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In this paper, we present experimental results and numerical simulations of trident production,
e− → e−eþe−, in a strong electromagnetic field. The experiment was conducted at CERN for the purpose
of probing the strong-field parameter χ up to 2.4, using a 200 GeV electron beam penetrating a 400 μm
thick germanium crystal oriented along the h110i axis. For the current experimental parameters we found
that the trident process is primarily a two-step process, and show remarkable agreement between theoretical
predictions and experimental data. This paper is an extension of the previously published paper
[C. F. Nielsen et al., Phys. Rev. Lett. 130, 071601 (2023)] and features new analysis differential in the
energy of the produced positron and electron in the trident process. Even for the more demanding
differential analysis, we find good agreement between theoretical predictions and experimental data, while
a slight discrepancy is found in the high energy tail of the trident spectrum. This discrepancy could be an
indication of the direct process, but further investigation is needed due to the large uncertainties in this part
of the spectrum. Finally we present a suggestion for a future experiment, aiming to probe the direct process
using thin crystals.
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I. INTRODUCTION

When an electron impinges on an electrostatic potential
barrier, it may penetrate or be reflected by the barrier.
Classically, for electron energies less than the barrier
height, the electron is always reflected. In nonrelativistic
quantum mechanics, an exponentially damped tunneling
into the barrier is predicted, with no transmission far
beyond the classical turning point when the potential
remains higher than the electron energy. In relativistic
quantum theory, however, an undamped electron-current is
present beyond the classical turning point provided the
barrier rises sufficiently abruptly and high, even if the
barrier has an infinite height. This was shown in 1929 by
Oscar Klein [1] for a step barrier in one of the first
applications of the Dirac equation. It became known as
the “Klein paradox.” As later shown by Fritz Sauter [2,3],
inspired by a supposition by Niels Bohr, the potential has to

rise with the rest energy of the electron, mc2, over its
reduced Compton wavelength, ƛC ¼ ℏ=mc, for transmis-
sion to occur with substantial probability. The correspond-
ing field strength,

E0 ¼ m2c3=eℏ ≃ 1.32 × 1016 V=cm; ð1Þ

later became known as the critical or Schwinger field.
Previous studies of the Klein paradox have been limited

to theory [4–6]. Possibility of observing phenomena
analogous to the Klein paradox in graphene have been
reported [7–11]. Other studies have been partly motivated
by heuristic arguments linking the Klein paradox, strong
field pair production and Hawking radiation from black
holes [12–14]. Today, the Klein paradox is explained by the
creation of electron-positron pairs at the boundary [4].
In this paper, which elaborates, underpins and extends

the results presented in [15], we present results for an
analogous process, the trident production in strong electro-
magnetic fields. Based on a comparison of experimental
values and simulated expectations computed using the local
constant field approximation (LCFA), even when treated
differentially in terms of energy of the produced positron, it
is shown that the trident process e− → e−eþe− in a strong
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external field is well understood under our experimental
conditions. In [15] we only show the integrated positron
spectrum, while this paper features differential spectra,
which is a considerably stronger test of the underly-
ing theory, as information is lost during integration.
Furthermore, details of the experiment and the data analysis
are provided so the reader can verify the robustness of the
results. Finally, we present simulated results for relevant
cases which have not yet been investigated experimentally,
mainly to inspire future experiments. These results are based
on the theory thus corroborated by comparing the exper-
imental values and the simulated expectations presented.
Charged particles exhibit strong-field effects when the

strength of the external field in the instantaneous rest
system approaches the critical field E0. One manifestation
is that, due to the neglect of finite recoil, the classical
synchrotron radiation spectrum for an electron in a constant
magnetic field reaches angular frequencies higher than the
electron’s energy divided by ℏ, that is the classical spectrum
contains photons which are more energetic than the
electron itself. Quantum corrections remedy this situation,
as has been shown in previous experiments [16]. The
parameter χ, defined by [17–19]

χ2 ¼ ðFμνpνÞ2=m2c2E2
0; ð2Þ

gives an indication of the importance of the strong-field
effects. Here Fμν is the electromagnetic field strength tensor
and pν is the four-momentum of the particle. For a constant
field perpendicular to the direction of motion, χ becomes
exactly the strength of the field in the particle’s system
divided by E0 (the field is boosted by the Lorentz factor γ).
Additionally, for a magnetic field, χ becomes equal to the
ratio of ℏ times the characteristic angular frequency of
classical synchrotron radiation and the input energy [20],
up to a numerical factor of order 1. Strong-field effects
become significant for χ around 1 and larger. Hence, χ is
known as the strong-field parameter and some literature
refer to χ as “the quantum nonlinearity parameter.” For
photons, the expression (2) for χ applies as well, with the
momentum of the electron replaced by the momentum of
the photon.
The strong field is achieved in our experiment by aiming

a beam of high-energy electrons at a single crystal, where a
principal axis is aligned with the direction of the beam.
Coherent scattering of electrons on rows of atoms, in this
situation, implies that the electrons are effectively moving
through the crystal as if they were subjected to the
“continuum” field achieved calculationally by smearing
out the crystal atoms uniformly in the direction of the main
axis. Hence, the motion, which determines radiation yields,
trident production, and the like, is therefore determined by
a field that, effectively, has a macroscopic extent in the axial
direction. Conversely, if the major axial and planar direc-
tions of the crystal are far away from the beam direction,

the atoms behave as if they were placed randomly and the
radiation and trident processes will appear exactly as if the
target were amorphous. Hence, we call this a “random”
orientation of the crystal, or, we designate it—to be brief—
as an “amorphous crystal.”
There are two contributions to the production of tridents.

The first contribution occurs when incoming electrons
produce electron-positron pairs directly in the continuum
field or in the field from individual atoms. The second
contribution occurs in two stages, where the electron first
emits a photon, which then later converts to an electron-
positron pair while passing the remaining part of the
crystal. For the crystal used in this experiment, the two
contributions are of the same order of magnitude for
random orientation (corresponding to an amorphous target
of the same thickness), while the two-step process is up to
two orders of magnitude larger than the direct production in
the aligned case. In the aligned case, any process resulting
from coherent action of the crystal atoms is accompanied
by an incoherent component due to thermal diffuse scatter-
ing on individual atoms. The latter usually gives only a
small addition to the coherent contribution, except for the
production of relatively low energy pairs in the direct
trident process.

II. EXPERIMENT AND DATA PREPROCESSING

The experiment was performed by the NA63 collabo-
ration at the H4 beamline of the CERN SPS that provided
a 200 GeV electron beam having a σx ≃ σy ≃ 105 μrad
divergence impinging on a 400 μm thick germanium single
crystal oriented along the h110i axis. Figure 1 is a
schematic of the setup where M0-M7 are MIMOSA-26
position sensitive CMOS-based pixel detectors [21]. The
detectors have an active area of 1.1 × 2.1 cm2 containing
576 × 1152 pixels resulting in a resolution of a few μm
(after weighting the hit pixels appropriately in the off-line
analysis). The crystal target is mounted on a goniometer
that allows us to set the crystal orientation, aligned or
random, with μrad precision. The MDX27 magnet provides
an integrated magnetic field of 0.072 Tm and, together with
the detectors in Arm 1 and Arm 2, forms a magnetic
spectrometer used to measure the energy of each charged
particle from the deflection angle in the magnet. The crystal
is situated inside a vacuum chamber at ≃300 K. To reduce
scattering and background, all mimosas are placed in
closed compartments that are continuously flushed with
helium. The total material contributing to the background
before theMDX27 magnet, in units of the radiation lengths,
amounts to ≃1.1%.

A. Alignment of detectors

Data from Mimosa detectors consist of a list of ðx; yÞ
positions from clusters of pixels on each chip that have
been recognized as a hit by the Mimosa preprocessing
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software. These ðx; yÞ hit coordinates are defined with
respect to the coordinate system of each Mimosa, upon
which we transform each Mimosa hit coordinates into a
common coordinate system. This is achieved by letting M0
and M1 define the common coordinate system and employ-
ing an alignment algorithm that transforms hit coordinates
into the common coordinate system. In practice this is done
by an affine transformation that involves multiplying each
hit by the 3 × 3 transformation matrix A defined by

Xi ¼ AiX0
i ð3Þ

where

Xi ¼
0
@ xi1 xi2 xin

yi1 yi2 … yin
1 1 1

1
A; ð4Þ

and

X0
i ¼

0
@ x0i1 x0i2 x0in

y0i1 y0i2 … y0in
1 1 1

1
A; ð5Þ

which is the hits in the common coordinate system and in
the Mimosa i’s coordinate system respectively. This trans-
formation provides an alignment matrix for each detector
after M1 and M2. This is an iterative process in which we
slowly transform a Mimosa into a common coordinate
system.
The alignment algorithm begins by finding the first

iterations lists Xi and X0
i, for a considerable amount of

events, by producing a set of tracks derived by combining
all hits in Mi−2 and Mi−1, which are projected onto Mi for
each event. Around each track projection onMi we identify
the closest hit within a search radius R. If we find a hit, we
save the projected hit in Xi and the actual hit in X0

i. We then
find the corresponding matrix Ai by solving Eq. (3) and
transform all hits inMi using the matrix Ai. This procedure
moves Mi in the common coordinate system, which could
result in hits that were previously not within the original

search radius, to now be included, and vice versa. A new
list of projected and actual hits, Xi and X0

i, with the same
radius R are found, and a new matrix Ai is found, and the
process of transforming all hits repeats. This process is
continued until the matrix Ai no longer changes signifi-
cantly, after which the search radius is halved and the entire
process is repeated. The search radius is lowered until the
minimum radius Rmin ¼ 25 μm is reached. At this point,
the complete transformation for the target Mimosa is then
the product of all the transformations done during this
process, resulting in a final transformation matrix Ai. After
aligning Mi, we can use the newly transformed hits in Mi
together with Mi−1 to align the next Mimosa Miþ1.
In Fig. 2, we show the distance between projected and

actual hits before and after the alignment process, for
Mimosas M2-M7. The right-hand side curves on each
figure are the distances before alignment for amorphous,
aligned and background (when the crystal is removed)
curves, where the curves on the left of each figure are the
same data, but after alignment. Before alignment, it is clear
that noise hits and hits not pertaining to the particle tracks
are contributing, but there is also a large peak originating
from real particle tracks. This indicates that the physical
alignment of the detectors in the laboratory is off by several
mm. After alignment, we see that the error between the
actual and projected hits are less than 20 μm. The align-
ment error is a combination of the detector uncertainty,
which is about 3.5 μm, and the multiple Coulomb scatter-
ing each particle undergoes between each detector. During
the two-week experiment, the detector’s location drifted
by more than 100 μm due to day to night temperature
fluctuations, thus rendering the single alignment runs
unusable. The alignment method predicts where a particle
is likely to be in a detector. This is very easy for a freely
moving particle with no magnets. The alignment algorithm
was therefore adjusted to be able to align M5-M7 with the
magnet turned on. The adjusted algorithm produces an
alignment matrix for each set of 105 events, so that the
aligned, amorphous and background runs are divided into
sets of 105 events that are individually aligned. By
assuming that the energy of each particle is known, we
can determine the deflection in the magnet, allowing us to

