
Dressing in AdS spacetime and a conformal Bethe-Salpeter equation

Sylvain Fichet*

Centro de Ciencias Naturais e Humanas, UFABC, Santo Andre, São Paulo, Brazil
and ICTP-SAIFR and IFT-UNESP, R. Dr. Bento Teobaldo Ferraz 271, São Paulo, Brazil

(Received 25 June 2021; accepted 2 August 2023; published 30 August 2023)

We initiate the study of Dyson equations of perturbative quantum field theory in anti–de Sitter (AdS) and
their consequences for large-N conformal field theory (CFT). We show that the dressed one-particle AdS
propagator features wave function renormalization and operator mixing, giving rise to finite corrections to
one-pion exchange data. We show how the resummation of 1=N effects in the CFT emerges from the
dressing in AdS. When a boundary-to-bulk propagator is dressed by propagators whose sum of conformal
dimensions is lower than the main dimension, it cannot map onto a CFT source; we relate this to an
AdS=CFT version of particle instability. We investigate the dressing of the two-particle propagator and
obtain a conformal Bethe-Salpeter equation for the conformal partial wave of a “bound state” operator. We
provide a self-contained calculation for the case of a ladder kernel. We show that a bound state with
conformal dimension equal to the sum of its constituents plus a 1=N2-suppressed “binding energy”
emerges. Resummation of the Dyson equations is essential for deriving these results.

DOI: 10.1103/PhysRevD.108.046020

I. INTRODUCTION

The AdS=CFT correspondence establishes a profound
connection between two fields of physics: gravity and
strongly-coupled gauge theories. In its most studied form,
the duality implies that the boundary amplitudes of weakly-
coupled theories of gravity in dþ 1-dimensional anti–
de Sitter (AdSdþ1) spacetime correspond to correlators
of a strongly-coupled d-dimensional conformal field theory
(CFTd) with many degrees of freedom (large-N). The 1=N
expansion of the CFT correlators maps onto the perturba-
tive expansion of the AdS quantum field theory (QFT)
amplitudes [1–12].
The concepts and tools of flat space perturbative QFT

have been gradually identified/generalized in the context of
AdS=CFT. For example, the structure of the AdS boundary
“S-matrix” has been identified in [13,14]. More recently,
the CFT Froissard-Gribov formula for analytic continu-
ation in spin was found in [15]. AdS=CFT is now studied at
loop level [16–56], and AdS=CFT unitarity methods have
been identified and explored in [50,54,57–59], both in the
space of conformal dimensions and in momentum space.
One item of the pertubative QFT toolkit has not been

deeply explored yet; the quantum dressing of AdS

amplitudes induced by interactions as described by the
Dyson equations. Its CFT counterpart corresponds to the
resummation of 1=N effects. The aim of this note is to
initiate a study of these dressing equations and its conse-
quences in AdS=CFT.
Some aspects related to dressing and resummation have

been addressed in the literature. Resummation in Mellin
space has been discussed in [18]. A bubble resummation in
the OðNÞ and Gross-Neveu models has been made in [40].
Effects of 1PI insertions on 2pt functions have been
discussed in [50] in the context of unitarity methods. A
resummation in AdS has been done in [55], with a focus on
propagation in timelike regime. Aspects of ladder diagrams
have also been discussed in [56].
Our aim here is to initiate a systematic understanding of

dressing in AdS=CFT. The focus is more conceptual than
technical, although a detailed calculation is given in the
Supplemental Material [60]. We will work with the one-
and two-particle propagators.

II. PRELIMINARY OBSERVATIONS

At large but finite N, the conformal algebra can be
viewed as the N ¼ ∞ conformal algebra with small, 1=N-
suppressed conformal deformations to the generators [57,61].
Denoting the free CFT generators as D0; K

μ
0; P

μ
0;M

μν, the
N ¼ finite generators are D ¼ D0 þDI , Kμ ¼ Kμ

0 þ Kμ
I ,

Pμ ¼ Pμ
0 þ Pμ

I , with DI; K
μ
I ; P

μ
I ∝ 1=N. [62].

