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In this work we study charmonium production in high multiplicity proton-proton collisions. We
investigate the role of the spatial distribution of partons in the protons and assume that the proton has a Y
shape. In this configuration quarks are more at the surface and gluons in the inner part of the proton. Going
from peripheral to more central and then to ultracentral proton-proton collisions, we move from quark-
quark collisions to gluon-gluon collisions. Since gluons are much more abundant, the cross sections grow.
In the case of charm production this growth is enhanced by the fact that σðgþ g → cþ c̄Þ ≫
σðqþ q̄ → cþ c̄Þ. These effects can explain the growth seen in the data.
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I. INTRODUCTION

Surprising new features of proton-proton collisions were
revealed when the LHC collaborations were able to trigger
very high multiplicity events [1–7]. In these events, the data
presented evidence of collective behavior, which could be
interpreted in terms of a hydrodynamical expansion of the
system. However, to the best of our knowledge, so far no
particle production model, hydrodynamic or nonhydrody-
namic, matches all the features of the high multiplicity
pp data.
High multiplicity events come from ultracentral colli-

sions, with very small impact parameters. In this regime we
expect to observe several effects which can be responsible
for the anomalous features of particle production, such as
double parton scattering and parton saturation, caused by
the larger saturation scale at lower impact parameters.
Apart from these changes in the dynamics of the collisions,
it is also possible that geometric effects associated with the
spatial distribution of strongly interacting matter play a
significant role.
Successful models of the static proton are based on

lattice QCD simulations, which show that quarks are bound
by gluonic strings. This leads to the “Y” picture of the
proton, where quarks are at the extremities tied by a Y-like
gluon string, called a gluon junction [8] or baryon junction.
This structure leads to a spatial configuration where the
gluons are mostly in the center and the quarks closer to the

proton surface. Recently, this picture received some support
from the measurements of the gravitational form factors
published in [9].
At first sight the static geometric configuration of the

proton could be blurred or even completely washed out by a
boost with the consequent parton evolution and branching.
However, there are indications that the geometric organi-
zation of matter persists even at LHC energies. In [10] it
was shown that exclusive vector meson production is
sensitive to the geometric deformation of the target. The
authors conclude that the features of the nuclear geometry
originating from deformed structures are not washed out by
the Jalilian-Marian, Iancu, McLerran, Weigert, Leonidov
and Kovner (JIMWLK) [11] evolution, and hence the
deformations previously inferred from low-energy experi-
ments will be visible in high-energy collisions. This
suggests that the Y shape of the proton could survive
the quantum evolution and manifest itself in high energy
proton-proton collisions.
The existence of the Y-shape configuration of the proton

(along with its gluon junction) might shift the leading
baryon distribution to smaller rapidities, providing an
additional mechanism of baryon stopping. In these events
the baryon number would be carried by the baryon
junction, whereas in the traditional approach it is carried
by the valence quarks (for a discussion see [12]). This
interesting idea was proposed in [13], implemented in the
Monte Carlo event generator HIJING/B [14] and also in
analytical models such as in [15], being successful in
explaining the data on forward baryon production. The
search for new effects of the baryon junction is in
progress [16].
Having in mind what was said above, wewould expect to

see more manifestations of the proton Y shape. This was
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explored in [17]. One of the surprising aspects of high
multiplicity proton-proton collisions is the observation
of the ridge effect and of elliptic flow. In Ref. [17] a
simple model based on the proton spatial configuration was
developed to explain these phenomena. The authors
improved the existing partonic Glauber model for pro-
ton-proton collisions [18], including anisotropic and inho-
mogeneous density profiles for the proton. They obtained a
very good description of the v2 measured by the ALICE
Collaboration in pp collisions at

ffiffiffi
s

p ¼ 13 TeV [4].
Another interesting observation made in high multiplic-

ity events refers to charm production. In [2] the ALICE
Collaboration measured the D0 yield as a function of the
central rapidity density and found an unexpectedly strong
growth with the charged particle multiplicity. A similar
trend was observed in the case of J=ψ production. There
are already some possible explanations of this growth of the
charm yield given in Refs. [19–22].
In this work we will try to understand the data on

