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Effective field theory for radiative corrections
to charged-current processes: Vector coupling

Vincenzo Cirigliano ,1’* Wouter Dekens ,I’T Emanuele Mereghetti ,2‘1 and Oleksandr Tomalak®*®

'nstitute for Nuclear Theory, University of Washington, Seattle, Washington 98195, USA
2Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA

® (Received 13 June 2023; accepted 26 July 2023; published 6 September 2023)

We study radiative corrections to low-energy charged-current processes involving nucleons, such as
neutron beta decay and (anti)neutrino-nucleon scattering within a top-down effective-field-theory
approach. We first match the Standard Model to the low-energy effective theory valid below the weak
scale and, using renormalization group equations with anomalous dimensions of O(a, aa,, a*), evolve the
resulting effective coupling down to the hadronic scale. Here, we first match to heavy-baryon chiral
perturbation theory and subsequently, below the pion-mass scale, to a pionless effective theory, evolving

the effective vector coupling with anomalous dimensions of O(a,a?) all the way down to the scale of
the electron mass, relevant for beta decays. We thus provide a new evaluation of the “inner” radiative
corrections to the vector coupling constant and to the neutron decay rate, discussing differences with the
previous literature. Using our new result for the radiative corrections, we update the extraction of the
Cabibbo-Kobayashi-Maskawa matrix element V,; from the neutron decay.
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I. INTRODUCTION

Low-energy processes mediated by the charged-current
(CC) weak interaction provide promising ways to test the
Standard Model (SM) and indirectly search for new
physics, provided sufficiently high experimental and theo-
retical precision can be achieved. In recent years, there has
been a resurgence of interest in beta decays and CC
neutrino scattering on nuclei. On the one hand, the study
of beta decays at the sub-permille level provides a unique
window into possible new physics at the multi-tera-
electron-volt scale. Recent analyses [1-8] have uncovered
a 30 tension with the Standard Model interpretation of
these processes in terms of the unitary Cabibbo-Kobayashi-
Maskawa (CKM) quark mixing matrix [7,9]. Moreover,
global analyses of beta decay observables [10,11], includ-
ing decay correlations, offer unique ways to probe non-
standard CC interactions with Lorentz structures different
from the SM “V — A.” On the other hand, the interest in
the CC neutrino scattering process stems primarily from
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neutrino oscillation experiments [12-24], as precise theo-
retical predictions are needed to calibrate the neutrino
fluxes and reconstruct the neutrino energy [25-30]. In
what follows, we will focus on beta decays (n — per,) but
our results, based on a low-energy effective theory, apply to
neutrino scattering processes such as 7,p — e*n and
v,n — ep at low energy as well.

One of the key ingredients to achieve high theoretical
precision in beta decays (sub-permille, allowing one to
probe physics up to 20 TeV) is the calculation of electro-
magnetic radiative corrections, controlled by an expansion
in a/x, where a ~ 1/137.036 is the fine-structure constant.
The analysis of radiative corrections to beta decays has a
long history, predating the formulation of the Standard
Model of electroweak and strong interactions. In the early
work from the 1950s [31,32], the nucleon was treated as
pointlike and the weak interaction was described in terms
of the (V — A) x (V — A) current-current contact operator.
In the framework of the local (V —A) x (V — A) theory,
two developments from the 1960s have influenced all the
subsequent literature. In Ref. [33], Sirlin identified a set of
ultraviolet(UV)-finite and gauge-invariant corrections to
the beta spectrum and decay rate that are independent of the
details of the strong interaction, the so-called universal
“outer” corrections. Reference [33] also identified a set of
“inner” corrections that essentially shift the strength of the
vector (Fermi) and axial-vector (Gamow-Teller) couplings at
the single-nucleon level, pointing out that in principle these
inner corrections depend on the strong-interaction dynamics.
Shortly afterwards, using current-algebra techniques, the
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authors of Ref. [34] showed that to O(a) the contribution of
the weak vector current V to the Fermi transition inner
correction is calculable without knowledge of details about
the strong interactions, leading to a universal UV-divergent
correction. Reference [34] also showed that the contribution
to the Fermi transition due to the weak axial-vector current A
does depend on the strong-interaction details. This class of
inner corrections was parametrized in terms of correlation
functions of weak and electromagnetic hadronic currents
in the nucleon state, and crudely estimated with available
models of strong interactions.

The current-algebra formulation of radiative corrections
was later embedded in the Standard Model by Sirlin
[35,36], who also computed the leading logarithmic cor-
rections to O(a) and O(aq,). Since then, the calculation of
the terms that depend on the strong interactions has been
performed in this framework with more sophisticated
hadronic models, culminating in the 2006 prediction
[37] for the inner correction to the vector amplitude.
Large logarithms originating from both the UV (from
M, to the hadronic scale of the order of nucleon mass
my) and IR (from m, to m,) have been resummed in the
leading logarithmic approximation (see Ref. [38] and
references therein). Reference [38] also includes next-to-
leading logarithms in « that are enhanced by the number of
fermion species.

The next important development in the field has been the
calculation of the nonperturbative input for the inner cor-
rections using dispersive methods, pioneered by Seng et al.
[1,2]. This has led to a reduced uncertainty and an increase in
the central value of the inner correction to the Fermi coupling,
later reproduced by Refs. [3-5]. In this framework, lattice
QCD has been used to supplement nonperturbative input in
the meson sector [39-42], and efforts to do the same for
nucleon decay are underway [40,43].

All the results described above are rooted in the current-
algebra framework developed by Sirlin [35]. While this
method is rigorous, it does not take full advantage of
modern effective field theory (EFT) techniques, neither at
the level of short-distance physics (the evolution of the
interactions from the electroweak scale to the hadronic
scale), nor at the level of strong interactions (chiral EFT for
mesons, nucleons, and eventually nuclei). The use of EFT
techniques is not a mere reformulation of the problem.
EFT provides a rigorous way to connect scales and estimate
uncertainties. Moreover, EFT methods can bring new
insights to the problem. In fact, by providing a simple
framework to analyze hadronic correlation functions, the
study of neutron decay to O(Gra) in heavy baryon chiral
perturbation theory (HBChPT) [44] has uncovered a new
%-level inner correction to the ratio g4 /gy of axial-vector
to vector nucleon couplings, missed in previous analyses
based on current algebra [5,45].

In the HBChPT framework for single-nucleon weak CC
processes, developed in Refs. [44,46], the active degrees of

freedom are the light leptons, photons, pions, and nucleons.
The effect of both electroweak- and other hadronic-scale
physics is encoded in a number of low-energy constants
(LECs). The goal of this paper is to develop a matching
procedure to express the relevant LECs in terms of
perturbatively calculable Wilson coefficients and hadronic
correlation functions that can then be estimated with
nonperturbative methods, such as dispersive methods or
lattice QCD. Since there are multiple thresholds, the
electroweak scale ~My, , the chiral symmetry breaking
scale A, ~my ~ GeV, with my the mass of nucleon, and
the pion mass, we adopt a multistep matching strategy. The
first step connects the full Standard Model to the so-called
low-energy effective theory (LEFT) below the weak scale,
which coincides with the V — A theory of weak interactions
augmented by QED and QCD. This is a perturbative
matching step. The second step connects the LEFT to
HBChPT and involves nonperturbative physics. These first
two steps are similar in spirit to the analysis of Ref. [47] for
the meson sector. The third step consists of integrating out
the pions, by matching HBChPT onto a pionless EFT
(#EFT) as detailed in Ref. [44]. The main novel aspects of
our work are the following:

(i) We evaluate the relevant LEFT Wilson coefficient to
next-to-leading logarithm accuracy in a: we imple-
ment the matching condition at ugy ~ M, at one
loop and the running via the two-loop anomalous
dimension of O(a?), for which we provide for the
first time the full expression. We also use the known
two-loop anomalous dimension of O(aa,) and
present solutions of the renormalization group equa-
tions (RGEs) summing leading and next-to-leading
logarithms of the ratio M,/m,.

(i) We set up the general formalism and provide explicit
expressions for the HBChPT LECs that shift the
vector coupling gy. The relevant nonperturbative
input can be obtained either from the existing
dispersive analyses [2] or lattice QCD in the future.

(iii) We solve the RGEs for the vector coupling gy (),
using one- and two-loop anomalous dimensions in
#EFT. This allows us to sum the leading and next-to-
leading logarithms involving the ratio my/E,
where E,~2.530m, is the electron energy end
point, representing the infrared (IR) scale of the
problem. The RGE evolution thus allows us to
identify all terms in the amplitude proportional
to & In(my/Ey). Our treatment of these next-to-
leading large logarithms differs from the one found
in the literature, as discussed in Sec. II.

(iv) Throughout, we use dimensional regularization with
modified minimal subtraction (MS [48]) in the
LEFT, and the chiral version of it (WX [497),
specifying at every step the ys and evanescent
operator scheme. In this framework, the renormal-
ization group (RG) equations have a very simple
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form, and the standard results on leading logarithm
and next-to-leading logarithm resummation can be
applied. The residual sensitivity to the renormaliza-
tion scale order by order in RG-improved perturba-
tion theory gives us a rigorous way to estimate
the perturbative uncertainties. More generally, our
results provide a new framework to analyze low-
energy CC processes to O(Gra), largely indepen-
dent from the current algebra formalism [35].

