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We study radiative corrections to low-energy charged-current processes involving nucleons, such as
neutron beta decay and (anti)neutrino-nucleon scattering within a top-down effective-field-theory
approach. We first match the Standard Model to the low-energy effective theory valid below the weak
scale and, using renormalization group equations with anomalous dimensions of Oðα; ααs; α2Þ, evolve the
resulting effective coupling down to the hadronic scale. Here, we first match to heavy-baryon chiral
perturbation theory and subsequently, below the pion-mass scale, to a pionless effective theory, evolving
the effective vector coupling with anomalous dimensions of Oðα; α2Þ all the way down to the scale of
the electron mass, relevant for beta decays. We thus provide a new evaluation of the “inner” radiative
corrections to the vector coupling constant and to the neutron decay rate, discussing differences with the
previous literature. Using our new result for the radiative corrections, we update the extraction of the
Cabibbo-Kobayashi-Maskawa matrix element Vud from the neutron decay.
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I. INTRODUCTION

Low-energy processes mediated by the charged-current
(CC) weak interaction provide promising ways to test the
Standard Model (SM) and indirectly search for new
physics, provided sufficiently high experimental and theo-
retical precision can be achieved. In recent years, there has
been a resurgence of interest in beta decays and CC
neutrino scattering on nuclei. On the one hand, the study
of beta decays at the sub-permille level provides a unique
window into possible new physics at the multi-tera-
electron-volt scale. Recent analyses [1–8] have uncovered
a 3σ tension with the Standard Model interpretation of
these processes in terms of the unitary Cabibbo-Kobayashi-
Maskawa (CKM) quark mixing matrix [7,9]. Moreover,
global analyses of beta decay observables [10,11], includ-
ing decay correlations, offer unique ways to probe non-
standard CC interactions with Lorentz structures different
from the SM “V − A.” On the other hand, the interest in
the CC neutrino scattering process stems primarily from

neutrino oscillation experiments [12–24], as precise theo-
retical predictions are needed to calibrate the neutrino
fluxes and reconstruct the neutrino energy [25–30]. In
what follows, we will focus on beta decays (n → peν̄e) but
our results, based on a low-energy effective theory, apply to
neutrino scattering processes such as ν̄ep → eþn and
νen → ep at low energy as well.
One of the key ingredients to achieve high theoretical

precision in beta decays (sub-permille, allowing one to
probe physics up to 20 TeV) is the calculation of electro-
magnetic radiative corrections, controlled by an expansion
in α=π, where α ≈ 1=137.036 is the fine-structure constant.
The analysis of radiative corrections to beta decays has a
long history, predating the formulation of the Standard
Model of electroweak and strong interactions. In the early
work from the 1950s [31,32], the nucleon was treated as
pointlike and the weak interaction was described in terms
of the ðV − AÞ × ðV − AÞ current-current contact operator.
In the framework of the local ðV − AÞ × ðV − AÞ theory,
two developments from the 1960s have influenced all the
subsequent literature. In Ref. [33], Sirlin identified a set of
ultraviolet(UV)-finite and gauge-invariant corrections to
the beta spectrum and decay rate that are independent of the
details of the strong interaction, the so-called universal
“outer” corrections. Reference [33] also identified a set of
“inner” corrections that essentially shift the strength of the
vector (Fermi) and axial-vector (Gamow-Teller) couplings at
the single-nucleon level, pointing out that in principle these
inner corrections depend on the strong-interaction dynamics.
Shortly afterwards, using current-algebra techniques, the
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authors of Ref. [34] showed that toOðαÞ the contribution of
the weak vector current V to the Fermi transition inner
correction is calculable without knowledge of details about
the strong interactions, leading to a universal UV-divergent
correction. Reference [34] also showed that the contribution
to the Fermi transition due to theweak axial-vector current A
does depend on the strong-interaction details. This class of
inner corrections was parametrized in terms of correlation
functions of weak and electromagnetic hadronic currents
in the nucleon state, and crudely estimated with available
models of strong interactions.
The current-algebra formulation of radiative corrections

was later embedded in the Standard Model by Sirlin
[35,36], who also computed the leading logarithmic cor-
rections to OðαÞ andOðααsÞ. Since then, the calculation of
the terms that depend on the strong interactions has been
performed in this framework with more sophisticated
hadronic models, culminating in the 2006 prediction
[37] for the inner correction to the vector amplitude.
Large logarithms originating from both the UV (from
MZ to the hadronic scale of the order of nucleon mass
mN) and IR (from mN to me) have been resummed in the
leading logarithmic approximation (see Ref. [38] and
references therein). Reference [38] also includes next-to-
leading logarithms in α that are enhanced by the number of
fermion species.
The next important development in the field has been the

calculation of the nonperturbative input for the inner cor-
rections using dispersive methods, pioneered by Seng et al.
[1,2]. This has led to a reduced uncertainty and an increase in
the central value of the inner correction to theFermi coupling,
later reproduced by Refs. [3–5]. In this framework, lattice
QCD has been used to supplement nonperturbative input in
the meson sector [39–42], and efforts to do the same for
nucleon decay are underway [40,43].
All the results described above are rooted in the current-

algebra framework developed by Sirlin [35]. While this
method is rigorous, it does not take full advantage of
modern effective field theory (EFT) techniques, neither at
the level of short-distance physics (the evolution of the
interactions from the electroweak scale to the hadronic
scale), nor at the level of strong interactions (chiral EFT for
mesons, nucleons, and eventually nuclei). The use of EFT
techniques is not a mere reformulation of the problem.
EFT provides a rigorous way to connect scales and estimate
uncertainties. Moreover, EFT methods can bring new
insights to the problem. In fact, by providing a simple
framework to analyze hadronic correlation functions, the
study of neutron decay to OðGFαÞ in heavy baryon chiral
perturbation theory (HBChPT) [44] has uncovered a new
%-level inner correction to the ratio gA=gV of axial-vector
to vector nucleon couplings, missed in previous analyses
based on current algebra [5,45].
In the HBChPT framework for single-nucleon weak CC

processes, developed in Refs. [44,46], the active degrees of

freedom are the light leptons, photons, pions, and nucleons.
The effect of both electroweak- and other hadronic-scale
physics is encoded in a number of low-energy constants
(LECs). The goal of this paper is to develop a matching
procedure to express the relevant LECs in terms of
perturbatively calculable Wilson coefficients and hadronic
correlation functions that can then be estimated with
nonperturbative methods, such as dispersive methods or
lattice QCD. Since there are multiple thresholds, the
electroweak scale ∼MW;Z, the chiral symmetry breaking
scale Λχ ∼mN ∼ GeV, with mN the mass of nucleon, and
the pion mass, we adopt a multistep matching strategy. The
first step connects the full Standard Model to the so-called
low-energy effective theory (LEFT) below the weak scale,
which coincides with the V − A theory of weak interactions
augmented by QED and QCD. This is a perturbative
matching step. The second step connects the LEFT to
HBChPT and involves nonperturbative physics. These first
two steps are similar in spirit to the analysis of Ref. [47] for
the meson sector. The third step consists of integrating out
the pions, by matching HBChPT onto a pionless EFT
(=πEFT) as detailed in Ref. [44]. The main novel aspects of
our work are the following:

(i) We evaluate the relevant LEFT Wilson coefficient to
next-to-leading logarithm accuracy in α: we imple-
ment the matching condition at μSM ∼MZ at one
loop and the running via the two-loop anomalous
dimension of Oðα2Þ, for which we provide for the
first time the full expression. We also use the known
two-loop anomalous dimension of OðααsÞ and
present solutions of the renormalization group equa-
tions (RGEs) summing leading and next-to-leading
logarithms of the ratio MZ=mN .

(ii) We set up the general formalism and provide explicit
expressions for the HBChPT LECs that shift the
vector coupling gV . The relevant nonperturbative
input can be obtained either from the existing
dispersive analyses [2] or lattice QCD in the future.

(iii) We solve the RGEs for the vector coupling gVðμχÞ,
using one- and two-loop anomalous dimensions in
=πEFT. This allows us to sum the leading and next-to-
leading logarithms involving the ratio mN=E0,
where E0 ≃ 2.530me is the electron energy end
point, representing the infrared (IR) scale of the
problem. The RGE evolution thus allows us to
identify all terms in the amplitude proportional
to α2 lnðmN=E0Þ. Our treatment of these next-to-
leading large logarithms differs from the one found
in the literature, as discussed in Sec. II.

(iv) Throughout, we use dimensional regularization with
modified minimal subtraction (MS [48]) in the
LEFT, and the chiral version of it (MSχ [49]),
specifying at every step the γ5 and evanescent
operator scheme. In this framework, the renormal-
ization group (RG) equations have a very simple
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form, and the standard results on leading logarithm
and next-to-leading logarithm resummation can be
applied. The residual sensitivity to the renormaliza-
tion scale order by order in RG-improved perturba-
tion theory gives us a rigorous way to estimate
the perturbative uncertainties. More generally, our
results provide a new framework to analyze low-
energy CC processes to OðGFαÞ, largely indepen-
dent from the current algebra formalism [35].

(v) As a first application of the new framework, using
the dispersive input from Refs. [1–6] as compiled in
Ref. [8], we evaluate the combination of LECs that
determine the inner corrections to the Fermi tran-
sition effective coupling gV . We combine this with
the known OðαÞ radiative corrections to the matrix
element in HBChPT [44,46]. We further resum
the Coulomb-enhanced terms scaling as ðπα=βÞn
(β≡ pe=Ee) as well as subleading α=πðπα=βÞn
terms, in the nonrelativistic Fermi function, which
is the natural quantity appearing in =πEFT. In
practice, this amounts to replacing the relativistic
Fermi function [which contains large logarithms
∼α2 lnðRppeÞ, with the proton radius Rp ∼ 1=Λχ]
with its nonrelativistic counterpart. Finally, we study
the impact on the extraction of Vud from neutron
decay. For the total corrections to the neutron decay
rate, we find a result that is one σ above the previous
results, pointing to a correspondingly smaller value
for Vud.

The paper is organized as follows. In Sec. II, we provide a
high-level summaryof the resultsworkedout in the rest of the
paper, highlighting the connections to and differences from
the previous literature. Following a top-down approach, we
performamultistepmatching to connect electroweakphysics
with neutron and nuclear decays. The first step, connecting
the full Standard Model to the LEFT, is presented in Sec. III.
The second step, connecting the LEFT to HBChPT, is
presented in Sec. IV. The resulting effective vector coupling
gVðμχ ∼mNÞ at thematching scale μχ ∼mN and its evolution
to the scale of the decay, μχ ∼ E0, is discussed in Sec. V. In
Sec. VI, we discuss the implications for neutron decay and
the determination of Vud and comment on the relation to
superallowed 0þ → 0þ transitions. Conclusions and outlook
are presented in Sec. VII. Appendix A contains details about
electric charge renormalization and running in the LEFTand
chiral perturbation theory. Appendix B discusses the fac-
torization of the nonrelativistic Fermi function in nonrela-
tivistic QED, while Appendix C contains details on the
extraction of the Oðα2Þ anomalous dimension in LEFT
and HBChPT==πEFT.

II. STATEMENT OF THE PROBLEM
AND RESULTS

Neutron decay is a low-energy process characterized by
the energy scales of the neutron-proton mass difference,

mn −mp ≈ 1.3 MeV, and the electron mass me≈ 511 keV.
These scales, which we denote by qext, are much smaller
than the pion mass, mπ ≈ 137 MeV, the nucleon mass,
mN ≈ 939 MeV, and the W boson mass, MW ≈ 80 GeV.
The existence of widely separated mass scales makes the
process amenable to a description based on EFTs. In this
work, we systematically implement EFT methods to study
low-energy charged-current processes such as neutron
decay. We first integrate out the heavy particles (W, Z,
h, t) and match the full Standard Model onto the so-called
LEFT. Subsequently, we integrate out the scale of the
nucleon mass, by matching the LEFT onto HBChPT [50].
We finally integrate out physics at the scale of the pion
mass, following [44], by matching HBChPT onto =πEFT.
The neutron decay rate is thus organized in an expansion in
several small parameters (besides GFq2ext, which sets the
overall scale): the electromagnetic coupling constant α,
ϵrecoil ¼ qext=mN , which describes small kinematic correc-
tions, ϵ=π ¼ qext=mπ, which captures the radiative pion

contributions, and the HBChPT expansion parameter ϵχ ¼
mπ=Λχ with the scale Λχ ¼ 4πFπ ≈ 1 GeV.
The neutron decay rate is most conveniently computed

starting from the =πEFT in which β decays are described by
the Lagrangian [46,51,52]

Lπ ¼ −
ffiffiffi
2

p
GFVudēγρPLνeN̄vðgVvρ − 2gASρÞτþNv

þOðα; ϵrecoil; ϵ=π; ϵχÞ þ H:c:; ð1Þ

where Nv ¼ ðp; nÞT denotes the heavy-nucleon field dou-
blet, vρ is the nucleon velocity, and Sρ ¼ ð0; σ⃗=2Þ denotes
the nucleon spin, with the Pauli matrices σ, while τ denotes
Pauli matrices in the isospin space, satisfying ½τa; τb� ¼
2iεabcτc, fτa; τbg ¼ 2δab, and τþ ¼ 1

2
ðτ1 þ iτ2Þ. Higher-

order terms in Eq. (1) include the contributions of
weak magnetism, recoil corrections, and induced tensor
coupling [44]. The couplings gV and gA themselves have an
expansion in α, ϵ=π , and ϵχ . At leading order, one has

gV ¼ 1. At OðαÞ, gV does not receive any long-distance
corrections from pion or photon loops and only picks up
contributions from local Oðe2pÞ operators in the HBChPT
Lagrangian [44]:

gV ¼ Cr
β

�
1þ α

2π
ĈV

�
; ð2Þ

ĈV ¼ 8π2
�
−
X6

2
þ 2ðV1 þ V2 þ V3 þ V4Þ − g9

�
: ð3Þ

Here, Cr
β ¼ 1þOðαÞ is the Wilson coefficient of the Fermi

operator in LEFT [see Eq. (9)], which captures electroweak
corrections from energy scales above Λχ . The LECs
X6; g9; V1;2;3;4, and associated HBChPT operators will be
defined below in Eqs. (36), (40), and (42). The couplings
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gV;AðμχÞ depend on the renormalization scale of the =πEFT
(in a way that cancels in the ratio λ ¼ gA=gV) and encode
contributions from the weak scale all the way down to the
pion mass scale.
In the following sections, we will detail the various steps

needed to connect the low-energy coupling gV to the
electroweak scale, following a top-down approach. Key
new results of this work are as follows: (i) The expression
for gVðμχ ∼ ΛχÞ in terms of the Wilson coefficient Cr

