Our results multiplied by a constant factor can be
taken as the exact prediction for the lepton invariant mass
spectrum in semileptonic b — u decays. After integration
over w from 0 to 1 analytically, we reproduce the NNLO

— exact
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FIG. 2. Comparison between the exact result of X, (black line)
with its expansion around w = 0 (dot-dashed green lines) or
w = 1 (dashed red lines). The curves in the lower panel represent
the deviation of the expansions from the exact result.

QCD correction to the total decay rate of b quark semi-
leptonic decay I'(b — X,er,) [44], which is a requisite
to extract a precise value of the Cabibbo-Kobayashi-
Maskawa matrix element V;, from B meson experiments.
Furthermore, if we integrate only the Abelian contribution
X over w, we obtain the analytic two-loop QED correction
to the muon lifetime [45], which has been used to derive an
accurate value for the Fermi coupling constant Gy [46].

In the above discussion, the W boson in the top quark
decay is assumed on the mass shell. In reality, it has a width
of I'yy = 2.085 GeV [47] since it could decay immediately
into leptons or quarks. After considering the fact that the
top quark can decay into an off shell W* boson, the top-
quark decay width is given by [13]

[, =0(t > W*b)

1 [mi
ﬂA (¢*

With the analytical result of I';(x) at hand, it is straightfor-
ward to perform the integration and obtain the analytical
form of I, in terms of multiple polylogarithms [42], which
is provided in the Appendix. This is another new result of
our work.

Now we provide numerical results for the top-quark decay
width.! The input parameters are given by [47]

my 'y
732 710
—my,)” + my Ly

T(q*/m7).  (6)

'All the above formulas are incorporated in a Mathematica
program Topwidth, which can be downloaded from https://github
.com/haitaolil/TopWidth. The program has been organized in a
form that can easily be used.
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m,=172.69GeV, m,=4.78 GeV,
my =80.377GeV, Ty =2.085GeV,
m;=91.1876 GeV, Gp=1.16638x 1075 GeV=2. (7)

We choose the Cabibbo-Kobayashi-Maskawa matrix
element |V, | =1, and a,(mz) =0.1179. The values of
a, at other scales are derived using the three-loop renorm-
alization group evolution equation [48,49]. The decay width
is decomposed according to the perturbative orders,

T, =T 46 +6y) + (3 + 8y + S + o)
2 2 2 2 2
+ (85 4+ 85 + 8w + Soen + Stwxac)]- (8)

where the LO width T\”) = 1.486 GeV with m, = 0 and W

on shell, 6,(;) and 55/{,) denote the corrections from finite b
quark mass effect and off shell W boson contribution,
respectively. The higher-order EW and QCD corrections
are indicated by 5&, and 58)@, respectively. The superscripts
specify the perturbative order in which they contribute.

In Table I, we show their individual contributions. We
can see that the dominant corrections come from QCD
higher orders, which are —8.58% and —2.07% at NLO and
NNLO, respectively. The NLO EW correction, calculated
using the analytic expressions in [16,50], increases the LO
result by 1.68%. The off shell W boson contributes a
—1.54% correction at LO, while its effect is only 0.13% at
NLO, nearly amounting to 5(ul,) x 58%13. The off shell W
boson effect at NNLO is further suppressed. The b quark
mass correction at LO is —0.27%, as expected at the same
order of m3/m?. The modification at NLO is not severely
suppressed compared to the LO one. We have checked that
this is due to the large logarithms at subleading power. It
would be interesting to investigate their structure following
the method in [51].

Collecting all the contributions as shown in Table I, we
obtain the top-quark width I', = 1.331 GeV, which is
the most precise determination of this quantity to date.

TABLE 1. Top-quark width up to NNLO and corrections in
percentage (%) from finite b-quark mass effect, off shell W boson
contribution, EW and QCD higher orders normalized by the LO
width I'”) = 1.486 GeV with m, = 0 and on shell W. The values

of 521) and 5](51‘2, are obtained from the formulae given in
[13,16,50,52]. The symbol “x” denotes the contribution that
has not been calculated yet. The last column gives the decay
width including all the possible corrections up to that order.

5} s\ s, Sgep Ty (GeV)
LO 0273 —1.544 . 1.459
NLO 0.126 0132 1683 —8575 1.361
NNLO % 0.030 «  —2.070 1.331

When the top-quark mass varies from 170 GeV to 175 GeV,
the width changes from 1.258 GeV to 1.394 GeV, display-
ing an almost linear dependence within this range, as shown
in Fig. 3.