Using radial quantization, the CFT correlators can in
principle be computed perturbatively in 1=N, in a way
structurally similar to the flat space S-matrix. The free
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“multiparticle” states are CFT states built from single-trace
operators of the N ¼ ∞ algebra. These map onto free bulk
fields in AdS. In the interaction picture, the interaction
piece of the Hamiltonian (namely DI) is exponentiated and
generates the correlators in a perturbative expansion around
N ¼ ∞. The perturbative picture is explicitly realized in
AdS, where one effectively has a weakly-coupled QFT in
the bulk, and the free multiparticle states are formed by the
free bulk fields ending on the boundary.
The irreducible representations of the N ¼ ∞ and N ¼

finite algebras are related by 1=N-suppressed deformations.
For example, the conformal dimensions of operators in
the N ¼ finite algebra take the form Δ ¼ Δ0 þ γ with the
anomalous dimension γ ∝ 1=N2. [63] Similarly, since the
operators in N ¼ ∞ and N ¼ finite theories differ, their
respective one-pion exchange (OPE) coefficients should
differ and be related by a 1=N-suppressed deformation
c ¼ c0 þ δc with δc ∝ 1=N2.
We may also expect a notion of “operator mixing”

induced by 1=N corrections. How may such a mixing
appear? Consider flat space QFT. At the level of propa-
gators, mixing between states appears from the resumma-
tion of 1PI insertions dressing the propagator (i.e., the Born
series generated by the 2pt Dyson equation). Hence we
should investigate the analogous dressing in AdS.
As another simple “invitation” to the question of dressing,

consider a 2pt correlator of a CFT with N ¼ finite. Using
Δ ¼ Δ0 þ γ we can always write

1

x2Δ
¼ 1

x2Δ0

�
1 − γ log x2 þ 1

2
γ2 log2 x2 þ…

�
; ð1Þ

where the 1=N-suppressed terms explicitly appear as cor-
rections to the correlator from the N ¼ ∞ CFT. The form of
the series is totally fixed by the dilatation symmetry of the
N ¼ finite conformal algebra. We can then wonder—How
does this series emerge from the AdS dual? Since concep-
tually the series Eq. (1) is generated by repeated application
of the dilatation operator of the N ¼ finite CFT, on the AdS
side the corresponding series should be generated by
repeated insertions of the interaction Hamiltonian. We can
thus expect that the above exponential series should emerge
from the dressed AdS propagator—we will show how this
happens in the following. [64].
Having set the stage and motivations, we proceed to the

AdS calculations.

III. THE DRESSED ONE-PARTICLE
PROPAGATOR

We consider scalar fields in the Poincaré patch of AdSdþ1,
with metric ds2 ¼ ðkzÞ−2ðημνdxμdxν þ dz2Þ, and Fourier
transform along the constant z slices to work in “Poincaré
momentum space” ðpμ; zÞ. The free propagator between

arbitrary points is denoted Gð0Þ
p ðz; z0Þ, with Gð0ÞðX;X0Þ ¼R ddp

ð2πÞd G
ð0Þ
p ðz; z0Þ.

We use the “harmonic” (or conformal spectral) repre-
sentation (see e.g., [65–67]), which takes the form

Gð0Þ
p;αðz; z0Þ ¼

Z
i∞

−i∞
dα̂Pðα̂; αÞΩα̂ðz; z0Þ; ð2Þ

where

Pðα̂; αÞ ¼ 1

α̂2 − α2
; Ωα̂ðz; z0Þ ∝ K−

α̂ ðzÞKþ
α̂ ðz0Þ ð3Þ

with K�ðzÞ the boundary-to-bulk propagators (Ωα̂ is the
kernel of the harmonic transform). Here the overall con-
stants are not needed, see e.g., [39,40,50,55,65–68] for
detailed formalism and applications. The K�

α ðzÞ map onto
CFT operators with dimension Δ� ¼ d=2� α.
Let us consider the propagator dressed by generic 1PI

insertions iΠðz; z0Þ, including coupling constants, as pic-
tured in Fig. 1. We first establish its general form, using the
harmonic representation for the 1PI blobs

iΠðz; z0Þ ¼
Z

i∞

−i∞
dα̂Bðα̂ÞΩα̂ðz; z0Þ: ð4Þ

We have

Z
dzdz0K−

α ðzÞiΠðz; z0ÞK−
α0 ðz0Þ ∝ δðα − α0ÞiBðαÞ þ s:t:

ð5Þ

because the lhs amounts to a conformal 2pt function
(where s:t: stands for shadow transform, see e.g., [69]).
This allows us to resum the Born series, giving the dressed
propagator

FIG. 1. The dressed one-particle propagator (blue line). Top:
The 2pt Dyson equation with 1PI insertion iΠ. Bottom: The
dressed propagator as a combination of free propagators (dark
lines) with different conformal dimensions.
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Gp;αðz; z0Þ ¼
Z

i∞

−i∞
dα̂

1

Pðα̂; αÞ−1 þ Bðα̂ÞΩ
ð0Þ
α̂ ðz; z0Þ: ð6Þ

The loop insertion is, in general, challenging to evaluate,
see [32,40,55] for the bubble case. However, we can
establish its general form by using the AdS Kallen-
Lehmann (KL) representation. In the AdS viewpoint one
inserts a complete set of multiparticle states [70], express-
ing the iΠðz; z0Þ as an infinite sum over propagators with
dimension of multitrace operators (primaries and descend-
ants). Focusing for simplicity on nonderivative interactions,
the exchanged operators are scalar. A generic m-tuple trace
operator takes the form O1∂

2n1O2…∂
2nm−1Om with total

dimension
P

m
i¼1 Δi þ 2n where n counts the derivatives.

Introducing αm ¼ P
m
i¼1 Δi − d=2, the KL form of the 1PI

insertion reads

iΠpðz; z0Þ ¼
X

m≥2;n≥0
g2mam;nG

ð0Þ
p;αmþ2nðz; z0Þ; ð7Þ

where am;n is the spectral function. The m ¼ 1 case is
excluded from the sum by 1PI requirement. A bubble
diagram, for example, gives a series of double-trace

propagators Gð0Þ
Δ1þΔ2þ2n−d=2. The a2;n coefficients for the

bubble were found in various ways in [18,55]. Finally, the
gm contain the coupling constants from bulk vertices,
scaling as gm ∼ 1=Nm−1 as dictated by the mapping onto
CFT correlators.
In the harmonic representation this general form of the

1PI insertion becomes

Bðα̂Þ ¼
X

m≥2;n≥0
g2mam;nPðα̂; αm þ 2nÞ: ð8Þ

Plugging Eq. (8) into Eq. (6) gives the general form of the
AdS propagator dressed by arbitrary 1PI insertions.
We now extract information about the CFT from the

dressed propagator Gp;α.

A. Anomalous dimension

The first bit of information we extract is the anomalous
dimension at the α̂ ∼�α pole. Since BðαÞ is a perturbative
correction, we obtain the correction to α by expanding BðαÞ
near the pole, Bðα̂Þ ¼ BðαÞ þ � � �. The corresponding CFT
operator given by that pole acquires an anomalous dimen-
sion γ, with

γ ¼ −
BðαÞ
2α

; Δ� ¼ Δ0
� � γ ¼ d

2
� α� γ; ð9Þ

whereΔ0
� is the conformal dimension in theN ¼ ∞ theory.

This method is explicitly verified for the bubble via [32,55].

B. Wave function/one-pion exchange renormalization

We consider the next-to-leading term in the expansion
of Bðα̂Þ,

Bðα̂Þ ¼ BðαÞ þ ∂

∂α̂2
Bjα¼α̂ðα̂2 − α2Þ þ…: ð10Þ

Introducing δZ ¼ ∂

∂α̂2
Bjα¼α̂, we get that the residue of the

pole is corrected by 1 − δZ. This is the spectral equivalent
of “wave function renormalization”. From the CFT view-
point, upon unit-normalizing the 2pt functions, the factor
becomes a correction to the OPE coefficients of the N ¼ ∞
theory. For e.g., a 3pt function, the correction takes the
form δc123 ¼ − 1

2
ðδZ1 þ δZ2 þ δZ3Þc123.

One can notice a general relation between γ and δc,

δc
c
¼ 1

2

�
γ

α
þ ∂γ

∂α

�
: ð11Þ

Hence for a known γ we can readily deduce the associated
correction to the OPE coefficient.