β

computed with anomalous dimensions ofOðα; ααs; α2Þ and
a “subtracted” hadronic function, related to the traditional
nonperturbative γW box contribution evaluated in the
recent literature [1–5] [see Eq. (78) and discussion sur-
rounding it]; (ii) The use of two-loop anomalous dimen-
sions in the RGE (88) needed to evolve the vector coupling
down to gVðμχ ∼meÞ, resumming large next-to-leading
logarithms of order α2 ln ðmN=meÞ. The resulting gVðμχ ∼
meÞ is directly relevant to the calculation of neutron decay
and can be used as input for the one-body contribution to
nuclear decays.
In this work, we have focused on the application to

neutron decay. With gVðμχ ∼meÞ at hand, we combined
both virtual and real photon corrections to the decay rate
[33,44,46] to obtain the effective phase-space correctionΔf

and the radiative correction ΔR to the neutron lifetime (see
Sec. VI) and the relation

jVudj2τnð1þ 3λ2Þð1þΔfÞð1þΔRÞ ¼ 5283.321ð5Þ s; ð4Þ

with Δf and ΔR given in Eqs. (110) and (111), respectively.
Our definitions for Δf and ΔR differ from the traditional
approach both conceptually and numerically. Technically,
the bulk of this difference is in shifting all short-distance
contributions from Δf to ΔR. Δf describes Coulomb-
enhanced long-distance contributions and recoil correc-
tions, while ΔR includes all electroweak and HBChPT
short-distance contributions along with the non-Coulomb
radiative corrections in =πEFT, as specified in Eqs. (78),
(89), and (114). Numerically, we find

Δf ¼ 3.573ð5Þ × 10−2; ð5Þ

ΔR ¼ 4.044ð24ÞHadð8Þαα2s ð7Þαϵ2χ ð5Þμχ ½27�total × 10−2: ð6Þ

The uncertainty in Δf stems from an estimate of mixed
recoil times Coulomb corrections. The dominant sources of
uncertainty to ΔR are given by the following: the non-
perturbative hadronic contributions, associated with the
“γW box” diagram in the standard approach [1–6]; con-
tributions of Oðαα2sÞ not included in our renormalization
group analysis in the LEFT; chiral corrections of αϵ2χ ; and
residual dependence on the =πEFT renormalization scale,
varied between me=

ffiffiffi
2

p
and

ffiffiffi
2

p
me, which is an indicator

of the Oðα2Þ corrections. A detailed discussion of

uncertainties is presented in Secs. V D (for gV) and VI B
(for the remaining contributions to ΔR).
Our result for Δf in Eq. (5) differs from the one found in

the literature Δf ¼ 3.608 × 10−2 [38] by −0.035%. This is
because in the phase-space integration we use the non-
relativistic Fermi function, for the reasons discussed in
Sec. VI A, and neglect corrections induced by modeling the
proton as a uniformly charged sphere of radius Rp ≃ 1 fm
[53] (this effect is at the level of 0.005%).
Our result for ΔR in Eq. (6) exceeds the current value

ΔR ¼ 3.983ð27Þ × 10−2, compiled in Ref. [8] by combin-
ing the results of [1–6], by about twice the estimated
uncertainties. The þ0.061% shift in the central value is
almost entirely due to the different treatment of the next-to-
leading logarithmic terms at the hadronic level, i.e., the
terms that scale as α2 ln ðmN=meÞ. In both approaches,
there is a contribution of this type coming from the cross
term between the one-loop RGE correction to gV , scaling as
α
π ln ðmN=meÞ, andOðπα=βÞ terms in the Fermi function. In
our approach, additional α2 ln ðmN=meÞ large logarithmic
corrections arise entirely from the two-loop anomalous
dimension contribution to the RGE (88) for the effective
coupling gVðμχÞ and produce a positive shift in ΔR of
0.010%. In the EFT approach, there are no other sources of
large logarithms of the ratio ðmN=meÞ in the matrix element
of the four-fermion operator (1) to Oðα2Þ. In the literature,
this class of effects is not associated with the running of gV ,
but arises through the negative correction α=ð2πÞ × δ ¼
−0.043%, introduced in Ref. [38] by adapting the results
of Refs. [54,55].1 The mismatch of the two approaches
produces a þ0.053% shift in our results. The remaining
difference is due to a combination of the following,
individually smaller, effects: (i) we reevaluate the “elastic”
hadronic contribution, as discussed in Sec. V B, which
leads to a −0.006% shift to ΔR; (ii) for the next-to-leading
logarithmic corrections of Oðα2 lnðMW=mcÞÞ, our result
differs from the one in Ref. [38], producing a negative shift
of approximately −0.011%; (iii) we do not include Oðαα2sÞ
terms in the running of our Wilson coefficient (correspond-
ing to the “deep inelastic scattering” region of the γW box
in the literature) that amounts to a net þ0.007% in ΔR;
and (iv) finally, different choices in the factorization
between electroweak and mN=me logarithms compared
to Refs. [8,38] account for the remaining mismatch.
Using Δf;R from Eqs. (5) and (6), respectively, in the

master formula (4), we can extract Vud. This requires
experimental input for the neutron lifetime τn and the ratio λ

1In the standard non-EFT approach, additional terms scaling as
α2 ln ðmN=meÞ [or α2 lnðRpmeÞ after including finite nucleon size
effects] are included in the relativistic Fermi function (see
discussion in Sec. VI A) and booked as effective phase-space
corrections appearing in Δf. It is worth noting that, for neutron
decay, the α2 lnðRpmeÞ terms in the relativistic Fermi function
cancel the corresponding terms in the correction α=ð2πÞ × δ [38].
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of axial-vector to vector couplings. Using the PDG [56,57]
averages for the experimental input, we obtain

Vn; PDG
ud ¼ 0.97430ð2ÞΔf

ð13ÞΔR
ð82Þλð28Þτn ½88�total: ð7Þ

Both τn and λ carry an inflated error due to scale factors.
Following Ref. [8], if we instead use the most precise
neutron lifetime measurement τn ¼ 877.75ð36Þ s from
UCNτ@LANL [58] and the determination of λ from the
most precise measurement of the beta asymmetry in
polarized neutron decay by PERKEO-III [59,60], we obtain
a very competitive extraction of Vud from neutron decay:

Vn; best
ud ¼ 0.97402ð2ÞΔf

ð13ÞΔR
ð35Þλð20Þτn ½42�total; ð8Þ

with an uncertainty approaching the currently quoted error
δVud ¼ 31 × 10−5 from 0þ → 0þ nuclear beta decays [7].
Compared to the baseline correction of Refs. [1–6,8], the
positive shift of þ0.061% in ΔR and the negative shift of
−0.035% in Δf partially compensate, producing a smaller
positive shift of þ0.026% in the correction to the rate. This
one, in turn, provides a negative shift in Vud, δVud ≃
−13 × 10−5, compared to the results quoted in Ref. [8].
In the remainder of this paper, we provide details on the

derivation of the results presented above.

III. STEP I: MATCHING THE STANDARD
MODEL TO LEFT

In this section, we perform the matching of the
Standard Model to the LEFT and present the RGEs that
control the effective couplings in the LEFT between
the electroweak and QCD scales. We then introduce
spurions and external sources in the LEFT to describe the
electromagnetic and weak interactions of quarks [47,61],
which is particularly useful in the matching of LEFT to
chiral perturbation theory, to be described in subsequent
sections. Throughout, we regulate the UV divergences in
dimensional regularization, working in d ¼ 4 − 2ϵ space-
time dimensions.

A. Wilson coefficient and RGE

The part of the LEFT Lagrangian relevant for muon and
β decays just below the weak scale reads

LLEFT ¼ −2
ffiffiffi
2

p
GFēLγρμLν̄μLγρνeL

− 2
ffiffiffi
2

p
GFVudCr

βða; μÞēLγρνeLūLγρdL
þ H:c:þ � � � : ð9Þ

Here μ denotes the MS renormalization scale and

GF ¼ παðμÞgðμÞffiffiffi
2

p
M2

WðμÞs2WðμÞ
ð10Þ

is the scale-independent Fermi constant that is extracted
from precise measurements of the muon lifetime [62–65],
expressed in terms of MS Standard Model parameters
(with s2W ¼ 1 −M2

W=M
2
Z). The function gðμÞ can be found

in Ref. [66] and reduces to gðμÞ ¼ 1 at tree level. The
effective coupling multiplying the semileptonic operator
that mediates β decays involves the same GF as the pure-
leptonic term in Eq. (9), the CKM matrix element Vud,
and the MS-subtracted Wilson coefficient Cr

βða; μÞ, which
reads [36,66,67]

Cr
βða; μÞ ¼ 1þ α

π
ln
MZ

μ
þ α

π
BðaÞ − ααs

4π2
ln
MW

μ

þOðααsÞ þOðα2Þ; ð11Þ

BðaÞ ¼ a
6
−
3

4
: ð12Þ

The finite OðαÞ matching coefficient depends on the
scheme through BðaÞ. We have used the naive dimensional
regularization (NDR) scheme for γ5 and kept track of the
additional evanescent operator scheme dependence via the
parameter a, defined by [68–70]

γαγργβPL ⊗ γβγργαPL ¼ 4½1þ að4 − dÞ�γρPL ⊗ γρPL

þ EðaÞ; ð13Þ
with an evanescent operator EðaÞ that has a vanishing
matrix element in d ¼ 4. Current conservation protects Cβ

from OðαsÞ corrections. Concerning the terms of OðααsÞ,
we only keep logarithmic contributions, as the finite
matching coefficients and the corresponding three-loop
anomalous dimensions are not known.
The renormalized Wilson coefficient Cr

βða; μÞ obeys the
following RGE:

μ
dCr

βða; μÞ
dμ

¼ γðα; αsÞCr
βða; μÞ; ð14aÞ

γðα;αsÞ ¼ γ0
α

π
þ γ1

�
α

π

�
2

þ γse
α

π

αs
4π

þ � � � ; ð14bÞ

γ0 ¼ −1½36�; ð14cÞ

γNDR1 ðaÞ ¼ ñ
18

ð2aþ 1Þ; ñ ¼
X
f

nfQ2
f; ð14dÞ

γse ¼ þ1 ½36; 66; 71�; ð14eÞ

where ñ is the scale-dependent effective number of fer-
mions, αðμÞ and αsðμÞ are the electromagnetic and strong
running coupling constants. We have obtained γNDR1 ðaÞ by
adapting the QCD calculation in [68]. As far as we know,
this is the first time the full two-loop anomalous dimension
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is worked out.2 With appropriate rescalings of the QCD
diagrams of Ref. [68], we also reproduce γse ¼ 1. γ0 and γse
are scheme independent. The scheme independence of γse
follows from the general argument given in Ref. [71],
combined with the fact that there is no finite matching term
nor anomalous dimension to OðαsÞ for the operator under
study here. On the other hand, γ1 depends on both the
treatment of γ5 in d spacetime dimensions and on the
scheme used for evanescent operators.
In our final result, we will use the numerical solution for

Cr
βða; μÞ. However, it is quite instructive to provide an

approximate analytic solution, based on the perturbative
treatment of the next-to-leading logarithm (NLL) terms
associated with the scheme-dependent two-loop anomalous
dimension γ1ðaÞ ¼ Oðα2Þ and the finite one-loop matching
condition BðaÞ. First, setting γ1ðaÞ → 0 and consistently
taking as an initial condition Cr

βða; μSMÞ ¼ 1, generalizing
the result of Ref. [72] given at the τ-mass scale, we obtain
the solution

C̃r
βðμÞ ¼

�
αðmcÞ
αðμÞ

�3
8

�
αðmτÞ
αðmcÞ

� 9
32

�
αðmbÞ
αðmτÞ

� 9
38

�
αðμSMÞ
αðmbÞ

� 9
40

×

�
αsðmcÞ
αsðμÞ

� 1
18

αðμÞ
π

�
αsðmbÞ
αsðmcÞ

� 3
50

αðmcÞ
π

�
αsðμSMÞ
αsðmbÞ

� 3
46

αðmbÞ
π

;

ð15Þ
where we have subsequently integrated out the b quark, τ
lepton, and c quark, and the strong and electromagnetic
running couplings are obtained by solving the one-
loop RGEs. This solution resums all the terms of
Oðαn lnnðμSM=μÞÞ and Oðααns lnnðμSM=μÞÞ. We can then
perturbatively include the effects of Oðα2 lnðμSM=μÞÞ due
to γ1ðaÞ and BðaÞ, arriving at

Cr
βða; μÞ ¼

�
1þ αðμÞ

π
BðaÞ

�
× C̃r

βðμÞ × δNLLðμÞ; ð16Þ

where

δNLLðμÞ ¼ 1− κ

 
ñðmbÞ

�
αðmbÞ
π

�
2

ln
μSM
mb

þ ñðmτÞ
�
αðmτÞ
π

�
2

ln
mb

mτ

þ ñðmcÞ
�
αðmcÞ
π

�
2

ln
mτ

mc
þ ñðμÞ

�
αðμÞ
π

�
2

ln
mc

μ

!

≈ 1− κñðmbÞ
�
αðμÞ
π

�
2

ln
μSM
μ

; ð17Þ

and the scheme-independent combination κ is given by3

κ ¼ 1

ñ

�
γ1ðaÞ þ

1

2
β0BðaÞ

�
¼ 5

9
: ð18Þ

In the equation above, β0 ¼ −ð4=3Þñ controls the one-
loop β function for α via μdα=dμ ¼ −ðβ0=ð2πÞÞα2. The
scale-dependent effective number of fermions takes the
values ñðμ < mcÞ ¼ 4, ñðmcÞ ¼ 16=3, ñðmτÞ ¼ 19=3,
and ñðmbÞ ¼ 20=3. Note that the scheme dependence of
Cr
βða; μÞ in the solution (16) appears only through the initial

factor involving BðaÞ. As we will show below, this term
explicitly cancels when one includes the OðαÞ corrections
to the matrix element of the semileptonic operator
ūLγαdLēLγανeL.
We also provide an analytic solution to the RGE (14)

in terms of the evolution operator Uðμ; μSMÞ to NLL
accuracy, formally written as Cr

βða; μÞ ¼ Uðμ; μSMÞ×
Cr
βða; μSMÞ, with the initial condition Cr

βða; μSMÞ ¼
1þ ðα=πÞðlnðMZ=μSMÞ þ BðaÞÞ. Using the two-loop
running coupling αðμÞ and the one-loop running
αsðμÞ, we resum the series of leading logarithms
(n ≥ 1) Oðαn lnnðμSM=μÞÞ, and subleading logarithms
Oðααns lnnðμSM=μÞÞ and Oðαnþ1 lnnðμSM=μÞÞ. The NLL
solution for the evolution operatorUðμ1; μ2Þ, valid between
two mass thresholds μ1 and μ2 takes the form [73–75]

Uðμ1; μ2Þ ¼
�
αðμ1Þ
αðμ2Þ

�
−2γ0

β0

�
αsðμ1Þ
αsðμ2Þ

�
−2γse

β0;s

αðμ1Þ
4π

×

�
1 −

2γ1
β0

αðμ1Þ − αðμ2Þ
π

�
; ð19Þ

where we expanded α with respect to its two-loop beta
function, β1, after which the β1 dependence cancels in
Eq. (19). Therefore, both α and αs in Eq. (19) are evaluated
using the one-loop RGEs, and the QCD beta function β0;s
is expressed in terms of the number of active quarks nf
as β0;s ¼ ð11Nc − 2nfÞ=3. Neglecting two-loop matching
conditions, the evolution operator between the electroweak
scale, μSM, and the low-energy scale, μ, can then be
obtained by using Eq. (19) between each particle threshold
Uðμ; μSMÞ ¼ Uðμ; mcÞUðmc;mτÞUðmτ; mbÞUðmb; μSMÞ.

