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The Hodge dual operator, recently introduced for supermanifolds, is used to reformulate super Yang-Mills
and supergravity in d = 4. We first recall the definition of the Hodge dual operator for flat and curved
supermanifolds. Then we show how to recover the usual super-Yang-Mills equations of motion for N = 1, 2
supersymmetry, and the obstacles (as seen from the Hodge dual point of view) in the case N > 3. We
reconsider several ingredients of supergeometry, relevant for a superspace formulation of supergravity, in
terms of the Hodge dual operator. Finally we discuss how d = 4 and N = 1 supergravity is obtained in this

framework.
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I. INTRODUCTION

Since its early days, supergravity [I-4] has been
formulated using superspace [5,6] and supergroup mani-
fold [7-13] techniques. In both these approaches local
supersymmetry arises as invariance of the action under
superdiffeomorphisms. While the superspace actions
involve superfields, whose € (anticommuting coordinates)
expansions contain the physical and auxiliary fields, the
group manifold actions are given directly in terms of these
fields, each of them originating from the supergroup
manifold vielbein.

In the superspace approach, supergravity actions
are constructed as integrals on superspace, and actions
on d-dimensional spacetime are obtained after Berezin
integration on the 6 coordinates.

In the supergroup manifold approach, the action is
defined as an integral on a d-dimensional bosonic sub-
manifold of the supergroup manifold. The Lagrangian is a
d-superform, written in terms of the supergroup vielbein
and its exterior derivative.

A theory of integration on supermanifolds in the lan-
guage of differential forms has recently been developed in
Refs. [14—18] and makes use of integral forms, the analog
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of top forms for supermanifolds. Earlier papers with
applications of integral and differential forms on super-
spaces to super Yang-Mills (SYM) and supergravity can be
found in [19,20]. Integral forms are instrumental for a
rigorous definition of an action principle and have been
applied in the past years to supersymmetric and super-
gravity models [14-18]. Only integral forms can be
integrated on supermanifolds, and therefore, the d-super-
form Lagrangian must be converted into an integral form.
This can be done by multiplying it with the analog of the
Poincaré dual (as in ordinary integration on submanifolds),
called picture changing operator (PCO), a representative of a
De Rahm cohomology class. It is characterized by a form
number equal to 0 and a “picture number” equal to the
fermionic dimension of the supermanifold, as explained in
Appendix A. If there exists only one such cohomology class,
one can still choose different representatives. For each
choice, the final form of the action will have a different
expression, but all these expressions are equivalent and
correspond to the same field theory. In the case of more than
one cohomology class, one can construct actions describing
physically different theories, each corresponding to a par-
ticular cohomology class.

This procedure extends the group manifold approach and
allows one to make contact with superspace formulations.
One starts from the group manifold (“rheonomic™) action,
determines the cohomology of the corresponding super-
group manifold, and chooses representatives in the coho-
mology classes, i.e., the PCOs. Multiplying the group
manifold Lagrangian by these PCOs yields the action as
an integral form. The choice of PCO within the same
cohomology class is dictated essentially by the (super)
symmetries one wishes to be manifest in the action. The
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superspace action is then obtained as described in Secs. 3
and 4.

Another way to construct integral forms is to combine
pieces with different form and picture numbers, without
reference to a d-superform Lagrangian. This second way
often makes use of a generalization of the Hodge dual for
supermanifolds, introduced in Refs. [16,21] by means of a
generalized Fourier transform.

In this paper we obtain two main results: (i) the extension
to d = 4 of the integral form construction for supergravity,
and the proof of its equivalence with the superspace
formulation, with the same logic used in Ref. [17] for
the d = 3 case, i.e., with the use of appropriate PCOs;
(ii) the reformulation of super Yang-Mills and supergravity
theories in d =4 by using the super Hodge dual of
Refs. [16,21].

The paper is organized as follows. In Sec. II we use
Cartan calculus and the super Hodge dual to translate
superspace geometry [5,22] in the language of differential
geometry of supermanifolds. We show how the Berezinian
emerges naturally and what its relation is with chiral
volume forms. Super Yang-Mills and supergravity in
d =4 are reformulated using the super Hodge dual. In
Sec. III we give the group manifold treatment of d = 4
supergravity with the “old minimal” set [23] of auxiliary
fields. The resulting 4-form Lagrangian is then multiplied
by a suitably chosen PCO, thus obtaining an integral form
that can be integrated on superspace. The result is shown to
coincide with the superspace expression of the action as
given in [5], i.e., the superspace integral of the super-
determinant. A similar exercise is carried out in Sec. IV,
where the “new minimal” set of auxiliary fields [24] is
employed. Finally, in the appendixes we discuss in more
detail aspects of supermanifold geometry and give the
derivation of some useful formulas recalled in the text.

II. FIELD THEORIES AND HODGE DUAL
OPERATOR

In this section, we translate some of the superspace
equations in terms of the super Hodge dual introduced
in [16,21]. We use here the following notation: indices

A, B, ... refer to the super tangent space: A = (a,a), B =
(b,p), where a,b,...=0,...,3 are the tangent vector
indices and a, f3, ... = 1, ..., 4 the spinorial tangent indices.

