
Toward Carrollian quantization: Renormalization of Carrollian
electrodynamics

Aditya Mehra 1,* and Aditya Sharma 2,†

1School of Mathematics and Maxwell Institute for Mathematical Sciences, University of Edinburgh,
Peter Guthrie Tait Road, Edinburgh EH9 3FD, United Kingdom

2Department of Physics, BITS-Pilani, K K Birla Goa Campus, Zuarinagar, Goa-403726, India

(Received 7 March 2023; accepted 9 August 2023; published 30 August 2023)

Field-theoretic descriptions of Carrollian theories have largely remained classical so far. In this paper,
we attempt to study the renormalization of Carrollian gauge field theories via path integral techniques.
The case of Carrollian electrodynamics minimally coupled to a massive Carrollian scalar is considered. We
report potential problems such as IR divergences and mass-shell singularity cropping up at the first order in
the perturbation. Perhaps, the most important result that we report is how conventional arguments for gauge
independence for mass and coupling are invalidated for a gauge theory in a Carrollian setting. As of now,
the renormalization of Carrollian gauge field theories seems to suffer from unphysical ramifications.
Possible cures to resolve these issues are suggested.
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I. INTRODUCTION

The Carrollian limit described as the speed of light (c)
going to zero was first introduced in [1,2] as a nontrivial
contraction, as opposed to the well-known Galilean limit
ðc → ∞Þ of the Poincaré transformations. Owing to the
deviation from the Lorentzian character, these two limits
are also called non-Lorentzian limits. An illustrative way of
understanding the Carrollian limit is the closing of the light
cone to the time axis as depicted in Fig. 1. A peculiar
consequence of taking the Carrollian limit on the Poincaré
transformation is that it renders the space as absolute,
i.e., not affected by boosts. Under such a setting causality
almost disappears, and the only way for two events to
interact causally is if they happen at the same space and
time point. For this very reason, the Carrollian limit is
sometimes referred to as the ultralocal limit.
The last decade has seen a flurry of research activity in

constructing field theories that are consistent with Carrollian
symmetry (see [3–7] and references therein). Carrollian
symmetry is described by a set of symmetry generators
viz. spatial and temporal translations, homogeneous rota-
tions, and Carrollian boosts. These symmetry generators can
be obtained by taking the c → 0 limit of Poincaré symmetry

generators. Equivalently, one may also wish to work in the
natural system of units where c is set to unity and rescale
the space ðxiÞ and time (t) instead. The Carrollian limit
is then defined as

t → ϵt; xi → xi; ϵ → 0;

which also leads to the Carrollian symmetry generators [3,4].
Over the years Carrollian symmetry has paved its

way into many physics systems ranging from condensed
matter [8,9] to black holes [10]. For example, it has
been realized recently that a Carroll particle subjected to
an external electromagnetic field mimics a Hall-type
scenario [8]. Furthermore, the emergence of Carrollian
physics in the study of bilayer graphene [9], the relation of
Carrollian symmetry with plane gravitational waves [11],
motion of particles on a black hole horizon [12], and
hydrodynamics [13,14] further fuels the need of Carrollian
physics. In recent years, Carrollian holography has also
emerged as a possible candidate for the flat space holo-
graphy program [15–18]. Some aspects of Carrollian
gravity have also been studied in [19–21].
However, much of the work carried out in the Carrollian

sector has largely remained classical so far, and not much
heed has been paid to the quantization. As a matter of
fact, the whole program of quantization of non-Lorentzian
theories is fairly recent. For example, quantum studies on
the Galilean field theories have surfaced in the last few
years only (see [22–25]). This paper attempts to understand
the quantum “nature,” particularly, the renormalization of
Carrollian field theories.
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Understanding the quantum nature of Carrollian field
theories is important on many levels. Firstly, as mentioned
in the beginning, the Carrollian limit causes the light
cone to close on the time axis, and thus, time ordering is
preserved only along the time axis. This results in two-point
correlation functions of a Carrollian field theory to exhibit
ultralocal behavior at the tree level (see Appendix A). It
becomes intriguing to ask how Carrollian fields interact
at the quantum level. Secondly, in the massless regime,
certain Carrollian field theories at the classical level, admit
invariance under the infinite conformal symmetries (for
example [3,4]). It is then natural to ask whether these
symmetries survive the quantization or not. Finally, it has
been well established that the black hole horizon is a natural
Carroll surface [10]. Thus, a quantum field theory living on
the black hole horizon could be a Carrollian quantum field
theory.
In this paper, we have attempted to probe the renorm-

alization of Carrollian electrodynamics [3]1 minimally
coupled to a massive Carrollian scalar. At the classical
level, the Lagrangian for the theory is obtained by Carroll
limiting the massless Lorentzian scalar electrodynamics.
The resulting theory consists of a gauge couplet ðB;AiÞ
minimally coupled to a complex scalar field ϕ through the
coupling e. We then incorporate a mass term in the theory
strictly constrained by the Carrollian symmetry. Owing to
an interaction between gauge fields and a scalar field, we
name the theory scalar Carrollian electrodynamics (sCED).
To explore the renormalization description, we have made
use of path integral techniques. We strictly restrict the
renormalization scheme up to the first order in the pertur-
bation, i.e., one loop. Although the theory is renormaliz-
able, there are serious unphysical ramifications, especially
regarding the notion of mass and coupling in the Carrollian
setting. The renormalization scheme leads to the notion of
gauge-dependent mass and coupling which invalidates the
conventional arguments of gauge independence for mass
and coupling.

This paper is organized as follows: We have a total of
four sections including the introduction. In Sec. II we
present the classical field description of sCED. A brief
discussion on the Carrollian symmetry is presented fol-
lowed by the Lagrangian formulation of sCED. Relevant
Noether charges are constructed, and it is shown that
Carrollian algebra is satisfied at the level of charges. In
Sec. III we proceed with the quantum field description of
sCED. We propose path integral quantization and study
renormalization of the theory up to one loop. Relevant
results are then discussed and concluded in Sec. IV.