FIG. 1. Experimental setup. A schematic representation of the experimental setup in the H4 beam line in the SPS North Area at CERN.
The symbols “Mi”, with i ¼ 0;…; 7, denote “Mimosa-26” position sensitive detectors.
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predict the track in detectors M5-M7. For amorphous and
background configurations, the material budget is only a
few % of the radiation length X0, meaning that most
particles will have the original 200 GeV. In Fig. 3, we show
the simulated and experimental data of the primary electron
spectrum for all three crystal configurations. In the amor-
phous and background configurations, it is clear that most
particles lose no energy and have an energy of 200 GeV
when going through the magnet. The energy peak in the
aligned configuration is 185 GeV, which is the energy we
assume all particles have going through the magnet in the
aligned configuration. To avoid using low energy particles
in the alignment algorithm, we confine the algorithm to
only use tracks that are within �20 GeV of the peaks of
each configuration. This peak is 200 GeV for the amor-
phous and background configurations and 185 GeV for the
aligned configuration.
The difference between the amorphous, aligned and

background curves in Fig. 2 after alignment of the detectors
is due to additional scattering in the crystal. As will be
discussed later, the particles scatter more in the aligned
crystal configuration compared to in the amorphous crystal
configuration. We believe the discrepancies between the
simulated and experimental data in Fig. 3 for the back-
ground and amorphous configurations is due to a small

number of particles scraping the collimators in the beam-
line, which is not accounted for in the simulation. This
effect is largest for the background case and is negligible
for the aligned case because the material budget in the
setup, which we account for in the simulation, is much
larger than what is scraped in the beamline collimators.
Since the energy distributions of particles are not

perfectly Gaussian, the alignment algorithm for the detec-
tors after the magnet could introduce a slight bias. To
account for this, mimosas M6-M8 are aligned using the
same procedure in the simulation, therefore introducing an
identical bias in the simulated data. This improved align-
ment procedure in the simulation is new, compared to the
results shown in [15], and results in minor differences in
the simulated curves that will be mentioned when relevant.
The alignment procedure for the experimental data have not
changed compared to [15].

B. Alignment of crystal target

As the penetrating particle approaches major crystallo-
graphic directions, like low-index planes and axes, its
radiation emission is typically enhanced by factors of
4-5 in the planar case, and up to 60 for the axial
case, for a Ge crystal with the thickness used in this

FIG. 2. The distance between projected hits and actual hits in the Mimosa detectors, before and after using the detector alignment
algorithm. Blue is for the aligned crystal data, red is for the amorphous data, and black is data without the crystal. Each crystal
configuration is shown twice on each figure, one before alignment (right) and one after (left). Each figure corresponds to a particular
detector, where the previous two detectors has been used to define a projected hit in the target detector, indicated by the title of each
figure.
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experiment [22]. Thus, a measurement of the radiation
emission, as a function of angular setting of the crystal,
identifies the planes of the crystal by the construction of a
stereogram. The location, in angular space, of the axis is
found from the stereogram and verified by a couple of scans
across the axis, which must be symmetric if the correct
location is found. For this experiment the crystal was
mounted on a goniometer with a stepsize of 1.7 μrad. This
crystal alignment technique provides a ∼10 μrad position-
ing precision on the h110i axis.
In the off-line analysis, the angular location of the axis is

identified by the impinging particle losing a substantial
fraction of its energy, through radiation emission, its

primary process for energy loss. In Fig. 4, we show the
amount of particles losing more than 90 GeV as a function
of the horizontal (x-direction) and vertical (y-direction)
entry angle defined by hits in M0 and M1, normalized to
the full beam. Since there are no directional effects in the
amorphous crystal orientation, which was verified by small
angular scans around the chosen “amorphous” location,
this curve is flat. Clear peaks indicate the direction of the
axis in the horizontal and vertical planes for the setup in the
aligned crystal configuration. The beam is highly colli-
mated which is what gives rise to these sharp edges in the
beam profile. In the simulation of the experiment, which
will be described next, we need to take into account the
beam shape and axis location from the offline analysis.

III. SIMULATION

The simulation tool is built using two separate codes, one
simulating the experiment, and the other simulating the
particles penetrating the target crystal. Since the material
budget for each element is small, the time steps for
propagating particles through the setup can be macro-
scopic, whereas for aligned crystals the time steps need to
be on the nanometer scale. Thus, a simulation tool was
developed for the experiment while an extended version of
the crystal simulation used and explained in [23–26] was
included in the experimental simulation. In the following,
we will denote the entire simulation which includes both
experiment and crystal code “simulation,” whereas the
results based solely on the crystal simulation will be called
“crystal simulation.”
The purpose of the simulation is to produce a datafile

identical to the ones obtained from the experiment. The
result of a simulation is therefore a list of events containing
ðx; y; zÞ positions from hits in detectors as in the experi-
ment. Each event contains a primary electron with energy
of 200 GeV, whose starting position and entry angle
matches that of the experimental beam. A list of initial
conditions is generated from an experimental data file
based on accepted single particle tracks. A random entry in
this list is chosen for each particle in each event, defining
the particle’s initial conditions. The particle is then propa-
gated through all the elements in the setup, including mylar
windows, tape, helium, air detectors, and the crystal. With
the exception of the crystal, all elements are divided into
10 pieces through which the particle propagates through
freely. After each section of material, random numbers are
drawn and compared to probabilities of photon emission,
pair production, trident production and multiple Coulomb
scattering. If any event occurs, a value is picked from the
event’s underlying distribution through inverse transform
sampling as described later; when, for example, a photon
with energy Eγ and opening angle 1=γ is emitted, the
particle loses Eγ and continues in its original direction.
The secondary particle is now propagated to the end of the
experiment in the same manner as the initial particle.

FIG. 3. Simulated and experimental spectra for all primary
particles for the aligned, amorphous, and background configu-
rations.

Horizontal

Vertical

FIG. 4. Amount of primary electrons losing more than 90 GeV
as a function of vertical and horizontal entry angle into the setup,
normalized by beam shape for the amorphous and aligned crystal
orientations. The beam curve correspond to the full beam
normalized to fit the scale of the other curves. Black vertical
lines indicate the axis location in angle for the aligned case.
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If a charged particle encounters a detector, the detector
will record a hit with a probability of approximately one.
Both the x and y positions of the impact coordinate are
added with a random number derived from a normal
distribution with mean zero and width σ ¼ 4.2 μm. In
the event that a secondary particle impacts within 50 μm of
an already recorded hit, the two hits will be combined into a
single hit with their average position. This is intended to
simulate how a detector in such a situation would react.
When a charged particle strikes the surface of the detector
chip, a cluster of pixels are triggered, leaving several pixels
in the vicinity of the impact active. Pixels are about 20 μm
wide, so if two particles land close to each other, their active
pixel areas will overlap. The preprocessing software in the
detectors is more sophisticated than simply combining two
adjacent hits as mentioned above, but we consider this
implementation to be adequate. The detectors for this
experiment do not record photons.
The detectors have x and y dimensions of 2.1 cm and

1.1 cm, respectively, and are positioned according to the
alignment of the detectors during the experiment. The dipole
deflection occurs in the horizontal direction (x), where the
detector is the widest. The finite dimension of the detectors
also implies that if a particle does not land within the
boundaries of the detector, the hit will not be recorded.
This leads to a natural energy cutoff for low energy particles,
since they are simply deflected outside detectors M6-M7.
It is for this reason that M6-M7 are placed so close to each
other and the magnet, whereas M8 is located a considerable
distance away in order to increase the energy resolution for
high-energy particles. For the simulation, is important that
the direction of the beam, position of the detectors in space,
and absolute direction of the crystal axis relative to the beam,
match what is measured in the experiment, as all three
parameters affect one another significantly.
Since particles in the GeV range experience only small-

angle deflections in the CERN supplied MDX dipole
magnet we can safely approximate the magnet as an
instantaneous deflection only at its center. While this is
computationally easier, it also excludes electromagnetic
processes arising from the interaction with the magnetic
fields. Nevertheless, this neglect is of no concern since
possible photon emissions will be in the keV range, which
eliminates any possibility of pair production.
The crystal simulation is initiated when a particle

penetrates the target crystal. The Boris Pusher algorithm
is used to propagate charged particles in the external
electric field [27–29]. The photons travel in a straight line
through the field without any perturbations in their direc-
tion of motion. With each step forward in time, we
determine if any electromagnetic process occurred, and
if so, we determine the properties of the event based on
its underlying distribution. A detailed description of the
exact methodology for evaluating random numbers from
distributions is provided in [23], which describes how

inverse transform sampling is used in the case of photon
emission and pair production using the LCFA. The relevant
theoretical models are described later in this section as well.
When a real photon is produced, it is emitted at a 1=γ

angle, with a random azimuthal angle between 0 and 2π,
relative to the emitting particle. The emitting particle
receives an instantaneous recoil, causing it to slow down.
When a pair is created from a direct trident process, the
emitting particle also receives an instantaneous recoil
according to the total energy of the pair, while the pair
is separated in opposite directions according to the
Borsellino angle [30], with a random azimuthal angle
between 0 and 2π. When a photon decays, the photon
simulation stops, and the produced electron and positron
receive a transverse kick in opposite directions according to
the Borsellino angle at random azimuthal directions.
On Figs. 5 and 6 we show the positron spectrum and pair

energy spectrum for all tridents produced in the simulation.
The pair energy is defined as the sum of the electron and
positron energies produced during the reaction. These
spectra are categorized by the various ways a trident can
originate. It is instructive to note that the number of ways in
which electrons and positrons can be created is greater than
the fundamental number of trident processes that will be
discussed in the following sections. In addition to the usual
two-step and direct processes, there are cross processes,
such as the creation of a photon in the background, the
production of that pair in other background elements, or the
production of that pair through incoherent and coherent
processes within the crystal.
Additionally, a photon can also be generated in the

crystal by coherent or incoherent processes, and pair
produce in the subsequent background elements located
after the crystal. While the experimental setup cannot
distinguish between these processes, it is clear that the
pure crystal processes will dominate the spectrum. As we
also see, all incoherent pair-production processes diverge at
low energies, where coherent pair-production processes
decline as a result of the small value of the strong-field
parameter χ, Eq. (2), for low-energy photons, resulting in
an exponentially suppressed probability of pair-production.
As expected, we see a very low contribution from the
coherent direct trident process. At the end of this paper,
a brief discussion is provided on how to enhance the
visibility of the direct trident process in crystals.