(v) As a first application of the new framework, using
the dispersive input from Refs. [1-6] as compiled in
Ref. [8], we evaluate the combination of LECs that
determine the inner corrections to the Fermi tran-
sition effective coupling gy. We combine this with
the known O(a) radiative corrections to the matrix
element in HBChPT [44,46]. We further resum
the Coulomb-enhanced terms scaling as (za/f)"
(p=p./E,) as well as subleading a/z(ma/p)"
terms, in the nonrelativistic Fermi function, which
is the natural quantity appearing in #EFT. In
practice, this amounts to replacing the relativistic
Fermi function [which contains large logarithms
~a*In(R,p,), with the proton radius R, ~1/A,]
with its nonrelativistic counterpart. Finally, we study
the impact on the extraction of V,; from neutron
decay. For the total corrections to the neutron decay
rate, we find a result that is one ¢ above the previous
results, pointing to a correspondingly smaller value
for V4.

The paper is organized as follows. In Sec. II, we provide a
high-level summary of the results worked out in the rest of the
paper, highlighting the connections to and differences from
the previous literature. Following a top-down approach, we
perform a multistep matching to connect electroweak physics
with neutron and nuclear decays. The first step, connecting
the full Standard Model to the LEFT, is presented in Sec. III.
The second step, connecting the LEFT to HBChPT, is
presented in Sec. I'V. The resulting effective vector coupling
gv(m, ~ my) atthe matching scale u, ~ m,y and its evolution
to the scale of the decay, u, ~ Ej, is discussed in Sec. V. In
Sec. VI, we discuss the implications for neutron decay and
the determination of V,, and comment on the relation to
superallowed 0™ — O transitions. Conclusions and outlook
are presented in Sec. VII. Appendix A contains details about
electric charge renormalization and running in the LEFT and
chiral perturbation theory. Appendix B discusses the fac-
torization of the nonrelativistic Fermi function in nonrela-
tivistic QED, while Appendix C contains details on the
extraction of the O(a?) anomalous dimension in LEFT
and HBChPT/#EFT.

II. STATEMENT OF THE PROBLEM
AND RESULTS

Neutron decay is a low-energy process characterized by
the energy scales of the neutron-proton mass difference,

m, —m, = 1.3 MeV, and the electron mass m, ~ 511 keV.
These scales, which we denote by ¢, are much smaller
than the pion mass, m, ~ 137 MeV, the nucleon mass,
my =~ 939 MeV, and the W boson mass, My ~ 80 GeV.
The existence of widely separated mass scales makes the
process amenable to a description based on EFTs. In this
work, we systematically implement EFT methods to study
low-energy charged-current processes such as neutron
decay. We first integrate out the heavy particles (W, Z,
h, t) and match the full Standard Model onto the so-called
LEFT. Subsequently, we integrate out the scale of the
nucleon mass, by matching the LEFT onto HBChPT [50].
We finally integrate out physics at the scale of the pion
mass, following [44], by matching HBChPT onto #EFT.
The neutron decay rate is thus organized in an expansion in
several small parameters (besides GrgZ,, which sets the
overall scale): the electromagnetic coupling constant a,
€recoil = Gext/My» Which describes small kinematic correc-
tions, € /= dext /m,, which captures the radiative pion

contributions, and the HBChPT expansion parameter €, =
m, /A, with the scale A, = 4nF, ~1 GeV.

The neutron decay rate is most conveniently computed
starting from the #EFT in which f decays are described by
the Lagrangian [46,51,52]

L;r = _\/EGFVudéy/)PLVeNU(gVUP - 29ASP)T+N”
+ O(a’ €recoil » 67/’ 6)() +He, (1)

where N, = (p,n)" denotes the heavy-nucleon field dou-
blet, v” is the nucleon velocity, and S” = (0, 5/2) denotes
the nucleon spin, with the Pauli matrices o, while 7 denotes
Pauli matrices in the isospin space, satisfying [z%,7%] =
2ie*c7¢, {r, 7"} =26, and 7" =] (z' + ir?). Higher-
order terms in Eq. (1) include the contributions of
weak magnetism, recoil corrections, and induced tensor
coupling [44]. The couplings gy and g, themselves have an
expansion in a, € # and €,. At leading order, one has
gy = 1. At O(a), gy does not receive any long-distance
corrections from pion or photon loops and only picks up
contributions from local O(e? p) operators in the HBChPT
Lagrangian [44]:

a -
gy =Cj {1 +%Cv], (2)

R X
CV :87772 |:—76+2(V1 +V2+V3+V4)—gg]. (3)
Here, Cj; = 1 + O(a) is the Wilson coefficient of the Fermi
operator in LEFT [see Eq. (9)], which captures electroweak
corrections from energy scales above A,. The LECs

X6, 99, V1234, and associated HBChPT operators will be
defined below in Egs. (36), (40), and (42). The couplings
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gv a(u,) depend on the renormalization scale of the #EFT
(in a way that cancels in the ratio A = g4/gy) and encode
contributions from the weak scale all the way down to the
pion mass scale.

In the following sections, we will detail the various steps
needed to connect the low-energy coupling gy to the
electroweak scale, following a top-down approach. Key
new results of this work are as follows: (i) The expression
for gy(u, ~A,) in terms of the Wilson coefficient Cj

computed with anomalous dimensions of O(a, aa;, @) and
a “subtracted” hadronic function, related to the traditional
nonperturbative yW box contribution evaluated in the
recent literature [1-5] [see Eq. (78) and discussion sur-
rounding it]; (ii)) The use of two-loop anomalous dimen-
sions in the RGE (88) needed to evolve the vector coupling
down to gy(u, ~m,), resumming large next-to-leading
logarithms of order o In (my/m,). The resulting gy (1, ~
m,) is directly relevant to the calculation of neutron decay
and can be used as input for the one-body contribution to
nuclear decays.

In this work, we have focused on the application to
neutron decay. With gy (u, ~m,) at hand, we combined
both virtual and real photon corrections to the decay rate
[33,44,46] to obtain the effective phase-space correction A
and the radiative correction Ay to the neutron lifetime (see
Sec. VI) and the relation

Va2, (14322) (1 4+ Ap) (1 4+ Ag) = 5283.321(5) s, (4)

with A, and Ag given in Egs. (110) and (111), respectively.
Our definitions for Ay and A differ from the traditional
approach both conceptually and numerically. Technically,
the bulk of this difference is in shifting all short-distance
contributions from A, to Ag. A describes Coulomb-
enhanced long-distance contributions and recoil correc-
tions, while Ay includes all electroweak and HBChPT
short-distance contributions along with the non-Coulomb
radiative corrections in #EFT, as specified in Egs. (78),
(89), and (114). Numerically, we find

A;=3.573(5) x 1072, (5)
AR = 4044(24>Hdd(8)aa§ (7)06‘% (S)ﬂl [27]total 2 10_2' (6)

The uncertainty in A, stems from an estimate of mixed
recoil times Coulomb corrections. The dominant sources of
uncertainty to Ay are given by the following: the non-
perturbative hadronic contributions, associated with the
“yW box” diagram in the standard approach [1-6]; con-
tributions of O(aa?) not included in our renormalization
group analysis in the LEFT; chiral corrections of ae)%; and
residual dependence on the #EFT renormalization scale,
varied between m,/+/2 and v/2m,, which is an indicator

of the O(a?) corrections. A detailed discussion of

uncertainties is presented in Secs. VD (for gy) and VIB
(for the remaining contributions to Ag).

Our result for Ay in Eq. (5) differs from the one found in
the literature A, = 3.608 x 1072 [38] by —0.035%. This is
because in the phase-space integration we use the non-
relativistic Fermi function, for the reasons discussed in
Sec. VI A, and neglect corrections induced by modeling the
proton as a uniformly charged sphere of radius R, ~ 1 fm
[53] (this effect is at the level of 0.005%).

Our result for Ap in Eq. (6) exceeds the current value
Ag = 3.983(27) x 1072, compiled in Ref. [8] by combin-
ing the results of [1-6], by about twice the estimated
uncertainties. The +0.061% shift in the central value is
almost entirely due to the different treatment of the next-to-
leading logarithmic terms at the hadronic level, i.e., the
terms that scale as a®In(my/m,). In both approaches,
there is a contribution of this type coming from the cross
term between the one-loop RGE correction to gy, scaling as
2In (my/m,), and O(za/p) terms in the Fermi function. In
our approach, additional @? In (my/m,) large logarithmic
corrections arise entirely from the two-loop anomalous
dimension contribution to the RGE (88) for the effective
coupling gy(u,) and produce a positive shift in Ag of
0.010%. In the EFT approach, there are no other sources of
large logarithms of the ratio (m,/m,) in the matrix element
of the four-fermion operator (1) to O(a?). In the literature,
this class of effects is not associated with the running of gy,
but arises through the negative correction a/(2z) x § =
—0.043%, introduced in Ref. [38] by adapting the results
of Refs. [54,55]." The mismatch of the two approaches
produces a +0.053% shift in our results. The remaining
difference is due to a combination of the following,
individually smaller, effects: (i) we reevaluate the “elastic”
hadronic contribution, as discussed in Sec. V B, which
leads to a —0.006% shift to Ag; (ii) for the next-to-leading
logarithmic corrections of O(a? In(My/m,)), our result
differs from the one in Ref. [38], producing a negative shift
of approximately —0.011%; (iii) we do not include O(aa?)
terms in the running of our Wilson coefficient (correspond-
ing to the “deep inelastic scattering” region of the yW box
in the literature) that amounts to a net +0.007% in Ag;
and (iv) finally, different choices in the factorization
between electroweak and my/m, logarithms compared
to Refs. [8,38] account for the remaining mismatch.