II. CLASSICAL ANALYSIS OF SCALAR
CARROLLIAN ELECTRODYNAMICS

A. Carrollian symmetry: A cursory visit

Carrollian symmetrty of a (dþ 1)-dimensional space-
time is described by time translations (H), space trans-
lations ðPiÞ, homogeneous rotations ðJijÞ, and Carrollian
boosts ðBiÞ. In an adaptive coordinate chart xI ¼ ðt; xiÞ we
can express them as

H ¼ ∂t; Pi ¼ ∂i; Jij ¼ ðxi∂j − xj∂iÞ; Bi ¼ xi∂t:

ð1Þ

The symmetry generators (1) can be obtained by Carroll
limiting the Poincaré symmetry generators [3,4,26].
However, there also exists yet another way, i.e., a geometric
way to arrive at the Carrollian symmetry generators (see for
example [27] or Appendix B). The symmetry generators (1)
form a closed Lie algebra called Carrollian algebra given by

½Jij; Bk� ¼ δk½jBi�; ½Jij; Pk� ¼ δk½jPi�; ½Jij; H� ¼ 0

½Bi; Pj� ¼ −δijH; ½Pi;H� ¼ 0

½Pi; Pj� ¼ 0; ½Bi;H� ¼ 0: ð2Þ

The generators fH;Pi; Jij; Big can be used to study the
action of symmetry generators on the fields at a general
spacetime point, i.e., for a generic scalar field φ and a
generic vector field Vi, we can write (see [3] and references
therein for complete details)

spatial rotations∶ δωφðt; xÞ ¼ ωijðx½i∂j�Þφðt; xÞ
δωVlðt; xÞ ¼ ωij½ðx½i∂j�ÞVlðt; xÞ þ δl½iVj��

Carrollian boosts∶ δBφðt; xÞ ¼ bj½xj∂tφðt; xÞ�
δBVlðt; xÞ ¼ bj½xj∂tVlðt; xÞ þ δljφðt; xÞ�

space translation∶ δpφðt; xÞ ¼ pj
∂jφðt; xÞ

δpViðt; xÞ ¼ pj
∂jViðt; xÞ

time translation∶ δHφðt; xÞ ¼ ∂tφðt; xÞ
δHViðt; xÞ ¼ ∂tViðt; xÞ; ð3Þ
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FIG. 1. The figure in panel (a) is the light cone in Minkowski
spacetime. Light travels along the path x ¼ ct. In panel (b), we
can see the light rays start to collapse on the t axis as we approach
closer and closer to the Carrollian limit. Finally the light cone
collapses into x ¼ limc→0ct → 0 in panel (c) above.

1Here, by Carrollian electrodynamics we mean the electric
sector of Carrollian electrodynamics [3]. In actuality, Carrollian
electrodynamics also admits another sector known as the mag-
netic sector. For more details on the magnetic sector of Carrollian
electrodynamics the reader is referred to [4].
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where ωij is an antisymmetric matrix and bi and pi are the
boosts and spatial translation parameters. We shall be
employing (3) to demonstrate the invariance of sCED
and then later again to construct the conserved charges
associated to these symmetry generators for sCED.

B. Lagrangian and conserved charges for sCED

We begin our discussion by proposing the Lagrangian
for massive sCED. It must be noted that the Lagrangian
for the massless scalar Carrollian electrdoyanmics was
proposed in [3]. Their technique relied on Helmholtz
integrability conditions.2 In a coordinate chart xI ¼ ðt; xiÞ
the Carroll invariant Lagrangian L̃ for massless sCED is
given by

L̃ ¼ 1

2
fð∂iBÞ2 þ ð∂tAiÞ2 − 2ð∂tBÞð∂iAiÞg − ðDtϕÞ�ðDtϕÞ;

ð4Þ

where Dtϕ¼ ∂tϕþ ieBϕ and ðDtϕÞ� ¼ ∂tϕ
� − ieBϕ�. We

add a mass term strictly constrained by the Carrollian
symmetry (3) to the above Lagrangian such that the
Lagrangian L for massive sCED3 is given by

L ¼ 1

2

n
ð∂iBÞ2 þ ð∂tAiÞ2 − 2ð∂tBÞð∂iAiÞ

o
− ð∂tϕ�Þð∂tϕÞ

þm2ϕ�ϕ − ieB
h
ϕ∂tϕ

� − ϕ�
∂tϕ
i
− e2B2ϕ�ϕ: ð5Þ

The equations of motion for sCED can be obtained by
varying (5) with respect to the fields B, Ai, and ϕ, resulting in

∂t∂tAi − ∂t∂iB ¼ 0

DtDtϕþm2ϕ ¼ 0

∂i∂tAi − ∂i∂iB − ieðϕD�
tϕ

� − ϕ�DtϕÞ ¼ 0; ð6Þ

which agrees with [3] if we set m ¼ 0 in (6). It is instructive
to note that the Lagrangian (5) enjoys the following gauge
invariance:

δαB ¼ α1 ð7Þ

δαAi ¼ −∂iα2; ð8Þ

where α1 and α2 are arbitrary functions (For a detailed
discussion on the gauge structure of Carrollian electro-
dynamics we direct the reader to Appendix C).
The Noether theorem suggests that associated to every

continuous symmetry of the Lagrangian, there exists a
corresponding global conserved charge. Since the
Lagrangian (5) is invariant under Carrollian symmetry (3),
the associated Noether charges for rotations ðQðωÞÞ, space
and time translations ðQðpÞ; QðhÞÞ, and boosts ðQðbÞÞ are
given by