B. External sources and spurions

The matching of LEFT to HBChPT is conveniently
performed by introducing classical source fields l̄μðxÞ and
r̄μðxÞ for the left- and right-handed chiral currents of quarks
as well as electromagnetic left qL and right qR spurions,
and the weak spurion qW [47,61,76,77]. These allow one to
handle the explicit chiral symmetry breaking introduced by
the electromagnetic and weak interactions at the quark level
in a compact way. With this motivation in mind, we write2Reference [38] quotes the ñ-enhanced component of γ1.

Taking into account the different normalization, Ref. [38] obtains
γNDR1 ða ¼ −1Þ ¼ −ð1=16Þ × ð44=9ÞñþOðñ0Þ, while we find
γNDR1 ða ¼ −1Þ ¼ −ð1=16Þ × ð8=9Þñ for the total.

3Reference [38] finds κ ¼ 2=9, more than a factor of 2 smaller
compared to our result.
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the source term for currents plus the QED and weak CC
interactions of the light quarks qT ¼ ðu; dÞ as
LLEFT ¼ q̄Ll̄qL þ q̄Rr̄qR − eðq̄LqL=AqL þ q̄RqR=AqRÞ

þ ðēLγρνeLq̄LqWγ
ρqL þ H:c:Þ þ � � � ; ð20Þ

where Aμ denotes the photon field. The Lagrangian in (20)
is invariant under local G ¼ SUð2ÞL × SUð2ÞR ×Uð1ÞV
transformations

qL → LðxÞeiαV ðxÞqL; qR → RðxÞeiαVðxÞqR; ð21Þ
with L; R ∈ SUð2ÞL;R, provided qL;R and qW transform
as “spurions” under the chiral group, namely qL;W →
LqL;WL† and qR → RqRR†, and that l̄μ and r̄μ transform
as gauge fields under G. At the physical point,

qL ¼ qR ¼ diagðQu;QdÞ; qW ¼ −2
ffiffiffi
2

p
GFVudCr

βτ
þ;

ð22Þ
with τþ ¼ ðτ1 þ iτ2Þ=2 in terms of the Pauli matrices τa.
Note that we include the LEFTWilson coefficient Cr

β in the
definition of the spurion qW . With this identification,
Eq. (20) reproduces the semileptonic piece of Eq. (9).
The Oðe2Þ counterterms in the LEFT Lagrangian can be

written in terms of spurions as [47]

LCT
LEFT ¼ −2e2Q2

eg00ēði=∂ − eQe=A −meÞe
− ig23e2ðq̄L½qL;DρqL�γρqL þ q̄R½qR;DρqR�γρqRÞ
þ e2QeðēLγρνLðg02q̄LqWqLγ

ρqL

þ g03q̄LqLqWγ
ρqLÞ þ H:c:Þ; ð23Þ

where g00 is the counterterm related to the electron wave
function renormalization, g02 and g03 come from the
counterterm of Cβ, while g23 includes contributions from
both the counterterm of Cβ as well as divergences related to
the quark wave function renormalization. Furthermore,

DρqL ≡ ∂
ρqL − i½lρ;qL�; ð24Þ

DρqR ≡ ∂
ρqR − i½rρ;qR� ð25Þ

are chiral covariant derivatives, expressed in terms of the
fields lμðxÞ and rμðxÞ that combine the classical sources,
the photon, the leptons, and the spurions:

lμ ¼ l̄μ − eqLAμ þ qWēLγμνeL þ q†
W ν̄eLγμeL; ð26Þ

rμ ¼ r̄μ − eqRAμ: ð27Þ
In the MS scheme, the gij couplings appearing in Eq. (23)
are determined by the 1=ε divergences and can be written as

gij ¼
hij

ð4πÞ2
�
1

ε
− γE þ ln ð4πÞ

�
; ð28Þ

with h00 ¼ 1=2, h23 ¼ ð1=2Þð1 − αs=πÞ, h02 ¼ −1 − αs=π,
and h03 ¼ 4 − 2αs=π.

IV. STEP II: MATCHING LEFT TO HBChPT

The goal of this section is to find a representation for the
LECs appearing in ĈV [see (3)] in terms of the LEFT
counterterms gij and quark correlation functions, which can
then be modeled or computed via nonperturbative tech-
niques such as lattice QCD.

A. The chiral Lagrangian

The chiral representation of Eq. (23) can be built using
standard spurion techniques. As in Eq. (23), we will
need purely leptonic operators, purely electromagnetic
operators, and operators with charged leptons and neutrinos.
The corresponding chiral Lagrangians were built in
Refs. [44,61,78–80]. Here we extend the bases of [44,80]
in order to avoid assumptions regarding qL and qR, allowing
us to keep the spurions qL;R completely general. Moreover,
we do not use the equations ofmotions to reduce the operator
set in order to avoid hadronic contributions to purely leptonic
LECs [47].
As we will see below, to perform the matching between

LEFT and HBChPT it is convenient to introduce vector
and axial-vector charge spurions and sources, which we
define as

qV ¼ qL þ qR; qA ¼ qL − qR;

vρ ¼ lρ þ rρ; aρ ¼ lρ − rρ: ð29Þ
It is also convenient to decompose the electromagnetic
charge spurions in isovector and isoscalar components

qbaryon
J ¼ q0

J þ qa
Jτ

a; qquark
J ¼ q0

J

3
þ qa

Jτ
a; ð30Þ

with J ∈ fL;R; V; Ag. The physical values are q0
L;R ¼

q3
L;R ¼ 1

2
for the left and right spurions, q0

V ¼ q3
V ¼ 1 for

the vector spurion, and q0
A ¼ q3

A ¼ 0 for the axial-vec-
tor case.4

The chiral Lagrangians are built using the chiral covar-
iant functions of the charges and of the corresponding
covariant derivatives in Eqs. (24) and (25):

QW
L ¼ uqWu†; QL ¼ uqLu†; QR ¼ u†qRu;

Q� ¼ QL �QR

2
; c�ρ ¼ 1

2
ðuðDρqLÞu† � u†ðDρqRÞuÞ;

ð31Þ
with u2 ¼ U ¼ expðiπ · τ=FπÞ and Fπ ≈ 92 MeV.

4In what follows, we will omit the superscripts in the charge
spurions: whenever qL;R;V;A appears in the HBChPT Lagrangian,
it is understood to be qbaryon

L;R;V;A.
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At lowest order, the HBChPT Lagrangian is given by

Lp2

π þ Le2
π þ Lp

πN ¼ F2
π

4
huμuμ þ χþi þ e2ZπF4

πhQLQRi

þ N̄viv · ∇Nv þ gð0ÞA N̄vS · uNv; ð32Þ

where Fπ and gð0ÞA denote the pion decay constant and the
nucleon axial-vector coupling in the chiral limit. uμ and χþ
are given by

uμ ¼ i½u†ð∂μ − irμÞu − uð∂μ − ilμÞu†�;
χ� ¼ u†χu† � uχ†u; χ ¼ B0ðmq þ s̄þ ip̄Þ; ð33Þ

with the light quark masses mq and a LEC of dimension of
mass B0, which is related to the quark condensate. We
further introduced the nucleon chiral covariant derivative

∇μN ≡ ð∂μ þ ΓμÞN;

Γμ ¼
1

2
½uð∂μ − ilbaryonμ Þu† þ u†ð∂μ − irbaryonμ Þu�; ð34Þ

where by the superscript baryonwe indicate that the photon
couples to the nucleon via the charge qbaryon

V in Eq. (30).
In addition to the weak and electromagnetic interactions
arising from chiral covariant derivatives, Eq. (32) contains
electromagnetic effects mediated by high-momentum pho-
tons via the coupling Zπ , which is related to the pion-mass
splitting.
The chiral Lagrangian needed at OðGFαÞ is given by

L ¼ LCT
lept þ Le2p

πN þ Le2p
πNl: ð35Þ

LCT
lept is a purely leptonic counterterm Lagrangian

LCT
lept ¼ e2X6ēði=∂þ e=AÞe: ð36Þ

The coupling X6 is determined by computing the electron
propagator in LEFT and chiral perturbation theory,
obtaining

Xr
6ðμχ ; μÞ ¼

ξ

ð4πÞ2
�
1 − ln

μ2χ
μ2

�
; ð37Þ

in arbitrary Rξ gauge, where μ and μχ are the LEFT and
HBChPT renormalization scales, respectively. Xr

6ðμχ ; μÞ
denotes the renormalized coupling, after subtraction of the
1=ε pole in the MSχ scheme. Note that, following standard
practice [49], in the MSχ scheme, we subtract

1

ε
− γE þ ln ð4πÞ þ 1; ð38Þ

instead of the conventional MS subtraction used in LEFT:

1

ε
− γE þ ln ð4πÞ: ð39Þ

For the electromagnetic Lagrangian Le2p
πN , we use the

construction of Ref. [80]. Only one operator is required
to describe Fermi transitions,

Le2p
πN ¼ e2g9N̄v

�
i
2
½Qþ; v · cþ� þ H:c:

�
Nv: ð40Þ

For the electroweak sector with charged leptons and
neutrinos, we provide the most general weak-interaction
Lagrangian in the heavy-baryon sector with one charge and
one weak spurion, where we only assumed the constraint
hqWi ¼ 0 [81]:

Le2p
πNl ¼ e2

X6
i¼1

ēLγρνeLN̄vðVivρ − 2Aig
ð0Þ
A SρÞOiNv þ H:c:;

ð41Þ

where gð0ÞA denotes the nucleon axial-vector coupling in the
chiral limit and

O1 ¼ ½QL;QW
L �; O2 ¼ ½QR;QW

L �;
O3 ¼ fQL;QW

L g; O4 ¼ fQR;QW
L g;

O5 ¼ hQLQW
L i; O6 ¼ hQRQW

L i: ð42Þ
The dimensionless low-energy coupling constants in
Ref. [44] are related to the couplings in Eq. (41) by the
relations X̃1=Cr

β ¼ V1þV3þV4 −A1−A3−A4, X̃2=Cr
β ¼

−V2, X̃3=Cr
β ¼ 2A2g

ð0Þ
A , X̃4=Cr

β ¼ V4 þ V6, and X̃5=Cr
β ¼

−2ðA4 þ A6Þgð0ÞA when the spurions take physical values. In
Ref. [44], the authors have used the equations of motion to
eliminate some Sρ-dependent operators. In addition, they
reduced operators that are bilinear in spurions to linear
expressions by exploiting the relations qLqW ¼ ð2=3ÞqW
and qWqL ¼ −ð1=3ÞqW , valid for physical values of the
spurions.
As realized in the mesonic sector in Refs. [47,77], we

can interpret amplitudes in LEFT and in HBChPT as
functionals of the same charges q0;aðxÞ, promoted to
be spacetime-dependent external fields. The matching
between the LEFT and HBChPT can then be obtained
by equating functional derivatives of the effective action
with respect to q0;aðxÞ in both theories. As we will see, this
allows us to derive an explicit representation for the LECs
and to keep track of unphysical scale and scheme depend-
ence appearing at intermediate steps of the calculation.

B. Electromagnetic coupling constant

We start from the electromagnetic coupling g9.
Expanding the charge covariant derivative in Eq. (40),
we obtain
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Le2p
πN ¼ e2g9

i
4
N̄vvρ

�
½qV; ∂ρqV � −

i
2
½qV; ½vρ;qV ��

−
i
2
½qV; ½aρ;qA��

�
Nv: ð43Þ

g9 can then be evaluated by taking functional derivatives
with respect to two isovector charges, provided that the

charge carries nonzero momentum, or by taking three
derivatives, two with respect to the charges and one with
respect to a vector or axial-vector source. The first
representation is more convenient, since, as we will see,
it allows one to automatically obtain cancellations between
electromagnetic and weak couplings.
More precisely, we will consider the following object:

ΓVV ¼ εabcτcijδ
σ0σ

12

i
2
vρ

∂

∂rρ

�Z
ddxeir·xhNðk0; σ0; jÞj δ

2WðqV;qAÞ
δqb

VðxÞδqa
Vð0Þ

����
q¼0

jNðk; σ; iÞi
�����

rρ¼0

; ð44Þ

where k and k0 are the nucleon momenta, σ and σ0 denote
the nucleon spins, and i, j are the nucleon isospins. We
take the nucleon to be at rest, k ¼ k0 ¼ mNv and use
the nonrelativistic normalization for heavy-particle states
hNðk0;σ0;jÞjNðk;σ;iÞi¼ð2πÞ3δð3Þðk−k0Þδijδσσ0 . W¼−ilnZ
denotes the generating functional of the connected diagrams.
ΓVV needs to be computed in both HBChPT and LEFT,

and, in both theories, it receives tree-level and loop con-
tributions. The contributions to ΓVV in HBChPT are illus-
trated in Fig. 1. The short-range contributions are determined

by LECs in the Le2p
πN Lagrangian. g9 provides the only

contribution toΓVV . The loops are determined by couplings in
the leading-order (LO) pion and pion-nucleon Lagrangians.
In particular, the diagram with pion-mass splitting Zπ is
symmetric in isospin and vanishes once contracted with the
Levi-Civita tensor, so that the loop corrections are purely
determined by the minimal coupling of the photon to the
nucleon. In arbitraryRξ gauge, we introduce the photonmass
λγ as an infrared regulator and obtain

ΓVV jHBχPT ¼ e2
�
g9 þ

Z
iddq
ð2πÞd

1

ðq2 − λ2γÞ2
þ 1 − ξ

2

Z
iddq
ð2πÞd

1

ðq2 − λ2γÞðq2 − ξλ2γÞ
�

¼ e2

ð4πÞ2
�
ð4πÞ2gr9ðμχ ; μÞ −

�
1þ 1 − ξ

2

�
ln
μ2χ
λ2γ

þ 1 −
ξ

2
ln ξ

�
: ð45Þ

gr9ðμχ ; μÞ in the second line denotes the renormalized coupling, after subtraction of the 1=ε pole in the MSχ scheme.
For ξ ¼ 1, the anomalous dimension of gr9ðμχ ; μÞ agrees with the result of Ref. [80], so that Eq. (45) is independent of the
scale μχ .
In the LEFT, the same matrix element is given by

ΓVV jLEFT ¼ e2
�
−g23 þ

Z
ddq
ð2πÞd

v · qgμνT
μν
VVðq; vÞ

ðq2 − λ2γÞ2
þ 1 − ξ

2

Z
iddq
ð2πÞd

1

ðq2 − λ2γÞðq2 − ξλ2γÞ
�
: ð46Þ

Equation (46) contains a tree-level term, proportional to the counterterm g23 that cancels the divergences generated by loop
diagrams. The loop contribution contains the hadronic tensor Tμν

VVðq; vÞ, which can be expressed in terms of the two-point
correlation function of quark currents. Here, we use the definition [34]