charmonium production in high multiplicity events using
the same geometrical model proposed in [17] with the
parameters fixed in that work. Charmonium production will
be computed with the color evaporation model (CEM)
[23,24]. Leaving aside the quantitative aspects, the idea is
fairly simple, and it is as follows. The proton-proton
collisions can be described by Y-Y collisions. Since we
are not interested in the anisotropy aspects of the collision,
we can take the average configuration of the Y over
different orientations; i.e., we “rotate” the Y, obtaining a
circular configuration with an inner gluonic core and an
outer quark shell. In other words, we have a core-corona
(gluon-quark) model of the proton. Going from peripheral
to more central and then to ultracentral, we move from
quark-quark collisions to gluon-gluon collisions. Since
gluons are much more abundant, and since σðgg → cc̄Þ ≫
σðqq̄ → cc̄Þ, the cross sections grow quickly. These effects
combined should explain the growth seen in the data.
In the next section we make some remarks concerning

the proton structure. In Sec. III we review the version of the
Glauber model adapted for proton-proton collisions and
calculate the basic quantities, which are Npart and Ncoll. In
Sec. IV we review the main formulas of the color
evaporation model used to study charm production. In
Sec. V we show the results and compare them with data.
Finally, some concluding remarks are presented in the last
section.

II. REMARKS ON THE PROTON STRUCTURE

In Ref. [25] (Chap. 7) we learn that in low energy elastic
e − p scattering we can determine the charge distribution of
the proton. This is done by introducing electric, GEðQ2Þ,
and magnetic, GMðQ2Þ, form factors and fitting the
resulting (Rosenbluth) formula to the experimental data.
Then, in a very specific limit, when Q2 ≪ m2

p, we find that

Q2 ≃ q2 and hence GEðQ2Þ ≃GEðq2Þ. In this limit the
electric form factor can be interpreted as the Fourier
transform of the charge distribution:

GEðq2Þ ¼
Z

ρðrÞeiq·rd3r: ð1Þ

Hence, measuringGEðQ2Þwe find the ρ shown in Fig. 1(a).
Moving away from the very low Q2 limit, we do not have a
well-defined prescription to extract charge densities from
the measured form factors (see, however, Refs. [26–28] for
progress in this direction). From electron-proton high
energy scattering in the high Q2 limit, we know [25]
(Chap. 8) that the incoming probe (photon or gluon) will
identify pointlike particles (partons) inside the proton, but
we do not know how these partons are distributed in the
transverse plane.
In the parton model description of deep inelastic scatter-

ing, the parton distribution functions (PDFs) depend onQ2,
and this dependence comes from the solution of the
Dokshitzer-Gribov-Lipatov-Altarelli-Parisi (DGLAP) evo-
lution equations [29]. In [30–32] a different kind of
evolution was proposed: the renormalization group pro-
cedure for effective particles (REGPEP). In this approach,
increasing the resolution scale, we go from a configuration
where the quarks are unresolved to a configuration with
three effective quarks (quarksþ antiquarksþ gluons) dis-
posed in the vertices of an equilateral triangle with a Y-like
junction between them. Hence, at high Q2 the charge
density tends to be moved from the origin, as shown
qualitatively in Fig. 1(b).
The proton structure derived from the REGPEP approach

was used to construct a model successfully applied to
describe several aspects of proton-proton collisions with
high multiplicities [33–35] and also inspired the model
presented in [17] and used here. In the next section we will
discuss this model in more detail.