C. Operator mixing

There is also an infinite sequence of new simple poles
arising in Gp;α because of the poles in BðαÞ, see Eq. (8).
For simplicity, consider poles far from the main one,
jα̂j ∼ jαm þ 2nj ≫ jαj. The new poles are

α̂ ≈�
�
αm þ 2n −

g2mam;n

2ðαm þ 2nÞ3
�
; ð12Þ

where the last term is 1=N-suppressed. The associated
residues in this limit are

rm;n≈ ∓ g2mam;n

2ðαm þ 2nÞ5 ð13Þ

and are thus 1=N-suppressed. Using the definition Eq. (2)
these poles contribute to the dressed propagator as

Gp;αðz; z0Þ ⊃ −
X

m≥2;n≥0

g2mam;n

ðαm þ 2nÞ5G
ð0Þ
p;αmþ2nðz; z0Þ: ð14Þ

That is, an infinite sequence of multitrace propagators
arises in the dressed propagator with 1=N-suppressed
coefficients. The complete form of Gp;αðz; z0Þ is obtained
similarly and is summarized in Fig. 1.
These contributions to Gp;αðz; z0Þ introduce a notion of

mixing between the original CFToperator and the sequence
of multitrace operators in the following sense: If the
main operator appears in a given OPE, then the whole
sequence of multitrace operators also appear in the OPE
with 1=N-suppressed coefficients. Our AdS result Eq. (14)
dictates what are precisely the coefficients.
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This can be seen explicitly at the level of a 4pt
exchange diagram. When cutting on Gp;αðz; z0Þ—in either
α-space [50] or momentum space [54]—one obtains a sum
of squared 3pt correlators (or transition amplitudes) over
the sequence of multitrace operators weighted by the ri;n
residues.

D. Boundary propagators and (in)stability inAdS=CFT

Let us consider the dressed boundary-to-bulk propagator
(i.e., K), obtained from the dressed Gp;αðz; z0Þ by sending
e.g., z to the boundary and rescaling by zd=2−α−γ. If the
dimensions in Eq. (14) satisfy αm > α, all multitrace con-
tributions drop faster than the main, single-trace term when
approaching the boundary, leaving only this main operator
with dimension Δ0 þ γ and wave function corrected by δZ.
Hence, in spite of dressing, the dressed bulk field still maps
onto a source for the single-trace operator in the CFT, and
thus the standard AdS=CFT prescription remains unaffected.
In contrast, if αm < α, the multitrace contribution grows

faster than the single-trace one near the boundary. Thus the
usual rescaling from the standard AdS=CFT prescription
does not give a finite result. We understand this apparent
failure of the AdS=CFT prescription for αm < α as follows.
When αm < α, rather than using Kα as external leg, one
should use the Ki from the fields inside the 1PI insertion
defined at some given order in perturbation theory. The Ki
have dimension lower than the main operator, and a subset
of them satisfies the AdS=CFT prescription at the given
order in perturbation theory. These Ki can thus be used as
external legs.
This resolution matches the notion of particle instability

in flat space QFT [71–73]; if a heavy particle with mass
M can decay into particles of mass

P
n
i¼1 mi < M at some

order, then the space of final states is built from these lighter
offspring particles rather than the original particle, which
is seen as unstable at this order of perturbation theory.
We have essentially obtained the analogous picture for
bulk fields/sources in AdS=CFT, where the analog of the
“kinematic threshold” is given by

Xm
i¼1

Δi < Δ: ð15Þ

This condition was also found in [14]. This notion of
instability in AdS=CFT may deserve further study.

E. Emergence of the 1=N resummation in CFT

Finally, we show how the conformal series Eq. (1)
appears from the AdS side. Wewrite the dressed propagator

as a geometric series in α space, Gp;α ¼
P

n G
ðnÞ
p;α, with

GðnÞ
p;αðz; z0Þ ¼

Z
i∞

−i∞
dα̂Pðα̂; αÞ½−Pðα̂; αÞBðα̂Þ�nΩð0Þ

α̂ ðz; z0Þ;

ð16Þ

Closing the contour, there is a nþ 1-tuple pole at α̂ ¼ �α.
Ignoring the other poles which correspond to the operator
mixing discussed above, we have