Tμν
VVðAÞðq; vÞ ¼

εabcτcijδ
σ0σ

12

i
4

Z
ddxeiq·xhNðk; σ0; jÞjT½q̄γμτbqðxÞq̄γνðγ5Þτaqð0Þ�jNðk; σ; iÞi: ð47Þ

FIG. 1. Diagrams that contribute to ΓVV in HBChPT are shown. Double, wiggly, and dashed lines denote nucleons, photons, and
pions, respectively. Dashed circles denote insertions of the sources qa;b

V . The arrows denote the flow of the momentum r inserted by the

sources. The first three diagrams originate from the leading-order π and πN Lagrangians, Lp2

π , Le2
π , and Lp

πN [44,80,82], which are

presented in Eq. (32). The last diagram denotes contributions from Le2p
πN and is proportional to g9.
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The gauge-dependent term in Eq. (46) is obtained using

qμT
μν
VVðq; vÞ ¼ qμT

νμ
VVðq; vÞ ¼ ivν; ð48Þ

which follows from the conservation of the vector current.
To highlight the UV structure of Eq. (47), we add and

subtract the high-energy limit of the hadronic tensor
provided by the operator product expansion (OPE)

gμνT
μν
VVðq; vÞjOPE ¼ iv · q

q2 − μ20

�
2 − dþ 2

αs
π

�
; ð49Þ

where for the OPE of the relevant currents we use results
from Refs. [83,84], adapted to include the appropriate color
factors [35]. Since our calculation is only accurate at the
leading logarithm in OðααsÞ, the OðαsÞ correction to the
OPE is computed in d ¼ 4. Note that in Eq. (49) we have
introduced an arbitrary scale μ0 to regulate infrared
divergences that appear when evaluating the convolution
integrals with TOPE. Performing the relevant integrations,
we obtain

ΓVV jLEFT ¼ e2

ð4πÞ2
�
1

2

�
1 −

αs
π

�
ln
μ2

μ20
þ 1

4
−
1 − ξ

2

�
ln
μ2

λ2γ
þ 1

�
−
ξ

2
ln ξþ ð4πÞ2

Z
d4q
ð2πÞ4

v · qgμνT̄
μν
VVðq; vÞ

ðq2 − λ2γÞ2
�
; ð50Þ

where T̄ denotes the subtracted hadronic tensor, T̄ ¼ T − TOPE. T̄ depends on μ0 in such a way that the final results are μ0-
independent. Finally, note that we are dropping terms of OðααsÞ that appear without logarithmic enhancements, because
they are beyond the accuracy of our calculation.
Equating Eqs. (45) and (46), we obtain a representation for g9:

gr9ðμχ ; μÞ ¼
Z

d4q
ð2πÞ4

v · qgμνT̄
μν
VVðq; vÞ

ðq2 − λ2γÞ2
þ 1

ð4πÞ2
�
ln
μ2χ
λ2γ

þ 1

2

�
1 −

αs
π

�
ln
μ2

μ20
þ 1 − ξ

2
ln
μ2χ
μ2

−
5

4
þ ξ

2

�
: ð51Þ

Alternatively, to control the infrared region and see a cancellation of the infrared divergences, we can introduce the
combination T̃ ¼ T − TIR, where TIR is the leading infrared contribution gμνT

μν
IR ¼ i=ðv · qÞ, and obtain

gr9ðμχ ; μÞ ¼
Z

ddq
ð2πÞd

v · qgμνT̃
μν
VVðq; vÞ

ðq2Þ2 þ 1

ð4πÞ2
��

1þ 1 − ξ

2

�
ln
μ2χ
μ2

−
3

2
þ ξ

2

�
: ð52Þ

C. Electroweak coupling constants

We follow the same strategy for the determination of the electroweak coupling constants. In this case, the operators V1

and V2 receive contributions from the isovector component of the electromagnetic charges, while V3 and V4 receive from
the isoscalar component. We thus define two matrix elements

ē=vPLνeΓ
ð1Þ
VW ¼ εabcτcijδ

σ0σ

12

i
2

Z
ddxhe−ν̄eNðk; σ0; jÞj δ

2WðqV;qA;qWÞ
δqb

VðxÞδqa
Wð0Þ

����
q¼0

jNðk; σ; iÞi; ð53Þ

ē=vPLνeΓ
ð0Þ
VW ¼ τaijδ

σ0σ

12

Z
ddxhe−ν̄eNðk; σ0; jÞj δ

2WðqV;qA;qWÞ
δq0

VðxÞδqa
Wð0Þ

����
q¼0

jNðk; σ; iÞi: ð54Þ

At the order we are working, the electron and neutrinos can be taken to be massless and to carry zero momentum.

FIG. 2. Diagrams that contribute to ΓVW in HBChPT are shown. Single lines denote electrons and neutrinos. The remaining notations
are the same as in Fig. 1. In this case, the sources inject zero momentum. The first two diagrams originate from the LO πN Lagrangian

Lp
πN , and the last diagram denotes contributions from Le2p

πNl. Diagrams with the sources coupling to pions do not contribute at this order.
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The HBChPT diagrams contributing to Γð0;1Þ
VW are shown in Fig. 2. The loop diagrams cancel for isoscalar electromagnetic

couplings, so that we obtain

Γð1Þ
VW jHBχPT ¼ e2

�
V1 þ V2 −

1

2

Z
iddq
ð2πÞd

1

q2ðq2 − λ2γÞ
þ 1 − ξ

2

Z
iddq
ð2πÞd

1

ðq2 − λ2γÞðq2 − ξλ2γÞ
�
; ð55Þ

Γð0Þ
VW jHBχPT ¼ e2ðV3 þ V4Þ: ð56Þ

In the LEFT, the isovector and isoscalar components are given by

ē=vPLνeΓ
ð1Þ
VW jLEFT ¼ e2ē=vPLνe

�
g02 − g03

4
þ 1 − ξ

2

Z
iddq
ð2πÞd

1

ðq2 − λ2γÞðq2 − ξλ2γÞ
�

−
e2

2

Z
ddq
ð2πÞd

1

q2ðq2 − λ2γÞ
ēγμ=qγνPLνeðTμν

VVðq; vÞ − Tμν
VAðq; vÞÞ; ð57Þ

ē=vPLνeΓ
ð0Þ
VW jLEFT ¼ −e2ē=vPLνe

g02 þ g03
12

þ e2

2

Z
iddq
ð2πÞd

1

q2ðq2 − λ2γÞ
ēγμ=qγνPLνeðTμν

VV;0ðq; vÞ − Tμν
VA;0ðq; vÞÞ: ð58Þ

The hadronic tensors with two isovector currents are defined in Eq. (47), while we define the hadronic tensor with one
isoscalar vector current as

Tμν
VVðAÞ;0ðq; vÞ ¼

τaijδ
σ0σ

12

i
6

Z
ddxeiq·xhNðk; σ0; jÞjT½q̄γμqðxÞq̄γνðγ5Þτaqð0Þ�jNðk; σ; iÞi: ð59Þ

As in Sec. IV B, the UV divergences in the LEFT are determined by the operator product expansion. In NDR, the leading-
order OPEs of Tμν

VV − Tμν
VA and Tμν

VV;0 − Tμν
VA;0 are proportional to the symmetric and antisymmetric combinations of Dirac

matrices ðγμ=qγν � γν=qγμÞPL, respectively. The symmetric combination does not depend on the scheme, while the
antisymmetric piece depends on the definition of the evanescent operators, in such a way as to compensate the dependence
of the couplings in the LEFT. Using the OPE, we obtain

ēγμ=qγνPLνeðTμν
VV − Tμν

VAÞjOPE ¼ i

�
3d − 2

d
−
1

2

αs
π

�
q2

q2 − μ20
ē=vPLνe; ð60Þ

ēγμ=qγνPLνeðTμν
VV;0 − Tμν

VA;0ÞjOPE ¼
�
1

d

�
ð4 − dÞ

�
1þ 4a

3

�
− 2

�
þ 1

2

αs
π

�
q2

q2 − μ20
ē=vPLνe: ð61Þ

The integrals of the subtracted hadronic tensors T̄ are convergent, so that we can perform the Dirac algebra on the leptonic
leg in the d ¼ 4 dimension. Putting everything together, we arrive at the matching equations

2ðV1 þ V2Þðμχ ; μÞ ¼
Z

d4q
ð2πÞ4

1

q2ðq2 − λ2γÞ
ðv · qgμνT̄μν

VVðq; vÞ þ iεμρνσqρvσT̄
μν
VAðq; vÞÞ

þ 1

ð4πÞ2
�
2 ln

μ2

λ2γ
þ 1

2

�
1 −

αs
π

�
ln
μ2

μ20
− ln

μ2χ
λ2γ

þ 9

4
þ ð1 − ξÞ

�
ln
μ2χ
μ2

− 1

��
; ð62Þ

2ðV3 þ V4Þða; μχ ; μÞ ¼ −
Z

id4q
ð2πÞ4

1

q2ðq2 − λ2γÞ
ðv · qgμνT̄μν

VV;0ðq; vÞ þ iεμρνσqρvσT̄
μν
VA;0ðq; vÞÞ

þ 1

ð4πÞ2
�
1

2

�
1 −

αs
π

�
ln
μ2

μ20
þ 3 − 8a

12

�
: ð63Þ

To obtain the second line of Eqs. (62) and (63), we used the Ward identities on the subtracted tensors,

qμT̄
μν
VVðq; vÞ ¼ ivν

�
1 −

q2

q2 − μ20

�
; qμT̄

μν
VV;0ðq; vÞ ¼ 0; ð64Þ
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the symmetry (antisymmetry) of unpolarized hadronic tensors Tμν
VVð0Þ ðTμν

VAð0ÞÞ under μ ↔ ν, and, in the contractions with

the Levi-Civita tensor, we replaced

ēγσPLνe → ē=vvσPLνe þ ēðγσ − =vvσÞPLνe: ð65Þ

The nonperturbative QCD input in the LECs is encoded in the subtracted hadronic tensors T̄VV , T̄VA, T̄VV;0, and T̄VA;0.
Using time reversal and crossing symmetry [2,33], we can show that the scalar functions in the matching equations (62) and
(63) are odd or even under q → −q. Explicitly we have

gμνT̄
μν
VVðq2; v · qÞ ¼ −gμνT̄

μν
VVðq2;−v · qÞ; iεμρνσqρvσT̄

μν
VAðq2; v · qÞ ¼ −iεμρνσqρvσT̄

μν
VAðq2;−v · qÞ; ð66Þ

gμνT̄
μν
VV;0ðq2; v · qÞ ¼ gμνT̄

μν
VV;0ðq2;−v · qÞ; iεμρνσqρvσT̄

μν
VA;0ðq2; v · qÞ ¼ iεμρνσqρvσT̄

μν
VA;0ðq2;−v · qÞ; ð67Þ

where we indicated that the functions depend only on the invariants

Q2 ¼ −q2; ν ¼ v · q: ð68Þ

As a consequence of Eqs. (66) and (67), TVA and TVV;0 do not contribute to the matching, and the final expressions for the
combinations of LECs V1 þ V2 and V3 þ V4 are

2ðV1 þ V2Þðμχ ; μÞ ¼
Z

d4q
ð2πÞ4

1

q2ðq2 − λ2γÞ
v · qgμνT̄

μν
VVðq; vÞ

þ 1

ð4πÞ2
�
2 ln

μ2

λ2γ
þ 1

2

�
1 −

αs
π

�
ln
μ2

μ20
− ln

μ2χ
λ2γ

þ 9

4
þ ð1 − ξÞ

�
ln
μ2χ
μ2

− 1

��
; ð69Þ

2ðV3 þ V4Þða; μχ ; μÞ ¼ −
Z

id4q
ð2πÞ4

1

q2ðq2 − λ2γÞ
iεμρνσqρvσT̄

μν
VA;0ðq; vÞ þ

1

ð4πÞ2
�
1

2

�
1 −

αs
π

�
ln
μ2

μ20
þ 3 − 8a

12

�
: ð70Þ

Note that in this framework, the LECs depend not only on
the chiral renormalization scale (μχ) but also on the LEFT
renormalization scale (μ) and the schemes adopted for γ5
and the evanescent operators.

V. CORRECTIONS TO gV

In this section, we combine the coupling constants of the
heavy-baryon chiral perturbation theory into the counter-
term of gV in =πEFT. We subsequently evaluate the non-
perturbative inputs to the vector coupling constant, resum
logarithms between the chiral and electron-mass scales, and
provide numerical results for gV.

A. Matching at the baryon-mass scale

Having determined the electroweak coupling constants
V1–V4 and the electromagnetic coupling constant g9, we
can evaluate the OðαÞ contribution to gV in the low-energy
effective theory; cf. Eqs. (2) and (3). These corrections are
known in the literature as inner radiative corrections.
Before getting to the final result, we can combine the

LECs that depend on the VV hadronic tensor, g9 and
V1 þ V2, and the lepton wave function renormalization X6,
obtaining

�
−
X6

2
þ 2ðV1 þ V2Þ − g9

�
ðμχ ; μÞ

¼ 1

ð4πÞ2
�
1þ 3

2

�
1 − ln

μ2χ
μ2

��

−
Z

d4q
ð2πÞ4

λ2γ
q2ðq2 − λ2γÞ2

v · qgμνT̄
μν
VVðq; vÞ; ð71Þ

which is independent of the gauge parameter ξ. TVV enters
this combination of LECs multiplied by the IR regulator λ2γ.
The only contribution to the integral can thus come from the
infrared limit of TVV , where the hadronic tensor is well
approximated by the elastic piece. The integral over the
hadronic tensor then only leaves behind a finite piece,
yielding

�
−
X6

2
þ 2ðV1 þ V2Þ − g9

�
ðμχ ; μÞ ¼

1

ð4πÞ2
3

2

�
1 − ln

μ2χ
μ2

�
:

ð72Þ

Thus, the only contributions to − X6

2
þ 2ðV1 þ V2Þ − g9 are

due to the different renormalization scales, μ vs μχ , and the
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different subtraction schemes commonly used in HBChPT,
MSχ vs MS.
The other combination of LECs V3 þ V4 is conveniently

expressed in terms of the scalar amplitude T3ðν; Q2Þ as

2ðV3 þ V4Þða; μχ ; μÞ ¼
1

ð4πÞ2
�
1

2

�
1 −

αs
π

�
ln
μ2

μ20
þ 3 − 8a

12

�

−
Z

id4q
ð2πÞ4

ν2 þQ2

Q4

T̄3ðν; Q2Þ
2mNν

;

ð73Þ

where we defined the amplitude T3 from the tensor
decomposition of the hadronic tensor as [85–90]5

Tμν
VA;0 ¼ iεμνσρqρvσ

T3

4mNν
þ � � � ; ð74Þ

with the OPE-subtracted expression

T̄3ðν; Q2Þ ¼ T3ðν; Q2Þ − 4

3

mNν

Q2 þ μ20

�
1 −

αs
π

�
: ð75Þ

In the OPE, we have retained theOðαsÞ correction, which is
needed to cancel the μ-dependent term proportional to
ααs lnðMW=μÞ in Cr

β. To the order we are working, we can
use αsðμÞ at any μ where QCD is perturbative. We will use
αsðμ0Þ in what follows.
Combining the HBChPT coupling constants into the