III. GLAUBER MODEL FOR
PROTON-PROTON COLLISIONS

In this section we briefly describe the model proposed in
[33,34] and successfully applied in [17]. It combines the

FIG. 1. (a) Charge distribution of the proton measured in elastic
electron-proton scattering at low energies and Q2 ≃ 0. (b) Charge
distribution suggested by the Y-shape model of the proton.
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parton spatial distribution in the proton advanced in [33,34]
with the partonic Glauber model [18,36]. In this model
the collision of two protons is described in terms of the
individual interactions of the constituent partons. The model
assumes that at sufficiently high energies, these partons will
carry sufficiently high momenta, so they will be essentially
undeflected as the protons pass through each other. It is also
assumed that the partons move independently in the proton
and that the size of the proton is large compared to the extent
of the parton-parton force. The hypothesis of independent
linear trajectories of the constituent partonsmakes it possible
to develop simple analytic expressions for the proton-proton
interaction cross section and for the number of interacting
partons and the number of parton-parton collisions in terms
of the basic parton-parton cross section. The quarks are
anisotropically distributed, at the edges of the Y shape
junction, and the gluons are isotropically distributed around
the center [33,34].
Originally, the Glauber model was designed to represent

the geometry of heavy ions, including a dynamical com-
ponent given by the nucleon cross sections. In [18] it was
adapted to proton-proton collisions. The effective number
of partonic (subnucleonic) degrees of freedom was called
Nc. The analysis of data performed in [18] indicated that
this number is Nc ≃ 3–10. Following [18,17] we will work
with the effective number of partonic degrees of freedom
(here we follow [17] and call itNg) and reinterpretNpart and
Ncoll as “number of partons that participate in the collision”
and “number of binary collisions between partons,”
respectively.
In order to represent the proton internal structure, the

matter distribution is given by [33]

ρpðr; r1; r2; r3Þ ¼
X3
i¼1

ρqðr − riÞ þ ρg

�
r −

X3
i¼1

ri
3

�
: ð2Þ

In this distribution there are three effective quarks, called
i ¼ 1; 2; 3, with the Gaussian distribution

ρqðrÞ ¼ ð1 − κÞNg

3

e−r
2=2r2q

ð2πÞ3=2r3q
ð3Þ

and a gluon Gaussian distribution

ρgðrÞ ¼ κNg
e−r

2=2r2g

ð2πÞ3=2r3g
ð4Þ

centered at the average coordinate of the quarks. In these
distributionsNg is the total number of partons in the proton,
κ is the fraction ofNg that corresponds to the gluon body, rq
is the radius of the effective quark, and rg the radius of the
gluon body. These parameters are fixed, and we take them
from previous works with this model. In Fig. 2 we show the
contour plot of these distributions. Figure 3(a) shows a
projection of these distributions, and it represents what we
would see moving (up and to the right) from the center of
the proton to the peak of the quark density [in Fig. 2(a)]
plotted together with the gluon density from Fig. 2(b). It is
an illustration of the “core-corona” aspect of the model, and
it helps us understand the results.
With the quark and gluon densities we can calculate the

inputs to be used in the Glauber model. The probability per
area of finding a parton in the proton flux tube, Tpðx; yÞ, is
given by

Tpðx; yÞ ¼
Z

ρpðx; y; zÞdz ¼ Tq
pðx; yÞ þ Tg

pðx; yÞ; ð5Þ

where Tq
pðx; yÞ and Tg

pðx; yÞ come from the quark and
gluon terms of Eq. (2) and are given by

0
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FIG. 2. (a) Quark and (b) gluon distributions in the transverse plane.
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Tq
pðx; yÞ ¼ Ngð1 − κÞ

6πr2q

X3
i¼1

e
−ðx−xiÞ2þðy−yiÞ2

2r2q ð6Þ

and

Tg
pðx; yÞ ¼ Ngκ

2πr2g
e
−
ðx−P3

i¼1
xi=3Þ2þðy−P3

i¼1
yi=3Þ2

2rg2 : ð7Þ

The overlap function can be calculated as

Tpp0ðbÞ ¼
Z

Tpðx − b=2; yÞTp0ðxþ b=2; yÞdxdy: ð8Þ

The above equation can be split into four terms. Because of
the Gaussian forms involved, all the integrals can be done
analytically. The quark-quark term is given by