QðωÞ ¼
Z

dd−1xωij
h
Ȧkðx½i∂j�Ak þ δk½iAj�Þ − ð∂ · AÞðx½i∂j�BÞ − ðDtϕÞ�ðx½i∂j�ϕÞ − ðx½i∂j�ϕÞ�ðDtϕÞ

i

QðpÞ ¼
Z

dd−1xpl
h
Ȧi∂lAi − ∂lB∂ · A − ðDtϕÞ�∂lϕ − ∂lϕ

�Dtϕ
i

QðhÞ ¼
Z

dd−1x

�
1

2
ðȦ2

i − ð∂iBÞ2Þ þ ðDtϕÞ�ðDtϕÞ − ðDtϕÞ�ð∂tϕÞ − ð∂tϕÞ�ðDtϕÞ −m2ϕϕ�
�

QðbÞ ¼
Z

dd−1x blxl

�
1

2
ðȦ2

i − ð∂iBÞ2Þ þ ðDtϕÞ�ðDtϕÞ − ðDtϕÞ�ð∂tϕÞ − ð∂tϕÞ�ðDtϕÞ −m2ϕϕ�
�
þ blðȦlBÞ:

Correspondingly, after a bit of lengthy but straightforward calculation we can arrive at the charge algebra. The
nonvanishing Poisson brackets for sCED are

fQðωÞ; QðpÞg ¼ Qðp̃Þ
fQðωÞ; QðbÞg ¼ Qðb̃Þ
fQðpÞ; QðbÞg ¼ QðhÞ;

where p̃≡ p̃k
∂k ¼ ωijp½j∂i� and b̃≡ b̃k∂k ¼ ωijb½j∂i�. Clearly the Carrollian algebra is realized at the level of Noether

charge algebra. We are now in position to probe into the quantum field description for sCED.

2Helmholtz conditions are the necessary and sufficient conditions which when satisfied by a set of second order partial differential
equations, guarantee an action. We request the reader to check [3,4,28] for more details on the method and its applications.

3From here onward, we shall simply call massive scalar Carrollian electrodynamics sCED.

TOWARD CARROLLIAN QUANTIZATION: RENORMALIZATION … PHYS. REV. D 108, 046019 (2023)

046019-3



III. QUANTUM FIELD DESCRIPTION OF sCED

In the previous section we studied the classical field
description of scalar Carrollian electrodynamics. In this
section, we propose a quantization prescription, particu-
larly the renormalization of sCED.4 We shall put to use
functional techniques to explore the renormalization of
scalar Carrollian electrodynamics. The action S, for the
sCED using (5) takes the following form:

S ¼
Z

dtd3x

�
1

2

n
ð∂iBÞ2 þ ð∂tAiÞ2 − 2ð∂tBÞð∂iAiÞ

o
− ð∂tϕ�Þð∂tϕÞ − ieB

h
ϕ∂tϕ

� − ϕ�
∂tϕ
i

− e2B2ϕ�ϕþm2ϕ�ϕ
�
: ð9Þ

The gauge field couplet φI ≡ ðB; AiÞ and the complex
scalar field ϕ, carry the mass dimensions ½B� ¼ ½Ai� ¼
½ϕ� ¼ ½ϕ�� ¼ 1 rendering us with a case of a marginally
renormalizable theory with ½e� ¼ 0. An instructive thing to
note in (9) is that the gauge field Ai does not participate
in any interaction with ϕ or ϕ�. As a consequence, the
propagators and vertices shall admit loop corrections
offered only due to the interaction between the gauge field
B and the complex scalar ϕ. For the rest of the paper, we
shall focus only on the one-loop corrections in the theory.

A. Feynman rules

Since sCED is a gauge theory5 it is important that we
gauge fix the theory. We shall employ the gauge fixing
technique developed by Faddeev and Popov [29–31], i.e.,
the gauge fixed action is

S ¼
Z

dtd3x

�
1

2

n
ð∂iBÞ2 þ ð∂tAiÞ2 − 2ð∂tBÞð∂iAiÞ

o
− ð∂tϕ�Þð∂tϕÞ − ieB

h
ϕ∂tϕ

� − ϕ�
∂tϕ
i
− e2B2ϕ�ϕ

þm2ϕ�ϕ
�
þ
Z

dtd3xLgauge fixed; ð10Þ

with Lgauge fixed given by

Lgauge fixed ¼ −
1

2ξ

�
G½Bðt; xiÞ; Aiðt; xiÞ�

�
2
;

where G½B;Ai� is the gauge fixing condition and ξ is the
gauge fixing parameter.
We choose G½B;Ai� ¼ ð∂tBÞ such that the gauge fixed

action (10) becomes

S ¼
Z

dtd3x

�
1

2

n
ð∂iBÞ2 þ ð∂tAiÞ2 − 2ð∂tBÞð∂iAiÞ

o
− ð∂tϕ�Þð∂tϕÞ − ieB

h
ϕ∂tϕ

� − ϕ�
∂tϕ
i
− e2B2ϕ�ϕ

þm2ϕ�ϕ −
1

2ξ
ð∂tBÞ2

�
: ð11Þ

Observe that we can arrive at the same gauge fixed action
by Carroll limiting the Lorentz gauge fixing condition for
Lorentzian scalar electrodynamics. Also, notice that we
have omitted the Fadeev-Popov ghost term in (11). This is
because the Faddeev-Popov ghosts do not interact with the
gauge field couplet ðB;AiÞ and hence do not contribute to
any of the loop corrections. Now, with the gauge fixed
action (11) at our disposal, we can evaluate the propagator
for the gauge couplet φI . For the sake of brevity, we
introduce ¼ ðω; piÞ such that the gauge field propagator
DIJ ¼ hφI;φJi reads as

DIJ ¼ −i

 ξ
ω2

ξ
ω3 pi

ξ
ω3 pi − δij

ω2 þ pipj

ω4 ξ

!
; ð12Þ

and the propagator for the complex scalar field ϕ takes the
following form:

hϕ;ϕ�i ¼ i
−ω2 þm2

: ð13Þ

Before we proceed further, notice that the gauge field
propagator (12) admits a pole at ω ¼ 0 which essentially
captures the ultralocal behavior of Carrollian field theories,
i.e., two events are causally related to each other only if
they happen at the same spacetime point. This can be
confirmed further by Fourier transforming the propagator
in position space (see Appendix A for more details). A
similar feature can be observed for the complex scalar field
propagator (13). However, it must be noted that (13) admits
a pole at ω2 ¼ m2, which is precisely how mass is defined
for a free theory under quantum field theory setting [29,30].