Using Ay from Egs. (5) and (6), respectively, in the
master formula (4), we can extract V,,;. This requires
experimental input for the neutron lifetime 7, and the ratio 4

'In the standard non-EFT approach, additional terms scaling as
a®In (my/m,) [or @® In(R »m,) after including finite nucleon size
effects] are included in the relativistic Fermi function (see
discussion in Sec. VI A) and booked as effective phase-space
corrections appearing in A,. It is worth noting that, for neutron
decay, the a* In(R,m,) terms in the relativistic Fermi function
cancel the corresponding terms in the correction a/(2x) x & [38].
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of axial-vector to vector couplings. Using the PDG [56,57]
averages for the experimental input, we obtain

Vi 0 = 0.97430(2),(13),,(82),(28).. 8]0 (7)
Both 7, and 4 carry an inflated error due to scale factors.
Following Ref. [8], if we instead use the most precise
neutron lifetime measurement 7, = 877.75(36) s from
UCNt@LANL [58] and the determination of A from the
most precise measurement of the beta asymmetry in
polarized neutron decay by PERKEO-III [59,60], we obtain
a very competitive extraction of V,, from neutron decay:

Vi ™ = 0.97402(2), (13),,(35),(20),, [42],0a.  (8)
with an uncertainty approaching the currently quoted error
6V ,a = 31 x 107 from 0T — 07 nuclear beta decays [7].
Compared to the baseline correction of Refs. [1-6,8], the
positive shift of 4+0.061% in Ay and the negative shift of
—0.035% in A, partially compensate, producing a smaller
positive shift of +0.026% in the correction to the rate. This
one, in turn, provides a negative shift in V ; 0V, =~
—13 x 107>, compared to the results quoted in Ref. [8].

In the remainder of this paper, we provide details on the
derivation of the results presented above.

III. STEP I: MATCHING THE STANDARD
MODEL TO LEFT

In this section, we perform the matching of the
Standard Model to the LEFT and present the RGEs that
control the effective couplings in the LEFT between
the electroweak and QCD scales. We then introduce
spurions and external sources in the LEFT to describe the
electromagnetic and weak interactions of quarks [47,61],
which is particularly useful in the matching of LEFT to
chiral perturbation theory, to be described in subsequent
sections. Throughout, we regulate the UV divergences in
dimensional regularization, working in d = 4 — 2¢ space-
time dimensions.

A. Wilson coefficient and RGE

The part of the LEFT Lagrangian relevant for muon and
p decays just below the weak scale reads

Ly grr = _ZﬁGFéLypﬂLﬂﬂLypyeL
- 2\/§GFVL¢dC2<avﬂ)éLpreLﬁLyde
+Hec. +---. 9)

Here p denotes the MS renormalization scale and

Gp = lIW)__ (10)

is the scale-independent Fermi constant that is extracted
from precise measurements of the muon lifetime [62-65],
expressed in terms of MS Standard Model parameters
(with 53, = 1 — M%,/M%). The function g(u) can be found
in Ref. [66] and reduces to g(u) =1 at tree level. The
effective coupling multiplying the semileptonic operator
that mediates f# decays involves the same G as the pure-
leptonic term in Eq. (9), the CKM matrix element V,,,
and the MS-subtracted Wilson coefficient C/’j(a, u), which

reads [36,66,67]

M M
Chla.u) =1 —l—gln—z—l-gB(a) _aa; In—%
T u T 4z H
+ O(aay) + O(?), (11)
a 3
B(a)=——--. 12
(@)=¢—7 (12)

The finite O(a) matching coefficient depends on the
scheme through B(a). We have used the naive dimensional
regularization (NDR) scheme for y5 and kept track of the
additional evanescent operator scheme dependence via the
parameter a, defined by [68—70]

rr"Y"PL @ vp1,7.PL = 4[1 + a(4 — d)]y’PL Q 7,PL
+ E(a), (13)

with an evanescent operator E(a) that has a vanishing
matrix element in d = 4. Current conservation protects Cy
from O(ay) corrections. Concerning the terms of O(aa;),
we only keep logarithmic contributions, as the finite
matching coefficients and the corresponding three-loop
anomalous dimensions are not known.

The renormalized Wilson coefficient Cj;(a, u) obeys the

following RGE:

dC%(a, p)
ﬂﬁT: v(a, a)Chla. u), (14a)
u

(@a) =4 (2) 4%, (14b)

a,ag) =70 - se T,

14 s }’07[ 71 z 4 .

vo = —1[36], (14c¢)

NDR, \ _ 1 = 2
7y N (a) = ﬁ(Za +1), = ;anf, (14d)
Yse = +1[36,66,71], (14e)

where 71 is the scale-dependent effective number of fer-
mions, a(u) and a,(u) are the electromagnetic and strong
running coupling constants. We have obtained y\'°R (a) by
adapting the QCD calculation in [68]. As far as we know,
this is the first time the full two-loop anomalous dimension
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is worked out.” With appropriate rescalings of the QCD
diagrams of Ref. [68], we also reproduce y,, = 1.y and y,,
are scheme independent. The scheme independence of y,,
follows from the general argument given in Ref. [71],
combined with the fact that there is no finite matching term
nor anomalous dimension to O(a;) for the operator under
study here. On the other hand, y; depends on both the
treatment of ys in d spacetime dimensions and on the
scheme used for evanescent operators.

In our final result, we will use the numerical solution for

(a,p). However, it is quite instructive to provide an
approximate analytic solution, based on the perturbative
treatment of the next-to-leading logarithm (NLL) terms
associated with the scheme-dependent two-loop anomalous
dimension y;(a) = O(a?) and the finite one-loop matching
condition B(a). First, setting y;(a) — 0 and consistently
taking as an initial condition Cj(a, usv) = 1, generalizing
the result of Ref. [72] given at the z-mass scale, we obtain
the solution

o = (555 Gim) (i) (o)

() )T )

(15)

where we have subsequently integrated out the b quark, 7
lepton, and ¢ quark, and the strong and electromagnetic
running couplings are obtained by solving the one-
loop RGEs. This solution resums all the terms of
O(a" In"(ugp/p)) and O(ad? In"(usy/p)). We can then
perturbatively include the effects of O(a? In(ugy/u)) due
to y,(a) and B(a), arriving at

Citaum) = (1422 B(@) ) x Gt x o). (16

where
S (1) = 1~ (ﬁ(mb) <"(’:”)>21n’;j—f
+fi(m,) <a(:’)>2ln’;—’:
+i(m,) <a('::C> zlnﬂz—i- 7i(u) <@> 21n%>
~ 1 = xii( ,,)(“Ei”)zm";_“‘, (17)

*Reference [38] quotes the fi-enhanced component of .
Taking into account the different normalization, Ref. [38] obtains
PR (a = —1) = —(1/16) x (44/9)ii + O(i°), while we find
PR (@ = —1) = —(1/16) x (8/9) for the total.

and the scheme-independent combination « is given by3

1 1 5
=1 (n@+3m@) =5 a8)
In the equation above, ff, = —(4/3)7 controls the one-

loop S function for a via pda/du = —(By/(2x7))a?. The
scale-dependent effective number of fermions takes the
values 7i(u <m.) =4, n(m.) =16/3, n(m,) =19/3,
and 7i(m;) = 20/3. Note that the scheme dependence of
Cj(a, u) in the solution (16) appears only through the initial
factor involving B(a). As we will show below, this term
explicitly cancels when one includes the O(a) corrections
to the matrix element of the semileptonic operator
Uryodrery ver.

We also provide an analytic solution to the RGE (14)
in terms of the evolution operator U(u,pgy) to NLL
accuracy, formally written as Cp(a,u) = U(u, pism) X
Cj(a,psm), with the initial condition Cj(a, pusm) =
1+ (a/7)(In(Mz/usm) + B(a)). Using the two-loop
running coupling a(x) and the one-loop running
ag(u), we resum the series of leading logarithms
(n>1) O(a"In"(ugp/u)), and subleading logarithms
O(aa} In" (usm/p)) and O(a"*'In"(ugy/u)). The NLL
solution for the evolution operator U (u;, u,), valid between
two mass thresholds y; and p, takes the form [73-75]

210 2r5ea(i1)
a(ui)\ 7 (ag(p1)\ o5 o
U(ﬂhﬂz):( 1) 0( =)

a(ps) ag(pa)
_ %0‘(/41) —a(uy)
T

where we expanded a with respect to its two-loop beta
function, f,, after which the f; dependence cancels in
Eq. (19). Therefore, both « and «a, in Eq. (19) are evaluated
using the one-loop RGEs, and the QCD beta function f
is expressed in terms of the number of active quarks n,
as fo, = (11N, —2ny)/3. Neglecting two-loop matching
conditions, the evolution operator between the electroweak
scale, ugy, and the low-energy scale, p, can then be
obtained by using Eq. (19) between each particle threshold
U(/"7 /"SM) = U(/"a mc) U(mc" mr) U(I’I’l,, mh) U(mbv MSM)'

B. External sources and spurions

The matching of LEFT to HBChPT is conveniently
performed by introducing classical source fields #(x) and
7 (x) for the left- and right-handed chiral currents of quarks
as well as electromagnetic left q; and right qz spurions,
and the weak spurion qy [47,61,76,77]. These allow one to
handle the explicit chiral symmetry breaking introduced by
the electromagnetic and weak interactions at the quark level
in a compact way. With this motivation in mind, we write

JReference [38] finds k = 2/9, more than a factor of 2 smaller
compared to our result.
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the source term for currents plus the QED and weak CC
interactions of the light quarks ¢” = (u, d) as

Ligrr = Gulqr + Griqr — e(G9.AqL + GrArAGR)
+(eLypVer@rqwr’qr +He.) + -, (20)
where A# denotes the photon field. The Lagrangian in (20)

is invariant under local G = SU(2), x SU(2)g x U(1)y,
transformations

qr — L(x)eia"(x)‘]b qr — R(x)eiav<x)CIR, (21)

with L,R € SU(2), . provided q; z and qy transform
as “spurions” under the chiral group, namely q;y —
LqwL" and gz — RqgR’, and that [, and 7, transform
as gauge fields under G. At the physical point,

qw = —2V2GgV,,Cjz™,
(22)

q. =4qr = diag(Qu’ Qd)’

with 7+ = (¢! +i7?)/2 in terms of the Pauli matrices 7°.
Note that we include the LEFT Wilson coefficient C Z in the

definition of the spurion qy. With this identification,
Eq. (20) reproduces the semileptonic piece of Eq. (9).