We denote by M, N, ... the curved indices of the super-
manifold M = (m,u), N = (n,v) where m,n, ... are the
indices of the bosonic coordinates and y, v, ... the indices
of the fermionic coordinates. Collectively, we denote by
ZM = (x™ O") the coordinates of the supermanifold. We
denote by R“%) the superspace (flat supermanifold). In
Appendix A we collect the definitions for forms on
supermanifolds and integration theory; for more details,
we refer to the literature [15,25,26].

After fixing the geometrical setting and discussing some
properties of the super Hodge dual operator x, we present

in this section simple applications to scalar field theory,
Abelian gauge theory, and supergravity. We will use
uniquely the Hodge dual operator, without referring
to the group manifold (or rheonomic) approach [10]
(see [12,13] for recent reviews), where the action is
constructed [14,15,17] from the rheonomic Lagrangian
as follows:

S:/ 5(4\0> A YO4)
SM

rheo (2 1)
The suffix (4]0) stands for form number equal to four and
picture number equal to zero (as defined in Appendix A).

£(4|0)

theo 18 the rheonomic Lagrangian written in terms of the
form fields and their differentials, while Y4 is the PCO
converting the action from a (4|0) form to a (4|4) form,
which can be integrated on the supermanifold SM. The
action S depends on the supergravity fields in the rheo-

nomic Lagrangian £{) and in the PCO Y, and being
integrated on the entire supermanifold SM is automati-
cally invariant under super-reparametrizations. In this
framework the action is built without using the Hodge
dual operator *.

In the present section we adopt a different strategy: we

replace the factorized form of the action with a novel one,

s=[ £
SM

(2.2)

where a suitable Hodge dual operator % is used. The
Lagrangian is no longer factorized into the wedge product
of a (4|0) form with a (0|4) form. Again, since £fl4) is a
(4|4) form integrated on the entire supermanifold SM, it is
invariant under super-reparametrizations.

Consider the actions for (free) scalar field theory and
Abelian gauge theory:

Sig) = /M dp A xdp, SIA]= /M dANxdA,  (23)

where M is a bosonic manifold, ¢ is a scalar field, and A is
the 1-form potential. The operator * is the Hodge dual
operator related to a metric g on the manifold M and the
actions (2.3), which are 4-forms integrated on a four-
dimensional manifold, are manifestly reparametrization
invariant. In the following, we replace the manifold M
with a supermanifold SM, the x operator with a corre-
sponding super * operator (see [16,21] for a general
treatment); ¢ is replaced by a superfield at zero picture,
and A is replaced by a 1-superform at zero picture (the
picture number being defined in Appendix A).

A. Super Hodge dual operator

We define the super Hodge dual operator % as follows.
Given a form w(x,8,V,y), considered as a generalized
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function of the supervielbein (V¢,y*) and of the coor-
dinates (x“, 8%) (see Appendix A), its Hodge dual is written
in terms of a Fourier transform

K (x,0,V,yp) = il / VMV P ACg)
S !

x w(x,0,v, p)[d*vd*p), (2.4)
where r is the number of Vs, [ is the number of y/’s, n is the
bosonic dimension, and SM’ is the dual superspace whose
fundamental coordinates are (¢, p*) (respectively, anti-
commuting and commuting). The symbol [d*vd* p] denotes
the Berezin integral over v* and the Riemann-Lebesgue

where 4 is a dimensionful constant. This constant is needed
in order to preserve the homogeneity of dimensions
between the two terms since V¢ scales as the square of
w“. For A — 0O the metric is degenerate. C,; is the charge
conjugation antisymmetric matrix (this holds specifically
for the case d=4). The function w(x,6,v,p) is
the function obtained from w(x,8,V,y) by substituting
V — vand y — p, leaving the supermanifold coordinates
x, 0 untouched.

We can easily compute the Hodge dual of the super-
vielbeins

integral over p®. The metric g to which x is related is given * Ve =Vist(y), *y®=21"1CPVh N y).  (2.6)
by the tensor’
9=V ® VP +1C,0" @ v, (2:5)  Where
|
ab — Labcd 1 d d a — abed 1 b’ (e d
Vii=e 51 MecMaar Ve Ave, Vi=e gﬂbb/ﬂcc’ﬂdd/v AVEAVE,
1 1
Vi=vV,= Eeahcdvu AVEAVEAV, §'w) = E€a/5755(‘//a)5('//ﬂ)5(‘//y)5(‘//5)v
d
1,04 (y) = F54(1//), Vol = V45t (y), (2.7)
W
and the pseudoform 5(y*) (see Appendix A) naturally _
arises as the Fourier transform 6(y*) = [ dpe'"". Notice (. m) = sm @A (2.10)

that the scaling dimensions of V¢ and of its dual xV“ are

the same, as well as for y* and xy“. Using the above

definitions, we immediately find

VaA*VP = b Vol
* Vol =1,

W A xypl = 171CPVolHH),

*1 = Vol #H4), (2.8)
With our conventions, the dimension of Vol /%) is equal to 2.