4It should be noted that the quantization of Carrollian field
theory is not on a firm footing, and we are working on addressing
the canonical quantization of Carrollian field theories. We shall
be reporting these issues with glorifying detail in our upcoming
work (the manuscript is currently under preparation). However,
for completeness, we make a very generic and plausible
assumption of the existence of the vacuum and present a cursory
introduction to the renormalization of an interacting (quartic)
Carrollian scalar field theory in Appendix D which makes the
renormalization approach for sCED self-sufficient.

5The gauge structure of sCED is because of the gauge couplet
ðB; AiÞ in the theory. To understand its gauge structure in more
detail please refer to Appendix C.
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The Feynman rules for sCED are then given by

1: gauge scalar propagator; hB;Bi ¼ −i
ω2

ξ

2: scalar propagator; hϕ�;ϕi ¼ i
−ω2 þm2

3: three-point vertex; VBϕ�ϕ ¼ ieðωp − ωqÞ
4: four-point vertex; VB2ϕ�ϕ ¼ −2ie2: ð14Þ

The diagrammatic representation of (14) is given in Table I.
Notice that we have purposefully omitted the propagators
hB;Aii and hAi; Aji while writing down (14). This is
because the only allowed interaction in the theory is
between the fields B and ϕ (and its complex conjugate)
and thus hB;Aii and hAi; Aji will not contribute to any loop
corrections in the theory. In what follows, we shall evaluate
the necessary one-loop corrections to the propagators and
vertices.

B. Renormalization

Owing to the three-point and four-point interactions
between the gauge field B and the complex scalar ϕ�
and ϕ, the theory of sCED admits one-loop corrections
to the propagators and the vertices. Generally, these loop
integrals diverge at large values of energy (ω) and
momentum (jpj) and lead to what is known as UV
divergences. In order to make sense of these divergent
integrals, we employ the technique of cut-off regularization
where we set an upper cutoff, Ω in the energy sector and Λ
in the momentum sector. In addition to UV divergences, the
loop integrals may also diverge at low energy (or momen-
tum) scales. This is called IR divergence. Most often, such
divergences are encountered in massless theories where
the pole of the propagator admits a mass-shell singularity.
It is important to realize that the gauge propagator for
sCED (14) showcases a similar pole structure. Thus
some of the loop corrections shall admit IR divergences.

However, physical observables such as correlation func-
tions shall not depend on IR divergences. This essentially
means that renormalized gauge propagators should not
contain any IR divergence. Interestingly, we shall see later
that under the renormalization scheme, the gauge field
propagator hB;Bi does not admit any IR divergence.6

For the present discussion, we are concerned with the
renormalization of sCED; hence we shall only retain UV
divergent terms and ignore IR divergences. But before
we proceed any further, we shall comment on the issue of
ignoring IR divergences. Recall that in Lorentzian quantum
electrodynamics (QED), IR divergences are handled by the
inclusion of soft photons of mass μ such that, in the limit
μ → 0 IR divergences neatly cancel. This technique does
not hold for the case of sCED. A similar problem of IR
divergences occurs in the study of scattering amplitude for
nonrelativistic QED, where ignoring the IR divergences at
the first few orders of the perturbation leads to the correct
results [32,33]. Lastly, the problem of IR divergences has
also been observed for the case of scalar Galilean electro-
dynamics (sGED) [24] where ignoring IR divergences
leads to a renormalized theory of sGED. For the rest of
the discussion, we shall abide by this approach and plan to
examine the resolution of IR divergences in the Carrollian
setting in the future.

1. Loop corrections and renormalization conditions

The two propagators we are interested in are the gauge
field propagator hB; Bi and the complex scalar propagator
hϕ;ϕ�i. We shall begin our discussion with the gauge field
propagator hB;Bi. The relevant one-loop corrections are
drawn in Fig. 2.
The loop correction ðΣ1Þ offered to the hB;Bi propagator

due to VBϕ�ϕ can be evaluated by integrating along the
unconstrained variable ðωq; qÞ of diagram (a) in Fig. 2, i.e.,

Σ1 ¼
Z

dωqd3q
e2ð2ωq þ ωpÞ2

ð−ω2
q þm2Þðm2 − ðωq þ ωpÞ2Þ

: ð15Þ

The superficial degree of divergence suggests that the
integral converges in the energy sector but diverges cubi-
cally at large values of q. To this end, we put a UV cutoff Λ
in the momentum sector. Also, it must be observed that
the integral does not contain any IR divergence since the
integrand is well defined at ωq → 0. A straightforward
calculation then gives

Σ1 ¼ i
8π2e2Λ3

3m
: ð16Þ

TABLE I. Feynman rules for sCED.

1. hB;Bi
2. hϕ;ϕ�i
3. VBϕ�ϕ

4. VB2ϕ�ϕ

6It must be pointed out that the propagator for the complex
scalar field is not gauge invariant, and hence, its renormalization
may depend on the gauge fixing parameter ξ.
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Notice that the degree of divergence of Σ1 is cubic which
agrees with the predicted degree of divergence. Next, we
shall evaluate the correction ðΣ2Þ offered due to VB2ϕ�ϕ.
The Feynman diagram is given in diagram (b) of Fig. 2. The
integral Σ2 reads as

Σ2 ¼
Z

dωqd3q
2e2

ðm2 − ω2
qÞ
: ð17Þ

As before, the integral diverges cubically at large values of
q but remains convergent in ωq. The integral evaluates to

Σ2 ¼ −i
8π2e2Λ3

3m
: ð18Þ

With (16) and (18) at our disposal, the propagator hB;Bi up
to first order in the perturbation, i.e., Oðe2Þ is given by

+ + = finite

Mathematically, we can write

−
iξ
ω2

þ
�
−
iξ
ω2

��
i
8π2e2Λ3

3m

��
−
iξ
ω2

�

þ
�
−
iξ
ω2

��
−i

8π2e2Λ3

3m

��
−
iξ
ω2

�
¼ finite:

Since the contribution from the three-point correction
exactly cancels the contribution from the four-point cor-
rection, we end up with a finite value, which essentially
means that to the order Oðe2Þ in the perturbation the gauge
field propagator hB;B; i remains finite and does not require
any counterterm. This allows us to make a redefinition
BðbÞ ¼ B, where the subscript b, represents the bare field.
Also recall that there is no interaction allowed for the vector
field Ai in the theory (11) which essentially means that the
gauge field B and Ai follow the field redefinitions

BðbÞ ¼ B ð19Þ

Ai
ðbÞ ¼ Ai: ð20Þ

We now turn our attention to one-loop corrections to the
hϕ�;ϕi. The allowed Feynman diagrams are given in Fig. 3.
The expression for the loop integral (Π1) in diagram (a)

of Fig. 3 takes the following form:

Π1 ¼
Z

dωqd3q
2e2ξðωq þ 2ωpÞ2

ω2
qðm2 − ðωq þ ωpÞ2Þ

: ð21Þ

As before, the integral diverges cubically at large value of
q, and thus we put a UV cutoff Λ in the momentum sector.
In addition, the integral also admits an IR divergence. The
source of the IR divergence is the mass-shell singularity
present in the pole structure of the gauge field propagator,
and thus the integrand diverges at ωq → 0. As already
discussed, we shall ignore the IR divergence piece and
retain only the UV divergent part of the integral. The
integral evaluates to

Π1 ¼ −i
8π2e2ξΛ3

3

�
1

m
þ 8mω2

p

ðm2 − ω2
pÞ2
�
: ð22Þ

Finally, the loop integral ðΠ2Þ in diagram (b) of Fig. 3
reads as

Π2 ¼ −2e2ξ
Z

dωqd3q
1

ω2
q
: ð23Þ

Clearly, the integrand diverges at ωq → 0 leading to an IR
divergent piece which along the previous lines shall be
ignored. Thus, the only UV divergent piece we have is Π1

which we shall be able to absorb by introducing the
counterterm, i.e.,

+ = finite+ +

D

where the last term is the counterterm that we have added
withD as its coefficient. Mathematically, we can then write
down7

BB
p

q

p

p+q

(a)

BB
p

q

p

(b)

FIG. 2. In this panel, diagram (a) is the three-point correction to
the hB; Bi propagator, and diagram (b) is the four-point correction
to the hB;Bi propagator.

p

q

p

p+q

(a)

p

q

p

(b)

FIG. 3. In this panel, diagram (a) is the three-point correction to
the hϕ�;ϕi propagator and diagram (b) is the four-point correc-
tion to the hϕ�;ϕi propagator.

7Note that for notational agreement, ωp is now denoted by ω.
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i
−ω2 þm2 − iðD − ie2fðξ; m;ω;ΛÞÞ ¼ finite; ð24Þ

where

fðξ; m;ω;ΛÞ ¼ 8π2ξΛ3

3

�
1

m
þ 8mω2

ðm2 − ω2Þ2
�

ð25Þ

such that (24) leads to a finite value for

D ¼ ie2fðξ; m;ω;ΛÞ ¼ ie2
8π2ξΛ3

3

�
1

m
þ 8mω2

ðm2 − ω2Þ2
�
:

Notice that the mass dimension of D is 2, i.e., ½D� ¼ 2,
which essentially means that the pole of (24) defines the
mass renormalization condition for sCED. We can then
write

D ¼ iδm2;

where

δm2 ¼ e2
8π2ξΛ3

3

�
1

m
þ 8mω2

ðm2 − ω2Þ2
�
: ð26Þ

Clearly, the corresponding counterterm in the Lagrangian is

ðLctÞ1 ¼ δm2ϕ�ϕ: ð27Þ

Although we managed to absorb the divergences via
counterterm (27), there is something very unsettling about
it. Notice that δm2 depends upon gauge parameter ξ. This is
unphysical, for mass should remain independent of the
choice of gauge parameter. In fact, it is not just about the
mass; even coupling turns out to depend on ξ upon
renormalization. This can be demonstrated by carrying
out the renormalization for three-point vertex VBϕ�ϕ. The
only possible correction to the vertex is given in Fig. 4.

Following the renormalization scheme we can check that
the counterterm needed to absorb the divergences for the
three-point vertex is

ðLctÞ2 ¼ −GieBðϕ∂tϕ� − ϕ�
∂tϕÞ; ð28Þ

where

G ¼ −
8π2e2ξΛ3

3ðm2 − ω2Þ
�
1

m
þ 8mω2

ðm2 − ω2Þ2
�

ð29Þ

is the renormalization coefficient and evidently depends on
the gauge fixing parameter ξ. The procedure of absorbing
the UV divergent terms is not unique in quantum field
theory. It is instructive to note here that in the absence of
counterterms, the role of the correction (22) is to shift the
mass m (appearing in the Lagrangian) to the physical
(renormalized) mass mphy. Physically, this is interpreted as
massm is infinite, and it takes infinite shift to bring it down
to mphy, i.e., devoid of the counterterm, the mass renorm-
alization condition using (24) is given by