The O(e?) counterterms in the LEFT Lagrangian can be
written in terms of spurions as [47]

Lifer = =22 Q%gooe(ig — eQ A —m, e
— ign€*(Gr[ar. D q. 7,91 + drldr- D’ qr]Y,4R)
+ €0, (21,01 (902G awd LY’ 91
+ 903G.9.9wr”qL) + H.c.), (23)

where g is the counterterm related to the electron wave
function renormalization, gy, and g¢yp; come from the
counterterm of Cp, while g,3 includes contributions from
both the counterterm of Cj as well as divergences related to
the quark wave function renormalization. Furthermore,

Drq, =0°q, — [l qq]. (24)

Drqr = 0°qg — i1, qg] (25)

are chiral covariant derivatives, expressed in terms of the

fields /#(x) and r*(x) that combine the classical sources,
the photon, the leptons, and the spurions:

l, = 7,4 —eqrA, +qweryler + q-";VIJBLyﬂeL7 (26)

ry =T, —eqgA,. (27)

In the MS scheme, the g;; couplings appearing in Eq. (23)
are determined by the 1/¢ divergences and can be written as

gij = @ﬁ%z <%-VE-+ln(4ﬂ)), (28)

Wlthh()o = 1/2, h23 = (1/2)(1 —(Xs/ﬂ'),hoz =-1 —(XS/JT,
and h03 = 4—2@5/71'.

IV. STEP II: MATCHING LEFT TO HBChPT

The goal of this section is to find a representation for the
LECs appearing in C’V [see (3)] in terms of the LEFT
counterterms g;; and quark correlation functions, which can
then be modeled or computed via nonperturbative tech-
niques such as lattice QCD.

A. The chiral Lagrangian

The chiral representation of Eq. (23) can be built using
standard spurion techniques. As in Eq. (23), we will
need purely leptonic operators, purely electromagnetic
operators, and operators with charged leptons and neutrinos.
The corresponding chiral Lagrangians were built in
Refs. [44,61,78-80]. Here we extend the bases of [44,80]
in order to avoid assumptions regarding q; and qg, allowing
us to keep the spurions q; p completely general. Moreover,
we do not use the equations of motions to reduce the operator
set in order to avoid hadronic contributions to purely leptonic
LECs [47].

As we will see below, to perform the matching between
LEFT and HBChPT it is convenient to introduce vector
and axial-vector charge spurions and sources, which we
define as

qv = q, +qRa

v,=1,+r,

qs = qL — qr;
a,=1,—r, (29)

It is also convenient to decompose the electromagnetic
charge spurions in isovector and isoscalar components

0
GO =af b gt =g (30)
with J € {L,R,V,A}. The physical values are qf , =
qj = 1 for the left and right spurions, q, = qj, = 1 for
the vector spurion, and ¢4 = ¢} =0 for the axial-vec-
tor case.*
The chiral Lagrangians are built using the chiral covar-
iant functions of the charges and of the corresponding
covariant derivatives in Egs. (24) and (25):

O =uqyu’, QO =uquut,  Qp=u'qu,
Q; £09 1
Qi :%7 C/T :E(M(quL)uT:l:uT(D/)qR)u)’

(31)
with u> = U = exp(in - t/F,) and F, ~92 MeV.

*In what follows, we will omit the superscripts in the charge

spurions: whenever q; g v 4 appears in the HBChPT Lagrangian,

o b
it is understood to be q;"R"' 4.
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At lowest order, the HBChPT Lagrangian is given by

> F2
LF + L5 + Loy =t + ) + €Z,F1( QL Q)
+N,iv-VN, + gV'N,S-uN,. (32)
where F, and 91(40) denote the pion decay constant and the

nucleon axial-vector coupling in the chiral limit. u, and y
are given by

w, = ilu' (0, —ir,)u —u(0, —il,)u'],

v =u'yut £ uytu, x = Bo(m, +5+4ip), (33)

with the light quark masses m, and a LEC of dimension of
mass Bj, which is related to the quark condensate. We
further introduced the nucleon chiral covariant derivative

V,N = (0,+T,)N,

r,= % (@, — 5t 4 ut(@, — i), (34)
where by the superscript baryon we indicate that the photon
couples to the nucleon via the charge ql\),ary " in Eq. (30).
In addition to the weak and electromagnetic interactions
arising from chiral covariant derivatives, Eq. (32) contains
electromagnetic effects mediated by high-momentum pho-
tons via the coupling Z,, which is related to the pion-mass
splitting.

The chiral Lagrangian needed at O(Gra) is given by

62 22
L= ngt + Lo+ Lo (35)

ﬁgt is a purely leptonic counterterm Lagrangian

Ll = e Xee(ig + ef)e. (36)

The coupling X¢ is determined by computing the electron
propagator in LEFT and chiral perturbation theory,

obtaining
5 I
= 1-In=%), 37
(4,;)2( e G7)

in arbitrary R, gauge, where u and y, are the LEFT and
HBChPT renormalization scales, respectively. Xj(u,.u)
denotes the renormalized coupling, after subtraction of the
1/& pole in the m)( scheme. Note that, following standard

X (uyo 1)

practice [49], in the MS, scheme, we subtract
1
E—J/E‘f‘ln (477,') + 1, (38)

instead of the conventional MS subtraction used in LEFT:

é —yp +In (47). (39)

2
For the electromagnetic Lagrangian L.}, we use the
construction of Ref. [80]. Only one operator is required
to describe Fermi transitions,

Efrj\f =e*gN, (% Q. ,v-ct]+ H.c.>NU. (40)

For the electroweak sector with charged leptons and
neutrinos, we provide the most general weak-interaction
Lagrangian in the heavy-baryon sector with one charge and
one weak spurion, where we only assumed the constraint

(qw) =0 [81]:

6
Lon = e ey, (Vir =24,y $)O,N, + Hee.,
i=1

=

(41)
where g&o) denotes the nucleon axial-vector coupling in the
chiral limit and

05 =(Q.Q).  Op=(QrQ}) (42)

The dimensionless low-energy coupling constants in
Ref. [44] are related to the couplings in Eq. (41) by the
relations 5(1/Cr = V1 —+ V3 —+ V4 _Al —A3 —A4, )~(2/Cr =

Y ro_ 0) % ro_ % ro_
=V, X3/Cp = 2A2g£‘>, X4/Chp=V4+ Vs, and X5/C =

—2(A4 + Ag) 91(40) when the spurions take physical values. In
Ref. [44], the authors have used the equations of motion to
eliminate some S”-dependent operators. In addition, they
reduced operators that are bilinear in spurions to linear
expressions by exploiting the relations q;qw = (2/3)qy
and qwq; = —(1/3)qy, valid for physical values of the
spurions.

As realized in the mesonic sector in Refs. [47,77], we
can interpret amplitudes in LEFT and in HBChPT as
functionals of the same charges ¢%“(x), promoted to
be spacetime-dependent external fields. The matching
between the LEFT and HBChPT can then be obtained
by equating functional derivatives of the effective action
with respect to ¢%¢(x) in both theories. As we will see, this
allows us to derive an explicit representation for the LECs
and to keep track of unphysical scale and scheme depend-
ence appearing at intermediate steps of the calculation.

B. Electromagnetic coupling constant

We start from the electromagnetic coupling go.
Expanding the charge covariant derivative in Eq. (40),
we obtain
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NV XY

FIG. 1.

2
sources. The first three diagrams originate from the leading-order 7 and zN Lagrangians, L ,

Diagrams that contribute to I'yy, in HBChPT are shown. Double, wiggly, and dashed lines denote nucleons, photons, and
pions, respectively. Dashed circles denote insertions of the sources q‘(/‘b

. The arrows denote the flow of the momentum r inserted by the
LY, and LPy [44,80,82], which are

presented in Eq. (32). The last diagram denotes contributions from Lf;jvp and is proportional to gy.

i
—514qv> [Vp’ (IVH

‘CEN =e g94N1:vp ([qV’aqu} 2[

-3 fav. e aal N, (43)

go can then be evaluated by taking functional derivatives
with respect to two isovector charges, provided that the
|

abc L560’ . 0 ‘ 52W
Lyy=—F7"7—50,5— (/ d/xe™(N(K', o', j)| FW(av.q4)

2 or,

where k and k' are the nucleon momenta, ¢ and ¢’ denote
the nucleon spins, and i, j are the nucleon isospins. We
take the nucleon to be at rest, k = k' = myv and use
the nonrelativistic normalization for heavy-particle states
(N(K,,j)|N(k,0,i))=(27)35®) (k—Kk")56° . W=—ilnZ
denotes the generating functional of the connected diagrams.