A. Crystal fields

The motion of a charged particle incident at a small angle
to a major crystallographic direction is in first approxima-
tion governed by successive, correlated small-angle colli-
sions with screened target nuclei. The trajectory of the
particle is determined by the continuum potential obtained
by smearing the atomic charges along the axis with which it
is nearly aligned, [31,32] and [20,33]. For a row of atoms
the continuum potential is given by
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UðrÞ ¼ 1

d

Z
∞

−∞
dzVðr; zÞ; ð6Þ

where V refers to the potential energy pertaining to the
interaction between the projectile and a target atom, z is the
coordinate along the atomic row, r is the transverse distance
to the center of the axis, and d is the average spacing
between the atoms in the string. For a single isolated row of
atoms,U has rotational symmetry, Eq. (6). For a true crystal
there is periodicity in transverse space, U ¼ UðrÞ. In the
crystal simulation, we model the electric field using the
Doyle-Turner potential which is based on an analytical
approximation to relativistic Hartree-Fock atomic poten-
tials. For a single row of atoms and a projectile with unit
charge, the potential is given by

UðrÞ ¼ � e2

a0

2a20
d

X4
i¼1

ai
Ci

e−r
2=Ci ; ð7Þ

where the sign reflects that of the incoming charge (�jej),
a0 ¼ 0.5292 Å is the Bohr-radius of hydrogen,

Ci ¼ CiðρÞ≡ bi=4π2 þ ρ2; ð8Þ

and ρ denotes the two-dimensional root-mean-square
thermal displacement of the atom from its equilibrium
position. For details and explicit values of the coeffi-
cients ai (Å) and bi (Å

2), see [34,35]. For values of the
thermal vibration amplitude ρ, see [36]. The Bohr radius is
proportional to the reduced Compton wavelength of the
electron by a0 ¼ ƛC=α, where α is the fine structure
constant.
Due to the thermal vibrations of atomic nuclei, there is a

local density of nuclei surrounding each string of atoms that
is given by

nnðrÞ ¼
1

πρ2d
e−r

2=ρ2 : ð9Þ

FIG. 5. Simulated positron spectra categorized by their type of origin in the experiment. A description of the different origins can be
found in the text. All processes happening in the coherent electric field from the crystal, is labeled “coh” (coherent), while the incoherent
scattering processes are labeled “inc” (incoherent).
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It is this density distribution that is combined with Eq. (6)
in order to include the thermal vibrations of the atomic
nuclei in the resulting potential, Eq. (7). Since the string
potential is highly dependent on the thermal vibration
amplitude, elements in which the thermal amplitude is
sensitive to the crystal temperature can be used to probe
several values of the strong-field parameter χ. Germanium,
for example, can achieve almost a factor of two in the
maximum field strength by cooling the crystal from 300 K
to 100 K. In comparison, the effect of cooling on tungsten is
negligible.
During each step in the crystal simulation, a particle

experiences only the field originating from the 20 closest
strings. A transverse cut-out of the χ-values encountered
for a 200 GeV electron incident on a germanium crystal
oriented along the h110i axis is shown in Fig. 7. Each peak
represents a string of atoms that extends into the figure
for the entire length of the crystal, and the intensity axis
displays the resulting strong-field parameter χ, Eq. (2),
assuming that the electron has zero transverse momentum.

Since the field from a single string points radially away
from it, the total field, and hence χ, will be zero if a particle
is placed between neighboring strings symmetrically. For
this particular crystal and electron energy, we are able to
probe χ values in the range 0 < χ < 2.4.
For a thorough discussion of the motion of charged

particles in aligned single crystals, the reader should refer
to the original publication of J. Lindhard [31], the extensive
lecture notes of J. U. Andersen [32], as well as review
articles: [20,33].
In the case of a negatively charged particle, such as an

electron, each string acts as a potential well, which can
confine the particle’s motion transversely. This is an
example of so-called channeling. Using the potential depth
and the particle’s Lorentz factor γ, we can determine what is
called the “critical angle” or “Lindhard angle.” Generally,
this angle represents the incidence angle to the crystal axis
below which a high fraction of incoming particles will be
channeled, because the energy associated with their trans-
verse motion is initially lower than the string potential

FIG. 6. Simulated pair energy spectra categorized by their type of origin in the experiment. A description of the different origins can be
found in the text. All processes happening in the coherent electric field from the crystal, is labeled “coh” (coherent), while the incoherent
scattering processes are labeled “inc” (incoherent).

CHRISTIAN F. NIELSEN et al. PHYS. REV. D 108, 052013 (2023)

052013-8



maximum (zero for electrons). For the axial case, where it is
usually denoted ψ1, the critical angle is

ψ1 ¼
ffiffiffiffiffiffiffiffiffiffi
4Ze2

pvd

s
¼ αffiffiffi

γ
p

β

ffiffiffiffiffiffiffiffiffiffi
4Za0
d

r
ð10Þ

for a unit-charge impact at momentum p ¼ γmv and
velocity v ¼ βc on a target of atomic number Z. It should
be noted that ψ1 scales as 1=ðpvÞ1=2, that is, for high values
of the Lorentz factor, it decreases in proportion to 1=

ffiffiffi
γ

p
where γ ≡ 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − β2

p
. In the case of a 200 GeV electron

incident on a germanium crystal oriented along the h110i
axis, the critical angle is ψ1 ¼ 57 μrad.

B. Electromagnetic processes in external fields

For the crystal simulation, we have implemented three
processes in the external continuum field: Photon emission,
pair production, and direct trident production. The same
processes are implemented for incoherent scattering on
nuclei, which is explained in detail in Sec. III C.
Photon emission and pair production are modeled

using the local constant-field approximation (LCFA).
The applicability of the LCFA for photon emission
requires the projectile to move only slightly in the
transverse direction relative to the strings of atoms during
the formation of the radiation. Because coherent photon
emission is possible from points along the trajectory that
are covered by the same light cone, it is necessary that
the opening angle of the light cone, 1=γ ¼ 2.6 μrad, be
smaller than the angular excursions of the projectile
during passage through the crystal. For a primary electron
in the channeling regime, its angular excursions is on the
order of the critical Lindhard angle [31,32], which in our
case is 57 μrad. For entry angles greater than the critical

Lindhard angle, but smaller than the Baier angle
U0=mc2 ¼ 0.4 mrad, the angular deflections remain
larger than 1=γ [20]. Here, U0 is the continuum string
potential depth which amounts to 215 eV for a single
h110i row of Ge at room temperature. The LCFA is
therefore appropriate for nearly all particles in a beam
with a divergence of ≃105 μrad aimed at the aligned
crystal. See, e.g., [37,38], for studies demonstrating the
applicability of the LCFA in crystals and short focused
laser pulses. As a measure of the applicability of the
constant-field approximation under channeling condi-
tions, the authors of [19] introduced the parameter ρc ¼
ξ2 ¼ 2U0γ=mc2 (where ξ is known as the classical
nonlinearity parameter [39,40] in the strong-field laser
community), which is ≃330 for 200 GeV electrons under
channeling conditions. The large value of ρc verifies that
treating the local field as constant is a good approxima-
tion for the photon emission in the two-step process.
The requirements for application of the LCFA in the

pair creation vertex are similar by crossing symmetry.
However, replacement of the primary electron energy by
the lower photon energy makes conditions less favorable.
Yet this is a relatively minor concern, since the coherent
pair-production rate for Geh110i is only higher than the
incoherent pair-production rate if the photon energy is a
larger fraction of the primary electron energy: averaging
over transverse position at room temperature, the two
rates are equal around 90 GeV.
For the two-step process, the theoretical model described

in this section averages over the photon polarization.
For axially aligned crystals, the experimentally measured
photon spectrum is polarization averaged since each
projectile has a unique trajectory through the crystal.
This is due to the unique angle and position of entry for
each particle, and to multiple scattering altering each
trajectory at random. Therefore, due to the uniqueness
of the emitting particle, a real photon emitted with a
specific polarization will also follow a unique trajectory.
Consequently, the pair production process also becomes
polarization averaged, and modeling the real photon as
unpolarized is a good approximation.
The probability per unit time for an electron to emit an

unpolarized photon in a locally constant strong electro-
magnetic field is given by [17–19,41]

dPrad

dt
¼ −α

c
γƛC

Z
∞

0

du
5u2 þ 7uþ 5

3ð1þ uÞ3z Ai0ðzÞ; ð11Þ

where Ai0ðzÞ is the derivative of the Airy function AiðzÞ
[42], z ¼ ½u=χ�2=3, E is the electron energy. The factor in
front of the integral may alternatively be expressed simply
as c=γa0 or as αeE0c=E, where E0 is the critical field,
Eq. (1). In each time step, we evaluate the absolute
probability of emission, and if a photon is emitted, we

FIG. 7. The strong-field parameter χ inside a germanium crystal
kept at room temperature and oriented along the h110i axis for a
200 GeV electron.
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draw a random number based on the distribution of the
photon energy spectrum, which is given by [17,18,41]

dPrad

dxdt
¼ −α

c
γƛC

�Z
∞

z
dtAiðtÞ þ Ai0ðzÞ

z

�
2þ x2

ð1 − xÞ
��

:

ð12Þ

The above equation is expressed in terms of the ratio x ¼
Eγ=E which relates to u by u ¼ x=ð1 − xÞ where Eγ is the
emitted photon energy.
Pair production from photons is treated in a similar

manner. Using the LCFA, we evaluate the absolute prob-
ability of a photon producing a pair in each time step. The
pair production spectrum for an unpolarized photon per
unit time is given by [17,18,41,43]

dPpair

dyγdt
¼ α

c
ðEγ=mc2ÞƛC

�Z
∞

z̃
dt0Aiðt0Þ−Ai0ðz̃Þw − 2

z̃

�
;