Tqq
pp0ðbÞ ¼

Z
Tq
pðx − b=2; yÞTq

p0ðxþ b=2; yÞdxdy ¼ N2
gð1 − κÞ
36πr2q

X3
i¼1

X3
j¼1

exp

�
−
ðbþ ðxi − xjÞÞ2 þ ðyi − yjÞ2

4rq2

�
ð9Þ

with the quarks i ¼ 1; 2; 3 from the proton p, and j ¼ 1; 2; 3 from the proton p0. The gluon-gluon term can be calculated as

Tgg
pp0ðbÞ ¼

Z
Tg
pðx − b=2; yÞTg

p0ðxþ b=2; yÞdxdy

¼ N2
gκ

2

4πr2g
exp

�
−
ðbþP

3
i¼1 xi=3 −

P
3
j¼1 xj=3Þ2 þ ðP3

i¼1 yi=3 −
P

3
j¼1 yj=3Þ2

4rg2

�
: ð10Þ

The gluon-quark term, which accounts for the interactions between the gluons from p with quarks from p0, is given by

Tgq
pp0ðbÞ ¼

Z
Tg
pðx − b=2; yÞTq

p0ðxþ b=2; yÞdxdy

¼ N2
gκð1 − κÞ

6πðr2q þ r2gÞ
X3
j¼1

exp

�
−
ðbþP

3
i¼1 xi=3 − xjÞ2 þ ðP3

i¼1 yi=3 − yjÞ2
2ðr2q þ r2gÞ

�
: ð11Þ

The last term refers to the interaction between the quarks from p and the gluons from p0. It is given by

Tqg
pp0ðbÞ ¼

Z
Tq
pðx − b=2; yÞTg

p0ðxþ b=2; yÞdxdy

¼ N2
gκð1 − κÞ

6πðr2q þ r2gÞ
X3
i¼1

exp

�
−
ðbþ xi −

P
3
j¼1 xj=3Þ2 þ ðyi −

P
3
j¼1 yj=3Þ2

2ðr2q þ r2gÞ
�
: ð12Þ

FIG. 3. (a) Quark and gluon distributions. The figure shows the projection of Fig. 2 along a diagonal direction, starting from the center
of the proton and passing through one maximum of the quark density. (b) Thickness functions Tqq (dashed line), Tgg (solid line), and Tqg

and Tgq (dotted line) from Eqs. (9)–(12).
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The total thickness function of the model is obtained by
inserting Eqs. (9)–(12) into Eq. (8). It reads

Tpp0ðbÞ ¼ Tqq
pp0ðbÞ þ Tgg

pp0ðbÞ þ Tgq
pp0ðbÞ þ Tqg

pp0ðbÞ: ð13Þ

The overlap functions are plotted individually in Fig. 3(b).
The number of binary collisions is then given by

Ncoll ¼ Tpp0ðbÞσpp; ð14Þ

where σpp is the parton-parton cross section, which is a
parameter often used in the literature. The obtained values
in the wounded quark model of Ref. [37], in the hydro-
dynamical analysis of Ref. [38] and in the parton transport
model of Ref. [39], are all in the range σpp ¼ 5–10 mb.
The number of participants is calculated according to [36]

NpartðbÞ ¼ Nx
collðbÞ; ð15Þ

where x ¼ 0.75. The above scaling law was derived in
Ref. [36] and was confirmed experimentally in Ref. [40]. In
the above equations, Npart and Ncoll are calculated for a
given quark configuration, i.e., a given choice of the quark
coordinates in the projectile proton ri ¼ ðxi; yiÞ and in the
target proton r0i ¼ ðx0i; y0iÞ. In order to simulate a proton-
proton collision we must now take the average over these
configurations. This is best done by writing the quark
position in polar coordinates:

ri ¼
d
2
ðcosðϕi þ αÞ; sinðϕi þ αÞÞ and

r0i ¼
d
2
ðcosðϕi þ βÞ; sinðϕi þ βÞÞ; ð16Þ

where ϕ1 ¼ π=3, ϕ2 ¼ −π=3, and ϕ3 ¼ −π. This choice of
positions generates protons in which the quarks are in the
vertices of equilateral triangles in the x–y plane, rotated
by the angles α and β (α; β∈ ½0; 2π�) around the z axis.