I'yy needs to be computed in both HBChPT and LEFT,
and, in both theories, it receives tree-level and loop con-
tributions. The contributions to 'y, in HBChPT are illus-
trated in Fig. 1. The short-range contributions are determined
|

charge carries nonzero momentum, or by taking three
derivatives, two with respect to the charges and one with
respect to a vector or axial-vector source. The first
representation is more convenient, since, as we will see,
it allows one to automatically obtain cancellations between
electromagnetic and weak couplings.

More precisely, we will consider the following object:

, (44)

84y (x)5q%(0) |40

by LECs in the Ef;é’ Lagrangian. g9 provides the only
contribution to I'yy,. The loops are determined by couplings in
the leading-order (LO) pion and pion-nucleon Lagrangians.
In particular, the diagram with pion-mass splitting Z, is
symmetric in isospin and vanishes once contracted with the
Levi-Civita tensor, so that the loop corrections are purely
determined by the minimal coupling of the photon to the
nucleon. In arbitrary R; gauge, we introduce the photon mass
4, as an infrared regulator and obtain

FVV |HB)(PT —

2

~ e (P50 - (1

62<99+/ <ldd> (e —laz

l_f/ldd (¢* —/12)2 é‘ﬂ?))
¢

1-¢
+T>1 ﬂz+1—51 5) (45)

95(u,, p) in the second line denotes the renormalized coupling, after subtraction of the 1/& pole in the M—SZ scheme.
For £ = 1, the anomalous dimension of gg(y,. u) agrees with the result of Ref. [80], so that Eq. (45) is independent of the

scale u,.
In the LEFT, the same matrix element is given by

Ty [LEFT =

dlq v-qg,Th,
2 _ b vy
¢ ( 923+/ 2 (¢ Az

) 1—¢/ldd q_mz fﬁ%)' (46)

Equation (46) contains a tree-level term, proportional to the counterterm g,3 that cancels the divergences generated by loop
diagrams. The loop contribution contains the hadronic tensor 7%, (¢, v), which can be expressed in terms of the two-point
correlation function of quark currents. Here, we use the definition [34]

abc oo .
5 i0
T’(/v(A) (q.v) =

iy [ e N o T a3 ) g O)) N o ) (47
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The gauge-dependent term in Eq. (46) is obtained using

QyTI\l/yv(% v) = ClﬂTI(/llv(CIv v) = ir”, (48)

which follows from the conservation of the vector current.
To highlight the UV structure of Eq. (47), we add and

subtract the high-energy limit of the hadronic tensor

provided by the operator product expansion (OPE)

where for the OPE of the relevant currents we use results
from Refs. [83,84], adapted to include the appropriate color
factors [35]. Since our calculation is only accurate at the
leading logarithm in O(aaq;), the O(a;) correction to the
OPE is computed in d = 4. Note that in Eq. (49) we have
introduced an arbitrary scale u, to regulate infrared
divergences that appear when evaluating the convolution
integrals with Topg. Performing the relevant integrations,

. we obtain
v Iv-q Ay
T , =—(2-d+2—), (49
g;w VV(q U)lopE 6]2 _/l(% < + 7[) ( )
|

e (1 a\, w1 1= ¢ d*q v-qg,Tyy(q,v)
—(1-Z )5S +-——=(In=+1) =21 47)? e VW 2, (50
e (2 (1= e =157 (nf ) g e [ S50 o

where T denotes the subtracted hadronic tensor, T = T — Tpg. T depends on y in such a way that the final results are y-
independent. Finally, note that we are dropping terms of O(aa,) that appear without logarithmic enhancements, because
they are beyond the accuracy of our calculation.

Equating Egs. (45) and (46), we obtain a representation for go:

d*q v- 99, Tyy(q,v) 1 uy 1 a\, w> 1-¢& u; 5 ¢
F (o) = . InZ+-(1-=)In5+—=m~%->+2|. 51
9o (ks 1) /(27[)4 @27 tap|"zt2 =) In=s naat (51)

Alternatively, to control the infrared region and see a cancellation of the infrared divergences, we can introduce the
combination T = T — Ty, where Ty is the leading infrared contribution g,, Tl = i/(v - ¢), and obtain

. [ dq voqguTVy(qv) 1 1-&\, u 3 ¢
sl = [ @f (@F " (anp [(1 +T> 1“;7‘5+ﬂ- (52)

Lyy[WHT =

C. Electroweak coupling constants

We follow the same strategy for the determination of the electroweak coupling constants. In this case, the operators V4
and V, receive contributions from the isovector component of the electromagnetic charges, while V3 and V, receive from
the isoscalar component. We thus define two matrix elements

abc .c s6'o - 2
_ (y _ e7r;0 l/ dofe WAy g4, qy) .
epPv Iy, =———— | dx(e 0, N(k, o ])|—a IN(k,0,i)), (53)
e 2 5q},(x)3qfy (0) |40
. o _ 87 / dof o o EW(ay. 44, qw) .
eyPv lyy = ——— [ dx(e 0Nk, 0", j)|——5~=a7m| [Nk 0,iQ)). (54)
e 54 ()5 (0) |0

At the order we are working, the electron and neutrinos can be taken to be massless and to carry zero momentum.

N

FIG. 2. Diagrams that contribute to I'yy, in HBChPT are shown. Single lines denote electrons and neutrinos. The remaining notations
are the same as in Fig. 1. In this case, the sources inject zero momentum. The first two diagrams originate from the LO #N Lagrangian

. . . 2 . . . . . .
L?, and the last diagram denotes contributions from £¢,7,. Diagrams with the sources coupling to pions do not contribute at this order.
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The HBChPT diagrams contributing to Fg?v’é) are shown in Fig. 2. The loop diagrams cancel for isoscalar electromagnetic
couplings, so that we obtain

(1) (HByPT _ 5 _l ldd 1 1—5 ldd 1 )
e A R R s >

HByPT _

VW’ (V3 +Vy). (56)

In the LEFT, the isovector and isoscalar components are given by

LEFT go2 = Gos | 1- 5 zdd 1
ARl e eﬁPm( 4 g = 1)(a* - &)
e diq 1 ) ) )
— 7/ <2ﬂ)d qZ(q2 _ l}%) eYMﬂnyLl/e(Tl\l/V(q, U) - Ti\l/A(q? 1)))’ (57)
, LEFT _ Jor + g idlg ,, D
eﬁPLIJeF§/W| —e e?ﬂDLI/ u / 2” d 2 /12) eyﬂgnyLl/e(T,‘l/v’o(q, U) - T'L‘l/A,O(q, ’U)) (58)

The hadronic tensors with two isovector currents are defined in Eq. (47), while we define the hadronic tensor with one
isoscalar vector current as

74577
Tlayo(a0) = 25— / dlxe (N (k. o', )| T1ar"a(x)ar (vs)eq(0)]IN (k. 0. ). (59)
As in Sec. IV B, the UV divergences in the LEFT are determined by the operator product expansion. In NDR, the leading-
order OPEs of Ty, — TV, and T}y, , — T, , are proportional to the symmetric and antisymmetric combinations of Dirac
matrices (y*gy” £+ y*¢y")P;, respectively. The symmetric combination does not depend on the scheme, while the
antisymmetric piece depends on the definition of the evanescent operators, in such a way as to compensate the dependence
of the couplings in the LEFT. Using the OPE, we obtain

_ y v 3d-2 la; q2

e}’ﬂ%}’l/PLl/e(T;\l/V Typ)lope = ’[T - 5;} 7 _/‘0 serPLv,, (60)
_ y y 1 4a 1a; 9>
eyﬂdePLl/e<Tl‘l/V.0 - T’\l/A.O)|OPE = |:2 ((4 - d) (1 + ?) - 2) +3 D) ”:| ,“0 eﬁPLl/e- (61)

The integrals of the subtracted hadronic tensors 7 are convergent, so that we can perform the Dirac algebra on the leptonic
leg in the d = 4 dimension. Putting everything together, we arrive at the matching equations

d*q 1 —w : -
2(V1 + Vz)(/l)(, ﬂ) = / (271_)4 qz( 2 _ /1}%) (U : qg/wT/‘l/V(q’ U) + zeﬂpwq/’v TI\I/A(‘I’ U))
1 w1 a u? 9 My
21In 1——11 ——1 = 1- In—% — , 62
@y { /12+ < ﬂ) "2 n/12+ * §)<nu (62)
id*q 1 o
2<V3 + V4)(ll, /’l)p /") = (2”)4 qz(qz _ /12) (U : qg;wTVV.O(q’ ) + lg;lpwq v TVA O(Q’ ))
Y
1 [1 ( as> u 33— Sa]
bz (1=-2)mE + . (63)
(47)? |2 7 /43 12

To obtain the second line of Egs. (62) and (63), we used the Ward identities on the subtracted tensors,

2

q FUY
: 7. Ty o(q,v) =0, (64)
7 _ﬂ%> wlvvo

0T (g, v) = wv(l -
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the symmetry (antisymmetry) of unpolarized hadronic tensors T"‘,”V(O) (T};:(O)) under u <> v, and, in the contractions with

the Levi-Civita tensor, we replaced

ey’Prv, — epv°Prv, + é(y’ — pv°)Prv,. (65)

The nonperturbative QCD input in the LECs is encoded in the subtracted hadronic tensors Tyy, Tya, Tyy.o, and Ty .
Using time reversal and crossing symmetry [2,33], we can show that the scalar functions in the matching equations (62) and

(63) are odd or even under ¢ — —q. Explicitly we have
9TV (@* v q) = =g, Ty (4> —v - q).