ð13Þ
where yγ ¼ E−=Eγ is the electron to pair energy ratio, E− is
the produced electron energy, z̃ ¼ ½w=χγ�2=3, and χγ ¼
χ u
1þu is the quantum nonlinearity parameter for the emitted

photon. Here the parameter w is related to the energy ratio
yγ as w ¼ 1=ðyγð1 − yγÞÞ. Integrating Eq. (13) over dyγ
gives the total pair production probability for an unpolar-
ized photon in a locally constant strong electromagnetic
field per unit time, [17,18,41,43]

dPpair

dt
¼ −α

2c
3ðEγ=mc2ÞƛC

Z
∞

4

dw
ð2wþ 1Þ

w
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
wðw − 4Þp Ai0ðz̃Þ

z̃
:

ð14Þ
When a photon decays, its simulation is terminated, and the
propagation of the two created charged particles begins.
Their energies are found by randomly picking an energy
separation yγ through the pair spectrum in Eq. (13).
The probabilities and spectra (11)–(14) are often

expressed in terms of modified Bessel functions of frac-
tional order, Kn=3. As examples, see [44] and [19,41]. We
should note that the definition of the Airy functions used in
[17,18] differs from that used here by a simple factor (π andffiffiffi
π

p
respectively). A detailed description of the numerical

method for implementation of pair production and photon
emission is provided in [23], which includes comparisons
between sampled spectra and purely theoretical formulas
like Eq. (12).
The trident process, as described in, e.g., [40], is a two

vertex process, which can be characterized by three terms;
a direct term, a two step term, and a cross term. The
distinction between the two step and direct terms is the
separation between the two vertices (photon emission and
pair production). Modeling the two step process as two
independent processes is a good approximation, this has

also been done in other cases (see, for example, [40,45]).
Consequently, the two step term in the trident process is
automatically implemented through the inclusion of sep-
arate photon emission followed by pair production in the
field. In this experiment, we probe values of χ between
0 < χ < 2.4. Based on investigations, for example [46–48],
the direct term and particularly the cross term will be near
negligible in this regime. It is possible to determine
approximately the relative importance of the direct process
and the two-step process by comparing the virtual
Weizsäcker-Williams photon intensity with the real photon
intensity. The virtual photon intensity is given by the fine-
structure constant up to a logarithmic factor. The real
photons have a fairly flat intensity spectrum that scales as
L=X, where L is the target thickness and X is the effective
radiation length, defined as

X ¼ E
dE=dx

ð15Þ

where dE=dx is the energy-loss rate per unit length due to
radiation. Therefore, the two processes are comparable in
strength for a target thickness of about one percent of the
effective radiation length. This is the case for the amor-
phous setting in our experiment (“random” setting), where
X ¼ X0 ¼ 2.30 cm and L=X0 ¼ 1.7%. Accordingly, the
simulations indicate that ∼50% of all tridents come from
the direct process in the amorphous setting. For the aligned
case, the effective radiation length X is significantly shorter
than X0 as a result of strong-field effects. Due to stronger
radiation, the direct process contributes only a few percent
to the total pair rate. We choose not to include the cross
term and implement the direct term for production in the
continuum field through the Weizsäcker-Williams method
of virtual quanta [19,49]. This has been investigated in,
for example [46], and was also used to model the direct
process during the early E-144 experiment [50,51]. The
Weizsäcker-Williams method deviates significantly from
the LCFA method in the high χ limit [46,48] and should
deviate approximately 10% from a fully consistent treat-
ment. Since the two-step process dominates our experiment,
these differences have only marginal influence in our case.
However, for future experiments, this difference may provide
insight into the importance of both direct and cross terms.
The Weizsäcker-Williams method integrates a pair-

production model with the virtual photon spectrum
pertaining to the primary charged particle. In the case of
a relativistic particle moving at a constant velocity near the
speed of light, the virtual photon spectrum is given by [49]:

dPvirt

dx
¼ α

π

�
K0

�
x
2

�
K1

�
x
2

�
−
x
4

�
K2

0

�
x
2

�
− K2

0

�
x
2

���
;

ð16Þ
where x ¼ Eγ=E [we have set β ¼ 1 here and a few other
places in Eq. (16)] and Kn is a modified Bessel function of
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the second kind of order n. We ignore the influence of the
angular variations of the projectile on the spectrum. We
further take the direction of the virtual photon to be defined
by its instantaneous velocity. It is important to note that our
x is different from that appearing in Eq. (15.55) in [49]: we
have applied Jackson’s recommended choice for the mini-
mum impact parameter, bmin ¼ ℏ=ð2mvÞ, which is roughly
half of the reduced Compton wavelength of the electron,
ƛC=2. Using this choice, Jackson’s x is half of our x (for
γ ≫ 1). It is worth noting that the virtual photon spectrum
is extremely sensitive to the choice ofbmin at largevalues ofx,
while more robust at low values of x. The trident spectrum is
found bymultiplying the virtual photon spectrum in Eq. (16)
by the LCFA pair production spectrum Eq. (13):

dPtrident
WW

dxdydt
¼ dPvirt

dx
·
dPpair

dydt
¼ dPvirt

dx
·
1

x

dPpair

dyγdt
: ð17Þ

As shown above, yγ has been substituted with the ratio
y ¼ E−=E, whereE represents the primary particle’s energy.
This is convenient because x and y are both energies relative
to the incoming particle energy. It should be noted that when
applying Eq. (17), we assume locality, that is, both the virtual
photon spectrum and the pair-production are evaluated at
the projectile’s position. In the case of pair production, the
argument is that of application of the LCFA. In the case of
virtual photons, the argument is based on the relatively high
photon energies of interest: the reduced Compton wave-
length of the electron ƛC multiplied by the ratio of primary to
photon energy is the effective maximum impact parameter.
Even for a 10 GeV photon, where the coherent pair-
production probability is much less than the incoherent, this
effective maximum impact parameter is still smaller than
both the screening radius of the target atoms and the thermal
vibration amplitude. To find the direct trident probability per
unit time we integrate Eq. (17) over dx and dy

dPtrident
WW

dt
¼
Z

1

0

Z
x

0

dPvirt

dx
·
dPpair

dydt
dydx: ð18Þ

This calculation is performed every timestep for every
charged particle, so a Chebyshev polynomial [52] is fitted
to represent the function as shown in [23]. Numerical errors
introduced by Chebyshev implementations are negligible
in comparison to systematic errors introduced in the experi-
ment and misplacement of physical elements during simu-
lation. When a trident is produced, it is necessary to
determine both x and y, where we first determine the photon
energy x, which is then used to determine the pair energy y.
Wedefine the cumulative probability density function and set
it equal to a random number 0 < r < 1 times the total
probability:

r
dPtrident

WW

dt
¼
Z

x

0

Z
x0

0

dPvirt

dx0
·
dPpair

dydt
dydx0: ð19Þ

By inverting the above expression, we can solve for the
ratio x. Thismethod allows us to express x as a function of the
random number r and χ that we can fit with a 2-dimensional
Chebyshev seriesRðtr; tχÞ. As soon as the value of x has been
determined, the value of y is calculated in the same manner.
As before, we set the cumulative probability density function
equal to a random number multiplied by the total probability
for the specific value of x that we have just determined:

r
dPtrident

WW

dxdt
¼
Z

y

0

dPvirt

dx
·
dPpair

dy0dt
dy0: ð20Þ

By inverting this function and solving for y as a function
of x, χ and r, we obtain a three dimensional Chebyshev
series. The implementation of each Chebyshev series can
be found in appendix A.

C. Incoherent processes

When a particle penetrates an amorphous material in our
setup, electromagnetic processes such as photon emission,
pair production, and trident production may occur as a
result of incoherent scattering events on atomic nuclei and
target electrons.
These processes depend on the density of the nuclei and

electrons inside the amorphous material. The main action
of the electrons’ is screening of the nuclear charges. They
only contribute approximately 1=Z times the nuclear
contribution, which is an additional 3% for germanium.
In the case of an aligned crystal, the erratic placement of
atomic nuclei as a result of thermal vibrations also results in
incoherent scattering contributions to the above-mentioned
processes, as does scattering from the target electrons. In an
aligned crystal the density of atomic nuclei varies locally
according to Eq. (9), which is evaluated in each time step
for the closest 20 atomic strings inside the crystal. Because
the contribution from electrons is small, we simply take it to
be proportional to the nuclear contribution.
The photon spectrum from incoherent scattering on

target atoms in an amorphous material at high energies,
the complete-screening limit, can be calculated using the
Bethe-Heitler expression [53]

dPBS

dtdEγ
¼ 1

X0Eγ

�
4

3
−
4Eγ

3E
þ
�
Eγ

E

�
2
�
; ð21Þ

where X0 is the radiation length; see [53] for an expression
and values for various materials (X0 ¼ 2.30 cm for germa-
nium). The radiation length depends inversely on the
material density, so when simulating an aligned crystal,
we substitute 1=X0 by nn=ðhnniX0Þ where hnni is the
average nuclear density of the given material, and nn is the
local nuclear density defined in Eq. (9). It may seem
problematic to assume that the radiation is local insofar
as screening, and therefore the radius of the target atom,
enter the expression for the radiation length and the
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spectrum (21). However, the dependence is through a
logarithm of the ratio between the effective maximum
impact parameter and the minimum as obtained for instance
with the Weizsäcker-Williams approach. The relevant
lengths are the screening radius of the target atom and
the Compton wavelength of the electron. Because of their
high ratio, more than half of the bremsstrahlung originates
from collisions involving impact parameters lower than
the amplitude of thermal vibrations. This justifies the
assumption of locality for the distribution (9). Since the
screened nuclear field enters in the determination of both
coherent and incoherent spectra, it is possible to have a
double counting problem. As discussed elsewhere, the error
is the neglect of a modest reduction of the incoherent
contribution [20,24].
In each time step, we calculate the probability of

emission from

dPBS-BH

dt
¼ 1

X0

�
4

3
ln

�
E

Emin

�
−
4ðE−EminÞ

3E
þðE2 −E2

minÞ
2E2

�
;