=πEFT counterterm ĈV according to Eqs. (2), (3), (72), and
(73), we achieve the matching condition

gVðμχÞ ¼ Cr
βða; μÞ

�
1 −

αðμχÞ
2π

�
2BðaÞ þ 5

8

þ 3

4
ln
μ2χ
μ20

þ
�
1 −

αs
4π

�
ln
μ20
μ2

�

− e2
Z

id4q
ð2πÞ4

ν2 þQ2

Q4

T̄3ðν; Q2Þ
2mNν

�
; ð76Þ

where we resummed logarithms in the Wilson coefficient
Cr
βða; μÞ, as it is described in Sec. III A. This expression

does not contain electroweak-scale parameters or artificial
hadronic scales, besides the dependence contained in the
coupling constant Cr

βða; μÞ. The vector coupling gVðμχÞ
does not depend on the scale and scheme used in the LEFT
at the one-loop level.
We can further simplify the expression for gVðμχÞ and

connect it to the previous literature. First, we eliminate the

evanescent scheme dependence by defining the scheme-
independent NLO Wilson coefficient [68]

C̄r
βðμÞ ¼

Cr
βða; μÞ

1þ αðμÞ
π BðaÞ

; ð77Þ

which can be immediately read off from Eq. (16). We then
have

gVðμχÞ ¼ C̄r
βðμÞ

�
1þ □̄

V
Hadðμ0Þ −

αðμχÞ
2π

�
5

8
þ 3

4
ln
μ2χ
μ20

þ
�
1 −

αs
4π

�
ln
μ20
μ2

��
; ð78Þ

where the nonperturbative input is in the “subtracted”
hadronic contribution □̄

V
Hadðμ0Þ, which is closely related

to the standard □
V
γW of Refs. [1,2,39]

□̄
V
Hadðμ0Þ ¼ −e2

Z
id4q
ð2πÞ4

ν2 þQ2

Q4

�
T3ðν; Q2Þ
2mNν

−
2

3

1

Q2 þ μ20

�
1 −

αsðμ20Þ
π

��
; ð79Þ

□
V
γW ¼ −e2

Z
id4q
ð2πÞ4

M2
W

Q2 þM2
W

ν2 þQ2

Q4

T3ðν; Q2Þ
2mNν

: ð80Þ

We will evaluate the nonperturbative input in Eq. (79) in
Sec. V B.
Equation (78) encodes the so-called inner radiative

corrections to the Fermi transitions in the EFT language
in the form of a μχ-dependent coupling gVðμχÞ, which
appears in the effective Lagrangian of Eq. (1). Once all
large electroweak logarithms are resummed via the RGE in
C̄βðμÞ, Eq. (78) does not contain additional large loga-
rithms when the scales μχ , μ, and μ0 are similar and of order
Λχ ∼ 1 GeV. As shown below, the μχ-scale dependence
in gVðμχÞ is canceled in physical amplitudes by the μχ
dependence of the virtual photon corrections computed in
the pionless theory. Since the only scale of these loops is
OðmeÞ, we will evolve gVðμχÞ down to the scale μχ ∼me in
order to avoid large logarithms; see Sec. V C.

B. Evaluation of the nonperturbative input

As shown in Refs. [1,2], the box function can be re-
presented as a one-dimensional integral over the Q2 > 0
variable

□
V
γW ¼ α

8π

Z
∞

0

dQ2
M2

W

M2
W þQ2

FðQ2Þ; ð81Þ

where FðQ2Þ ¼ ð12=Q2ÞMð0Þ
3 ð1; Q2Þ and Mð0Þ

3 ð1; Q2Þ is
the first Nachtmann moment of the structure function

5Note that T3 defined in this paper is equal to i times the T3

defined in [45], which in turn is twice as large as the T3 defined
in [1].
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defined in terms of the imaginary part of T3ðν; Q2Þ.
Following Refs. [1,2], it is useful to isolate the well-defined
elastic contribution to FðQ2Þ, which we denote by FelðQ2Þ,
known in terms of the nucleon isoscalar magnetic vector
and axial-vector form factors, and define

FðQ2Þ ¼ FelðQ2Þ þ F̄ðQ2Þ; ð82Þ

where F̄ðQ2Þ includes inelastic contributions. For Q2 ≤
Q2

0 ¼ 2 GeV2,6 F̄ðQ2Þ contains contributions from the
resonance region and the so-called Regge region. Current
knowledge is based onmodeling [1–5] and latticeQCD input
[6]. For Q2 ≥ Q2

0 ¼ 2 GeV2, one enters the deep inelastic
scattering region (DIS), controlled by the OPE with Wilson
coefficients computed in perturbative QCD (pQCD). The
OPE representation of F̄ðQ2Þ is known to leading order in
1=Q2, with coefficients known to Oðα4sÞ [3,91–93]:

F̄DISðQ2Þ ¼ 1

Q2
ð1 − ΔðQ2ÞÞ;

ΔðQ2Þ ¼
X4
n¼1

c̃n

�
αsðQÞ
π

�
n
: ð83Þ

In practice, wewill use only the n ¼ 1 term (with coefficient
c̃1 ¼ 1) in ΔðQ2Þ, as higher-order terms are beyond the
accuracy of our NLL LEFT analysis. Moreover, for con-
sistency with the OPE terms that we subtract in the matching
procedure, we will use ΔðQ2Þ → Δðμ20Þ in F̄DISðQ2Þ.
In terms of the quantities defined above, the subtracted

hadronic contribution reads

□̄
V
Hadðμ0Þ ¼

α

8π

Z
∞

0

dQ2

�
FelðQ2Þ þ F̄ðQ2Þ

−
1

Q2 þ μ20
ð1 − Δðμ20ÞÞ

�
: ð84Þ

Isolating the elastic contribution and separating the inte-
gration in the regions below and above Q2

0 ¼ ð ffiffiffi
2

p
GeVÞ2,

we find

□
V
γW ¼ □

V
γW jel þ

α

8π

Z
Q2

0

0

dQ2F̄ðQ2Þ

þ α

8π
ð1 − Δðμ20ÞÞ ln

M2
W

Q2
0

þO
�
Q2

0

M2
W

�
; ð85Þ

□̄
V
Hadðμ0Þ ¼ □

V
γW jel þ

α

8π

Z
Q2

0

0

dQ2F̄ðQ2Þ

þ α

8π
ð1 − Δðμ20ÞÞ ln

μ20
Q2

0

: ð86Þ

Numerically, for the nonperturbative contributions we find

□
V
γW jel ¼ 1.030ð48Þ × 10−3; ð87aÞ

Z
Q2

0

0

dQ2F̄ðQ2Þ → δ□̄V
HadjReggeþRes:

¼ ð0.49ð11Þ þ 0.04ð1ÞÞ × 10−3: ð87bÞ

We evaluated the elastic contribution with the isoscalar
magnetic vector form factor, which is extracted from
experimental ep and en scattering data, measurements
of the neutron scattering length, and μH spectroscopy [94].
For the axial-vector form factor, we use the fit to the
experimental νμD scattering data from Ref. [95]. Our result
is in reasonable agreement with previous evaluations of the
elastic contribution to □

V
γW , giving ð1.05� 0.04Þ × 10−3

[4], ð1.06� 0.06Þ × 10−3 [1,2,45], ð1.06� 0.06Þ × 10−3

[5], and ð0.99� 0.10Þ × 10−3 [3], but contains an
improved uncertainty estimate since our errors are directly
propagated from the experimental data.
Up to negligible contributions of OðQ2

0=M
2
WÞ, the

integral of F̄ðQ2Þ between 0 and Q2
0 in Eq. (87b) coincides

with the Q2 ≤ Q2
0 inelastic piece of the “box diagram,”

recently considered in the literature [1–6]. The result is
usually written as the sum of the “Regge” plus “Resonance”
contributions. The various evaluations in the literature have
recently been combined by Ref. [8], leading to the numbers
used in Eq. (87b). This part of our result is fully correlated
with previous work and carries the dominant contribution to
the error budget for the radiative corrections.

C. RG evolution of gV below the baryon scale

To account for higher-order perturbative logarithms,
which are needed for precise predictions of β-decay rates
and (anti)neutrino-nucleon scattering, we evolve the low-
energy coupling constant gVðμχÞ from the matching scale
μχ ∼ Λχ to the physical scale μχ ∼me using the one- and
two-loop anomalous dimensions. The vector coupling
constant evolves according to

μχ
dgVðμχÞ
dμχ

¼ γðαÞgVðμχÞ; ð88aÞ

γðαÞ ¼ γ̃0
α

π
þ γ̃1

�
α

π

�
2

þ � � � ; ð88bÞ

γ̃0 ¼ −
3

4
; ð88cÞ

γ̃1 ¼
5ñ
24

þ 5

32
−
π2

6
; ð88dÞ

with the effective number of particles ñ, as it is described
in Appendix A 2. The appropriate one-loop anomalous

6The value ofQ0 is somewhat arbitrary, and here we follow the
choice of Refs. [1,2].
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dimension γ̃0 has been identified inRefs. [38,44,46,51,96,97].
7

It can also be extracted from calculations of the “heavy-light”
current QCD anomalous dimension in the context of heavy
quark physics, as for example in Refs. [98,99]. As discussed in
Appendix C, we can exploit this analogy to extract the QED
two-loop anomalous dimension γ̃1, by adapting the results
from Ref. [100] (see also Refs. [101–103]). The above
expression for γ̃1 only includes two-loop diagrams involving
two virtual photons in the pionless theory. Possible contribu-
tions arising from diagrams involving pions and photons
are not included. Note that the term in γ̃1 proportional to π2

can lead to contributions to the decay rate that scale as
α2 ln ðmN=meÞ, larger than a typical two-loop contribution.
Using the expression for the evolution operator in

Eq. (19), we solve the RGE in (88) and resum the leading
and subleading logarithms between particle thresholds
according to

gVðμχÞ ¼ Ũðμχ ; mμÞŨðmμ; mπÞŨðmπ;ΛχÞgVðΛχÞ;

Ũðμ1; μ2Þ ¼
�
αðμ1Þ
αðμ2Þ

�
−2γ̃0=β̃0

�
1 −

2γ̃1ðμ1Þ
β̃0ðμ1Þ

αðμ1Þ − αðμ2Þ
π

�
:

ð89Þ
Below the baryon scale, we determine α from its value in the
Thomson limit by evolving it up in scale with the electron,
muon, and charged pion as active degrees of freedom, which
leads to

β̃0 ¼ −
4

3

X
l¼e;μ

Q2
lθðμ −mlÞ −

1

3
Q2

πθðμ −mπÞ: ð90Þ

See Appendix A for details on the definition of the fine-
structure constant in both LEFT and χPT.
In Eq. (89), gVðΛχÞ is obtained by evaluating Eq. (78) at

μχ ¼ Λχ ∼mN . Note that both γ̃0 and γ̃1 are negative,
implying gVðmeÞ=gVðΛχÞ > 1.

D. Numerical results and uncertainty estimates

We next present numerical results for the vector coupling
gVðmeÞ and discuss the various sources of uncertainty. We
start by providing some intermediate results that illustrate the
impact of corrections at various orders in our RGE analysis.
For the semileptonic Wilson coefficient Cr

β, we include
α; ααs, and α2 contributions to the running, as described in
Sec. III A.8 To illustrate the effect of running from the

electroweak to GeV scales, we provide results for the fixed
order (LO) CβðmcÞ ¼ 1þ ðαðmcÞ=πÞ lnðMZ=mcÞ, leading
logarithms (LL), next-to-leading logarithms NLL1, which
includes the anomalous dimensions up to order ααs, and
next-to-leading logarithms NLL2, including the anomalous
dimensions up to orders ααs and α2. For the initial
conditions, we specify

CLL;NLL1
β ðMWÞ ¼ 1þ αðMWÞ

π
ln

MZ

MW
; ð91Þ

CNLL2
β ðMWÞ ¼ 1þ αðMWÞ

π
ln

MZ

MW
þ αðMWÞ

π
Bða ¼ −1Þ:

ð92Þ
After numerically solving the RGEs, we obtain the follow-
ing values for the effective couplings at μ ¼ mc:

CLO
β ðmcÞ ¼ 1.01014; ð93aÞ

CLL
β ðmcÞ ¼ 1.01043; ð93bÞ

CNLL1
β ðmcÞ ¼ 1.01027; ð93cÞ

C̄NLL2
β ðmcÞ ¼ 1.01018: ð93dÞ

The effects of NLL1 and NLL2 resummations combine to
essentially “undo” the effect of LL resummation. The final
result is very close to the perturbative one. The numerical
solution of the RGEs agrees with the analytic solutions
provided in Sec. III A. Our result for the NLL1 correction is
consistent with the finding of Ref. [72]. The impact of
NLL2 corrections in our result is more than a factor of 2
larger than in Ref. [38], reflecting the difference discussed
in Sec. III A.
For the running of the vector coupling constant gV , we

include the OðαÞ and Oðα2Þ anomalous dimensions, as
described in Sec. V C.9 We provide the relative running
contributions for the one-loop logarithm (LO), namely
gVðmeÞ=gVðmpÞjLO ¼ 1þ ð3=4Þðα=πÞ lnðmp=meÞ, the LL
resummation, where we include only γ̃0 in the RGE, and
NLL resummation, where we also include γ̃1 in the RGE:

gVðmeÞ
gVðmpÞ

����
LO

¼ 1.01308; ð94aÞ

gVðmeÞ
gVðmpÞ

����
LL

¼ 1.01325; ð94bÞ

gVðmeÞ
gVðmpÞ

����
NLL

¼ 1.01330: ð94cÞ

7Note that the one-loop anomalous dimension in the theory
with relativistic nucleons is a factor of 2 larger than γ̃0 in
Eqs. (88), and, therefore, our coupling constant can be used for
the calculation of radiative corrections only in the theory with
heavy nucleons.

8We perform the one-loop running for αðμÞ and αsðμÞ in LEFT,
consistently with the order of our calculation. We have checked
that using the higher-order couplings as in Ref. [66] modifies our
final results at the level of 0.001%.

9We match LEFTat the scale μ ¼ mc to the HBχPT at the scale
μχ ¼ mp, below which we perform the running of α with the one-
loop anomalous dimension for leptons and pions [8,66].
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At the level of decay rate, our NLL correction implies an
increase of 1.0 × 10−4 (roughly half of the final uncertainty
of the radiative corrections).
Putting together all the results obtained so far, we

evaluate the vector coupling constant gVðμχÞ in the MS
renormalization scheme of χPT at the scale μχ ¼ me, where
OðαnÞ loop corrections to the matrix elements of the
Lagrangian (1) do not contain large logarithms:

gVðμχ ¼ meÞ − 1 ¼ ð2.499� 0.013Þ%: ð95Þ

In contrast, the vector coupling at fixed order g1−loopV (i.e.,
without resummation, without ααs corrections, and with
taking the value for the electromagnetic coupling constant
in the Thomson limit) takes the value

g1−loopV ðμχ ¼ meÞ − 1 ¼ ð2.430� 0.012Þ%: ð96Þ

In the RGE evolution, the electromagnetic and ααs effects
contribute with opposite signs, resulting in a net increase of
gV at the level of 0.07%.
For the uncertainty estimate, we add the following

dominant sources in quadrature:
(i) 0.012%: the hadronic error for Regge, resonance,

and πN contributions from Ref. [45] is added in
quadrature to the uncertainty propagated from the
lepton-nucleon experimental data for the elastic
contribution.