The angles are randomly chosen. For d ¼ 1.3 fm, one
example of an initial condition is shown in Fig. 4(a). Using
the parameters of Table I and fixing the impact parameter,
we choose the angles α and β. With them we calculate the
coordinates ri and then the thickness function, which we
substitute into Eqs. (14) and (15) obtaining Ncoll and Npart.
We repeat this procedure for 10,000 choices and take the
average. After that, we move to the next impact parameter
and repeat the steps. In the end we obtain Ncoll and Npart as
a function of the impact parameter. The results for pp
collisions at

ffiffiffi
s

p ¼ 7 TeV are shown in Fig. 4(b). Here the
impact parameter is such that b∈ ½0; 2.2� fm, with steps
Δb ¼ 0.1 fm. The same procedure was repeated forffiffiffi
s

p ¼ 13 TeV. The resulting curves are quite similar to
those shown in Fig. 4(b) but with higher maximum values.
For conciseness we do not show them here.

IV. CHARMONIUM PRODUCTION

Charm production can be described by perturbative
QCD, and there are currently several calculations which
reproduce the data with relatively good accuracy. However,
the precise description of charmonium production data is
still a work in progress. The well-known difficulties
encountered in the study of quarkonium production in
different kinematic ranges gave rise to the so-called
quarkonium production puzzle [41].

Npart
Ncoll

0.0 0.5 1.0 1.5 2.0
0
2
4
6
8
10
12

b (fm)

Glauber pp s =7 TeV

FIG. 4. (a) Example of initial spatial configuration of the two colliding protons. (b) Average of Npart and Ncoll over different quark
spatial configurations for each impact parameter.

TABLE I. Input used in the parton densities and in the Glauber
model. See text for definitions.

Ng [17] 10
κ [17] 0.5
rqðfmÞ [17] 0.25
rgðfmÞ [33] 0.5
σppðmbÞ ( ffiffiffi

s
p ¼ 7 TeV) [37,38] 4.3

σppðmbÞ ( ffiffiffi
s

p ¼ 13 TeV) [37,38] 7.6
dðfmÞ [17] 1.3
x [36] 0.75
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For our purposes a leading order calculation is sufficient.
Therefore, for simplicity, we shall employ the color
evaporation model [23,24]. However, we are aware that
this model is not able to describe quarkonium production in
the full kinematic spectrum. In particular, we know from
LHC phenomenology [41,42] that the CEM overshoots
data in the large transverse-mass regime. Since we will
address data on J=ψ production which are integrated over
pT and since the transverse momentum distribution falls
rapidly with pT , we expect that our calculation will not be
seriously affected by the deficiency of the CEM. A more
accurate calculation of the charmonium production cross
section may be provided by the color singlet model [43], by
the color octet model [44], or by single parton fragmenta-
tion in nonrelativistic QCD [45].
The CEM provides a way to calculate the production of

charm pairs through the processes gg → cc̄ and qq̄ → cc̄.
The cross section for J=ψ production is then given simply by

σCEM ¼ FK
X
i;j

Z ðΛÞ2

ð2mcÞ2
dm2

Z
dx1dx2fiðx1; μ2FÞfjðx2; μ2FÞ

× σijðm2; μ2RÞδðm2 − x1x2sÞ
¼ σCEMgg þ σCEMqq̄ ; ð17Þ

where fðx; μ2RÞ are the parton distribution functions at the
factorization scale μF, μR is the renormalization scale, andΛ
is a cutoff. In the case of open charmproductionΛ ¼ ffiffiffi

s
p

, and
for J=ψ production Λ ¼ 2mD. The parameter F is equal to
the percentage of the cc̄ states with 2mc < m < 2mD which
becomes a J=ψ . We will assume that mc ¼ 1200 MeV and
mD ¼ 1800 MeV. The symbol σiiðm2; μ2RÞ represents the
elementary gg → cc̄ and qq̄ → cc̄ cross sections. At leading
order, they are given by