ð22Þ
where Emin ¼ 1 MeV is a lower energy limit on the photon
energy we allow to be emitted. The cutoff is justified
because the energy emitted below this region is negligible
and any incoming photon with less than 1 MeV has no
effect on the experiment. When a bremsstrahlung photon is
emitted, its energy can be determined using inverse trans-
form sampling where we invert and solve the following
expression for Eγ:

r
dPBS-BH

dt
¼
Z

Eγ

Emin

dPBS-BH

dtdE0
γ
dE0

γ: ð23Þ

We evaluate the inverse as a function of E and fit a
Chebyshev series directly to the function. A description
of the Chebyshev implementation can be found in
appendix A.
In an amorphous material, high-energy photons produce

a pair spectrum given by the Bethe-Heitler formula [53]

dPPP-BH

dtdyγ
¼ 1

X0

�
1 −

4

3
ðyγ − y2γÞ

�
; ð24Þ

where yγ ¼ E−=Eγ represents the energy ratio between
the produced electron and the decaying photon. We apply
this expression also for the incoherent pair-production con-
tribution for aligned or nearly aligned crystals. Remarks
similar to those made above for incoherent bremsstrahlung
under such conditions apply. The probability of pair pro-
duction per unit time is calculated by integrating Eq. (24)
from 0 to 1, which gives the following result:

dPPP-BH

dt
¼ 7c

9X0

: ð25Þ

When a pair is produced by an incoherent process, we are
able to determine the pair distribution yγ by inverse transform
sampling:

r
dPPP-BH

dt
¼
Z

yγ

0

dPPP-BH

dtdy0γ
dy0γ; ð26Þ

which, in this case, has the following analytical solution:

yγ ¼
1

2
þ ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
196r2 − 196rþ 81

p
þ 14r − 7Þ1=3

24=3

−
21=3

ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
196r2 − 196rþ 81

p
þ 14r − 7Þ1=3 : ð27Þ

The direct trident spectrum for a relativistic particle
colliding with a heavy nucleus, with charge Z in the
complete screening limit, has been calculated to lowest
order in Zα, which is Z2α2, by Kelner [54]. Because of
the incoherent nature of the problem, the spectrum
describes only the direct process and does not have any
interference terms with the two-step process as in the
coherent case. The resulting spectrum is the sum of
Kelner’s equations (26) and (40) in [54], which we have
rewritten in terms of x and y, by expressing Kelner’s
parameters as ξ ¼ yðx − yÞ=ð1 − xÞ, β ¼ y=x, and
ζ ¼ 1 − y=x. The result is

dPKel

dxdydt
¼ 2NnZ2α4

m2π

�
1

x2
−
1

x

�
ðΦA þΦBÞ; ð28Þ

where Nn is the local atomic density. The quantitiesΦA and
ΦB are given in appendix B.
As explained in [55] and above, the direct contribution

to the trident process becomes comparable to the two step
contribution when the material is about two orders of
magnitude shorter than the radiation length. This is the case
in our experiment, as in the amorphous case, almost half of
all tridents originate from the direct process.
In Fig. 8, we show the ratio between Kelner’s direct

pair spectrum Eq. (28) and that determined by the WW
method of virtual quanta. The latter is determined by
Eq. (17) with the LCFA pair-production spectrum replaced
by the incoherent pair spectrum in Eq. (24). The ratio is
shown as a function of the pair energy ratio y ¼ E−=E, for
different photon energies x ¼ Eγ=E, and it is evident that
the two models are not completely consistent. As a result,
we use Kelner’s method to describe the incoherent direct
trident contribution. This method is applicable to both
amorphous targets as well as to incoherent contributions
caused by thermal diffuse scattering in aligned crystals.
In [15], we noted that the latter incoherent contribution
was calculated using the same Weizsäcker-Williams (WW)
method as for the coherent contribution. This is a regret-
table error. Also for the simulations made in [15], the

CHRISTIAN F. NIELSEN et al. PHYS. REV. D 108, 052013 (2023)

052013-12



incoherent contribution to the direct trident production is
determined by Kelner’s equations regardless of the target
orientation.
Figure 9 shows the ratio of the positron spectra integrated

over all photon energies. The various curves represent
different choices of the minimum impact parameter used in
the WW formula. The value used is b0min ¼ k · bmin, where

bmin is the standard choice, effectively ƛC=2, and the
constant k is varied. As shown in Fig. 9, changing the
minimum impact parameter has an enormous impact on
the high-energy tail of the trident spectrum based on the
WW approach. With the regular value, k ¼ 1, the low
energy tail agrees within 5% with Kelner’s result, but by
using k ¼ 1.25, there is a much better agreement with
Kelner’s formula over the main region of interest. As a
result, a different choice of the minimum impact parameter,
or even an energy dependent version, could be of interest
when implementing a simple coherent direct trident model
using the WW approach.
Equation (28) is implemented in a similar manner to

Eq. (17), and the specific Chebyshev implementations are
found in appendix A.

IV. DATA ANALYSIS ALGORITHMS

The following sections provide details of each step in the
data analysis process. The first step is to identify single
particle tracks using a tracking algorithm, and then use
various matching criteria to identify trident events.

A. Single particle track algorithm

As mentioned above, the setup is divided into two
sections, called Arm 1 and Arm 2. Specifically, Arm 1
consists of mimosas M1-M5, while Arm 2 consists of M6-
M8. Initially, a seed hit in M5 is selected, and then for each
hit in M4, a potential track is projected onto M3 by fitting a
straight line to the hits in M4 and M5. We then search for
potential hits within a radius of R ¼ 150 μm around the
projected hit in M3. For any hit within the search area, we
fit a straight line to the three hits in M3–M5, projecting this
line onto M2, searching in an area with radius R ¼ 350 μm
repeating the process until a hit in all detectors M1–M5 are
used. The search radius in M1 is also R ¼ 350 μm. In the
analysis of the deflection angles of low energy tridents, it
will be shown that the aligned crystal leads to significant
deflection angles for low energy particles. By changing the
search radius for M1–M2, a large impact is seen on the low
energy part of the spectrum, with the number of accepted
tridents increasing by a factor of two when the radius is
increased from R ¼ 150 to R ¼ 350 μm. The experimental
and simulated data shown in [15], are analyzed using the
conservative R ¼ 150 μm for all detectors, whereas R ¼
350 μm has been used in this analysis. For each hit in M5,
all permutations of hits in M1–M4 that satisfy the search
criteria are investigated, while only the combination of
hits that produce the smallest combined distance between
the fitted track and the hits used to fit the track is saved.
Consequently, each hit in M5 can produce only a single
track in Arm 1. By using this algorithm, we avoid the
massive number of permutations of hits that can arise when
multiple particles travel close together through M3–M5, as
in a trident event, for example.

FIG. 8. The ratio of the direct trident spectrum computed using
the Eq. (28) and the direct trident spectrum computed using the
WW method of virtual quanta, Eq. (17), for 200 GeVelectrons in
amorphous germanium. The incoherent pair-production spec-
trum, Eq. (24), has been substituted for the strong-field pair
spectrum. This ratio is shown for different photon energies
x ¼ Eγ=E, where E ¼ 200 GeV.

FIG. 9. The ratio between the direct pair spectrum integrated
over photon energies in Eq. (28) and the WW method of virtual
quanta in Eq. (17), where the pair production spectrum in the
latter has been exchanged with the incoherent pair spectrum in
Eq. (24). The various curves represent different factors k
multiplied by the bmin parameter in the WW formula. The initial
particle energy is 200 GeV.
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Having produced a list of tracks in Arm 1, we begin
working on Arm 2. Arm 2 is designed so that low energy
particles most likely will hit M6–M7 and miss M8 because
of the large deflection in the magnet. M8 was then placed at
a greater distance from M7 in order to improve the energy
resolution of high energy particles that were deflected very
little by M7. Therefore, the seed hit in Arm 2 comes from
M7, and from this hit we examine all combinations with
hits in M6. We project the track onto M8, and if the
projection lands within the physical boundary of the
detector, we search around the projected hit in a radius
R as we did for Arm 1. If the projection is inside the
detector and no hit is found, we try another hit in M6, but if
the projection lands outside M8, we assume that the hits
belong to a low energy track.
Given the small deflection in the dipole magnet, we

can safely assume that the particle deflection occurs
instantly in the middle of the Mimosa Magnet (MM). It
follows that the particle track should consist of a track in
Arms 1 and 2 that crosses in the center of the magnet. With
each hit in M7, tracks in Arm 2 are created and projected
into the center of the dipole magnet. The tracks in Arm 2
are matched with tracks in Arm 1 based on the following
three criteria:

(i) Transverse distance in MM—Rc ¼ 180 μm.
(ii) Vertical deflection angle—θc ¼ 280 μrad.
(iii) z position of closest approach—zc ¼ 0.5 m.

where distributions of these values for accepted tracks can
be seen on Figs. 10–12 respectively both summed and
differential in track energy. All curves are normalized to the
total number counts. The negative energies correspond to
positrons and the positive energies correspond to electrons.
The numbers indicated in the list above represent the cutoff
values for each criterion. We use a track combination that
minimizes the transverse distance, which means that we
only produce a single complete particle track for each seed
hit in M7.
The transverse distance is the absolute transverse dis-

tance between a track in Arm 1 and Arm 2 in the center of
the magnet (MM). In general, high energy particles have
very low transverse distances, usually less than 20 μm, as
compared to low energy particles which have a greater
distance due to scattering. The experimental plots indicate
that there is a greater amount of noise, which we believe
is the result of the combinatorial nature of the algorithm
during the process of building tracks, of which there are
more on the electron side (positive energy). It is due to the
fact that electrons in trident events are deflected in the
same direction, which means if the electrons have similar
energies, combinations of hits from both particles might
satisfy the matching criteria and produce a complete
particle track. We believe this is the causes of the structure
in the experimental curves in Figs. 12 and 10, since only
electrons display this structure. In the simulated plots,
this structure is not visible because the Mimosa software
identifies hits based on pixels that are activated when a

particle hits. If two particles hit within 50 μm on a chip,
which is the distance between two pixels with one pixel
between them, the simulation combines these two hits into
a single hit with their average position. The Mimosa
software employs a sophisticated method of deconvoluting
hits from clusters of active pixels, which is not imple-
mented in the simulation.
In our case, the vertical deflection should be small, but

not exactly zero since the magnet was tilted by 0.03 rad in
the detector coordinate system. In this case, there was a
very small vertical component coming from the magnet,
which explains the large cutoff value. The tilt is especially
evident in the energy differential plot where the character-
istic 1=E shape produced by deflection in a magnet with
energy E can clearly observed in the low energy tail.
The closest z approach is the longitudinal position of the

closest approach of the track in Arm 1 and Arm 2, with the
position of the magnet center subtracted. Although this
value should be zero, it is extremely sensitive to noise for
high energy particles due to the small deflection in the
dipole, while being less sensitive for low energy particles.
Thus, by combining this criteria with the two remaining
criteria, which have the opposite sensitivity, we are able to
remove non particle tracks from the entire energy spectrum.
On Fig. 3, the energy spectrum of the primary electrons

is shown using a logarithmic scale. The energy resolution
of the magnetic spectrometer for a single particle track was
measured to be at σE=E ≃ 6.7% at 200 GeV (including
dp=p ≃ 1% from the beamline). The energy resolution is
even better for particles with lower energies, due to the
larger deflection angle, which is dominated by detector
uncertainty until approximately 20 GeV. In the case of
particles below 20 GeV, the uncertainty is dominated by
multiple scattering, which is why the setup is surrounded
by helium; however, these particles also experience a
large deflection, keeping the overall energy resolution
below 6.7%.