−ω2 þm2 − e2fðξ; m;ω;ΛÞÞjω2¼m2
phy

¼ 0;

which implies

m2
phy ¼ m2 − e2f; ð30Þ

where f is given by (25). However, an interesting thing to
note here is that mphy is heavily gauged. For any physical
theory,m2

phy should remain independent of the gauge fixing
parameter. A similar calculation when carried out for the
coupling leads to the same arguments. This invalidates
the conventional arguments of gauge independence of
mass and coupling. For any physical theory, the physical
observables such as mass or coupling should not depend
upon the choice of gauge parameter ξ. For example, in
Lorentzian QED, it does not matter whether we work in the
Feynman gauge (ξ ¼ 1) or Landau gauge (ξ ¼ 0); the
coupling of the theory which is tête-à-tête related to the fine
structure constant remains independent of the gauge choice.
The occurrence of ξ in the renormalization coefficients
ðδm2; GÞ renders an ambiguity in the definitions of mass
and coupling strength. However, this ambiguity is not new
in the quantum field theory arena. As a matter of fact, such
behavior has been observed in Lorentz’s invariant quantum
field theories as well. For example, in the massive
Schwinger model in (1þ 1) dimensions, the presence of
mass-shell singularities is known to invalidate the standard
requirement for gauge independence of renormalized
mass [34,35]. In the case of the Schwinger model, these
ambiguities are resolved by using Nielsen identities which
requires one to formulate the Lagrangian in “physical”

k=0

p+q

q

p+q

p p

B

FIG. 4. Correction to the three-point vertex VBϕ�ϕ.
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gauge [34,36].8 Nielsen identities provide a useful way to
construct a notion of gauge independent renormalized
mass [37,38]. It should be noted that the pole structure
of the propagator for sCED shares a massive similarity to
the Schwinger model in 1þ 1 dimensions. However, to
resolve the issue of gauge dependence of mass in sCED, we
first need to formulate the Lagrangian in a physical gauge.
One shortcoming of working with physical gauges such as
axial gauges is that it does not fix the gauge completely and
thus leaves a residual gauge degree of freedom. However,
as far as gauge invariant quantities are concerned, it shall
not matter what gauge we work with. Obviously, mass and
coupling strength are the physical observables in a theory
and should thus remain independent of the gauge choice.
With the aim of resolving these ambiguities, it shall be
interesting to study the quantization of sCED in this
framework. We plan to address this problem in detail in
the future.

C. Counterterm and bare Lagrangian

In the preceding section we realized that the renormal-
ized mass and coupling admit ambiguities, for they turn out
to depend upon gauge parameter ξ. However, as already
mentioned, the renormalization scheme is not unique. One
of the ways to counter off the UV divergences in the theory
is to adhere to the method of counterterms. We conclude
from the renormalization of the three-point vertex and
propagators that the complex scalar field enjoys the
following field redefinitions:

ϕðbÞ ¼ ϕ ⇒ ϕ�
ðbÞ ¼ ϕ�: ð31Þ

It then follows from (27) and (31) that the bare mass term in

the Lagrangian, i.e., LðmassÞ
ðbÞ is given by

LðmassÞ
ðbÞ ¼ m2ϕ�ϕþ δm2ϕ�ϕ

⇒ LðmassÞ
ðbÞ ¼ ðm2 þ δm2Þϕ�

ðbÞϕðbÞ

⇒ LðmassÞ
ðbÞ ¼ m2

ðbÞϕ
�
ðbÞϕðbÞ; ð32Þ

where m2
ðbÞ ¼ ðm2 þ δm2Þ defines the bare mass of the

theory. Similarly using (19), (28), and (31) we can write the

bare coupling term LðcouplingÞ
ðbÞ as

LðcouplingÞ
ðbÞ ¼ −ieðbÞBðbÞðϕðbÞ∂tϕ�

ðbÞ − ϕ�
ðbÞ∂tϕðbÞÞ; ð33Þ

where eðbÞ ¼ eð1þ GÞ defines the bare coupling in the
theory. Using the field and coupling redefinition, we can

write down bare term involving four-point correction
i.e, Lquartic

ðbÞ :

Lquartic
ðbÞ ¼ −e2B2ϕ�ϕ − α2e2B2ϕ�ϕ

⇒ Lquartic
ðbÞ ¼ −e2ðbÞB

2
ðbÞϕ

�
ðbÞϕðbÞ; ð34Þ

where α2 ¼ Gð2þ GÞ. Finally, the bare Lagrangian LðbÞ
follows from (19) and (31)–(34), i.e.,

LðbÞ ¼
�
1

2

n
ð∂iBðbÞÞ2 þ ð∂tAi

ðbÞÞ2 − 2ð∂tBðbÞÞð∂iAi
ðbÞÞ
o

− ð∂tϕ�
ðbÞÞð∂tϕðbÞÞ

�
þm2

ðbÞϕ
�
ðbÞϕðbÞ − e2ðbÞB

2
ðbÞϕ

�
ðbÞϕðbÞ

− ieðbÞBðbÞ
�
ϕðbÞ∂tϕ�

ðbÞ −ϕ�
ðbÞ∂tϕðbÞ

�
: ð35Þ

This completes the renormalization process for sCED.
However, there are several things to note here. First of
all, mass and coupling redefinitions have turned out to be
heavily gauged. Secondly, the leading divergent terms in
the bare mass and bare coupling, i.e., (26) and (29) admit a
mass-shell singularity at m2 → ω2. Off course, one might
be tempted to take the limit,m → 0 such that the mass-shell
singularity term drops. However, this complicates the
situation even more as bare mass and bare couplings then
become infrared divergent. Recall that the massless limit
of sCED is actually a conformal theory at the classical
level [3]. The emergence of IR divergences at the quantum
level further complicates the matter. An important thing to
observe here is that IR divergences are present even in the
massless scalar Carrollian theory. For example, consider
the Lagrangian for a massless Carrollian φ4 theory,

L ¼ 1

2
ð∂tφÞ2 − λφ4;

where φ is the scalar field and λ is the coupling constant.
The propagator hφ;φi is given by

hφ;φi ¼ i
ω2

:

It then is obvious that the first order loop correction will
require one to evaluate integrals of the type ∼

R
dω i

ω2,
which clearly leads to IR divergences when ω → 0. The
source of these IR divergences is the mass-shell singularity,
and it is a generic feature of the conformal Carrollian
theories (presently known).
We refrain ourselves from expanding more on the

renormalization such as beta function and renormalization
group flow for sCED until the issue of gauge dependence
and IR divergences gets settled. Clearly, in this work, we
have demonstrated that the standard procedure of renorm-
alizing when applied to Carrollian field theories leads to the

8Physical gauge refers to a gauge choice where the unphysical
degree of freedom such as Faddeev-Popov ghosts decouple from
a theory, for example axial gauge and Coulomb gauge. An
advantage of working in physical gauges is that IR divergences
are often softer and neatly separated.
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violation of conventional arguments of gauge independ-
ence of mass and coupling. Further, the bare quantities
defined above diverge severely on the mass shell. Lastly,
the massless limit renders an IR divergent notion of bare
mass and bare coupling which further complicates the
renormalization structure. Clearly, the renormalization of
Carrollian gauge theories is not well understood at the
moment, and the potential issues mentioned above seem
rather unavoidable as of now. Some more work in the
Carrollian quantum sector is hereby needed. This paper
should thus be viewed as the first step toward exploring the
quantum “properties” of Carrollian field theories.