σggðm2; μ2RÞ ¼
πα2sðμ2RÞ
3m2

��
1þ 4m2

c

m2
þm4

c

m4

�
ln

�
1þ λ

1 − λ

�

−
1

4

�
7þ 31m2

c

m2

�
λ

�
ð18Þ

and

σqq̄ðm2; μ2RÞ ¼
8πα2sðμ2RÞ
27m2

�
1þ 2m2

c

m2

�
λ; ð19Þ

where αs (the strong coupling constant) and λ are given by

αsðμ2RÞ¼
12π

ð33−2NfÞln
�

μ2R
Λ2
QCD

� λ¼
�
1−

ð2mcÞ2
m2

�
1=2

; ð20Þ

where Nf is the number of flavors and ΛQCD ¼ 200 MeV.
We will choose the factorization scale to be equal to the
renormalization scale (μF ¼ μR ¼ μ), and hence μ is the
same in the running coupling and in the parton distributions.
The parameter K is introduced to account for higher order
corrections. We can fix it by setting F ¼ 1, Λ ¼ ffiffiffi

s
p

and
adjusting the cross section, Eq. (17), to the experimental data
on open charm production [46–48]. The result is shown in
Fig. 5(a). We obtain a good fit of these data with K ¼ 3.
Imposing that λ is real leads to the kinematical constraint
x1x2s ≥ 4m2

c. Since the smallest value of x1 occurs for
x2 ¼ 1, the parton momentum fraction must be such that
ð2mcÞ2=s ≤ x1 ≤ 1 and ð2mcÞ2=ðsx1Þ ≤ x2 ≤ 1. The parton
distribution functions are used with μ2 ¼ ð2mcÞ2 GeV2. It
can be noticed that the total cross section is almost only
composed by σCEMgg and that σCEMgg ≫ σCEMqq̄ . In order to
estimate theuncertainties in our results, in Fig. 5(b) the charm
production cross section is plotted with mc varying in the

FIG. 5. (a) Charm production cross sections for mc ¼ 1.2 GeV. Contribution of gg → cc̄ (dashed line), qq̄ → cc̄ (dotted line), and
total cross section (solid line). (b) Charm production cross sections for 1.1 GeV < mc < 1.3 GeV. The experimental data are
from [46–48].
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range 1.1 GeV < mc < 1.3 GeV. The PDFs are taken from
the MMHT14 set [49]. Finally, the number of cc̄ pairs is
given by

Ncc̄ðbÞ ¼ Tgg
pp0ðbÞσCEMgg þ Tqq

pp0ðbÞσCEMqq : ð21Þ

The Tqg
pp0ðbÞ and Tgq

pp0ðbÞ terms of Eq. (13) are not included
because thequark-gluon interactions donot producecc̄pairs.

V. RESULTS

We now address the experimental data of [1,2,6].
Following the experimental papers, we present the yields
in terms of the normalized pseudorapidity and rapidity
densities:

ðdN=dηðη ¼ 0ÞÞ
hdN=dηi

ðdN=dyðy ¼ 0ÞÞ
hdN=dyi : ð22Þ

The charged particle pseudorapidity density at η ¼ 0 is
calculated as in [50]:

dN
dη

ðη ¼ 0Þ ¼ nppðsÞ
�
ð1 − fÞNpart

2
þ fNcoll

�
; ð23Þ

where Npart and Ncoll are given by (15) and (14), respec-
tively, and nppðsÞ is given by [50]

nppðsÞ ¼ 2.5 − 0.25 log½s� þ 0.023ðlog½s�Þ2: ð24Þ

The factor f is the fraction of hard processes in the collision
and can be estimated through the ratio f ¼ σminijet=σinel as
in [51,52]. A minijet is defined as the result of a parton-
parton collision with pT > pT0, with pT0 being of the order
of a few GeV (with a possible dependence on