B. Trident algorithm

After identifying sets of complete single particle tracks,
we now combine the tracks to produce a trident event.

(i) Transverse distance in MM—Rc ¼ 1.5 mm.
(ii) Vertical separation angle—θc ¼ 500 μrad.
(iii) Combined energy of trident—Ecut ¼ 235 GeV.
(iv) One positive charge.
(v) Each track has unique hits in M6-M8.

It is assumed that only one trident appears in each event; if
multiple tridents are identified, we pick the combination of
tracks that give the lowest transverse distance in MM. Our
findings indicate that minimizing the transverse distance or
the vertical separation angle criteria does not make any
difference when multiple combinations of tracks can result
in a trident event. Based on simulated and experimental
data for background, amorphous and aligned configura-
tions, Fig. 13 illustrates the distributions of the first three
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FIG. 10. The top figure shows the vertical deflection angle of a single particle track at the center of the magnet. The bottom figure
illustrates the relationship between the differential vertical deflection and the track energy. These are the matching criteria to be accepted
as a complete single particle track in Arm 1 and Arm 2.
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FIG. 11. Top figure shows the Transverse distance of a single particle track in the center of the magnet. Bottom figures show the
differential transverse distance vs track energy. These are the matching criteria to be accepted as a complete single particle track in Arm 1
and Arm 2.
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FIG. 12. Top figure shows the closest z-position of a single particle track between the track in Arm 1 and Arm 2. Bottom figures show
the differential closest z-position vs track energy. These are the matching criteria to be accepted as a complete single particle track in
Arm 1 and Arm 2.
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criteria for all accepted trident events. The curves are all
normalized to the total number of counts.
The transverse distance is defined as

Rtrans ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jr1 − r2j2 þ jr1 − r3j2 þ jr2 − r3j2

q
; ð29Þ

where jri − rjj2 is the squared absolute distance between
the projected hits of Arm 2 track i and j in the magnet
center. Similarly, the vertical separation angle is defined as

θvert ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jθy1 − θy2j2þjθy1 − θy3j2þ jθy2 − θy3j2

q
; ð30Þ

where θyi is the absolute vertical angle of track i in Arm 2.
We see that the transverse distance and vertical separation
criteria for the Trident algorithm follow the same trend
across background, amorphous and aligned configurations.
The largest values are obtained in the aligned configuration,
whereas the second largest values are obtained in amor-
phous, and the lowest values are obtained in the back-
ground configuration. The most notable difference occurs
in the aligned configuration since when a pair is formed
within an aligned crystal, it occurs in an environment with
a very strong electric field. Therefore, when the photon
decays, the two particles experience a large force in
opposite directions, which results in a transverse momen-
tum of on the order of the critical Lindhard angle [31,32],
which in our case is 57 μrad for 200 GeV electrons and
scales as 1=

ffiffiffiffi
E

p
.

For low energy pairs, which are in abundance, this
separation becomes significant, resulting in relatively large
values for the transverse distance and vertical separation
criteria in the aligned configuration. In amorphous crystal
configurations, the overall material budget in the beam line
is larger, resulting in greater scattering of the produced pair
than in the background configuration. The simulation on
average overestimates the transverse distance criteria com-
pared to the experiment, whereas the vertical separation
angle is perfectly in agreement.
The transverse distance is sensitive to the longitudinal

position of the magnet center, and we believe that the
uncertainty in this measured position is responsible for the
slight discrepancy between aligned crystal simulation and
experiment. The vertical distance is robust to the magnet’s
position which is why we see good agreement between
experiment and simulation. The total energy criteria
ensures that a set of tracks resulting from a combination
of hits from the primary and secondary electrons, that
would result in a total energy larger than 235 GeV, is
discarded. Due to the non zero energy resolution, 200 GeV
particles can be measured to have higher energies which
is why the cutoff is set at 235 GeV. On Fig. 13, we find
remarkable agreement between simulation and experiment
for the total energy distribution. The curves appear very

FIG. 13. The top figure shows the transverse distance between
the three trident tracks from Arm 2 located in the center of the
dipole magnet angle for a single particle track. The middle
figure shows the vertical separation angle between the three
trident tracks from Arm 2. The bottom figure shows the total
energy of the three particles that make up a trident. In order to
be considered a trident event, three single particle tracks must
satisfy these criteria. All curves are normalized to the number
of counts.
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similar to the electron spectrum shown on Fig. 3. This
shows that in the aligned configuration, tridents are often
accompanied by photon emission, lowering total energy of
the three particles, which is not the case for background and
amorphous configuration. The remarkable agreement indi-
cates that subsequent photon emission is accounted for well
in the simulation.

V. THEORETICAL COMPARISON WITH DATA

As mentioned earlier, the theoretical predictions are the
result of analyzing a simulated dataset by means of the
same data analysis algorithms used to analyze the exper-
imental data. Accordingly, the following and previous
comparisons are not the result of fitting, but rather the
result of analyzing two independent datasets. Only when
comparing absolute rates we need to accurately take into
account the efficiency of the setup. This is done by fitting a
linear energy-dependent efficiency, fðEÞ ¼ aEþ b, to the
ratio between the experimental and simulated trident rates
for the amorphous case after background subtraction in the
region between 17–200 GeV.
When comparing absolute trident rates, the simulated

curves obtained from analyzing the simulated datasets
are then multiplied by the efficiency factor. The fitting
parameters determined by calculating the ratio between
the amorphous curves in Fig. 14 are as follows: a ¼
−0.0006� 0.0016 GeV−1 and b ¼ 0.98� 0.14. Based
on this procedure, the value for b agrees well with
expectations, while the value for a is small. Since we
are normalizing to the number of unique single particle
tracks, we need to take into account the efficiency of the

detectors and expect a value of b of around 1, while the
energy dependence is handled by the parameter a. Due to
the updated alignment procedure mentioned in Sec. II A,
the efficiency reported in [15] differs from the one reported
here. In the simulation, the detectors M6–M8 are inten-
tionally misplaced slightly, in the same way as in the
experiment, resulting in a slight difference in overall
efficiency. An efficiency function is determined by taking
a moving average of the direct ratio between each amor-
phous data point because of the nonlinear energy depend-
ence below 17 GeV. We can then directly multiply all
simulated curves by these nonlinear coefficients below
17 GeV since the bin centers and bin widths are the same
for all curves. This is an improvement over what is done in
[15], in which the low-energy part of the spectrum is only
influenced by the linear energy dependence found by fitting
a linear function between 20 and 160 GeV.
A plot of the positron spectrum from trident events is

shown in Fig. 14, where the linear energy efficiency
function has been applied to the simulated results. The
figure is essentially the same figure as that shown in [15],
except for minor changes to the simulated data, together
with a change in the acceptance cut for M1–M2 as
explained in previous sections. In both the background
and aligned configurations, we observe good agreement
between the simulated and experimental curves. Compared
to the findings in [15], the change in acceptance criteria for
M1–M2 results in significant increases in the detection of
low energy particles, particularly for the aligned case,
where there is a factor 2 increase in accepted tridents.
The biggest difference between choosing 150 μm or
350 μm in the analysis routine, happens at the single

FIG. 14. The positron spectrum of the reconstructed trident events. Solid lines are simulations while squares and triangles are
experimental data points. In the aligned orientation, the positron spectrum is blue and red; in the amorphous orientation, the spectrum is
magenta and cyan; and in the background, the spectrum is black and green. The figure on the right shows the same data with a linear
vertical scale. The black dashed curve represents the simulated positron spectrum in aligned orientation without the direct coherent
trident contribution. The inset shows a zoomed-in view of the low energy part, which largely overlaps with the energy range measured in
2007 [56].
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particle track level, where the larger acceptance in M1–M2
allow particles that scatter more heavily in the crystal, to be
accepted as a single particle track. The red dashed curve,
where the direct coherent trident contribution is omitted, is
almost identical to the red full drawn curve, which includes
all processes. This should be expected since the crystal
thickness is comparable to the effective radiation length
[Eq. (15)] in the aligned orientation for a 200 GeVelectron.
On a logarithmic scale, we also observe good agreement
across several orders of magnitude. The sharp drop at low
energy can be attributed to the fact that low energy particles
are deflected outside M6–M7 and cannot be detected due to
the setup’s detection efficiency. Consequently, we only fit
the energy efficiency factor between 17 GeVand 200 GeV.
The Figs. 15(a), 16(a), and 17(a) show trident spectra for

aligned, amorphous and background configurations respec-
tively, differential in positron and electron energy, using the
lowest energy electron. The lowest energy electron rarely
exceeds 100 GeV, which only happens due to the energy
uncertainty, and the axis is cut off at this point. The
structure across experimental and simulated surfaces agree
well and we see the symmetric energy distribution between
the positron and electron for low pair energies. The energy
distribution is tilted as the pair energy increases because the
lowest energy electron in the trident event is used for these
plots. The fact that we use the lowest energy electron in
combination with the total trident energy cut of 235 GeV,
results in the sharp cutoff that goes from 200 GeV on the
positron axis to 100 GeV on the electron axis. Due to the
finite uncertainty of a particle hit in the Mimosas, we have
an energy uncertainty which can lead to energies larger than
200 GeV for a single particle. We see that the amorphous
and background tridents are more localized at low pair
energies compared to the aligned case, which extends to
higher pair energies. This is expected as the background
and amorphous configurations only contain incoherent
processes, whereas the aligned configuration is dominated
by coherent contributions, that extends further into the pair-
energy spectrum. This is clearly visible on Fig. 6, where all
tridents that are produced in the simulation are included,
and not just the ones that are detected.
In Figs. 15(b), 16(b), and 17(b), the energy separation