IV. CONCLUSION

Let us now summarize our findings. In this paper, we
explored the renormalization properties of a massive sCED
in 3þ 1 dimensions prescribed via functional techniques.
We essentially highlighted the potential issues that crop
up while renormalizing a Carrollian Abelian gauge theory
such as sCED (at first order in the perturbation) via
standard functional techniques.
To begin with, we propose an action for massive sCED

consistent with Carrollian symmetries. Owing to the
symmetries of the action, we construct the associated
Noether charges and confirm that the Carrollian algebra
is realized at the level of charges. We then implement path
integral techniques to explore the renormalization structure
of the theory. Since sCED is a gauge theory, we gauge fix
the action by implementing the Faddeev-Popov trick. A
trivial dimensional analysis suggests that the theory falls
into the category of marginally renormalizable theories.
We state the Feynman rules for the theory and study the
renormalization valid up to the first order in the perturba-
tion. To this end, we evaluate the allowed one-loop
correction to the propagators and the vertices. However,
the renormalization condition renders an unphysical notion
of mass and coupling, in that they turn out to be gauge
dependent. This behavior bears a stark resemblance to the
massive Schwinger model in 1þ 1 dimensions where the
fermion mass turns out to be gauge dependent. Since mass
and coupling strength are physical observables for a theory,
the issue of their gauge dependence has to be settled which
brings us to the list of open questions that we shall be
addressing in our upcoming works.
The first and most prominent question to address is to

have a gauge-independent notion of mass and coupling for
a renormalized sCED. Our first guess is to draw on the
wisdom from the Lorentzian case. Generally in Lorentz
invariant field theories, we employ Nielsen identities to
redefine the mass renormalization conditions which then
renders us with a gauge-independent notion of renormal-
ized mass. It shall be interesting to see if we can carry out
a similar procedure for sCED and establish the gauge
independence of mass and coupling. Another possible way
is to study the renormalization under quenched rainbow

approximation [39]. This approximation has also been used
to establish gauge independence of fermion mass for the
massive Schwinger model [34–36]. However, one serious
limitation of this approach is that higher loop correction
becomes computationally difficult making it harder to
establish the renormalizability at higher order in the
perturbation.
A natural question follows: is gauge dependence (of

mass and coupling) a generic feature of all gauge Carrollian
quantum field theories? To this end, an interesting thing to
study would be to see how the renormalization conditions
modify if we replace a massive Carrollian scalar with a
massive Carrollian fermion. One of the research works
that we are currently looking forward to is the canonical
quantization of Carrollian theories. Some work in this
direction is already in progress and shall be reported in
the near future. Extending the quantization program to the
case of conformal Carrollian theories would be one of the
directions of future works.
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APPENDIX A: PROPAGATORS
IN POSITION SPACE

The propagators for sCED in momentum space (where, ω
and pi are the Fourier transform of ∂t and ∂i respectively) are

hB;Bi ¼ −iξ
ω2

ðA1Þ

hB;Aii ¼
−iξpi

ω3
ðA2Þ

hAi; Aji ¼ i
δij
ω2

−
iξpipj

ω4
ðA3Þ

hϕ�;ϕi ¼ i
−ω2 þm2

: ðA4Þ

We shall now write down the propagators in the position
space. This can be achieved by taking their inverse Fourier
transform. In position space, the propagator takes on the
following form:

hB;Bi ¼ iξ

ffiffiffi
π

2

r
tsgnðtÞδ3ðrÞ ðA5Þ

hB; Aii ¼ iξ
π

2
t2sgnðtÞ∂iδ3ðrÞ ðA6Þ
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hAi; Aji ¼ iξδijπtsgnðtÞδ3ðrÞ þ iξ

ffiffiffiffiffi
π3

18

r
t3sgnðtÞ∂i∂jδ3ðrÞ

ðA7Þ

hϕ�;ϕi ¼ e−imtð−1þ e2imtÞπ3
2ffiffiffi

2
p

m
sgnðtÞδ3ðrÞ; ðA8Þ

where sgnðtÞ is the signum function for time t and δ3ðrÞ is
the Dirac delta function capturing the ultralocal behavior.

APPENDIX B: CARROLLIAN GEOMETRY:
A CRASH COURSE

A Carrollian manifold is defined as a quadruple
ðC; γ; χ;ΓÞ known as Carrollian structure where

C≡ a smooth dþ 1-dimensional manifold

χ ≡ a nowhere vanishing vector field

γ ≡ a degenerate metric tensor whose kernel ðkerξÞ is generated by χ

Γ≡ affine connection onC:

Note that the degeneracy in the metric γ does not allow one
to define Γ uniquely by the pair ðγ; χÞ. The simplest Carroll
structure we can think of is the flat Carroll structure which
in the coordinate chart ðt; x; y; zÞ is given by

C ¼ R3 ×R; γ ¼ γabdxa ⊗ dxb; χ ¼ ∂

∂t
; Γ ¼ 0;

ðB1Þ

where a, b are the space and time indices that run from 0; i
and γab is a degenerate metric, i.e.,

γab ¼
�
0 0

0 δij

�
:

With Carrollian structure at our disposal, we can define the
Carroll group as the set of diffeomorphism that preserves
the metric γ, the vector field χ, and the affine connection Γ;
also known as χ preserving isometries i.e for the vector
field X∈C we have

£Xγab ¼ 0

£Xχa ¼ 0

£XΓ ¼ 0:

For a flat Carrollian structure (B1), the ξ preserving
isometries take the following form:

X ¼ ðωi
jx

j þ βiÞ∂i þ ðα − γixiÞ∂t; ðB2Þ

where ωi
j ∈Oð3Þ, βi; γi ∈R3, and α∈R. Reading off the

symmetry generators (1) from (B2) is then pretty much
straightforward.