As is well known, the Hodge dual operator for usual
manifolds is a key ingredient for defining the Laplace-
Beltrami operator acting on differential forms. In the
present context we can consistently extend the definition
of the Laplace-Beltrami operator to supermanifolds as

A=d'd+dd = *dxd+dxdx =d'd+dd', (2.9)
the conjugated differential operator being defined by
d" = xdx. Note that we can define a pairing between
two forms on a supermanifold, with complementary form
numbers p,4 — p and complementary picture numbers
q,4—q, as

"Note that, since V¢ and y* are, respectively, bosonic and
fermionic  1-forms, w* Ay? =yf Ay® and VA VP =
-Vt A Ve

and consequently (o, d) = (d'w, n). This pairing does not
define a positive definite scalar product on forms due to the
symplectic nature of the scalar product for the fermionic
components of a vector field. Because of that, even though
we have the identity (w, Aw) = (dw, dw) + (d'o, d'w)
based on Stokes’ theorem for supermanifolds, we cannot
conclude that dw = 0 and d'w = 0 if Aw = 0. The Hodge
theory for supermanifolds will be discussed in [27].

We can compute the Laplacian (2.9) on the simplest
examples of a superfield ¢ and of a top-integral form ¢“*).
On a 0-form ¢ we find

dp = ViV, +y*V,p,
*dp = V& (w)Vp + 27 VECP 1,84 (w) Vb,
d(x¢) = d(¢pVol*)) =0,
A = (kdxd + d*dx)¢p

= (V,V, + 27 C¥V, V), (2.11)

where V, = E¥9y,, V, = EM0,,, E¥ is the supervielbein,
and 0y = (0,.0,). A is the generalized Laplacian on

superfields, and the two terms of the last equation in
(2.11) scale with different powers of A.
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In the same way, considering a top integral form
P = pVol¥ | where ¢ is its section, we have

AP = (xdxd + dkd*)(¢pVol“¥)

- [(nuhvuvh +/1“C”/”V(,V/,)¢} Vol (2.12)

which is again the Laplacian operator on the section ¢ of
the integral form ¢**), multiplied by Vol

B. Chiral superfields

The smallest irreducible representation of supersym-
metry with scalar bosonic degrees of freedom is described
by a chiral superfield (see the textbooks [5,6,22]). The
components of an off-shell chiral superfield describe a
complex scalar, its fermionic superpartner, and a complex
auxiliary field, i.e., 4 (2) bosonic and 4 (2) fermionic
degrees of freedom if off-shell (on-shell). A superfield ¢ is
in general a reducible representation: imposing some
invariant equations we can single out irreducible represen-
tations. This is done by setting D;¢p =0 and Dggp =0
for chiral ¢ and antichiral ¢ superﬁelds, where (D;), =
1 +7),Vy and (Dg), =1(1—7°), Vs In this sub-
section, we illustrate how a chlral superfield can be defined
using the Hodge dual operator % and its chiral/antichiral
relatives * ¢, *¢.

In the case of flat d = 4 superspace, one can define a
chiral and an antichiral volume form as follows:

42)

VOI( = €apeaV" - Vs (I/IL)’

o = VIS (),

VOI = €gbch“ s (213)
where y =y + g and y;x = (1 £7°)/2p. The vol-
ume forms Vol; and Voli have a form degree equal to 4,
but a picture number equal to 2 unlike Vol“*%. They

transform under the chiral transformations as

4)2) 4\2

Vol'*? = sdet; (J)~1Vol!’

Voli*? = Sdetg (7)1 Vol§?, (2.14)

where J (J) is a 6 x 6 supermatrix corresponding to
coordinate transformations in chiral (antichiral) superspace.
This means that the coordinate transformations are
generated by chiral/antichiral superﬁelds as we now
describe. Notice that although Vol( and Vol 12) 4

not top integral forms, they are closed, i.e., dVol, ™ =0

and dVol, @) 0, since dV* =y y“yy and either y; or
g are annihilated by 6*(w; ) or 6*(yg). The volume form
Vol®® is related to the chiral volume forms as

4\2)

]2) (P2)

Vol#4 =R, Vol; "™ A Yg + RgVoly © AY,, (2.15)

where Y; and Yy are suitable PCOs and where R; and Ry
are two superfields. We will discuss this point further in the
context of a generic supermanifold; it leads to Siegel’s
formula [see formula (5.5.21) in [22] | for the volume of a
D =4, N = 1 supermanifold.

Now we can define chiral and antichiral superfields as
follows:

D=0,  dpavol? =o.

d A Vol (2.16)
Notice that dp = V?0,¢p + WrDrep + W D¢ is a 1-super-
form, and therefore, the above equations select only the
following pieces:

M2 —0,  y.DpAVIYP =0, (2.17)

RD R¢ AN VOl
since the remaining terms are set to zero either by the
product of V’s or by &*(yy ). Therefore, by imposing
(2.17), we obtain the usual chiral and antichiral constraints
Dr¢p=0and D, ¢p = 0.2

We introduce the chiral and antichiral Hodge dual
operators [defined in the same way as the full Hodge dual
operator (2.4), where the fermionic variables are replaced
by their chiral or antichiral counterparts], denoted by %~
and x¢. Then we have

* i =pVolt? | wkpd= Vol
x 1=Voll®  wp1 = Vol (2.18)
Acting with d yields
d(kp ) = dp AVl d(xgxd) = d A Vol
(2.19)

Acting again with *; and % on both members of these
equations, we find
*pd(*pp) =W Db,

*1d(*1¢p) = WrDro.