ffiffiffi
s

p
). The

average density hdN=dηi is a number given by each
experimental group, and we show them in Table II, together
with the F parameter.
The J=ψ rapidity density, dNJ=ψ=dy, is obtained from

the differential form of Eq. (21):

dNcc̄

dy
ðbÞ ¼ Tgg

pp0ðbÞ
dσCEMgg

dy
þ Tqq

pp0ðbÞ
dσCEMqq

dy
: ð25Þ

We can evaluate this expression starting from Eq. (17) and
applying the following change of variables:

x1 ¼
pTffiffiffi
s

p ey x2 ¼
pTffiffiffi
s

p e−y x1x2s ¼ p2
T

dx1dx2 →
2pT

s
dydpT: ð26Þ

After changing the variables from ðx1; x2Þ to ðy; pTÞ, we
integrate over pT, differentiate with respect to y and take
y ¼ 0. The results for the J=ψ yields for

ffiffiffi
s

p ¼ 7 TeV andffiffiffi
s

p ¼ 13 TeV are shown in Fig. 6. As it can be seen we
obtain a good description of data, and the best curve,
represented by the dashed lines, is plotted with
mc ¼ 1.2 GeV. One might argue that we have too many
input parameters, and this reduces the predictive power of

FIG. 6. (a) J=ψ relative yield in pp collisions at
ffiffiffi
s

p
NN ¼ 7 TeV. The experimental data are from [1]. (b) J=ψ relative yield in pp

collisions at
ffiffiffi
s

p
NN ¼ 13 TeV. The experimental data are from [6]. The dashed curves are plotted with mc ¼ 1.2 GeV.

TABLE II. Input used for J=ψ production. See text for
definitions.

ffiffiffi
s

p ¼ 7 TeV
ffiffiffi
s

p ¼ 13 TeV

f 19% [51,52] 16% [51,52]
F 2.3% [23,24] 3.4% [23,24]
hdN=dηi 6.0 [53] 6.4 [54]
hdNJ=ψ=dyi 8.2 × 10−5 [1] 7.9 × 10−5 [6]
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the model. However, all these input numbers are strongly
constrained by other independent studies of other observ-
ables. As we notice in the tables, all the numbers are
consistent with the equivalent numbers found elsewhere.
We took the precaution of not using exotic values anywhere
for any of these numbers. In view of the results, we
conclude that the J=ψ dependence on the charged multi-
plicity is compatible with the geometrical picture of the
proton used here. The analysis can be extended to D
production, to beauty production, and to different cuts in pT
and rapidity. We are currently working on these topics.

VI. CONCLUDING REMARKS

We have developed the idea that proton-proton collisions
can be described by Y-Y collisions. Averaging over orienta-
tions this yields a circular configurationwith an inner gluonic
core and an outer quark shell. This is a core-corona (gluon-
quark) model of the proton. Going from peripheral to more
central and then to ultracentral, we move from quark-quark
collisions to gluon-gluon collisions. Since gluons are much
more abundant, and since σðgg → cc̄Þ ≫ σðqq̄ → cc̄Þ, the
cross sections grow quickly. These effects combined explain
the growth seen in the data.

This behavior was qualitatively expected, and we have
used a combination of models to implement this idea
quantitatively: a model for the parton spatial densities [17],
the Glauber model for proton-proton collisions [18], and
the color evaporation model for charmonium production
[23,24]. These models had been previously tested in other
contexts and were shown to give good results. All the
parameters used were strongly constrained by the analysis
of other data, and here we had little room to change them.
We obtained a reasonable description of charmonium
production in proton-proton events with high multiplicities.
However, the uncertainties are large. They could probably
be reduced if we use next-to-leading order corrections or a
more accurate model. In spite of these limitations, our
results reproduce the main features of the data. This
encourages us to further extend this model to open charm
production and to the bottom sector.
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