[Eeþ=ðEeþ þ Ee−Þ] is depicted, again using the lowest
energy electron. The energy separation spectra are shown
for various photon energies and binned in 22.2 GeV
energy bins, making it easier to make direct comparisons
between simulation and experiment in a semi differential
spectrum. Here the simulated curves are multiplied by the
energy efficiency factor fðEÞ but using the argument
ℏωEþ=ðEþ þ E−Þ where ℏω is the bin center photon
energy pertaining to each sub figure. For low energy
photons we see the a clear symmetry around 0.5 where
the amorphous and background data keep this symmetry
for higher photon energies compared to the aligned data.
The asymmetry becomes very pronounced at large photon

energies, which is because the ratio uses the low energy
electron. On Fig. 6 it is clear that incoherent processes
dominate at low energy photon energies, while the coherent
processes require a higher photon energy. For photon
energies around 100 GeV the maximum χ value the photon
encounters is around χ ≈ 1.2, in this region the energy
separation is rather localized around 0.5, whereas the
incoherent pair production processes have a more flat
distribution. This is also visible in the data, as the energy
separation for photon energies between 44 to 110 GeV are
significantly more flat in the background and amorphous
data, compared to the aligned data. For the lowest photon
energy bin, the separation is localized around 0.5, which is
because the detection efficiency drops significantly for
particle below 10 GeV, and a trident with a constituent
below this energy is unlikely to be measured. That we
recreate this behavior with the simulation indicates that
transverse detector geometry is implemented well in the
simulation. On Fig. 15(b) curve with and without the
coherent direct trident contribution, and see a clear differ-
ence for very large photon energies. Because we use the
LCFA pair production model in the coherent direct trident
process, the energy distribution should be identical between
the two simulated curves, but a difference in the photon
spectrum could arise. Since χ ¼ 2.4 is relatively low, the
coherent photon spectrum does not have a large contribu-
tion at large photon energies, whereas the virtual photon
spectrum extends significantly further for these χ values.
For the 156 GeV to 178 GeV photon energy bin we see a
clear influence of the coherent direct trident term.
Excluding the process results in almost a factor 2 discrep-
ancy between data and simulation, while a smaller dis-
crepancy is found when including the coherent direct
process. At these photon energies, the virtual photon
spectrum is extremely dependent on the choice of bmin
[49], which is evident from Figs. 8 and 9, which might be
the cause of the slight discrepancy between data and
simulation when excluding the coherent direct trident
process in the simulation, for high energy tridents. For
large positron energies, the coherent direct process domi-
nates over the incoherent direct process for the present
experimental conditions. This is because the pair produc-
tion process for photon energies above 100 GeV will
experience χγ values above 1, which means that the
coherent pair production process no longer is exponentially
suppressed. The prospects for trident production to be a
high intensity positron source for future colliders has been
discussed for many years [57,58]. Apart from the fact that
the number of positrons produced needs to be high, the
emittance of the produced positron beam also has to be
low to allow for easy injection into the following collider.
In Fig. 18 we show the standard deviation of the angle
between the incoming and outgoing particle directions in
the crystal, the “deflection angle”, as a function of energy,
for all three constituents of the trident process. Here it is
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FIG. 15. (a) Trident spectrum differential in positron and electron energy, where the lowest energy electron is used, for the aligned
configuration. The figure on the left represents experimental data and the figure on the right represents simulated data. Each plot is
normalized to the largest value in the plot and the colors are scaled in relation to the square root of the data point’s value. (b) The
probability of a trident event in the aligned orientation with an energy separation of (Eeþ=ðEeþ þ Ee−Þ) between the low energy electron
and the positron. The triangles represent experimental data and the solid curves represent simulated data. The red line represents the sum
of all trident contributions, while the black line represents no direct coherent trident contribution. In each frame, a specific photon energy
is represented (sum of electron and positron energy). Colored areas indicate a statistical error band of one σ around the simulated curves.
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FIG. 16. (a) Same as Fig. 15(a), but for amorphous orientation. (b) Same as Fig. 15(b), but for amorphous orientation.
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FIG. 17. (a) Same as Fig. 15(a), but for background with no crystal. (b) Same as Fig. 15(b), but for background with no crystal.
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evident that all three particles in a trident event receive a
larger transverse momentum for all energies above 20 GeV
when produced in an aligned crystal compared to an
amorphous crystal. There are several processes at play
when penetrating a crystal, either aligned or amorphous,
that contribute to an increased transverse momentum. In the
amorphous target the dominating processes that contribute
to a larger transverse energy is the opening angle between
the particles during emission and pair creation, which is of
the order 1=γ, and multiple Coulomb scattering on random
nuclei throughout the crystal, which also scales as 1=γ. In
the aligned crystal the effective continuum electric field and
locally varying atomic density plays a major role in this
regard as well. In an amorphous crystal, the atomic density
is constant which means that there should be no difference
between the positron and electron. In an aligned crystal,
channeled electrons are confined to an area with a high
atomic density, meaning that these electrons are much more
likely to scatter incoherently on thermally displaced atoms
than a positron, which is repelled by the areas with high
atomic density. It was therefore speculated that positrons
being produced in such a crystal, would scatter less than in
an amorphous crystal, because the positrons on average are
located in areas with lower atomic density.
In Fig. 18, we see the exact opposite behavior for all

energies above 10 GeV. The aligned crystal produces
positrons with significantly larger transverse momentum
than the amorphous crystal. This observation is in part
attributed to the moment the pair is created. In the aligned
crystal, a pair is most likely formed in an area of strong
electric field, where the photon decays. As soon as the pair
has been created, the electric field will separate the electron
from the positron. This will give them an energy associated
with the transverse motion on the order of the potential
depth, or an angle corresponding to the critical angle
Eq. (10), which scales as 1=

ffiffiffi
γ

p
, in opposite directions.

After their creation, the only difference between the
positron and electron is that the electron undergoes, on
average, a greater degree of incoherent scattering on atomic
nuclei. In the aligned case, experimental data and simu-
lations show that positrons and the high-energy electrons
produced by the trident process follow the critical angle
quite closely, Fig. 18. This implies that the continuum field
rather than incoherent scattering dominates their motion. It
is also very reassuring to see that our simulations reproduce
this simple behavior. Additionally, it should be noted that
for the aligned case, the variation in angle of the incident
200 GeV electron during the passage of the crystal cor-
responds to the critical angle (57 μrad). Consequently, all
products of the trident process will have an angle relative to
the incident electron of at least this magnitude. Hence, it is
marked in the figures. According to the above discussion,
the effect of multiple scattering scales with 1=E while the
critical angle scales with 1=

ffiffiffiffi
E

p
. This explains the sharp

FIG. 18. The standard deviation of deflection angle for
positrons (top), low energy electrons (middle) and high energy
electrons (bottom) for accepted trident events as a function of
energy. The black full-drawn line represents the critical angle
Eq. (10) for the final-state particles in each case, while the
dotted line represents the critical angle of the primary 200 GeV
electron.
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increase in deflection angle for amorphous crystals at lower
energies. Due to the experiment’s energy cutoff of approx-
imately 10 GeV, deflection angles below this point might be
seriously biased, and any structure below this region should
be discarded.

VI. FUTURE EXPERIMENTS

In this experiment, we used a crystal with a thickness
comparable to its effective radiation length [Eq. (15)] when
oriented along the axis. Therefore, the trident process was
dominated by the two-step process, and the direct term had
a negligible impact. To measure the effect of the direct
coherent trident process, including possible exchange
terms, a thin crystal must be used, and χ must be increased.
In Fig. 19, we present simulated trident spectra for two
crystal candidates that may allow us to measure the
influence of the direct process realistically: a germanium
crystal of 50 μm thickness oriented along the h110i axis
while cooled to 100 K and a tungsten crystal of 10 μm
thickness oriented along the h111i axis. In both cases, a
200 GeV electron is used as a primary particle, and the
experimental conditions are the same as those of the present
experiment. Germanium crystals are cooled to narrow their
atomic string potentials, thereby increasing their maximum
field strength. The result is that χ becomes larger, which in
this case reaches χ ≈ 4. This change is rather significant
since the higher fields allow lower energy photons, real as
well as virtual, to convert into pairs in a coherent process
rather than in an incoherent process. Since tungsten crystals
have a much larger atomic number, a 200 GeV electron
reaches χ ≈ 13when oriented along the h111i axis. There is
an interest in this regime because theoretical studies have
suggested [48] that the two-step process is maximally
suppressed at χ ¼ 10 by the cross-term between the two-
step and one-step terms. In this tungsten configuration, the
χ values are close to the limit of what can be achieved using
crystals as a source of strong electric fields, without
increasing the initial energy of the electrons. Using the
tungsten crystal, we observe the largest effect of the direct
process modeled by the WW method. Cooling the germa-
nium crystal experimentally is not an easy process, and it
requires considerable engineering to maintain the crystal’s
axis orientation throughout the cooling process. As a result,
using tungsten crystals is easier in this regard, as cooling
can be avoided since it has little effect. However, it is
challenging to produce these crystals. Essentially, at
10 μm, the crystal becomes a foil that blows in the wind
and behaves similarly to aluminum foil. The process of
producing it is therefore extremely difficult. At 50 μm a
germanium crystal will be structurally solid, and produc-
tion of germanium crystals has been perfected by the
micro-chip industry, making it easy to produce and handle.
A further challenge to measuring the direct term is the
overall production rate. According to Fig. 19, the rates are
more than an order of magnitude lower than in the present

experiment shown in Fig. 14. In the aligned orientation, the
background contribution is nearly as large as the signal,
whereas the amorphous contribution is several factors
lower than the background. This problem could be solved
by using more than one particle in each event, as well as
increasing the overall beam time. Using the present data
analysis algorithm, we were able to reliably analyze events
with up to at least 10 primary particles, assuming only one
trident was produced per event. Therefore, an attempt to
measure the direct term can be made by increasing beam
intensity by a factor 10 and beam duration by a factor 2,
compared to this experiment. On the other hand, despite the

FIG. 19. Simulated trident spectra for 200 GeV electrons
penetrating various crystals. The top figure shows the spectrum
for a 50 μm thick Ge crystal oriented along the h110i axis and
cooled to 100 K. The bottom figure illustrates the spectrum for
tungsten 10 μm thick oriented along the along the h111i axis. The
red curve represents the aligned crystal including all processes.
The black curves represent the aligned crystal without the direct
coherent process. The background is green while the amorphous
crystal is cyan.
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very thin targets—which in themselves set severe con-
straints, for example on the permissible background as
mentioned above—the differences between including and
excluding the direct trident contribution seen in Fig. 19 is
quite small. Moreover, experimentally there is no way of
discerning the direct from the sequential trident, and neither
the former nor the latter can be experimentally eliminated.
It would thus not only be a tough challenge experimentally,
but also for the theory part, as the results—necessarily
absolute rather than relative—must be reliable and precise
to the few-percent scale in order to verify the presence of
direct tridents.