(2.20)
and therefore, the chirality conditions are equivalent to

dip=0,  dyp=0. (2.21)
For a O-form, we have d*gb =0  because
dt:Qrl9) — Q(r=119) This is due to the fact that %¢ is a
top integral form, and therefore d(*¢) automatically
vanishes. When using chiral Hodge dual operators *; or

x this is no longer true in general, but remains true on

’In the group manifold framework this is obtained by choosing
the differential of ¢ as d¢p = V*V ¢ + w; W, where Wp is set to
zero from the beginning [10].
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chiral/antichiral superfields. With this language the chiral-
ity conditions have a clear geometrical origin.

If we compute the Laplace-Beltrami differential for a
chiral/antichiral superfield we get

Acgp = (dpd + ddl) g = didd = (1Y, V), + A71D? )b,
Acg = (did + dd})g = didp = (4*V,V, + 17 D})¢,
(2.22)

where D? = D; D; and D% = DyDy. The free equations
of motion Ac¢p =0 and Agz¢ =0 for chiral/antichiral
superfields are obtained in the limit 1 — 0. Otherwise,
these equations are higher-derivative modifications of the
free equations of motion.

Before discussing the action, we consider another type of
multiplet. As is known, there is a second irreducible
multiplet with scalar bosonic degrees of freedom: the linear
superfield. It is defined to satisfy D3¢ = 0 and D? ¢ = 0,
and the difference with the chiral/antichiral superfields is
the different set of auxiliary fields for the off-shell
multiplet. From the computation (2.11), we see that

(d" - d}.)dp = 1~ D3¢,

(d" —d})dp = 1D} ¢, (2.23)
and therefore, the requirement D3¢ =0 and D?¢ =0
implies that on d¢ the two differentials d' and dTC coincide.
Since the linear superfields and the chiral superfields are
related by duality transformations (see [5]), it would be
interesting to verify whether indeed the geometric equa-
tion (2.23) emerges as dual to (2.21).

The action can be written using the Hodge dual operator
* for a chiral superfield Volz A d¢p = 0 as follows:

5= Xngn o

which reduces to the usual chiral superfield action by
integrating on the cotangent directions V¢, y;, and wg.
Notice that a geometrical action S = [g,,us dgp A *ddp
would yield a high derivative theory after Berezin integra-
tion. In superspace language higher derivative theories can
be built in terms of prepotentials. The present approach
based on the Hodge dual naturally provides a specific
higher derivative extension.

(2.24)

C. Gauge fields

On a bosonic manifold M, the Bianchi identity and the
Maxwell equations for the Abelian potential A are given by
dF =0,

d'F =1, (2.25)

where J is the conserved (dJ = 0) electric current coupled

to the gauge field A and F = dA is its field strength.
Moving to a supermanifold, one considers a gauge

superfield A and its field strength F which are superforms

A=AV + AW, F=F VOV +F Vol + F oyl

(2.26)

They have many components since A, and A, are super-
fields. To single out the physical ones, one imposes the
condition that F,; =0 and by means of the Bianchi
identity dFF = 0, we find that there are only one gauge
vector field, the gaugino, and one auxiliary field. Thus, the
field strength can be written as
F = f,ViVl + Wy wVe, (2.27)
where W is the gaugino field strength and y* are the Dirac
matrices in the Majorana representation. In the component
expansion of W¢ (as illustrated in [5] or [6]) one retrieves
the physical degrees of freedom and the auxiliary fields.
The gauge field strength f,;, is not an independent super-
field since it satisfies f,z3 = %VyahW as a consequence of
the Bianchi identity, where V, is the superderivative
introduced in the previous section. Again, as a consequence
of the Bianchi identities, we have V, W% = 0.
Computing the Hodge dual of F we obtain

*F = f a0 € 1y caVEVIS* (W) + 271 (V3) Wy, Ci8* (w).
(2.28)

Notice that the charge conjugation matrix C enters because,
due to the Hodge dual operator, indices are contracted
covariantly. Then we compute the differential and finally
the Hodge dual again, finding

*xdxF=d'F=(Vef,,— 2" "Vy,CW)V? + (5y*V,W)=0.
(2.29)

Using the parametrization (2.27), we find V,W/ =

(yap)af®, so that Vy,CW = tr(y,Cra.)f* = 0 since
the trace vanishes. We finally obtain the usual free
equations of motion

Vef, =0, 7'V, W =0. (2.30)
Since V,W# = (y,,)5f, the field strength f,, is not
independent of W; therefore, the first equation (which
looks like the Maxwell equations for the superfield f,;,) is a
high-derivative equation V?(Vy,,W) = 5,,V*(V ,W#)—
Va(ray’V,W) = 0, but it is satisfied if the Dirac equation
is satisfied (the first term vanishes because of the Bianchi
identities).
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Therefore, we have

FAXF = (fopf +27TWCW)V48* (),  (2.31)
which can be naturally integrated on the supermanifold
leading to the high-derivative action

/ FA*FZ/(fabf”b+/1_'WCW)
SM A4
_ / (Vy,, WYy WA - WOW).  (2.32)

After integration on the integral forms we are left with the
conventional superspace integral for a function. The action
starts with the conventional f,,f“’ term. To compute the
Berezin integral one has to expand f,,f*’ into powers of
@’s, and therefore, the final result will contain higher
derivatives of the field strength. The second term, however,
is the conventional superspace action, recovered in the limit
A — 0. The equations of motion are easily retrieved by
introducing the potentials A,, A, and varying the action
with respect to them.