9Ty 0@ v q) = 9.1V, o (6. —v - q).

W)baq v TVA(q v CI)

. THY 2 _
leﬂpyaqpngVA,()(q , U Q) -

Wwo'q v TVA(q A Q)’ (66)

ieﬂpvaqﬂng;\t/l/A,()(qz’ —v- q)7 (67)

where we indicated that the functions depend only on the invariants

0* = -4,

v=v-gq. (68)

As a consequence of Egs. (66) and (67), Ty, and Ty o do not contribute to the matching, and the final expressions for the

combinations of LECs V| + V, and V3 + V, are

a 1
2(Vi+ Vo) (uy. p) = / (2;)14 pEIpEay

2(Vs + Vi)(a pyp) =

/ idtq 1
(2ﬂ>4 q2(q2 My

Note that in this framework, the LECs depend not only on
the chiral renormalization scale (x,) but also on the LEFT
renormalization scale () and the schemes adopted for ys
and the evanescent operators.

V. CORRECTIONS TO gy

In this section, we combine the coupling constants of the
heavy-baryon chiral perturbation theory into the counter-
term of gy in #EFT. We subsequently evaluate the non-
perturbative inputs to the vector coupling constant, resum
logarithms between the chiral and electron-mass scales, and
provide numerical results for gy .

A. Matching at the baryon-mass scale

Having determined the electroweak coupling constants
V1=V, and the electromagnetic coupling constant gy, we
can evaluate the O(a) contribution to gy in the low-energy
effective theory; cf. Egs. (2) and (3). These corrections are
known in the literature as inner radiative corrections.

Before getting to the final result, we can combine the
LECs that depend on the VV hadronic tensor, gy and
V1 4 V,, and the lepton wave function renormalization X,
obtaining

) V- quyT!\l/y\/(q’ U)
Y

1 2 1 2 2 9 2
= {2111/12 2(1—;)1 /70—1n7+4+(1—£)<1n//%— )] (69)

v

. e 1 u?> 3-8a
/’{2) leﬂPUquv TP\;A.O(q’ U) + (471_)2 |:2 (1 _;> ln’u_(Z) + 12 :| (70)

<—% +2(V, +V,) - gg> (ks 1)

aplroiCow)

d*q 2
27)* ¢* (¢

Ct suTi(a.0). ()
v

which is independent of the gauge parameter &. Ty enters
this combination of LECs multiplied by the IR regulator /1%.
The only contribution to the integral can thus come from the
infrared limit of T'yy, where the hadronic tensor is well
approximated by the elastic piece. The integral over the
hadronic tensor then only leaves behind a finite piece,

yielding
13 Hy
= “(1-m%).
(47)*2 < nﬂ2>

(72)

<_);6+2(V1 + V) - 99> (pyo ) =

Thus, the only contributions to —=* + 2(Vy 4+ V;) — gg are
due to the different renomlalizatlon scales, u vs p,,, and the
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different subtraction schemes commonly used in HBChPT,
MS, vs MS.

The other combination of LECs V5 4 V, is conveniently
expressed in terms of the scalar amplitude T5(v, Q%) as

1 a W 3-8a
—3(l—-—In 2+
(4r)= |2 z I 12

id*q 12 + Q* T5(v, 0?)
B / r)* o4 2myv

2(V3 + V4)(a’ Hy> Iu) =

(73)

where we defined the amplitude 75 from the tensor
decomposition of the hadronic tensor as [85—90]5

T3

ighvor 4yVs yo—
myv

Tvao = +o (74)

with the OPE-subtracted expression

4 myv o
- 1=-—). 75
3Q2+M3< ﬂ) )

In the OPE, we have retained the O(a) correction, which is
needed to cancel the p-dependent term proportional to
aayIn(My /p) in Cj. To the order we are working, we can

T5(v. Q%) = T5(v, Q%)

use a,(u) at any u where QCD is perturbative. We will use
a,(pg) in what follows.

Combining the HBChPT coupling constants into the
#EFT counterterm CV according to Egs. (2), (3), (72), and
(73), we achieve the matching condition

vl = Cyla) |1 - “22) (2800) 5

3 2 u
1 1 - 0
+4 nﬂo ( 4”) ! 2)

—ez/ id'qg 1> + Q> T5(v. 0?)
2zt 0* 2myv

| o

where we resummed logarithms in the Wilson coefficient
Cj(a, ), as it is described in Sec. IIl A. This expression
does not contain electroweak-scale parameters or artificial
hadronic scales, besides the dependence contained in the
coupling constant Cj(a, u). The vector coupling gy ()
does not depend on the scale and scheme used in the LEFT
at the one-loop level.

We can further simplify the expression for gy (u,) and
connect it to the previous literature. First, we eliminate the

*Note that T5 defined in this paper is equal to i times the 7’3
defined in [45], which in turn is twice as large as the 75 defined

n [1].

evanescent scheme dependence by defining the scheme-
independent NLO Wilson coefficient [68]

_ Gla.n) (77)

which can be immediately read off from Eq. (16). We then
have

a 2
gv () = (ﬂ)[HDHad() g?>(§+%n%

(2]

where the nonperturbative input is in the “subtracted”
hadronic contribution [, (4o), which is closely related
to the standard D;’W of Refs. [1,2,39]

42 2 2
EKad(ﬂO):—QZ/ id'qg 1"+ Q [T3(”’Q)

(2z)*  ©Of 2myv
2 1 o (15)

OV / id'q M3, A+ 0*Ts(v, Q%)
W Qn)*Q*+ M3 Q0 2myv

(80)

We will evaluate the nonperturbative input in Eq. (79) in
Sec. VB.

Equation (78) encodes the so-called inner radiative
corrections to the Fermi transitions in the EFT language
in the form of a u,-dependent coupling gy (u,), which
appears in the effective Lagrangian of Eq. (1). Once all
large electroweak logarithms are resummed via the RGE in
Cs(u), Eq. (78) does not contain additional large loga-
rithms when the scales p,,, 4, and y are similar and of order
A, ~1 GeV. As shown below, the u,-scale dependence
in gy(u,) is canceled in physical amplitudes by the s,
dependence of the virtual photon corrections computed in
the pionless theory. Since the only scale of these loops is
O(m,), we will evolve gy (u,) down to the scale y, ~ m, in
order to avoid large logarithms; see Sec. V C.

B. Evaluation of the nonperturbative input

As shown in Refs. [1,2], the box function can be re-
presented as a one-dimensional integral over the Q% > 0
variable

=g [T re) s

where F(02) = (12/0)M(1,0?) and M (1,Q?) is
the first Nachtmann moment of the structure function
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defined in terms of the imaginary part of T3(v, Q).
Following Refs. [1,2], it is useful to isolate the well-defined
elastic contribution to F(Q?), which we denote by F(Q?),
known in terms of the nucleon isoscalar magnetic vector
and axial-vector form factors, and define

F(Q%) = Fy(Q%) + F(Q%). (82)

where F(Q?) includes inelastic contributions. For Q* <
02 =2 GeV2" F(Q?) contains contributions from the
resonance region and the so-called Regge region. Current
knowledge is based on modeling [ 1-5] and lattice QCD input
[6]. For Q% > 03 =2 GeV?, one enters the deep inelastic
scattering region (DIS), controlled by the OPE with Wilson
coefficients computed in perturbative QCD (pQCD). The
OPE representation of 7(Q?) is known to leading order in
1/Q?, with coefficients known to O(af) [3,91-93]:

Fois(0?) = — (1 - A(QY),

A0 =5, (ﬂ) (83)

In practice, we will use only the n = 1 term (with coefficient
¢, = 1) in A(Q?), as higher-order terms are beyond the
accuracy of our NLL LEFT analysis. Moreover, for con-
sistency with the OPE terms that we subtract in the matching
procedure, we will use A(Q?) = A(u3) in Fp5(Q?).

In terms of the quantities defined above, the subtracted
hadronic contribution reads

Ohal) = g [ 00°|Fa(0) + Fl)

1
- g (1= 26| (84

Isolating the elastic contribution and separating the inte-

gration in the regions below and above Q% = (v/2 GeV)?,
we find

o 03 _
Tfy = Olla + 55 | 40F(@)
a M2 QZ
—(1=A(u2))In—=% =0
1= 20 g+ (). (89
=y v a [ e,
Dtaa (o) = Dyw|e1+§ A dQ°F(0Q%)
2
a I
—(1=A@3))In=2 .
+g- (1= Ak)) In 0 (86)

The value of Q, is somewhat arbitrary, and here we follow the
choice of Refs. [1,2].