(ii) 0.004%: the higher-order αα2s uncertainty is esti-
mated by including the known terms of Oðα2sÞ
[1–3,38] in the pQCD correction Δðμ20Þ that controls
the DIS region of □V

γW in Eq. (85). In our approach,
this DIS contribution maps onto the αα2s anomalous
dimension for the Wilson coefficient CβðμÞ in LEFT.

(iii) 0.003%: the higher-order χPT uncertainty is esti-
mated by assuming the natural size for unaccounted

corrections, i.e., α
π

m2
π

16π2F2
π
.

All other perturbative and parametric sources of uncertain-
ties are at the level 0.001% or even below.
We conclude this section by noting that the effective

coupling gVðμχ ≈meÞ captures the inner corrections to one-
body weak transitions through NLL, i.e., up to and
including terms of order α2L2 and α2L (where L indicates
large logarithms of MZ=mN and mN=me), with residual
uncertainty at Oðα2Þ due to finite terms in two-loop
diagrams. Importantly, gV controls both neutron decay

and the one-body contribution to nuclear β decays, in
combination with appropriate n → peν̄e and ðN; ZÞ →
ðN − 1; Z þ 1Þeν̄e matrix elements computed to the same
accuracy. For applications in neutrino and nuclear physics,
in Table I we provide the coupling constant gV for a few
values of the renormalization scale up to 50 MeV.

VI. CORRECTIONS TO NEUTRON DECAY
AND IMPACT ON Vud

We can now use the =πEFT Lagrangian in Eq. (1) with
gVðμχ ¼ meÞ from Eq. (89) to compute the neutron decay
rate including radiative corrections. The final ingredient is
the square modulus of the n → peν̄e and n → peν̄eγ matrix
elements in HBChPT, evaluated at μχ ∼me. To match the
accuracy achieved in gVðmeÞ, since lnðμχ=meÞ ∼Oð1Þ, we
will need the matrix elements toOðαÞ and will ignore terms
of Oðα2Þ and higher. The only exceptions are “Coulomb”-
enhanced terms scaling as ðπα=βÞn and α=πðπα=βÞn, where
β≡ pe=Ee, which are parametrically large, diverge for
β → 0, and can be resummed in the nonrelativistic Fermi
function.

A. “Long-distance” electromagnetic corrections
and differential decay rate

After including the contributions from both virtual and
real photons [44,46] as well as recoil corrections [46,53],
the differential decay rate dΓn for unpolarized neutrons
takes the form [33,53]

dΓn

dEe
¼ G2

FjVudj2
ð2πÞ5 ð1þ 3λ2ÞpeEeðE0 − EeÞ2½gVðμχÞ�2

× ð1þ δ̃RCðEe; μχÞÞð1þ δrecoilðEeÞÞ; ð97Þ

where E0 ¼ ðm2
n −m2

p þm2
eÞ=ð2mnÞ is the electron end

point energy and λ≡ gA=gV is the ratio of effective
axial-vector and vector couplings in the low-energy

Lagrangian (1). The ratio λ ¼ λQCDð1þ δðλÞRCÞ is affected

by a μχ-independent electromagnetic correction δðλÞRC para-
metrized in terms of calculable pion loops and certain chiral
LECs (see Ref. [44]). λ itself can be extracted from beta
decay correlation experiments, so that we do not need to

know δðλÞRC for the purpose of studying total decay rates and
the extraction of Vud. δrecoilðEeÞ collects recoil corrections
that can be found in Ref. [46]. They are usually factorized
since the impact of the product of radiative times recoil
corrections is estimated to be well below 10−4. Finally,
δ̃RCðEeÞ represents the electromagnetic corrections arising
from the matrix element squared. To OðαÞ, one finds

δ̃RCðEe; μχÞ ¼
αðμχÞ
2π

�
2π2

β
þ 3

2
ln

μ2χ
m2

e
þ 5

4
þ ĝðEe; E0Þ

�
;

ð98Þ

TABLE I. The coupling constant gV is presented for a few
values of the renormalization scale μχ .

μχ (MeV) 1 5 10 20 30 50

gV − 1, % 2.379 2.090 1.966 1.842 1.770 1.678
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where ĝðEe; E0Þ is a subtracted Sirlin function

ĝðEe; E0Þ ¼ gðEe; E0Þ −
3

2
ln
m2

N

m2
e
; ð99Þ

defined in terms of the Sirlin function gðEe; E0Þ of
Ref. [33]. ĝðEe; E0Þ arises naturally in the EFT calculation
and does not contain any large logarithm of mN=me.
The corrections proportional to πα=β in Eq. (98) are

enhanced by a factor of π2 compared to the naive scaling of
loop corrections and are numerically dominant even for
β ∼Oð1Þ. The leading terms in the series in πα=β arise
from the momentum regions of loop integrals in which the
photon momentum has potential scaling, k0 ∼meβ

2 ≪
jk⃗j ∼meβ, and they can be identified with nonrelativistic
EFT methods [104–107]. Their resummation leads to the
nonrelativistic Fermi function FNRðβÞ [108–118],

FNRðβÞ ¼
2πα

β

1

1 − e−
2πα
β

≈ 1þ πα

β
þ π2α2

3β2
−
π4α4

45β4
þ � � � ;

ð100Þ
which we include in the matrix element squared as

1þ δ̃RCðEe; μχÞ ¼ FNRðβÞ

þ αðμχÞ
2π

�
3

2
ln

μ2χ
m2

e
þ 5

4
þ ĝðEe; E0Þ

�
→ FNRðβÞð1þ δRCðEe; μχÞÞ þOðα2Þ;

ð101Þ
where

δRCðEe; μχÞ ¼
αðμχÞ
2π

�
3

2
ln

μ2χ
m2

e
þ 5

4
þ ĝðEe; E0Þ

�
: ð102Þ

As we discuss in Appendix B, the factorization ansatz in
Eq. (101) captures all numerically enhanced leading and
subleading terms in 1=β, and reproduces similar results for
the production of two heavy quarks at threshold, derived
with nonrelativistic QCD and potential nonrelativistic QCD
[104–107,119–122]. At Oðα2Þ, Eq. (101) gives

FNRðβÞð1þ δRCðEe;μχÞÞ ¼ FNRðβÞ−
11

4

α2

β

þ ðE0 −meÞ2
12m2

e

α2

β
þ δRCðEe;μχÞ

þOðα2Þ: ð103Þ
Indeed, the first cross term −ð11=4Þα2=β corresponds to the
matching coefficient of heavy-light to heavy-heavy current
[123] in the MSχ renormalization scheme. The second cross
term ðα2=βÞðE0 −meÞ2=ð12m2

eÞ comes from the product of
the Fermi function with real radiation. These terms are

beyond the accuracy of our calculation and can be booked
as Oðα2β3Þ in the nonrelativistic limit. In the case of
neutron decay, this term provides a negligible shift of 1.6 ×
10−5 to the decay rate.
We thus arrive to our final form for the differential decay

rate:

dΓn

dEe
¼G2

FjVudj2
ð2πÞ5 ð1þ 3λ2ÞpeEeðE0 −EeÞ2½gVðμχÞ�2FNRðβÞ

× ð1þ δRCðEe;μχÞÞð1þ δrecoilðEeÞÞ: ð104Þ
Compared to state-of-the-art analyses of neutron decay
in the literature (see e.g. Ref. [38]), our result (104)
amounts to replacing the relativistic Fermi function
[53,109–111,124–127] with the nonrelativistic one,
F0 → FNR. While we arrived at this result by constructing
the relevant terms of the amplitude in the EFT framework,
one could also argue for this replacement along the
following lines. First, recall that the leading corrections
to the phase space coming from the distortion of the
electron wave function in the Coulomb field of the proton
is usually captured by the function [53]

F0ðβÞ ¼
2

1þ γ
FðβÞ ¼ 4ð2EeβRÞ2ðγ−1Þeπy

jΓðγ þ iyÞj2
ðΓð1þ 2γÞÞ2 ;

y ¼ α

β
; γ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − α2

p
: ð105Þ

This form is obtained by solving the Dirac equation for an
electron moving in the charge distribution of a uniformly
charged sphere of radius R [53], but corresponds to a
rescaling of the solution of the Dirac equation for a
pointlike proton, FðβÞ, evaluated not at the origin, where
the wave function diverges logarithmically, but at the
“nucleon radius” R. R corresponds to a mass scale much
larger thanme and effectively acts as a UV regulator. So we
see that while F0ðβÞ coincides with FNRðβÞ at the one-loop
level, F0 includes a dependence on the UV regulator via the
logarithms of R that first appear at Oðα2Þ. Expanding F0 in
series of α, one obtains

F0ðβÞ ¼ FNRðβÞ½1 − α2ðγE − 3þ lnð2EeRβÞÞ þOðα4Þ�:
ð106Þ

The dependence on the UV regulator R ∼ 1=μχ does not
match the μχ-dependence of gVðμχÞ in the MSχ scheme
presented so far. In dimensional regularization, indeed, the
lnR term in Eq. (106) corresponds to a UV singularity that
appears in the first two diagrams in Fig. 3, when we
consider only the contribution arising from picking the
two nucleon poles. This is only one piece of the full
anomalous dimension γ̃1. In order not to double-count large
logarithms, one should set the logarithmic term in F0 to
zero when using the RGEs to evaluate the large logarithms
as we do here. The remaining Oðα2Þ terms in Eq. (106) are
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incomplete and beyond the accuracy of our calculation,
which allows us to drop them and replace the relativistic
Fermi function F0 by its nonrelativistic counterpart FNR.

B. Total decay rate and extraction of Vud

Upon performing the integration over Ee in Eq. (104),
the decay rate can be written as

Γn ¼
G2

FjVudj2m5
e

2π3
ð1þ 3λ2Þ · f0 · ð1þ ΔfÞ · ð1þ ΔRÞ;

ð107Þ
where the phase-space integral is given by

f0 ¼
Z

x0

1

wðx; x0Þdx; wðx; x0Þ ¼ xðx0 − xÞ2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 − 1

p
;

ð108Þ

f0 ¼
2x40 − 9x20 − 8

60

ffiffiffiffiffiffiffiffiffiffiffiffiffi
x20 − 1

q
þ x0

4
ln
�
x0 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
x20 − 1

q 	
;

ð109Þ

with x0 ¼ E0=me and E0 ¼ 1.292581 MeV, and takes the
value f0ðx0Þ ¼ 1.62989. Following standard practice
[38,53], in Eq. (107) we have lumped the Coulomb
(FNR) and recoil terms into an effective phase-space
correction Δf, separating the remaining radiative correc-
tions into ΔR. In this factorization scheme, the various
corrections to the decay rate are defined by

f0ð1þ ΔfÞ ¼
Z

x0

1

wðx; x0ÞFNRðβðxÞÞð1þ δrecoilðxmeÞÞdx;

ð110Þ

1þ ΔR ¼ ½gVðμχÞ�2
�
1þ

R x0
1 wðx; x0ÞFNRðβðxÞÞð1þ δrecoilðxmeÞÞδRCðxme; μχÞdx

f0ð1þ ΔfÞ
�
; ð111Þ

where βðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 1=x2

p
. A few remarks are in order:

(i) The decay rate in Eq. (107) corresponds to the usual
definition adopted in the literature [38], upon iden-
tifying f ≡ f0ð1þ ΔfÞ. Therefore, the total shift in
the decay rate

ΔTOT ¼ −1þ ð1þ ΔfÞð1þ ΔRÞ; ð112Þ

which impacts the extraction of Vud, requires speci-
fying both Δf and ΔR. The expressions and numeri-
cal values of Δf and ΔR in our EFT approach differ
from the results found in the literature (see Ref. [38]
and most recent calculations of ΔR [1–6,8]). In what
follows, when necessary we will discuss the origin
of the differences.

(ii) For Δf, which encodes Coulomb and recoil correc-
tions, we find

Δf ¼ 3.573ð5Þ%; ð113Þ

where we estimated the uncertainty to be of the size
of Coulomb corrections times the recoil cross term.
The difference from the standard result Δf ¼
3.608 × 10−2 [38] is mainly due to the fact that
we use the nonrelativistic Fermi function, for the
reasons discussed above, while Ref. [38] uses the
relativistic Fermi function. We also do not include
the corrections induced by modeling the proton as a
uniformly charged sphere of radius Rp ≃ 1 fm [53]:
this is a small effect shifting Δf by 0.005%.

FIG. 3. HBChPT diagrams contributing to the anomalous dimension of gV and to δ̃RC at two loop. Only the first two diagrams give rise
to terms in the γ̃1 enhanced by π2 [100]. These diagrams also give rise to the leading π2α2=β2 behavior captured by the nonrelativistic
Fermi function.
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(iii) Up to the accuracy of our calculation, the remaining
radiative correction ΔR in our framework is given by

ΔR ¼ ½gVðμχÞ�2
�
1þαðμχÞ

2π

�
3

2
ln

μ2χ
m2

e
þ 5

4
þ ¯̂gðE0Þ

��
− 1; ð114Þ

where μχ ∼me and ¯̂gðE0Þ ¼ −9.58766 is obtained
by averaging the subtracted Sirlin function ĝðEe; E0Þ
over the phase space, according to Eq. (111). At
leading order in α, the μχ-scale dependence in
Eq. (114) cancels between the coupling constant
gVðμχÞ and virtual one-loop contributions, while
higher-order perturbative logarithms from virtual
diagrams at scales μχ ∼me are small.

(iv) To separate hadronic and electroweak contributions
to gVðμχÞ, and to make contact with some of the
previous literature, we provide the fixed-order result

ΔR ¼ 2□̄V
Hadðμ0Þ

þ α

2π

�
2

�
1 −

αs
4π

�
ln
M2

Z

μ20
þ 3

2
ln

μ20
m2

e
þ ¯̂gðE0Þ

�
:

ð115Þ

In the above relations, the explicit dependence on μ0
is canceled by the implicit dependence in □̄

V
Hadðμ0Þ.

The hadronic physics is included in □̄
V
Had, while the

two logarithms in Eq. (115), which are proportional
to the anomalous dimensions, correspond to the
ratios between electroweak vs hadronic and had-
ronic vs beta-decay scales.

(v) Our numerical result for ΔR is

ΔR ¼ 4.044ð27Þ%; ð116Þ

which, apart from the uncertainty coming from gV
discussed in Sec. V D, includes a perturbative
uncertainty of 0.005% obtained by varying the scale
of the calculation μχ in the range m2

e=2 ≤ μ2χ ≤ 2m2
e.

Our result for ΔR is 0.061% above the most recent
evaluation [8] based on Refs. [1–6]. The sources of
this difference are discussed in Sec. II. Combining
Δf and ΔR in the factorization scheme of Eq. (107)
we obtain

ΔTOT ¼ 7.761ð27Þ%: ð117Þ

Using the results from Refs. [1–6,8], one gets
ΔTOT ¼ 7.735ð27Þ%, about one σ below our result.
The difference is due to two competing factors in our
analysis: a positive shift of þ0.061% in ΔR and a
negative shift of −0.035% in Δf.