Finally, we discuss the theoretical uncertainties in our
results. The first uncertainty is due to the arbitrary choice of
the QCD renormalization scale u. We have chosen the
default value 4 = m, in the numerical evaluation. Now we
scan the scale y € [m,/2,2m,] and find that the variation of
the result is about £0.8% and £0.4% at NLO and NNLO,
respectively, which can be seen in Fig. 3. This scale
uncertainty has been reduced dramatically after including
NNLO QCD corrections. The second uncertainty comes
from the renormalization scheme of the top-quark mass.
The top-quark mass used in Eq. (8) is defined in the on shell
renormalization scheme. If we adopt the MS scheme in
QCD corrections, the top-quark decay width would be
1.309 GeV at NLO and 1.332 GeV at NNLO, which differ
from the results using the on shell scheme by —3.79% and
0.09% at NLO and NNLO, respectively. The perturbative
series using the on shell mass usually grows rapidly at
higher orders due to the infrared renormalon divergence
[53]. This problem can be avoided if the decay rate is
expressed in terms of the MS renormalized top-quark mass.
Assuming a powerlike growth for the coefficients of
(ag/m)" [44], the missing NNNLO QCD contribution
would be of the order of 0.4%. This is consistent with
the expectation that the scale dependence gives a rough
estimate of the unknown higher-order contributions. Third,
the uncertainties at NNLO from the input parameters
a,(mz)=0.1179+£0.0009 and my =80.377+£0.012GeV
[47] are 0.1% and 0.01%, respectively. Fourth, the
deviation between the a scheme and the Gy scheme we
have used in the EW correction is 0.1% at NLO. Lastly, the
NNLO EW as well as the mixed EW x QCD corrections

have not been studied so far, but we estimate that they are of

the order of aél(il\;, and 5](51‘,)&, X 58():1), respectively. Therefore,

after considering all the possible uncertainties, we conclude
that the uncertainty of our result at NNLO is less than 1%.

— 10 [ENLO [ NNLO

T, [GeV]
i

Lov o by o0l

1 2 USRS S S S SRS S ST S NS S SRS R S S
170 171 172 173 174 175
m, [GeV]

FIG. 3. Top-quark width as a function of m,. The bands denote
the QCD scale uncertainties.
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IV. CONCLUSION

We have provided the first full analytical result of the
top-quark width at NNLO in QCD. The result is obtained
using the optical theorem and expressed in terms of only
harmonic polylogarithms, and thus, it enables a fast and
exact evaluation. The off shell W boson contribution is also
calculated analytically up to NNLO in QCD for the first
time. Combining our results with NLO EW corrections and
finite » quark mass effects, the most precise top-quark
width is predicted to be 1.331 GeV for m, = 172.69 GeV
with the total theoretical uncertainty less than 1%.
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APPENDIX: LONG EXPRESSIONS OMITTED IN
THE MAIN TEXT

The functions g;(w), g,(w), gr(w), and g4 (w) in Eq. (5)
are given by

(38w? = 55w —=37)(w— 1)H, o(w) = (Tw? = 39w? + 15w + 5)H (W)
g(w) = - ' + :
18 9
(4w +5)(w—=1)2H,;(w) = z*(124w3 — 111w? — 12w + 23)
- SALEA
3 108
124w’ — 35w? — 143 6)(w—1)H 1 2 — 120w —22)(w—1
_ (124w = 35w wHOW=DHIMW) 110612 — 250 — 86)Hy (w) — 22 w=22)(w=1)
36w 36
(w) = o?(w—=1)(11w? = 13w — 10) N (19w* + 32w — 18w? — 8w + 23)(Z — Hyy, (w))
I = 18 9w —1)
(265w + 1683 — 498w? + 344w + 9)H, (w) 159020 — 9237w? — 12528w + 12775
* 54w * 1296 '

gr(w) = —i(W —12)(24H_; o o(1 —w) +24H_; o, (1 -

96

w) + 14x?H_i (1 —w)

—3¢(3) - 1822 1og(2))

+ (5w? + 8w+ 3)(w—1) <2H_1,0_1(w) + éﬂ.’zH_l(W)) —I—%(w2 — 25w —26)(w — 1)H {1 9(w)

+ 4;|»—

(2
3

_.[;|_NI>—‘

+ 4—871'2w(16w2 — 13w+ 4)Hy(w)