Let us consider now the N = 2 case. The field strength
(after adopting the conventional constraints) is expanded as

F=fuVVP + WAy Ve + OBy, yspp,  (2.33)
and its Hodge dual is
*F = fabnaa/nhblea’b’cdvcvdtsg (l//)
+ 271 (V3) ean (WY, C1) 88 (w)
— AV aeqnepp ¢ABTAI 75 58 (). (2.34)

To take into account the correct mass dimensions, we
introduce again the scale A. The action takes the form

/ F/\*F_/(fabfab—‘r/’{_lWACWA—ﬂ_zéABQAB)
SMEH
(2.35)

and is a high-derivative action. It is not possible to use the
same formula for values of N greater than 3, as the mass
dimensions are greater than the integration measure. This
aligns with the belief that there is no superspace action for
super Yang-Mills with N =4 extended supersymmetry.
However, for N =3, d =4 SYM, the harmonic super-
space technique provides a clear and supersymmetric
expression [28]. Connecting the current formalism with
integral forms and the rheonomic action to the harmonic
superspace formulation would be interesting. It is worth
noting that in [29], a bridge between the pure spinor
formulation of SYM d = 10, N = 1 has been established
using PCO’s and the group manifold approach.
Additionally, in [30], the relationship between d = 10,

N =1 SYM in the pure spinor approach has been used to
derive the N = 2 and N = 3 harmonic superspace formu-
lation. Therefore, we anticipate that a relation can even-
tually be found, to link the two frameworks by selecting a
suitable class representative for the PCO.

D. Supergravity

Finally, we use the Hodge dual operator also for the
construction of the supergravity action. It has been
observed in [5] that the full supergravity action with
auxiliary fields can be expressed in terms of the super-
determinant. To write the supergravity action in our
framework we observe that, in the case of a curved
supermanifold, the volume form can be written as
VolH) = v45*(y) = Sdet(E)d*x5*(d6), (2.36)
where we express the vielbein V¢ and the graviton yw“ in

terms EA = (V4,y®) on a curved basis:

Ve = E4dx™ + ESdO¥,

y* = Ejdx" + E;do". (2.37)
All components are superfields and
det(E¢ — E4(E"Y4EY
Sdet(E) = ( i E7 Jan) (2.38)

det(Ej)

The (4|4) form Vol®*) is trivially closed (being a top
integral form) and, if it represents a cohomology class, it is
not exact. Then

/ ‘e / Vol ) — / Sdet(E) (x,0)[d*xd"d],
SMEH) SME4)

(2.39)

where the second integration is performed on the super-
space coordinates (x™,0*). The symbol [d*xd*d] denotes
only on which coordinates the integral has to be performed,
but it does not represent a measure. Since, as discussed in
the literature [5], the Berezin integral of the super-
determinant in (2.39) yields the action of d =4 super-
gravity, this action can be written as the integral of the
Hodge dual of a constant (Newton’s constant). In the next
sections, we derive this formula from the group-manifold
approach.

To make contact with other superspace formulations of
supergravity, it is convenient to define also the chiral/
antichiral volume forms (see also [18]) as follows:

VoIl = caVAA . AV () = VA2 (yry).
VOI%HZ) =€apcaV N A Vd52<WR) =V (WR), (2-40)
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where w; g =31(1 £ys)y. Next, we separate in V=
V¢ + Eid0) the part of the vielbein along d67 (in the flat
space, this means V{ = dx* + 0, y“yy), and, similarly, we
write y§ = E3d0; + AZV{. Notice that in general, y§ =
ELdO} + AGVE + A;jdﬁé but the last term can be set to zero

by choosing a suitable gauge (reached by a superdiffeo-
mophism) known as chiral/antichiral representation
(see [5,22]). Then, using the flat basis (dx*,d0,do%),
we have

42)

Vol = €0a(V4 + ESd6) A ...