GðnÞ
p;αðz; z0Þ ⊃ ð−1Þn

n!
∂
n

∂α̂n

��
Bðα̂Þ
2α̂

�
n
Gð0Þ

p;α̂ðz; z0Þ
�
α̂¼α

: ð17Þ

We then focus only on the derivatives acting on G, because
we already know that derivatives on B lead to wave
function renormalization or to effects neglected here [55].
The anomalous dimension defined in Eq. (9) appears. The
sequence of derivatives exponentiates, giving

Gp;αðz; z0Þ ⊃ eγ∂αGð0Þ
p;αðz; z0Þ: ð18Þ

Finally, we take the boundary-to-bulk limit and trade α for
the conformal dimension using Δ0

� ¼ d=2� α. We obtain
an exponentiated operator acting on the N ¼ ∞2pt CFT
correlator,

e�γ∂Δ0
1

x2Δ0
ð19Þ

whose action is to shift the conformal dimensionΔ0
� by�γ.

We have therefore reproduced the conformal series of
Eq. (1) from the AdS side, both for dimension larger
and lower than d=2.
Reproducing the above steps by acting with one deriva-

tive on the bubble function in Eq. (16), and using the
definition Eq. (10), we similarly obtain the 1 − δZ correc-
tion to the normalization of the 2pt correlator.

IV. THE DRESSED TWO-PARTICLE
PROPAGATOR

In flat space the 4pt Dyson equation and associated
Bethe-Salpeter equation (BSE) for a weakly coupled
bound state give rise to rich physics and challenging
problems [74,75]. Here we present a conformal version
of the BSE and show the existence of a “bound state” in
spectral space.
The general AdS 4pt Dyson equation is shown in Fig. 2

(top). One could study it for arbitrary bulk points, but our
focus is on sending the endpoints to the boundary.
Rescaling appropriately the legs, one obtains the Witten
diagram version of the Dyson equation. The diagrams map
onto 4pt CFT correlators, and can be generically described
using a decomposition over conformal partial waves
(CPW) [76–79]

A1234ðxiÞ ¼
Z

i∞

−i∞
dα̂Oρðα̂OÞΨ1234

O ðxiÞ; ð20Þ

where ρðαÞ is the OPE function. In momentum space the
CPW Ψ1234

O is simply the product of 3pt functions,

SYLVAIN FICHET PHYS. REV. D 108, 046020 (2023)

046020-4



Ψ1234
O ðpiÞ¼Γ12Oðp1;2ÞΓ34Õðp3;4Þð2πÞdδðdÞ

�X
i

pi

�
ð21Þ

with

Γ12Oðp1;2Þ ¼ ⟪O1ðp1ÞO2ðp2ÞOð−p1 − p2Þ⟫ ð22Þ

and dimensions ½Oi� ¼ d=2þ αi, ½Õi� ¼ d=2 − αi.
Then, in analogy with the flat-space BSE approach, we

assume the existence of a simple pole with dimensionΔB in
the OPE function of G2,

ρG2
ðα̂Þ ∝ Pðα̂; αBÞ ð23Þ

for α̂ near αB, with ΔB ¼ d=2þ αB.
Finally we project the Dyson equation to focus on the

exchange of operator with dimension near ΔB. This can be
done using e.g., a CPW, or more directly by contracting
the 3,4 legs with a Γ3̃ 4̃O0

, giving a relation between 3pt
correlators in the α ∼ αB region. Because of the nearby pole
in the connected diagrams, the diagram with free propa-
gators is negligible. We end up with a self-consistent
equation between 3pt Witten diagrams, which amounts
to the AdS=CFT version of the BSE, as shown in Fig. 2
(bottom).
We see that the role of the “vertex function” of flat space

BSE is here played by a 3pt diagram (i.e., a 3pt CFT
correlator), which is fully constrained by conformal sym-
metry. Thus, the only unknown of our BSE is the dimension
of the “bound state” operator ΔB.
For a given interaction kernel, the value(s) of ΔB can be

extracted from the BSE at large N as follows. The vertices
from the kernel are 1=N-suppressed. Thus each side of
the BSE can match only at values of ΔB for which an N-
enhancement cancels the 1=N-suppression from the vertices.
The existence of such an enhancement due to the

interaction kernel is a priori nontrivial. In next section
we will see how it happens for a ladder kernel.