(vi) As a consistency check on the accuracy of the
calculation and the size of cross terms (such as
recoil × electromagnetic corrections), we have
performed the phase-space integration in a different
scheme that does not assume factorization of FNR
and δrecoil, defined by

Γn →
G2

FjVudj2m5
e

2π3
ð1þ 3λ2Þ · f0 · ð1þ ΔgV Þ

· ð1þ Δrecoil þ ΔC þ ΔRCÞ; ð118Þ

with

ΔgV ¼ ½gVðμχÞ�2 − 1; ð119Þ

ΔC ¼ 1

f0

Z
x0

1

wðx; x0Þ
�
FNRðβðxÞÞ

−
�
11 −

ðE0 −meÞ2
3m2

e

�
α2

4βðxÞ − 1

�
dx; ð120Þ

ΔRC ¼ 1

f0

Z
x0

1

wðx; x0ÞδRCðxme; μχÞdx; ð121Þ

Δrecoil ¼
1

f0

Z
x0

1

wðx; x0ÞδrecoilðxmeÞdx: ð122Þ

For the numerical values in this scheme, we find
ΔgV ¼5.060ð27Þ%, ΔC ¼ 3.375%, ΔRC ¼−0.969%,
and Δrecoil ¼ 0.173%, leading to ΔTOT ¼ 7.770%.
The latter differs from the factorized result by
0.009%, consistent with its expected size of
Oðα2Þ and the uncertainties quoted above.

Finally, we extract the CKM matrix element Vud from
precise measurements of the neutron lifetime with our
updated calculation of radiative corrections and present the
results in Sec. II.

C. Comments on radiative corrections
to nuclear decays

Finally, we comment on the connection to the standard
framework for the analysis of superallowed 0þ → 0þ
transitions, described for example in Ref. [7]. The correc-
tions to nuclear beta decays are combined into the quantity
F t, related to the experimental ft values as

F t ¼ ftð1þ δ0RÞð1þ δNS − δCÞ ¼
K

2G2
FjVudj2ð1þ ΔV

RÞ
;

ð123Þ
where K is a constant and δC is the isospin-symmetry
breaking contribution. The correction δNS corresponds to
the transition-dependent nuclear structure correction. ΔV

R is
the transition-independent part of the radiative correction,
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which is related to the correction to neutron decay via

ΔV
R ¼ ΔR −

α

2π
ḡðE0Þ

¼ ½gVðμχÞ�2
�
1þ αðμχÞ

2π

�
3

2
ln

μ2χ
m2

N
þ 5

4

��
− 1: ð124Þ

δ0R contains the so-called “outer corrections,” which depend
on the transition but not on the nuclear structure, and
corresponds to soft photon emissions from pointlike nuclei.
δ0R reduces to the Sirlin function at OðαÞ and includes a set
of OðZα2Þ and OðZ2α3Þ corrections [54,55,128–130]. In
addition, it contains the leading-logarithm renormalization
group evolution from mN to me, using the RGE kernel
derived in Ref. [38] and discussed in Ref. [131]. Therefore,
the standard breakdown of radiative corrections corre-
sponds to evaluating the coupling gV at a scale μχ ∼ Λχ ∼
mN in Eq. (124), and then lumping the leading-logarithm
RG evolution and the matrix element in δ0R, namely

ΔV
RjTraditional ¼ ½gVðmNÞ�2

�
1þ 5αðmNÞ

8π

�
− 1

¼ 2.471ð25Þ%; ð125Þ
which agrees with the result compiled in Ref. [8].
From an EFT point of view aiming at describing nuclei

starting from nucleon degrees of freedom, it is more natural
to evolve the single-nucleon (and possibly two-nucleon,
three-nucleon, etc.) coupling gV all the way down the scale
μχ ¼ me, and only leave the evaluation of the fixed-order
matrix element in δ0R. This can be achieved by defining the
universal correction ΔV

RjEFT:

ΔV
RjEFT ¼ ½gVðmeÞ�2

�
1þ 5αðmeÞ

8π

�
− 1; ð126Þ

and appropriately redefining the Fermi function, the outer
correction δ0R, and the nuclear correction δNS in such a way
that they do not contain large logarithms. This requires a
new EFT analysis of both δ0R and δNS.

VII. CONCLUSIONS AND OUTLOOK

In this paper, we developed a systematically improvable
top-down effective field theory framework for radiative
corrections to the neutron β decay and low-energy (anti)
neutrino-nucleon scattering. As a first step, we perform the
matching at the electroweak scale of the Standard Model to
the LEFT with effective four-fermion operators. We resum
leading and next-to-leading large electroweak logarithms to
all orders by evolving the semileptonic coupling constant in
the LEFT from electroweak to GeV scale according to the
LEFT RGEs. Next, we perform the matching to the heavy-
baryon chiral perturbation theory at the hadronic scale and
express the HBChPT low-energy constants in terms of
nonperturbative correlation functions of quark currents. To
avoid large logarithms in the evaluation of the matrix

elements, we resum leading and subleading logarithms
between the hadronic scale and electron-mass scale accord-
ing to the RGEs in HBChPT. In this framework, all
contributions from physics above the scale of the electron
mass play the role of short-distance effects, which are
captured by the Wilson coefficient gV . We compare our
framework to the traditional current-algebra approach and
find an agreement at the one-loop level. Contrary to the
traditional approach, we employ dimensional regulariza-
tion with minimal subtraction (MS) and specify the scale
and scheme dependence in all steps of the calculation
allowing us to consistently include the next-to-leading
logarithms and their resummation. In our approach, the
so-called DIS region of the γW box is mapped onto a
contribution to the Wilson coefficient in LEFT.
Inour newEFT framework,wedetermined the low-energy

vector coupling constant gVðmeÞ − 1 ¼ ð2.499� 0.012Þ%,
which controls the neutron decay rate as well as low-
energy (anti)neutrino-nucleon scattering, and provides
the basis for one-body contributions to nuclear decays.
We also extracted the CKM matrix element Vud from
neutron decay measurements with our new values for
the radiative corrections. An updated value jVudj ¼
0.97402ð42Þ based on the most precise determinations of
the neutron lifetime and axial-vector to vector coupling
constants ratio is smaller than previous results. The differ-
ence with respect to the previous analyses originates from
the consistent inclusion of the next-to-leading logarithms
and Coulomb corrections within our framework.
The effective field theory approach to radiative correc-

tions in weak processes advocated in this paper can be
extended to the analysis of the axial-vector coupling
constant gA, which is a natural next step that will be
presented in future work. The developed EFT approach can
straightforwardly be applied to precise first-principles
cross-section calculations in low-energy (anti)neutrino-
nucleon scattering and can be extended to describe
neutral-current processes with nucleons at low energies.
The EFT framework can also be generalized to address
radiative corrections to nuclear decays. In fact, one of the
advantages of EFT is that the effective couplings gV and gA
already determine the one-body inner corrections to nuclear
decays at OðGFαÞ. Consequently, matrix elements of the
weak Lagrangian of Eq. (1) should be computed toOðαÞ in
the low-energy nuclear many body theory. In this approach,
the so-called “nuclear γW box” arises from contributions at
scales smaller than or equal to the Fermi momentum kF,
which are calculable in the nuclear EFT. Short-range
physics is captured by gV, and potentially, by two-nucleon
and/or few-nucleon weak operators in HBChPT, whose
contributions at a given order in ϵχ can be estimated by the
power counting in chiral EFT. The full analysis of radiative
corrections to nuclear beta decay will require the develop-
ment of the EFT framework for few-nucleon systems
to OðGFαϵ

n
χÞ.
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APPENDIX A: ELECTROMAGNETIC
FINE-STRUCTURE CONSTANT

IN LEFT AND χPT

In this appendix, we discuss the definition we adopt for
the running fine-structure constant αðμÞ used in the LEFT
and αχðμχÞ in χPT.
In any theory, including LEFT and χPT, charge renorm-

alization is studied in connection with the photon self-
energy tensor Πμνðq2Þ and the vacuum polarization
function Πðq2Þ defined by [136]

ΠμνðqÞ ¼ ðgμνq2 − qμqνÞΠðq2Þ: ðA1Þ
Including resummed self-energy corrections, the amplitude
for scattering of two charged particles is proportional to the
physical (renormalization scale and scheme-independent)
combination

κphysðq2Þ ¼
αR

1 − ΠRðq2Þ
; ðA2Þ

where the subscript “R” labels the renormalization scheme,
αR denotes the renormalized fine-structure constant, and
ΠR is the corresponding subtracted, UV-finite vacuum
polarization function. For example, in the “on-shell” (OS)
renormalization scheme the renormalized vacuum polariza-
tion function is defined by ΠOSðq2Þ ¼ Πðq2Þ − Πð0Þ≡
Δαðq2Þ. In this scheme, using observables at q2 → 0, one
extractsαOS ¼ 1=137.036. This scheme can be implemented

in any field theory, including χPT, LEFT, and the full
Standard Model.
Importantly, Eq. (A2) allows one to relate αR (in any

scheme and at any renormalization scale) to αOS, in terms of
ΠRðq2 ¼ 0Þ. Equation (A2) can also be used to relate the
electromagnetic couplings defined in any two renormali-
zation schemes and even in two different EFTs.

1. Charge renormalization in LEFT

Throughout this paper, we use the notation αðμÞ to
indicate the electromagnetic coupling in LEFT, defined in
the modified minimal subtraction scheme (MS).
At any value of μ < MW;Z, where the LEFT is appli-

cable, αðμÞ can be defined by its relation to αOS via
Eq. (A2), leading to

αOS ¼
αðμÞ

1 − ΠMSð0Þ
¼ αðμÞ

1 − ΠMSðμ̃2Þ þ ΠOSðμ̃2Þ
; ðA3aÞ

where in the second equality we have expressed ΠMSð0Þ in
terms of ΠMSðμ̃2Þ and ΠOSðμ̃2Þ, at the arbitrary scale
μ̃ ≫ ΛQCD. In LEFT, the vacuum polarization receives
contributions from charged fermions only. The contribution
of charged leptons to both ΠMSðμ̃2Þ and ΠOSðμ̃2Þ ¼
Πðμ̃2Þ − Πð0Þ can be computed in perturbation theory.
For quarks, the calculation of ΠMSðμ̃2Þ can be carried
out in perturbation theory because μ̃2 ≫ Λ2

QCD, with each
quark flavor of charge Qq contributing (to zeroth order in
the QCD coupling αs)

ΠðqÞ
M̄S

ðμ̃2 ≫ Λ2
QCDÞ ¼

4

3
NCQ2

q
α

4π

�
ln
μ̃2

μ2
−
5

3

�
: ðA3bÞ

The nonperturbative contributions are encoded in ΠOSðμ̃2Þ
and can be evaluated via a dispersion relation

ΠOSðμ̃2Þ ¼ Δαðμ̃2Þ ¼ −
α

3π
μ̃2Re

Z
∞

4m2
π

ds
RðsÞ

sðs − μ̃2 þ i0þÞ ;

ðA3cÞ
where RðsÞ ¼ σeþe−→hadronsðsÞ=σeþe−→μþμ−ðsÞ; see for
example Ref. [137].
The scheme matching conditions between the on-shell

and MS couplings given in Eqs. (A3) are conceptually
clean and could be implemented at any value of μ < MW;Z.
They are, however, not extremely practical, because the
dispersive integral Δαðμ̃2Þ is usually given in the literature
only at μ̃ ¼ MZ [56,137]. To circumvent this issue, we
define the LEFT MS coupling αðμÞ by relating it to the MS
fine-structure constant in the full Standard Model with five
quark flavors, denoted by α̂ð5ÞðμÞ in the PDG review on the
electroweak theory [56]. α̂ð5ÞðMZÞ is related to αOS by an
expression which is analogous to (A3), with μ ¼ μ̃ ¼ MZ,
up to an additional contribution to charge renormalization
due to theW boson [138]. Taking this into account, we find
at μ ¼ μSM ∼MW ,
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1

αðμSMÞ
¼ 1

α̂ð5ÞðμSMÞ
−

1

6π
þ 7

2π
ln
MW

μSM
: ðA4Þ

The numerical value α̂ð5ÞðMZÞ−1 ¼ 127.951ð9Þ [56]
implies α̂ð5ÞðMWÞ−1 ¼ 127.989ð9Þ and αðMWÞ−1 ¼
127.936ð9Þ. We use the latter value as the initial condition
for the RGE

μ
dαðμÞ
dμ

¼ −
β0ðμÞ
2π

α2ðμÞ þOðα3Þ; ðA5Þ

β0ðμÞ ¼ −
4

3
ñðμÞ; ñðμÞ ¼

X
f

Q2
fnfθðμ −mfÞ; ðA6Þ

where Qf denotes the fermion charge and nf is the
multiplicity (nf ¼ 1 for charged leptons, nf ¼ NC for
quarks). To the accuracy we work, αðμÞ can be treated
as continuous across heavy-fermion thresholds in LEFT.