APPENDIX C: CANONICAL ANALYSIS

In this appendix, we are interested in exploring the gauge
nature of Carrollian electrodynamics (CED). Consider the
Lagrangian for CED:

L ¼
Z

d3x
1

2

n
ð∂iBÞ2 þ ð∂tAiÞ2 − 2ð∂tBÞð∂iAiÞ

o
: ðC1Þ

To understand the gauge structure, we perform Dirac
constraint analysis. Our starting point is the canonical
Hamiltonian ðHcÞ of the system, i.e.,

Hc ¼
Z

d3x
1

2

�
ðπiÞ2 − ð∂iBÞ2

�
; ðC2Þ

where πi is the canonical momentum associated to Ai.
It should be noted that while working out the Legendre
transformation of (C1) we encounter the following primary
constraint:

C1 ¼ πB þ ∂iAi; ðC3Þ

where πB is the canonical momenta associated to B. The
admission of the primary constraint in the theory calls for
the augmentation of the canonical Hamiltonian with a
Lagrange multiplier (λ). Following Dirac’s notation [41],
we call the augmented canonical Hamiltonian the total
Hamiltonian ðHtÞ,

Ht ¼
Z

d3x

�
1

2
ðπiÞ2 − 1

2
ð∂iBÞ2 þ λðπB þ ∂iAiÞ

�
: ðC4Þ

The consistency check for C1 leads to the secondary
constraint C2 in the theory

fC1; Htg ¼ ∂
2Bþ ∂iπ

i ≡ C2 ≈ 0: ðC5Þ

A consistency check for C2 reveals that no further con-
straints are present in the theory. A trivial calculation can
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now be carried out to see that C1 and C2 Poisson commute,
i.e., fC1; C2g ¼ 0, thus making them first class constraint.
The existence of first class constraint confirms that CED is
a gauge theory. Since there are only two scalar first class
constraints, the physical phase space dimension (in d ¼
3þ 1 spacetime dimension) turns out to be 4, just like we
have in the case of Lorentzian QED. Now to construct an
arbitrary gauge generator G we first smear the two first
class constraints by arbitrary test functions α1 and α2, i.e.,

C1½α1� ¼
Z

d3x α1
�
πB þ ∂iAi

�
ðC6Þ

C2½α2� ¼
Z

d3x α2
�
∂
2Bþ ∂iπ

i
�
: ðC7Þ

The generator of gauge transformation G is defined as a
linear combination of C1 and C2 such that

G ¼ C1½α1� þ C2½α2�: ðC8Þ

The gauge transformation generated by G on B and Ai can
be worked out by the off shell condition [42]

δG
d
dt

ψ ¼ d
dt

δGψ ; ðC9Þ

where ψ is any dynamical function and δG is the trans-
formation generated by the gauge generator G via

δGFðq; pÞ ¼ fF;Gg ðC10Þ

for any phase space function F. Choosing F to be B and Ai,
we can arrive at the following gauge transformation for
CED:

δGB ¼ α1 ðC11Þ

δGAi ¼ −∂iα2: ðC12Þ

Note that α1 and α2 cannot be independent (as one of the
first class constraints is a primary constraint) and are related
to each other via ∂ið−α1 þ ∂tα2Þ ¼ 0.

APPENDIX D: RENORMALIZATION OF
CARROLLIAN φ4 THEORY

Consider the Lagrangian L, for an interacting massive
Carrollian scalar field φ:

L ¼ 1

2
ð∂tφÞ2 −

1

2
m2φ2 −

1

4!
gφ4: ðD1Þ

The mass dimensions of the coupling g turn out to be zero,
and thus the theory is marginally renormalizable. The
momentum space Feynman rules for the theory are given
in Table II. Owing to the self-interaction, there are two

possible corrections at one loop in the theory viz. the
correction to the propagator and correction to the vertex.
The Feynman diagram for the propagator correction is
given by Fig. 5. The corresponding integral I1 evaluates to

I1 ¼
4iπ2Λ3

3m
g; ðD2Þ

where Λ is the UV momentum cutoff. Following the
renormalization scheme, it can be checked that a mass
counterterm is required to absorb the divergence in the
propagator, i.e.,

ðL1Þcounter ¼ −
1

2
μ2φ2; ðD3Þ

where μ2 ¼ 4π2Λ3

3m g. Next, the correction to the vertex
(Fig. 6) evaluates to

I2 ¼ −
4π2Λ3i
6m3

g2: ðD4Þ

p p

q

FIG. 5. Correction to the propagator.

TABLE II. Feynman rules.

1. hφ;φi i
ω2−m2

2. Vφ4 −ig

q

q

FIG. 6. Correction to the vertex.
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Trivially, it can be checked that the counterterm required to
absorb the divergence in the vertex is

ðL2Þcounter ¼ −
1

4!
gCφ4; ðD5Þ

where C ¼ 4π2g2Λ3

6m3 . Adding counterterms to (D1) results in
the bare Lagrangian LðbÞ,

LðbÞ ¼
1

2
ð∂tφðbÞÞ2 −

1

2
m2

ðbÞφ
2
ðbÞ −

1

4!
gðbÞφ4

ðbÞ; ðD6Þ

where φðbÞ ¼ φ, m2
ðbÞ ¼ m2 þ μ2 and gðbÞ ¼ gð1þ CÞ. It is

instructive to note here that the theory is renormalizable at
one loop and does not admit any IR divergences. Also,
unlike the sCED, renormalized mass and coupling are well
defined.
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