A (V4 + EldO})8* (ESdO] + A2VY) (2.41)

(V¢ + ESdOy) A ... A (VE + ELdO))
det(Ej;)
x 83 (dO] + (E™')ahiV)

= €abcd

(2.42)

_ det(8 + ES(E7'aAg)

N det(E%)

=EapedVi N .- NV (dO)) =E V& (dO]),
(2.43)

€apedVi N ... AVES(dD))

1
Vol = —v452
o 2 L (WL)det(ER)

1o 1
=—-Vo
2 L det(Eg)

where V¢,w¢ and V%, w% are given in terms of the
redefined supervielbeins. Then, using the fact that
5%(dfg) and &°(d6;) are not the PCOs, unless they are
multiplied by 6% and 6%, we can expand 1/det(Eg) and
1/det(E;) up to second order [we recall that *(df) and

0%5°(dOy) are cohomologically trivial], and since Vol(L‘H2>

and Volg‘z) are closed, we can always discard d-exact
terms. Therefore, we are left with

1
\Y4 1(4\4) =V 1(4‘2)D2 - )Y
© oL TR\ 2det(Eg) ) R

1
Vol ?p? (——— v
VORI S g ) T

where Y; and Yy are the PCOs. The two expressions
D%(1/2det(Eg)) and D?(1/2det(E;)) are computed

(2.48)

3Several textbooks use the chiral coordinates z2r = (x,0;)
and identify the chiral measure with the Berezinian of the
transformation z; = zj (zr).

1
P(d6g) +3 Ve (we)

1
82(d6g) + = Vol

o _ det(@ + Ei(E™)ens)
L det(E}) '

(2.44)

where &, (x,0,) is a chiral superfield’ according to our
definition. Indeed, we have

0=dvVoli'™ = dg, AVi&(y,) = dIn& A Voli'?,
(2.45)

implying that In£; is a chiral superfield. In the same way,

we can study Volg‘z) and the chiral density &.

Let us now relate the volume form Vol to the chiral
ones. The superdeterminant E = Sdet(E) is a function of
(x,0, 9) and reads

a a — B a ( T—1\/ B
det(Em — E4(E-4Eh — E4(E ‘)ZE{,,)
det(EL) det(ER)

_ Sdetg(E)  Sdet, (E)
 det(Eg)  det(E;)’

Sdet(E) =

(2.46)

where Sdet, (E) is the chiral superdeterminant written in
terms of a redefined vielbein £¢, = E¢, — E%, (E‘l)’ZﬁE/L}m.

In terms of the volume form we have

det(E;) &(d6.)

@ 1
2 R det(E))

8%(doy,), (2.47)

I
in [5,22] and are identified with the superfields Ry and R ; .
The superfields Rg/; contain the auxiliary fields and the
Ricci scalar; they appear in the commutation relations
{V..V;} = =RM,; and are components of the torsion 74
as will be discussed in the forthcoming section. Finally, we
can write the volume form as

42 (42)

Vol = VoIl "™ R Ve + VolY PR, Y, (2.49)

The formula reproduces, in terms of integral forms, the
Siegel chiral-integration formula [5]. In superspace
language this formula reads

/ Sdet(E) = / Sdet, (EYR, + / Sdetg(E)Rg,  (2.50)

which turns out to be crucial in comparing the geometric
formulation of supergravity with its superspace formulation
(a clear derivation and discussion in the context of
conformal supergravity can be found in [22]).
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II1. OLD MINIMAL SUPERGRAVITY

In supergravity the supervielbeins E¢ and E* become
dynamical and satisfy equations of motion. In the present
section, we review the group manifold formulation of
d =4, N =1 supergravity, we define a suitable PCO,
and we finally show the equivalence with the superspace
formulation. In the end, we write the action in terms of the
Hodge dual operator.

A. Off-shell degrees of freedom

The theory contains a vielbein 1-form V¢ with 6 oft-shell
degrees of freedom and a Majorana gravitino w* with 12
off-shell degrees of freedom (d.o.f.). We can match off-
shell d.o.f. by adding three O-form auxiliary fields: an axial
vector A? with 4 d.o.f., a scalar S with one d.o.f,, and a
pseudoscalar P with 1 d.o.f. This set of auxiliary fields was
first introduced in [23]. Here we reformulate the theory in
the group manifold approach.

B. The algebra and Bianchi identities

We start from the super Poincaré algebra, extended with
the three O-forms A4, S, P. The deformed Maurer-Cartan
equations for this extended superalgebra are given by

R = dV¥ — @ V¢ — %l/_/yal// — Dye— %1,7/7/“1//, (3.1)

R = dw®™ — 0 .0, (3.2)
p=dy— %w“brabw = Dy, (3.3)
R(A)® = dA® — 0 A°, (3.4)
R(S) = dSs, (3.5)

R(P) = dP. (3.6)

These equations can be seen as the definition of curvatures.
Taking the exterior derivative of both sides yields the
Bianchi identities:

dR® — w®,R" + R, V> — iyy“p

= DR + R*, VY —iyry?p = 0, (3.7)
dR® — ® R + wP R =DR® =0, (3.8)
1 ab 1 ab — 1 ab
dp =30 app+ R Yapy =Dp+ 7Ry =0, (3.9)
DR(A)* + R®A, = 0, (3.10)
dR(S) =0, (3.11)

dR(P) = 0. (3.12)

The Maurer Cartan equations, and therefore, also the
Bianchi identities, are invariant under the rescalings

wab N iowab ,

A — J71A9

w -y,
P—i'P.