Numerically, for the nonperturbative contributions we find

Yyle = 1.030(48) x 1072, (87a)
0 2152 =V
0 dQ F(Q ) - 5DHad|Regge+Res.
= (0.49(11) +0.04(1)) x 1073, (87b)

We evaluated the elastic contribution with the isoscalar
magnetic vector form factor, which is extracted from
experimental ep and en scattering data, measurements
of the neutron scattering length, and pH spectroscopy [94].
For the axial-vector form factor, we use the fit to the
experimental v,D scattering data from Ref. [95]. Our result
is in reasonable agreement with previous evaluations of the
elastic contribution to D]‘,/W, giving (1.05 4+ 0.04) x 1073
[4], (1.06 £0.06) x 1073 [1,2,45], (1.06 +0.06) x 1073
[5], and (0.99 £0.10) x 107> [3], but contains an
improved uncertainty estimate since our errors are directly
propagated from the experimental data.

Up to negligible contributions of O(Q3/M%,), the
integral of F(Q?) between 0 and Q3 in Eq. (87b) coincides
with the Q? < Q3 inelastic piece of the “box diagram,”
recently considered in the literature [1-6]. The result is
usually written as the sum of the “Regge” plus “Resonance”
contributions. The various evaluations in the literature have
recently been combined by Ref. [8], leading to the numbers
used in Eq. (87b). This part of our result is fully correlated
with previous work and carries the dominant contribution to
the error budget for the radiative corrections.

C. RG evolution of gy below the baryon scale

To account for higher-order perturbative logarithms,
which are needed for precise predictions of f-decay rates
and (anti)neutrino-nucleon scattering, we evolve the low-
energy coupling constant gy (u,) from the matching scale
#, ~ A, to the physical scale yu, ~ m, using the one- and
two-loop anomalous dimensions. The vector coupling
constant evolves according to

dgy (u,)
p, —— = y(a) gy (). (88a)
du,
a _ [a\?
7(“)—70;4'}’1 <7—z> +e (88b)
B 3
}’0:—1» (88¢)
5i 5 r#*
jl= b - 88d
N=3u7T37% (88d)

with the effective number of particles 7, as it is described
in Appendix A 2. The appropriate one-loop anomalous
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dimension 7, has been identified in Refs. [38,44,46,51,96,97].7
It can also be extracted from calculations of the “heavy-light”
current QCD anomalous dimension in the context of heavy
quark physics, as for example in Refs. [98,99]. As discussed in
Appendix C, we can exploit this analogy to extract the QED
two-loop anomalous dimension 7;, by adapting the results
from Ref. [100] (see also Refs. [101-103]). The above
expression for 7; only includes two-loop diagrams involving
two virtual photons in the pionless theory. Possible contribu-
tions arising from diagrams involving pions and photons
are not included. Note that the term in #, proportional to 7>
can lead to contributions to the decay rate that scale as
a*In (my/m,), larger than a typical two-loop contribution.

Using the expression for the evolution operator in
Eq. (19), we solve the RGE in (88) and resum the leading
and subleading logarithms between particle thresholds
according to

gV(ﬂ){) = U(/")(’ m/t)f](mw mﬂ>l~]<mm A)()gV(A)()i

Po(m1) z
(89)

Below the baryon scale, we determine « from its value in the
Thomson limit by evolving it up in scale with the electron,
muon, and charged pion as active degrees of freedom, which
leads to

. 4 1
o =3 2 030 =me) =5 Q30— ms). - (50)

See Appendix A for details on the definition of the fine-
structure constant in both LEFT and yPT.

In Eq. (89), gv(A,) is obtained by evaluating Eq. (78) at
#, = A, ~my. Note that both 7, and 7, are negative,

implying gy (m,)/gy(A,) > 1.

D. Numerical results and uncertainty estimates

We next present numerical results for the vector coupling
gy (m,) and discuss the various sources of uncertainty. We
start by providing some intermediate results that illustrate the
impact of corrections at various orders in our RGE analysis.

For the semileptonic Wilson coefficient Cj, we include

a, aay, and a? contributions to the running, as described in
Sec. I A.® To illustrate the effect of running from the

"Note that the one-loop anomalous dimension in the theory
with relativistic nucleons is a factor of 2 larger than 7, in
Egs. (88), and, therefore, our coupling constant can be used for
the calculation of radiative corrections only in the theory with
heavy nucleons.

¥We perform the one-loop running for a(u) and a; (u) in LEFT,
consistently with the order of our calculation. We have checked
that using the higher-order couplings as in Ref. [66] modifies our
final results at the level of 0.001%.

electroweak to GeV scales, we provide results for the fixed
order (LO) Cy(m,) = 1+ (a(m.)/x)In(My/m,), leading
logarithms (LL), next-to-leading logarithms NLL1, which
includes the anomalous dimensions up to order aa,, and
next-to-leading logarithms NLL2, including the anomalous
dimensions up to orders aa, and a®. For the initial
conditions, we specify

a(My), My

Ci-NM (My) =1+ ——“In—=, 91
g (My) =14 === o1
My), M, a(My)
oz () — 1 4 MW Mz oMy) g,y
p(My) =1+ == o+ = 2 Bla = —1)

(92)

After numerically solving the RGEs, we obtain the follow-
ing values for the effective couplings at y = m,.:

CiO(m,) = 1.01014, (93a)
Chl(m,) = 1.01043, (93b)
CNM (m,) = 1.01027, (93c)
CNU2(m,) = 1.01018. (93d)

The effects of NLL1 and NLL2 resummations combine to
essentially “undo” the effect of LL resummation. The final
result is very close to the perturbative one. The numerical
solution of the RGEs agrees with the analytic solutions
provided in Sec. III A. Our result for the NLL1 correction is
consistent with the finding of Ref. [72]. The impact of
NLL2 corrections in our result is more than a factor of 2
larger than in Ref. [38], reflecting the difference discussed
in Sec. Il A.

For the running of the vector coupling constant gy, we
include the O(a) and O(a?) anomalous dimensions, as
described in Sec. V C.° We provide the relative running
contributions for the one-loop logarithm (LO), namely
av(mo)/gy(m,)lio = 1+ (3/4)(a/x) In(m,/m,). the LL
resummation, where we include only 7, in the RGE, and
NLL resummation, where we also include 7, in the RGE:

gvlme)| 01308, (94a)
Qv(mp) LO
wv(me)| 01305, (94b)
gV(mp> LL
gvlme) |y 01330, (94c)
gV(mp) NLL

"We match LEFT at the scale u = m, to the HByPT at the scale
#, = m,, below which we perform the running of « with the one-
loop anomalous dimension for leptons and pions [8,66].
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TABLE 1. The coupling constant gy is presented for a few
values of the renormalization scale .

H, (MeV) 1 5 10 20 30 50
gy—1,% 2379 2090 1966 1.842 1.770 1.678

At the level of decay rate, our NLL correction implies an
increase of 1.0 x 10~ (roughly half of the final uncertainty
of the radiative corrections).

Putting together all the results obtained so far, we
evaluate the vector coupling constant gy (u,) in the MS
renormalization scheme of yPT at the scale u, = m,, where
O(a") loop corrections to the matrix elements of the
Lagrangian (1) do not contain large logarithms:

gy(, = m,) — 1= (2499 +0.013)%.  (95)

In contrast, the vector coupling at fixed order g, * (i.e.,
without resummation, without aa, corrections, and with
taking the value for the electromagnetic coupling constant
in the Thomson limit) takes the value

gy P (u, = m,) — 1 = (2430 +£0.012)%.  (96)

In the RGE evolution, the electromagnetic and aa; effects
contribute with opposite signs, resulting in a net increase of
gy at the level of 0.07%.

For the uncertainty estimate, we add the following

dominant sources in quadrature:

(i) 0.012%: the hadronic error for Regge, resonance,
and N contributions from Ref. [45] is added in
quadrature to the uncertainty propagated from the
lepton-nucleon experimental data for the elastic
contribution.

(i) 0.004%: the higher-order aa? uncertainty is esti-
mated by including the known terms of O(a?)
[1-3,38] in the pQCD correction A(u3) that controls
the DIS region of (1)}, in Eq. (85). In our approach,

this DIS contribution maps onto the aa? anomalous
dimension for the Wilson coefficient C(x) in LEFT.
(iii) 0.003%: the higher-order yPT uncertainty is esti-
mated by assuming the natural size for unaccounted
corrections, i.e., 25 GIZZ[F?, .
All other perturbative and parametric sources of uncertain-
ties are at the level 0.001% or even below.

We conclude this section by noting that the effective
coupling gy (u, ~ m,) captures the inner corrections to one-
body weak transitions through NLL, ie., up to and
including terms of order a’L? and oL (where L indicates
large logarithms of M,/my and my/m,), with residual
uncertainty at O(a?) due to finite terms in two-loop
diagrams. Importantly, gy controls both neutron decay

and the one-body contribution to nuclear f decays, in
combination with appropriate n — pev, and (N,Z) —
(N —1,Z+ 1)er, matrix elements computed to the same
accuracy. For applications in neutrino and nuclear physics,
in Table I we provide the coupling constant gy for a few
values of the renormalization scale up to 50 MeV.