V. A CONFORMAL BETHE-SALPETER
EQUATION

We study the case of a ladder kernel induced by a
mediator X with cubic coupling to the 1 and 2 fields. The
BSE is shown diagrammatically in Fig. 2 (bottom).
This BSE involves a triangle diagram, A3;△. Our most

technical task is to reduce it to A3;△ ¼ b12XBA3;tree where
b12XB is an overall factor that encodes the nontrivial
information about A3;△. The BSE amounts to the equation

b12XB ¼ 1: ð24Þ

By studying Eq. (24) we can then determine whether a
solution ΔB exists and its value as a function of Δ1;2;X.

A. Computing the BSE

We provide the detailed computation of our triangle
diagram in a self-contained Supplemental Material [60].
Here we describe schematically the steps and emphasize a
few key points.
Starting from the triangle diagram, we split the internal

lines using the harmonic representation Eq. (2),

ð25Þ

The result amounts to a t-channel subdiagram glued to 3pt
contact subdiagram. We then decompose the t-channel
subdiagram onto a basis of s-channel CPWs by using the 6j
symbol with pairwise equal dimensions Δ1;2 [39], here
denoted by J 1;2

A;B. This involves summing over an additional
conformal dimension α̂S. The relevant 6j symbol is given
explicitly in the Supplemental Material [60]. We obtain

ð26Þ

The rhs of the first line involves a bubble topology.
The conformal bubble integral is well-known and is, by

FIG. 2. The dressed two-particle propagator (blue). Top: The
4pt Dyson equation with 2PI insertion K. Bottom: The boundary
Bethe–Salpeter equation with a ladder kernel.
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conformal symmetry, proportional to δðα̂S − αBÞ þ s:t.
This readily eliminates the dα̂S integral, reducing the
diagram to a nontrivial overall factor times A3;tree with
conformal dimensions Δ1;2;X. We emphasize that the
dependence on the “off shell” α̂1;2 only remains in the
overall factor, not in the A3;tree. Thus, at that point we have
reached the expected BSE form Eq. (24).
Performing the remaining dα̂1;2 integrals inside the c12BX

factor requires to know the asymptotics of the integrand,
including of the 6j symbol which involves 4F3 functions.
The relevant asymptotic formulas are given in the
Supplemental Material [60]. The integrand at e.g., large
jα̂1j turns out to be dominated by the 3pt coefficients which
behave exponentially while the other factors behave as
powers. The upshot is that we can close both contours
towards the physical poles, α̂1;2 ¼ Δ1;2 − d

2
.

When closing the α̂1;2 contours, other poles may be
picked by the contour integration. However, such contri-
butions are irrelevant when solving the BSE because
theory are not enhanced near the 6j pole, see details
below.

B. Solving the BSE

We search for solutions of the BSE in ΔB at fixed Δ1;2;X.
Due to the overall 1=N2 suppression from the 11X and 22X
vertices, such solutions can appear only for values ofΔB for
which a N2 enhancement occurs, if they exist.
Interestingly, such an enhancement does happen due

to the behavior of the 6j symbol. For legs with pairwise
equal dimension, J contains double poles of the form
1=ðΔB − Δ1 − Δ2 − 2nÞ2 [39]. Possible contributions from
other residues at shadow locations are irrelevant to our

near-pole analysis since they are not N2-enhanced in the
region of interest.
At the level of the BSE, the 6j double pole behavior

reduces to a single pole due to simplification with a single
pole in A3;tree (see Supplemental Material [60]). It follows
that the values of ΔB computed by the BSE must take
the form ΔB ¼ Δ1 þ Δ2 þ 2nþ δB;n, where the “binding
energy”

δB;n ∝
1

N2
ð27Þ

depends on Δ1;2;X and n. We leave a detailed numerical
analysis of the conformal BSE for future work.
In a nutshell, the BSE is an important perturbative tool

whose implications for AdS=CFT remain to be analyzed in
detail, including the 12B OPE coefficient, the spectator
equation (i.e., large Δ1), and cross-ladder diagrams. More
broadly, it is about the resummation of 1=N corrections in
4pt CFT correlators, which would also be interesting to
study directly from CFT methods such as the conformal
bootstrap.
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