Ve = Ave,

S — 718, (3.13)

C. Parametrizations of the curvatures

According to the group manifold approach, we para-
metrize the curvatures so that their outer components (i.e.,
components along at least one fermionic direction) are
related to the inner components (i.e., components along
bosonic directions) and to the auxiliary fields. A para-
metrization compatible with the scalings (3.13) and Lorentz
invariance is given by

R =0, (3.14)

R =R VoV 0V + g (), (3.15)
P =paVVP +icsysy VA, + icsyanyVe,  (3.16)
R(A)" = (DA9), V"’ + (e, (3.17)

R(S) = (0,5)V* + wé, (3.18)

R(P) = (3,P)V% + iy, (3.19)

with real ¢,, c¢3, ¢4. The only a priori choice is R* = 0,
i.e., vanishing (super)torsion. It can be shown that
R® = R¢ V®V¢ would only lead to a redefinition of the
spin connection, in terms of V and w, while outer
components of R cannot be found using inner components
and auxiliary fields, due to scaling and Lorentz index
structure. The Bianchi identities will fix

n=n=S8—iysP+A%,rs.
(3.20)

0e = 2iply" = ipy..

and c¢,, c3 in terms of ¢4, which remains the only free
parameter. It is convenient to write the gravitino field
strength p as follows:

p* =Dy = p*,VVP + (pay)*Ve,  (3.21)

where (p,y)* = p®,py” and the general form of the matrix
p“ap 1s read off from the parametrization of the curvatures

Plap=1ca(visS—i(vars)sP+(2(r5)* 585 = (rsra")s)As)
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or, suppressing the spinorial indices
Pa = iy (J’aS —irarsP +5(26; - 7Z)Ab)
(1 . 1 .
= icy (5%(1 = 75)(S +iP) +57a(1+75)(S ~ iP)

+ 75(2685 — VZ)Ab>

= icy (yaPLR +7aPrR +15(28; - 7Z)Ab) (3.22)
with P;,Pg,R,R defined by the last equality. It is a
function of the auxiliary fields S, P, A,. Notice that if we
give a vacuum expectation value to S denoted by s, it
reduces to

Pa(S=5,P=0,4,=0)=icsy,s.

D. The action

With the usual methods of the group manifold
approach [10], the Lagrangian is found to be

LEO) = Rabyeyde,,  + 4jysypV°

+ (8% + P? + A%A,)eupeaVEVPIVEVY, (3.23)

The action is obtained by considering the most general
SO(3,1) scalar 4-form, invariant under the rescalings in
Eq. (3.13) and then requiring that the equations of motion
admit the vanishing curvature solution

R®» =R*=p=R(A)*=R(S)=R(P)=0. (3.24)
The remaining parameter « is fixed by requiring the
closure of L*0) i.e., dL#% = 0. This yields @ = —2(c4)?
and ensures off-shell closure of the supersymmetry
transformations.

There are some remarks to be considered. Even though
the auxiliary fields appear in the new term in (3.23), they
are also hidden in the Lorentz curvature term and the
Rarita-Schwinger term. Then, if we define auxiliary field-
independent curvatures R, p, as

Re" = R — %lf/(y“bn +nr )y,
ps = p —icsysyVA, —icgyampVe,  (3.25)
we can rewrite the action as
LU0 = 41,0 REVVI + Kpysyp, V'

- eapeacs (SFrPyVeVa =Pyt Y VeV

+ 16ic Ay Veve

—2(cg)2(S2+ P2+ AA,)eapeaVEVEVEVE.  (3.26)

In the second and third lines, we have made explicit the
auxiliary fields. The first line is the usual rheonomic N = 1
supergravity action. Notice that the S field could acquire a
vacuum expectation value (which can be achieved also by
shifting § - S —l—%), and setting S=A‘=P =0 we
obtain the supergravity action with a cosmological term

4|0 _
LY = o aROVEVE + Aiysyap,VE

2(04)2
(20)?

Cyq _ .
+ €abed Z l//yablllvc Vd -

€apeaVOVPVEVE,
(3.27)

The third term is the usual gravitino mass term needed for
supersymmetry with the cosmological term.* The resulting
action describes N = 1 supergravity on AdS,. The positive
constant [ is the radius of AdS,. The action turns out to be
invariant under the isometry supergroup OSp(1|4), and
gauge invariant under local Lorentz symmetry and local
supersymmetry transformations. The vielbein V¢, the
gravitino %, and the spin connection w® (fixed in terms
of V4, y%) are the Maurer-Cartan forms of the 03p(1[4)
superalgebra. The spin connection is the gauge connection
of the Lorentz group, and therefore, we can consider V¢, y*
as the vielbeins of the coset manifold OSp(1]4)/SO(1,3).
While £49 in (3.23) is d-closed in the presence of
auxiliary fields (see the forthcoming subsection), the

new Efc‘lg) is no longer d-closed.

E. Fixing coefficients

From Bianchi identity (3.7) for R¢, after substituting the
parametrizations, one finds in the V'V sector the expres-
sion for @ given in (3.20). In the yy 'V sector one obtains the
relation
(3.28)

Cy = Cy4.