VI. CORRECTIONS TO NEUTRON DECAY
AND IMPACT ON V,,

We can now use the #EFT Lagrangian in Eq. (1) with
gv(u, = m,) from Eq. (89) to compute the neutron decay
rate including radiative corrections. The final ingredient is
the square modulus of the n — peb, and n — pev,y matrix
elements in HBChPT, evaluated at y, ~ m,. To match the
accuracy achieved in gy (m,), since In(u, /m,) ~ O(1), we
will need the matrix elements to O(«) and will ignore terms
of O(a?) and higher. The only exceptions are “Coulomb-
enhanced terms scaling as (za/f)" and a/z(za/p)", where
p=p./E,, which are parametrically large, diverge for
f — 0, and can be resummed in the nonrelativistic Fermi
function.

A. “Long-distance” electromagnetic corrections
and differential decay rate

After including the contributions from both virtual and
real photons [44,46] as well as recoil corrections [46,53],
the differential decay rate dI', for unpolarized neutrons
takes the form [33,53]

dl, G|V,
dE, ?277:)21 (1+432)p.E.(Ey — E.)[gv (1))

X (1 + SRC(Ee’ ,u)())(l + 5recoil(Ee))’ (97)

where Ey = (m% — m? +m2)/(2m,) is the electron end

point energy and A=g,/gy is the ratio of effective
axial-vector and vector couplings in the low-energy
Lagrangian (1). The ratio 4 = A2 (1 + 8{) is affected

by a u,-independent electromagnetic correction 5& para-

metrized in terms of calculable pion loops and certain chiral
LECs (see Ref. [44]). 4 itself can be extracted from beta
decay correlation experiments, so that we do not need to
know 5;?% for the purpose of studying total decay rates and
the extraction of V. Secoil(E.) collects recoil corrections
that can be found in Ref. [46]. They are usually factorized
since the impact of the product of radiative times recoil
corrections is estimated to be well below 10~*. Finally,
Sre(E,) represents the electromagnetic corrections arising
from the matrix element squared. To O(«a), one finds

alu,) (27* 3 M;Z( 5.,
T mt 2 L yEE
2r <ﬁ +2nmg+4+g( e Eo) ).

SRC(Ee»M;() =

(98)
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where §(E,, E,) is a subtracted Sirlin function
. 3. my
9(E.. Ey) = g(E,. Eo) — Fin— 5 (99)

defined in terms of the Sirlin function ¢(E,,E,) of
Ref. [33]. §(E., E,) arises naturally in the EFT calculation
and does not contain any large logarithm of my /m,.

The corrections proportional to za/f in Eq. (98) are
enhanced by a factor of 7% compared to the naive scaling of
loop corrections and are numerically dominant even for
B~ O(1). The leading terms in the series in za/f arise
from the momentum regions of loop integrals in which the
photon momentum has potential scaling, ky~ m, > <
|I;| ~ m,f, and they can be identified with nonrelativistic

EFT methods [104—-107]. Their resummation leads to the
nonrelativistic Fermi function Fyg(f) [108-118],

2za 1 ra wra* nta?

=~ - - cee
Pt B s

(100)

FNR(ﬂ)

which we include in the matrix element squared as

1+ SRC(Eevl’l)() = FNR(ﬂ)

alw,) (3. 1, |5 .
T (2 o2t T IEEo)
— Fyr(B)(1 4 bpe(Eeo 1)) + O(a?),
(101)
where
alw,) (3. 5.,
5RC(Eewu)(): 27;{ <§ nm—g—l—z—l—g(Ee,Eo)) (102)

As we discuss in Appendix B, the factorization ansatz in
Eq. (101) captures all numerically enhanced leading and
subleading terms in 1/4, and reproduces similar results for
the production of two heavy quarks at threshold, derived
with nonrelativistic QCD and potential nonrelativistic QCD
[104-107,119-122]. At O(a?), Eq. (101) gives

11a?
Fyr(B)(1 + e (Ee i) = Fg(B) _Z?
22

%%4‘51&(@7#1)

+0(?). (103)

Indeed, the first cross term —(11/4)a?/ corresponds to the
matching coefficient of heavy-light to heavy-heavy current
[123] in the m)( renormalization scheme. The second cross
term (a?/B)(Ey — m,)?/(12m?2) comes from the product of
the Fermi function with real radiation. These terms are

beyond the accuracy of our calculation and can be booked
as O(a?f?) in the nonrelativistic limit. In the case of
neutron decay, this term provides a negligible shift of 1.6 x
1073 to the decay rate.

We thus arrive to our final form for the differential decay
rate:

an _ G%«"|Vud|2
dE, (2r)>

X (l +5RC(Eev/4)())(l +5rec0il(Ee))’

Compared to state-of-the-art analyses of neutron decay
in the literature (see e.g. Ref. [38]), our result (104)
amounts to replacing the relativistic Fermi function
[53,109-111,124-127] with the nonrelativistic one,
Fy — Fygr. While we arrived at this result by constructing
the relevant terms of the amplitude in the EFT framework,
one could also argue for this replacement along the
following lines. First, recall that the leading corrections
to the phase space coming from the distortion of the
electron wave function in the Coulomb field of the proton
is usually captured by the function [53]

(1 + 3lz)peEe(EO - Ee)z[gv(/‘)()]zFNR(ﬂ>

(104)

2 _ ! |r(7+ iy>|2
Folp) = 7 F(B) = 4QE SRV e™ (i 5
y:%, y=V1-c (105)

This form is obtained by solving the Dirac equation for an
electron moving in the charge distribution of a uniformly
charged sphere of radius R [53], but corresponds to a
rescaling of the solution of the Dirac equation for a
pointlike proton, F(f), evaluated not at the origin, where
the wave function diverges logarithmically, but at the
“nucleon radius” R. R corresponds to a mass scale much
larger than m, and effectively acts as a UV regulator. So we
see that while Fo(f3) coincides with F (/) at the one-loop
level, F includes a dependence on the UV regulator via the
logarithms of R that first appear at O(a?). Expanding F, in
series of a, one obtains

Fo(p) = Fyg(B)[1 — &?(yg — 3 + In(2E,Rp)) + O(a)].
(106)

The dependence on the UV regulator R ~ 1/ w,, does not
match the p,-dependence of gy(u,) in the MS, scheme
presented so far. In dimensional regularization, indeed, the
In R term in Eq. (106) corresponds to a UV singularity that
appears in the first two diagrams in Fig. 3, when we
consider only the contribution arising from picking the
two nucleon poles. This is only one piece of the full
anomalous dimension 7;. In order not to double-count large
logarithms, one should set the logarithmic term in F to
zero when using the RGEs to evaluate the large logarithms
as we do here. The remaining O(a?) terms in Eq. (106) are

053003-17



CIRIGLIANO, DEKENS, MEREGHETTI, and TOMALAK

PHYS. REV. D 108, 053003 (2023)

el Al AA

L AL et A

FIG.3. HBChPT diagrams contributing to the anomalous dimension of g, and to dc at two loop. Only the first two diagrams give rise
to terms in the 7, enhanced by z> [100]. These diagrams also give rise to the leading z>a? /> behavior captured by the nonrelativistic

Fermi function.

incomplete and beyond the accuracy of our calculation,
which allows us to drop them and replace the relativistic
Fermi function F by its nonrelativistic counterpart Fyp.

B. Total decay rate and extraction of V,,

Upon performing the integration over E, in Eq. (104),
the decay rate can be written as

— G%"|Vud|2mg

L 273

(14322) - fo- (1+Ap) - (1+Ag),

:2x3—9x(2)—8

fo 0

x3—1 —i—%ln(xo—i— x5 - 1),
(109)

with x, = Ey/m, and Ey = 1.292581 MeV, and takes the
value fo(xg) = 1.62989. Following standard practice
[38,53], in Eq. (107) we have lumped the Coulomb
(Fygr) and recoil terms into an effective phase-space
correction A, separating the remaining radiative correc-

(107) tions into Ag. In this factorization scheme, the various

where the phase-space integral is given by corrections to the decay rate are defined by

X0
f() — A 0 w(x, Xo)dx, w(x, xO) — X(XO _ x)2 x2 -1, f()(l + Af) - / W(x’ xO)FNR(ﬂ(x))(l + 5recoi1(xme))dx’
(108) (110)
|
flxo W(X, xO)FNR(ﬂ(x))(l + 6recoil(xme))5RC(xme7/'¢ )dx
1+ Ag = 2(14 . 111
o = Lol P e (1)
[

where f(x) = /1 —1/x*. A few remarks are in order: (i)) For Ay, which encodes Coulomb and recoil correc-

(i) The decay rate in Eq. (107) corresponds to the usual
definition adopted in the literature [38], upon iden-
tifying f = fo(1 + A). Therefore, the total shift in
the decay rate

which impacts the extraction of V,,, requires speci-
fying both A, and Ag. The expressions and numeri-
cal values of Ay and Ay in our EFT approach differ
from the results found in the literature (see Ref. [38]
and most recent calculations of Ay [1-6,8]). In what
follows, when necessary we will discuss the origin
of the differences.

tions, we find

Ay = 3.573(5)%, (113)

where we estimated the uncertainty to be of the size
of Coulomb corrections times the recoil cross term.
The difference from the standard result A, =
3.608 x 1072 [38] is mainly due to the fact that
we use the nonrelativistic Fermi function, for the
reasons discussed above, while Ref. [38] uses the
relativistic Fermi function. We also do not include
the corrections induced by modeling the proton as a
uniformly charged sphere of radius R, ~ 1 fm [53]:
this is a small effect shifting A, by 0.005%.
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