1 1

_ Ly 3 2 _ _
T (16w3 + 27w? — 76) log(2) + 16(w
(29w? + 24w — 1)(w — 1)2H | 1 (w) n

(22w — 99w? — 63w — 2)(w

1
( 1) Hl,O,l(W) —Eﬂ2(15W2+66W+37)(W— 1)H1(W)
+ 3—2 (400w3 + 199w? — 192w — 212)¢(3)

1)(177w? = 106w — 86)

— 1)H, o(w)

4w

B (80wt — 159w — 220w? +w + 2)Hy (W) 1

8w 48

8w

7 (120w? 4+ 177w? — 120w + 119)

+ 16 (8w? — 385w? — 196w — 4)Hy(w) +

(w—1)(34w* — 449w? — 175w — 2)H, (W)

16w
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1
ga(w) = @(Wz —12)(24H_, g0(1 =w) +24H_; o, (1 = w) + 14z H_ (1 - w) = 3((3)

1822 log(2)) + (w — 1)(5w* + 8w + 3) (—H_Lo,l(w) _

X
ﬁﬂzH—1 (W)) + —0H1,0.1 (w)

2

1 1
+ g (16w* +27w? — 24w — 13)Hg o1 (W) + 52 (38w* — 117w? + 42w + 34)H,y o (w)
1 1
- (124w3 — 231w + 72w + 68)Hg 1 1 (W) + - (w—1)(41w?> = 73w = 22)H | 1 o(w)

1 1

- 3—27Z2W(16W2 +w—4)Hy(w) — ﬁn’z(w — 1)(57w? + 45w — 16)H | (w)
1 1

~a (560w3 — 425w? — 96w — 36)¢(3) + 3—27r2(16w3 +27w? —76) log(2)
1 1

1 1
+52 (166w + 65)(w — 1)>H, 1 (w) — @ﬂ2(2614w3 + 1005w? — 1272w — 505)

1 —1)(1352w* — 1387w’ — 1873w + 66)H
+ g W(25427 = 2317w — 2420)Ho(w) + (w = 1){1352w 142: w+60)H; (w)
w

%(w— 1)(1188w? — 3381w — 785). (A1)

Near the w = 0 and w = 1 boundaries, the decay width contains logarithmic terms. Near w = 0, we find

X; = In(w) <—%(2w +1)(w=1)>(Ho (W) +2H, 1 (w)) —%(38w3 —93w? + 18w + 37)H; (w)

1
—|—%w(—106w2 +25w—|—86)> +e (A2)

1 1 1
Xp = In(w) <Z (W = 12)H_5(1 = w) +4—L(2W3 —15w? + 10w + 12)H (w) —|—§(w3 —26w? —w+26)H, (W)

3 1 3
+ (2W3 — W2 + 8w + E)HO’O'I(W) + E(—2W3 + 11W2 + 28w + I)HO,I.I(W) + E(W - l)2(2W + 1)H1’0.1<W>

- ) ((4n* - 3 297 — 272 \w? 189 — 272 H 1
_(w )((4m* — 66)w> + (29 2;: w? + (189 — 22%)w + 6) 1(W>+Eﬂ2(4w3—3w2+w—3)
w

3385w 49w 1
LY w w >+ . (A3)

1 1 1
X, =In(w) <—§(w2 —12)H_; o(1-w) Jrﬁ(38w3 —117w? +42w+34)H  (w) +E(41W3 —114w> +51w+22)H ;(w)
1 1 1
+ <2W2 +W+Z) HO,O,](W) +Z(2W3 + 13W2 + 12W+3)H0’1,1(W) _Z(W_ 1)2(2W+ 1)H1’0’1<W)

1 1
—i(w— 1)(=466w? + 972 (2w? —w—1) + 827w +485)H, (w) —ﬁﬂ2(12w3 +w?=3w-3)

+1271w3 2317w? 605w
144 288 72

where the omitted parts do not contain any logarithms. X, does not have In(w) terms.
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Near w = 1, we discover the logarithmic structures,

X, = m2(16_w)(w —1)2((4w +2)Hp(w) — 4w = 5)
+ 31—6111(1 —w) (—12(2w + 1) (w=1)*Hoo(w) + 242w+ 1)(w — 1)2H; o(w)
AT = 392 + 15w+ 5)Ho(w) + L2 =35 _w143w HOW=D 52000 4 1)(w - 1)2>
+o (AS)