2. Charge renormalization in χPT

Below the QCD scale Λχ ∼mN , we work with (baryon)
χPT extended to include dynamical photons and leptons.
For illustrative purposes, we consider SUð2Þ χPT with both
muon and electron as dynamical fields. This is the field
content relevant for matching to the LEFT at the scale Λχ .
We add the gauge-kinetic terms for photons and leptons and
couple them to mesons and baryons by appropriate shifts to
the external field sources that appear in chiral covariant
derivatives; see Eq. (27). Upon redefining the photon
field Aμ → ð1=eÞAμ, the electromagnetic coupling e only
appears in the photon kinetic term, and the relevant
renormalized Lagrangian, written in terms of renormalized
coupling êχ and counterterms ZA;χ − 1, reads

LA;χ ¼−
1

4ê2χ
FμνFμν−

1

4ê2χ
FμνFμνðZA;χ − 1Þþ � � � ; ðA7aÞ

ZA;χ ¼ 1þ 8ê2χh2 − 4ê2χX8: ðA7bÞ

The LEC h2 was introduced in Ref. [49] in the context of
SUð2Þ meson χPT. X8 was introduced in Ref. [61], which
extended χPT to include dynamical leptons, for the study of
semileptonic processes. In χPT, the LECs contain a pure
counterterm that subtracts the UV divergences of meson
and lepton loops, and a finite, renormalized coupling
that encodes contributions from heavy states not included
in the EFT. Adopting dimensional regularization in d ¼
4 − 2ε and following Refs. [49,139], the generic LEC Ci is
written as

Ci ¼ Cri ðμχÞ −
γi
2

1

ð4πÞ2
�
1

ε̂
þ 1

�
; ðA8Þ

where γh2 ¼ 1=12, γX8
¼ −4=3 [61], and 1=ε̂ ¼ 1=

ε − γE þ ln ð4πÞ. The renormalized couplings Cri ðμχÞ
depend on the scale in such a way that, after including
loops, the physical amplitudes are μχ-independent. h2
cancels divergences induced by pseudoscalar meson loops,
while X8 cancels divergences produced by loops with the
electron and muon.
In the standard χPT scheme defined by Eqs. (A7), we

can study charge renormalization and vacuum polarization.
The renormalized electromagnetic coupling α̂χ ≡ ê2χ=ð4πÞ
and Πχ̂ðq2Þ are separately scale-independent. In fact, the
subtracted vacuum polarization is given by

Πχ̂ðq2Þ ¼ Ππðq2; m2
π; μ2χÞ þ Πlðq2; m2

e; μ2χÞ þ Πlðq2; m2
μ; μ2χÞ þ ΠLECsðμ2χÞ; ðA9Þ

in terms of the pion loop, the lepton loop, and the counterterm contributions

Ππðq2; m2
π; μ2χÞ ¼

α̂χ
4π

�
−
1

3

1

ε̂
þ
Z

1

0

dxð1 − 2xÞ2 ln
�
m2

π − q2xð1 − xÞ − i0þ

μ2χ

��
; ðA10aÞ

Πlðq2; m2
l; μ

2
χÞ ¼

α̂χ
4π

�
−
4

3

1

ε̂
þ 8

Z
1

0

dxxð1 − xÞ ln
�
m2

l − q2xð1 − xÞ − i0þ

μ2χ

��
; ðA10bÞ

ΠLECsðμ2χÞ ¼ −8ê2χhr2ðμχÞ þ 4ê2χXr
8ðμχÞ þ

α̂χ
4π

�
1

ε̂
þ 1

���
1

3

�
h2

þ
�
8

3

�
X8

�
: ðA10cÞ

The divergent parts of the LECs, independently pre-
sented in Refs. [49,61], cancel the loop contributions from
light charged particles, as expected. The μχ-dependence
cancels in the sum of loop and LEC contributions, so

that Πχ̂ðq2Þ does not depend on μχ . Moreover, the
relation between the known αOS and α̂χ depends on
unknown LECs through Πχ̂ðq2 ¼ 0Þ in the scheme-
matching relation:
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αOS ¼
α̂χ

1 − Πχ̂ð0Þ
: ðA11Þ

A more convenient renormalization scheme that more
closely resembles the standard minimal subtraction is
achieved by rewriting ZA;χ in Eq. (A7b) as

ZA;χ ¼ 1þ z̄A;χðμχÞ þ δzA;χ ; ðA12aÞ

z̄A;χðμχÞ ¼ 8e2χhr2ðμχÞ − 4ê2χX8ðμχÞ; ðA12bÞ

where δzA;χ contains the divergent parts of the LECs,
proportional to ð1=ε̂þ 1Þ, and the fine-structure constant is
redefined as

αχðμχÞ≡ α̂χ
1þ z̄A;χðμχÞ

: ðA12cÞ

Such a redefinition corresponds to a different choice
(scheme) in separating the counterterm Lagrangian. The
first of Eqs. (A7) now reads (up to higher-order terms in αχ)

LA;χ ¼ −
1

4e2χ
FμνFμν −

1

4e2χ
FμνFμνδzA;χ þ � � � : ðA12dÞ

The corresponding finite vacuum polarization is given by

Πχðq2Þ¼ Π̃πðq2;m2
π;μ2χÞþ Π̃lðq2;m2

e;μ2χÞþ Π̃lðq2;m2
μ;μ2χÞ;

ðA12eÞ

where Π̃π;l are obtained from Ππ;l by replacing α̂χ → αχ
and 1=ε̂ → −1 in (A10a) and (A10b).
In this new scheme, the beta function for the renormal-

ized coupling αχðμχÞ is similar to the standard minimal
subtraction scheme. The running of αχðμχÞ is controlled by

μχ
dαχðμχÞ
dμχ

¼ −
β0ðμχÞ
2π

α2ðμχÞ þOðα3χÞ; ðA13Þ

β0ðμχÞ ¼ −
4

3
ñlðμχÞ −

1

3
ñπðμχÞ;

ñl;πðμχÞ ¼
X
l;π

Q2
l;πnl;πθðμχ −ml;πÞ; ðA14Þ

where the sum over charged leptons (l) includes the
electron and the muon.
Another benefit of this renormalization scheme is that

the relation to the on-shell coupling does not involve any
unknown LECs:

αOS ¼
αχ

1 − Πχð0Þ
; ðA15Þ

with Πχð0Þ obtained, at one loop, from Eq. (A12e). This
implies

1

αχðμχÞ
¼ 1

αOS
þ 1

3π

X
l¼e;μ

Q2
l

�
1þ ln

m2
l

μ2χ

�
θðμχ −mlÞ

þ 1

12π
Q2

π

�
1þ ln

m2
π

μ2χ

�
θðμχ −mπÞ: ðA16Þ

The above formula accounts for the discontinuity of αχðμχÞ
at the particle mass threshold, due to the fact that conven-
tionally in χPT one subtracts 1=ε̂þ 1 rather than 1=ε̂. In the
main text of this manuscript, we imply αχ as soon as α has
an argument μχ . Numerically, using the boundary con-
ditions described above and running αðμÞ down from μ ¼
MZ and αχðμχÞ up from μχ ¼ me, we find 1=αχðmpÞ ¼
135.112 while 1=αðmpÞ ¼ 134.302.

APPENDIX B: FACTORIZATION
OF THE DECAY RATE IN THE
NONRELATIVISTIC LIMIT

In this appendix, we provide a justification of the
factorized form for the electromagnetic corrections pro-
vided in Eq. (101). This form can be rigorously derived for
the nonrelativistic electron, but, even for the relativistic
electron, it captures the leading series in ðπα=βÞn and
α=πðπα=βÞn. As these terms are enhanced by a factor of π2

with respect to naive two-loop corrections, they are relevant
at the level of ∼10−4, and their estimate requires the
evaluation of the diagrams in Fig. 3 and of next-to-next-
to-leading order real-virtual and real emission diagrams. As
we argue below, the first corrections to Eq. (101) are of
order Oðα2Þ.
For E0 − Ee ≪ me, which does not apply to neutron

decay but would apply, for example, to triton decay, we
could further integrate out the scale of the electron mass,
and match =πEFT onto a theory with nonrelativistic elec-
trons (NRQED). In this theory, the charged-current vector
operator, with coupling constant gV in front, matches onto

LNRQED ¼ −
ffiffiffi
2

p
GFVudgVCNQREDψ̄eγ0PLνeN̄vτ

þNv

þOðβ2Þ; ðB1Þ
where ψe denotes a nonrelativistic electron field. The
matching coefficient at one loop can be extracted from
the matching of heavy-light onto heavy-heavy currents
performed in Ref. [123], and, in the MSχ scheme, it is
given by

CNRQEDðμÞ ¼ 1þ α

2π

�
3

4
ln

μ2

m2
e
−
11

4

�
: ðB2Þ

The NRQED Lagrangian still contains various photon
modes: soft (k0 ∼ jk⃗j ∼meβ), ultrasoft (k0 ∼ jk⃗j ∼meβ

2),
and potential (k0 ∼meβ

2 ≪ jk⃗j ∼meβ). We can integrate
out soft and potential modes by matching onto potential
NRQED (pNRQED) [140,141]. In this EFT, the proton and
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electron interact via nonlocal potentials, and via the
exchange of ultrasoft photons. In momentum space, the
potential is given at leading order by the Coulomb
potential,

VLOðq⃗Þ ¼ −
4πα

q⃗2
: ðB3Þ

In principle, the above potential should be evaluated using
α in the Thomson limit, as the electron no longer contrib-
utes to the running of α within pNRQED. However, as we
discuss below, the difference with the coupling in HBChPT,
αðμχÞ, leads to very small effects numerically. Corrections
to the potential are organized in powers of α and β. NLO
[OðαÞ and OðβÞ] and N2LO [Oðα2Þ, OðαβÞ, and Oðβ2Þ]
corrections to the potential have been computed, both for
systems of equal mass (tt̄, quarkonium, and positronium)
and for systems with different masses (such as the hydro-
gen atom or the Bc meson). The results can be found
in Refs. [107,140–142]. No corrections to the potential
appear at NLO. At N2LO, we can adapt the result of
Refs. [141,142] to the case of QED, CF ¼ 1, CA ¼ 0, and
nf ¼ 0. We find

VN2LO ¼ þ 4πα

m2
e

cD
8
; ðB4Þ

where cD is the Darwin term and cD ¼ 1 at the order we are
working. Finally, the interactions of ultrasoft photons with
heavy quarks do not contribute up to N3LO [107,140]. This
can for example be seen by the fact that one-loop real
emission diagrams only contribute at Oðαβ2Þ, three orders
smaller than the leading order.
In the hypothetical case in which the electron emitted in

neutron decay would be nonrelativistic, the decay rate
could thus be expressed as

dΓn

dEe
¼ G2

FjVudj2
ð2πÞ5 ð1þ 3λ2ÞpeEeðE0 − EeÞ2

× ½gVðμχÞ�2jCNRQEDðμÞj2jMpNRQEDj2; ðB5Þ

with the pNRQED matrix element organized as

jMpNRQEDj2 ¼
X
n

�
απ

β

�
n
f1; α; β; α2; αβ; β2;…g: ðB6Þ

From the previous discussion, the LO is provided by the
iteration of the Coulomb potential, which leads to the
nonrelativistic Fermi function

jMLO
pNRQEDj2 ¼ FNRðβÞ: ðB7Þ

Since there are no NLO potentials and the ultrasoft modes
only contribute at N3LO, MLO

pNRQED does not receive any

OðαÞ corrections. OðαÞ corrections are entirely contained
in the matching coefficient CNRQED. Therefore, the leading
ðπα=βÞn and the subleading α=πðπα=βÞn terms are captured
by the factorized expression

dΓn

dEe
¼ G2

FjVudj2
ð2πÞ5 ð1þ 3λ2ÞpeEeðE0 − EeÞ2

× ½gVðμχÞ�2jCNRQEDðμÞj2FNRðβÞ: ðB8Þ

This result was proved in the case of tt̄ production at
threshold in Refs. [104–106,119].
To make a connection with the relativistic expressions,

we now notice that

ð1þ δRCðEe; μχÞÞ⟶
β→0 jCNRQEDðμχÞj2; ðB9Þ

where we neglected real emission diagrams which give a
contribution that goes as ðE0 − EeÞ2=E2

e ∼Oðβ4Þ.
By expressing the decay rate as

dΓn

dEe
¼G2

FjVudj2
ð2πÞ5 ð1þ 3λ2ÞpeEeðE0 −EeÞ2½gVðμχÞ�2FNRðβÞ

× ð1þ δRCðEe;μχÞÞ; ðB10Þ

our expression correctly reproduces the relativistic one-
loop result, and, in addition, captures all subleading terms
of α=πðπα=βÞn. Numerically, the various contributions to
Δf [see Eq. (110)] average to be as follows:

ðα2β ; α2; α2 ln βÞ ¼ ð8; 5; 2Þ × 10−5. To obtain a diagram-

matic expansion of the Fermi function FNR in the electro-
magnetic coupling constant at the level of decay rate, we
evaluate it with χPT value αðμχÞ. We also test the Oðα2Þ
difference induced by computing FNR using αðμχÞ versus α
in the Thomson limit and obtain a result for Δf that is only
0.002% higher. Therefore, theoretical improvements [i.e.,
knowledge of the termsOðα2 ln βÞ] would not induce much
change in our results and uncertainty estimates.

APPENDIX C: DETAILS ON THE TWO-LOOP
ANOMALOUS DIMENSIONS

As discussed in Secs. III A and V C, we obtain the two-
loop Oðα2Þ anomalous dimensions, γ1 and γ̃1, in the LEFT
and χPT by adapting calculations in the literature. For γ1 in
the LEFT, we use Refs. [68,71] which consider the two-
loop QCD anomalous dimension of a four-quark operator.
As each diagram is given separately, their results can be
modified to obtain the two-loop QED diagrams for the
operator in Eq. (9). This involves replacing the QCD
couplings, multiplicities, and color factors with their
QED counterparts. The same procedure also allows us to
reproduce the OðααsÞ anomalous dimension γse. Although
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Refs. [68,71] provide results using one particular
scheme for the evanescent operators, a ¼ −1, the full
a-dependence can be recovered due to the fact that both
the 1=ϵ2 and the 1=ϵ coefficients of the diagrams are given,
leading to the result in Eq. (14).
To obtain γ̃1, relevant for the RGE in χPT, we use

calculations for the heavy-light currents in heavy-quark
effective theory [100]; see also Refs. [101–103]. These
calculations compute the two-loop anomalous dimension in
QCD for a heavy-light current, Q̄Γq, where Q denotes a
nonrelativistic field, q is a relativistic particle, and Γ is an
arbitrary Lorentz structure. As we argue below, the graphs
in Ref. [100] can be adapted to obtain the relevant diagrams
for the anomalous dimension of gV ; see Fig. 3.
One way to see that the two cases are related to each

other is by rewriting the weak operator in Eq. (1) using
Fierz identities,

ðp̄vμnÞðēLγμνLÞ ¼
X
i;j

cijðν̄cLΓ̄inÞðp̄Γ̄jecÞ þ E; ðC1Þ

where i, j run over the Dirac structures, cij are coefficients
determined by the Fierz relation, and E is an evanescent
operator. The last bilinear on the right-hand side of Eq. (C1)
now takes the same form as the heavy-light current, where
the proton and the charge-conjugated electron, ec, play the
role of the Q and q fields. This means the diagrams will
take the same form as for the heavy-quark calculation, with
the heavy-light vertex Γ replaced by Γ̄j, while the neutral
neutrino and neutron fields are irrelevant to the calculation.
The final ingredient to show a correspondence is the

fact that the loop diagrams do not depend on the Dirac
structure of the vertex [103]. Since QED vertices, ∼vμ, and
propagators, ∼i=ðv · kÞ, on the heavy-quark/proton line do
not involve any Dirac structure, they cannot modify the
original vertex. This is less obvious in the part of the

diagrams involving the light-quark/electron line as it
consists of a string of QED vertices, each of which comes
with a propagator. However, one can show that, after
performing the loop integrals, all gamma matrices will
be contracted either with each other or with factors of vμ.
This implies that the string of gamma matrices on the
electron side also becomes proportional to the identity
and leaves the original vertex unchanged. The independ-
ence of the gamma structure then allows us to adapt the
results of Ref. [100] to obtain the diagrams with insertions
of the right-hand side of Eq. (C1).10 The relevant replace-
ments again involve replacing the QCD couplings, multi-
plicities, and color factors with their QED counterparts,
where the appearing QED charges are now Qp and
Qeþ ¼ −Qe− . The result of this procedure is given in
Eq. (88). Consequently, the anomalous dimensions can
be obtained by a simple substitution CF ¼ 1, CA ¼ 0,
TF ¼ 1 in the QCD calculation of Ref. [143]. This also
allows us to obtain γ̃2 as

γ̃2 ¼
1

64

��
−80ζ4 − 36ζ3 þ 64ζ2 −

37

3

�

þ ñ

�
−
176

3
ζ3 þ

448

9
ζ2 þ

470

9

�
þ 140

27
ñ2
�
: ðC2Þ

Even though this expression contains terms enhanced by
π4, the numerical value of γ̃2 is of natural size, γ̃2 ≲ 2 in
=πEFT, and its contribution is beyond the required accuracy
for neutron β decay.
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