VII. CONCLUSION

This paper provides an even more challenging test of
strong field QED for trident events than given in our
previous paper [15], in which the integral production of
tridents was shown to be very well theoretically described
over almost 3 orders of magnitude in yield. Also in the
present—more demanding—case we can conclude that
theory and experimental data are in remarkably good
agreement. However, all of our strong-field results for
trident production are dominated by the two-step process.
The direct trident process has yet to be measured and tested
by an experiment, and we have discussed some of the
technical challenges involved in such a task.
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APPENDIX A: CHEBYSHEV
IMPLEMENTATIONS

In this appendix we show the specific implementations
of the Cheyshev series mention in Secs. III B and III C.

1. Coherent direct trident

The integral in Eq. (18) is evaluated as a function of χ
and represented as

dPtrident
WW

dt
¼ R1ðtχÞ

2α2m2

πE
e−2=χ ; tχ ¼ 2

χ − 0.1
3 − 0.1

− 1;

ðA1Þ

when 0.1 < χ < 3 and by

dPtrident
WW

dt
¼ R2ðtχÞ

2α2m2

πE
; tχ ¼ 2

χ − 3

1000 − 3
− 1; ðA2Þ

when 3 < χ < 1000. The functions RðtÞ are then the fitted
Chebyshev series which in our case consists of 40 and
50 terms respectively. The functions are in practice only
evaluated for χ > 0.2 to avoid evaluating the probabilities
in locations where the field is small and the resulting
probability is negligible.
The function Eq. (19) is inverted to express x as a

function of the random number r and χ which we can fit
with a 2-dimensional Chebyshev series Rðtr; tχÞ. For better
agreement between fit and function we make three separate
Chebyshev series. The first series is defined by

x ¼ R1ðtr; tχÞ
r
ffiffiffi
χ

p ; ðA3Þ

with

tχ ¼ 2
χ − 0.2
1 − 0.2

− 1; tr ¼ 2
r

0.03
− 1 ðA4Þ

when 0 < r < 0.03 and 0.2 < χ < 1. Second fit is defined
by

x ¼ R2ðtr; tχÞ
r

; ðA5Þ

with

tχ ¼ 2
χ − 0.2
1 − 0.2

− 1; tr ¼ 2
r − 0.03
1 − 0.03

− 1 ðA6Þ

when 0.03 < r < 1 and 1 < χ < 50. The last fit is defined
by the same function as in Eq. (A5) but with

tχ ¼ 2
χ − 1

50 − 1
− 1; tr ¼ 2r − 1 ðA7Þ

when 0 < r < 1 and 1 < χ < 50. Both of these series are
fitted using 65 × 65 parameters.
The function Eq. (20) is inverted to express y as a

function of x, χ and r, leaving us with a three dimensional
Chebyshev series, which is defined through:

y ¼ Rðtr; tχ ; txÞ: ðA8Þ

We again fit three separate series in the various regions of x,
χ, and r, but all according to Eq. (20). The first region is
defined as

tχ ¼ 2
χ − 0.2
2− 0.2

− 1; tr ¼ 2
r

0.03
− 1; tx ¼ 2x− 1; ðA9Þ
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when 0 < r < 0.03, 0.2 < χ < 2, and 0 < x < 1. The
second region is defined by

tχ ¼ 2
χ − 0.2
2 − 0.2

− 1; tr ¼ 2
r − 0.03
0.5 − 0.03

− 1; tx ¼ 2x − 1;

ðA10Þ

when 0.03 < r < 0.5, 0.02 < χ < 2, and 0 < x < 1. The
last region is defined by

tχ ¼ 2
χ − 2

50− 2
− 1; tr ¼ 2

r
0.5

− 1; tx ¼ 2x− 1; ðA11Þ

when 0 < r < 0.5, 2 < χ < 50, and 0 < x < 1. Since the
pair spectrum is symmetric in y around r ¼ 0.5, we
only evaluate the spectrum in the region 0 < r < 0.5. A
second uniformly distributed random number is drawn,
0 < r2 < 1, where we use the previously found y value if
r2 < 0.5 and use y0 ¼ x − y if r2 > 0.5. All three series are
fitted using 25 × 25 × 25 parameters.

2. Bremsstrahlung

The inverse of Eq. (23) is evaluated as a function of E
and r, and a Chebyshev series is fitted directly to the
function.

Eγ ¼ Rðtr; tEÞ; ðA12Þ
in two energy regions. The first series is defined by

tE ¼ 2
E − 1

103 − 1
− 1; tr ¼ 2r − 1 ðA13Þ

when 0 < r < 1 and 1 < E < 103. Second fit is defined by

tE ¼ 2
E − 103

106 − 103
− 1; tr ¼ 2r − 1 ðA14Þ

when 0 < r < 1 and 103 < E < 106. Here the energy E is
in units of MeV. The two fits are therefore defined in the
region between 1 MeV and 1 TeV. Both series are fitted
using 60 × 60 parameters.

3. Incoherent direct trident

The probability per unit time is evaluated by integrating
Eq. (28) as in Eq. (18), as a function of the charge number
Z, and fitted with a Chebyshev series for quick evaluation
during each timestep. A single series with 30 parameters is
fitted in the region 1 < Z < 200, and is defined by

dPKel

dt
¼ RðtZÞ

2NZ2α4

πm2
; tZ ¼ 2

Z − 1

200 − 1
− 1; ðA15Þ

where RðtZÞ is the Chebyshev series.
If an incoherent trident is produced, a value for x and y is

to be found. We define the cumulative probability density

function and set it equal to a random number times the total
probability:

r
dPKel

dt
¼
Z

x

0

Z
x0

0

dPKel

dx0dydt
dydx0: ðA16Þ

We invert the equation and solve for the ratio x. In this way
we can express x as a function of the random number r and
Z. This function can be fitted with good agreement using
a single series with parameters in the r dimension, 20
parameters in the Z dimension and is defined by

x ¼ Rðtr; tZÞ; ðA17Þ

with

tZ ¼ 2
Z − 1

200 − 1
− 1; tr ¼ 2r − 1 ðA18Þ

when 0 < r < 1 and 1 < Z < 200.
After picking a value for x we find the ratio y. The

cumulative probability density function is found and set
equal to a random number times the total probability for a
specific x:

r
dPKel

dxdt
ðxÞ ¼

Z
y

0

dPKel

dxdy0dt
dy0: ðA19Þ

This function is inverted and solved for y as a function of x,
Z, and r, leaving us with a three dimensional Chebyshev
series with 25 parameters in the x dimension, 10 parameters
in the Z dimension, and 25 parameters in the r dimension.
The series is fit directly to the function

y ¼ Rðtr; tZ; txÞ; ðA20Þ

with

tZ ¼ 2
Z− 1

200− 1
− 1; tr ¼ 2

r
0.5

− 1; tx ¼ 2x− 1; ðA21Þ

when 0 < r < 0.5, 1 < Z < 200 and 0 < x < 1. Since the
pair spectrum is asymmetric for y around r ¼ 0.5, we
only evaluate the spectrum in the region 0 < r < 0.5. A
second uniformly distributed random number is drawn,
0 < r2 < 1, where we use the previously found y value
if r2 < 0.5 and use y0 ¼ x − y if r2 > 0.5. We are able to
use significantly less fitting parameters in the Z dimension
because the curves along this dimension vary slowly
compared to the LCFA model which is extremely sensitive
to χ in the region around χ ¼ 1.

APPENDIX B: KELNER’S ΦA AND ΦB

Here we provide the expressions for the two lengthy
quantities used in Eq. (28).
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The first, ΦA, is defined by

ΦA ¼ 2 lnð183Z−1=3
ffiffiffiffiffiffiffiffiffiffi
1þ ξ

p
Þ
�
a1 ln

�
1þ 1

ξ

�
−b1−

c1
1þ ξ

�

þa1S

�
1−

1

1þ ξ

�
−d1 ln

�
1þ 1

ξ

�
−

2c1
3ð1þ ξÞþ

2

9
βζ;

ðB1Þ

with the Spence function SðzÞ defined as

SðzÞ ¼
Z

z

1

lnðtÞ
1 − t

dt ðB2Þ

together with the remaining parameters

a1 ¼
�
β2 þ ζ2 þ 2

3
βζ

��
1þ x

2ð1x − 1Þ
�
þ 4

3
ξð1 − ζβÞ

ðB3Þ

b1 ¼ ζ2 þ β2 þ 2

3
ζβ ðB4Þ

c1 ¼
1

3
ξþ 1

3
ðβ − ζÞ2 þ x

ð1=x − 1Þ ðB5Þ

d1 ¼ b1ξþ
1

9
βζ

�
1

1 − x
þ 1 − x

�
þ 1

9
ξð1þ 2ζβÞ: ðB6Þ

Kelner’s ΦB is likewise defined as

ΦB ¼ 2 ln

 
183Z−1=3

ffiffiffiffiffiffiffiffiffiffiffi
1þ 1

ξ

s !

×

�
a2 ln ð1þ ξÞ þ b2βζ þ

c2ξ
1þ ξ

�

þ a2S

�
1 −

ξ

1þ ξ

�
þ d2 ln ð1þ ξÞ

þ 2c2ξ
3ð1þ ξÞ þ

2

9
βζ; ðB7Þ

together with the parameters

a2 ¼
�
β2

2
þ ζ2

2
−
βζ

ξ

��
1

3
þ 1

1 − x
− x

�
−
1

3
ðB8Þ

b2 ¼
�
1

3
þ 1

1 − x
− x
�

ðB9Þ

c2 ¼
4

3
βζ −

x
6ð1x − 1Þ ðζ

2 þ β2Þ þ 1

3
ðB10Þ

d2 ¼ b2
ζβ

ξ
−
2

9

�
ζβ

ξ
−
β2

2
−
ζ2

2

�
þ 1

9
: ðB11Þ
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