6(19w* + 32w3 — 18w? — 8w + 23)Hy(w)
w—1

1
X, = 5—41n(1 —w) (—18(2w3 = 3w? — 12w + 1)Ho(w) +

9
—265w* — 168w? + 498w — — — 344> +- (A6)
w

Xy = %1112(1 —w) (—(w2 C12)(H_y (1= w) = Tog(2)) + 4(2w2 = Tw — 16)wHoo(w)

+ (4w + 57w? + 4w — 54)Hy(w) —

(w—=1)2(29w? + 24w — 1))

x %m(l —w) <—(w2 —12)(=12Hy_; (1 = w) + 1210g(2)Hy(1 — w) + z?)

—96(5w? + 8w + 3)(w — 1)H_; o(w) + 24(18w* — 9w? — 4w + 3)H o(w)

+ 12(4w? + 57w? + 4w — 54)H, o(w) + 96(2w? — 3w? + 4w + 1)Hy_; o(w)

+ 24(4w* = 2w? 4+ 4w + 3)Hg g o(w) — 48w(2w? — Tw — 16)(—=H 1 o(w) — H 0(W))

+ 482w + 1)(w —1)*Hy 1 0(w) + 1442w + 1) (w — 1)2H | g o(w) — 47> (18w — 3w? + 76w + 15)Hy(w)
N 6(80w* — 159w* — 220w? + w + 2)Hy(w)

w

_ 3(34W3 — 449w? —W175W - 2)(W - 1) _ 288(2W + 1)(W _ 1)24’(3)) + -, (A7)

+ 472 (15w* 4 66w + 37)(w — 1) = 72(w — 1)2H, o(w)

1
X, = 47§1112(1 —w)(=12(8w? + 4w + 1)Ho(w) — (124w3 — 231w? + 72w + 68)H(w)

+3(w? = 12)(H_;(1 —w) —log(2)) + (166w + 65)(w — 1)?)

1
+ m1n(1 —w) (144(w —1)(5w? + 8w + 3)H_; o(w) — 24(16w* + 27w? — 24w — 13)H o(w)

— 6(124w° — 231w + 72w + 68)H, o(w) — 144(2w° — 3w? + 4w + 1)Hy_; o(w)

2
+ 72(8W2 + 4w + 1)(—HO.1’0(W) - HI,O,O(W)) - 18(W2 - 12) (HO,—I(l - W) - log(2)H0(1 - W) - %)
=T72(w=1)22w+ 1)H, o(w) — 144(w — 1)>(2w + 1)H, g o(w) — 62%(10w* + 33w? + 44w + 11)H(w)
—2(32w3 + 7592 + 354w — 224)Ho(w) + 622 (w — 1)(5Tw? + 45w — 16) + 216(w — 1)> 2w + 1)¢(3)
(w—1)(1352w — 1387w? — 1873w + 66)) .

+36(8w? + 16w + 1)Hgo(w) — w
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The top-quark width including off shell W boson contribution is given by

= I;O [XO 5ok + (%) 25(2] (A9)
with
Xo=2rw(2w—1) — % [(2(r = iD)w =) ((r=i)w+ )G ppins(1) + 2(r + D)w + i) ((r + i)w — )G, _ire(1)]  (A10)
and
X = 5 ((r —Dw+ i) (472 (2(r —i)*w? + irw + w + 1) = 3(6(r — i)’>w* 4+ (9 + 9ir)w 4+ 5))G,, 4 i (1)
o (4 1w = AR+ 1202 = irw w4 1) = 3(6(r+ D202+ (9= 9irw + 5)) Gy (1)
%(r—i— Dw2(r+i)*w? + (=1 +inw 4+ 1)G,,_j»,0(1)
— 3= W= 97 4 (=1 = irw 4 )G (1)
+ % (@(r = ipw = 5)((r = W+ 12Gs i (1) +~ (4 + hw + 5)((r + iw = 2G—ir (1)
+ % 2(r=iw=0i)((r=iw+i)*G,yrim10(1) + % 2>r+ w4+ ) ((r+ )w = i)?*Gpyeing10(1)
- % @0+ )w o+ D(r + )W = VG (1) = 5 (r = i)w = ) ((r = )W + Gy (1)
+22r(1 =2w)w + rw(3w = 5). (A11)

Here, r = ’%VV and G, 4, . (x)are multiple polylogarithms defined in [42]. The coefficient X, can be found in the ancillary

file associated with Ref. [54].
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