Considering then the Bianchi identity for p, the yyy sector
yields
C3 = 364, (329)

while the yyV sector fixes (¢, £, y in the parametrizations:

1 (1 i
{4=— (— vsrop® = —E”derbpcd) (3.30)

cs \3 12
1 ab
&= —57 Pabs (3.31)
4
i
x= 6747/57/“%17- (3.32)
4By using the relation €.,y = 2iyy 4, and ¢, = —1/2, we

match the conventional AdS, expression.
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As a consequence of Bianchi’s identities, the relations

Ya0% —2iy =0, ysé+ iy =0, (3.33)

follow. In superspace language [6] there are the identifi-
cations R; =S+ iP and Rp = S —iP. The two super-
fields R; and ‘Rp are chiral and antichiral; i.e.,
ViR, =V;Rr =0 as a consequence of the Bianchi
identities. Using the decomposition V, =1(1+ %)V
and Vi =1 (1 —y°)V, where V is the covariant spinorial
derivative, we finally find

VS — iy’VP =0, (3.34)

and with the identifications (3.14) we obtain Egs. (3.33). In
addition, another set of equations is reported in [5]:

VoG +VeRr =0,  ViGoy+V,R, =0, (3.35)

with G, real superfield, again as a consequence of the
Bianchi identities. Identifying G,;, with the vector field
A,ys, reproduces the first of Egs. (3.33).

|

F. Closure of the Lagrangian
Using the Bianchi identities (3.8) and (3.9), and the

definition of the torsion R* in (3.1) we find
ALY =2RPRV e ypeq + IRy WY € apea+4pYsT PV
FPYSY YW ROV = AFysyapRE = 2ifysy o py“y
—4i(c4)eapeaPr WV VVI(S® + PP+ AA,)
—4(c4)?(SdS + PdP + A“DA,) €. VVEVEVE.
(3.36)

The gamma matrix identity

YeYab = NacVb — NbeYa + ieuhcdySyd (337)
implies Wysy. YW = i€apealy®y, so that the second and
the fourth terms cancel in (3.36). Moreover the Fierz
identity

Yoy 'y =0 (3.38)
and Wysy.p = pysyq.y imply that also the sixth term

in (3.36) vanishes. Using then the parametrization R* = 0
leads to

dLHO) = 4pysy ,pV — 4i(cy) e apealy wVOVEVI(S® + P2 + A“A,)

—4(c4)*(SdS + PdP + A“DA,)e4peg VEVEVEV

Finally substituting into (3.39) the parametrizations for p
and dS, dP, DA, we can check that all terms cancel, and
therefore,

dL#0 = o, (3.40)
The only remaining free parameter c4 essentially sets the

scale of the auxiliary fields (changing its value amounts to
rescale 77) and can be chosen as

Cqp = (341)

1
6
to make contact with the notations of Ref. [23].

G. Picture changing operators

To compute the superspace action starting from the
rheonomic Lagrangian (3.23), we have to introduce a
new picture changing operator. From the analysis per-
formed in [18], we know thatin d = 4, N = 1 the nontrivial
PCO must have the form

(3.39)

YO ~ 02V2i2 5 (), (3.42)

with an explicit dependence on the € coordinates. We used
the flat supervielbeins

Vé = dx* + 0y*do, Wl = do”. (3.43)

Notice that the form number carried by the vielbeins
Vi 1is compensated by the negative form number
carried by the contractions along odd vector fields ip.
This structure turns out to be the right expression to
translate the group manifold actions for N = 1,2 Wess-
Zumino and SYM into the corresponding well-known
superspace actions [18]. Notice that although the explicit
dependence on the 6’s might indicate a supersymmetry
breaking, it turns out that it corresponds to the chiral/
antichiral projections to sub-superspaces which are super-
symmetric invariant. The PCO can be built out of the
following terms:
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Y = B0ve A VBT 18* (). (3.44)

VRl = Bys0Ve A VErarsis (wo),  (3.45)
quow = €ancalr 750V A Viiris* (o). (3.46)
VY = 00,00V A VEFUSt (o). (3.47)

(014)
Yp

= 0y50€.pcaVi A VEIrysi5* (wo). (3.48)

0l4 - " -
YOV = By ys0VE A VElpast(yo).  (3.49)

Let us check which combination is closed. We compute
their exterior derivatives:

dY(SOW = 200VE A VBiy 18 (wo) + i00y ywo A VEiy p18* (wo)
= =4V A VEOy p16* (wo) + 2i00tr(ry ) 5* (o) = =4V A VEOy ap16* (wo).

0j4 _ ” - NP -
AW = 2pysOVE A VEiy pysidt(wo) + iBrs0ur wo A VEiraysis* (o)

= —4VE A VEOy 16* (o) + 2i0y 50t (yy upys)5* (wo) = =4V A VEOy 18* (wo). (3.50)
aY Y =2V A VBB 184 (wo) + 2iepcalr” ysﬁtr(ycyd> &*(wo)
=2V A V§Oy 18t (o).
aY{"Y = 200eeaV A VETr U5 (wo) + i00€ iy wo A VETr“is (yo)
- _4€abch0 A V()eyullé“(l//())’
dYgW = 20r750¢apcaV A Viir“ysis* (wo) + i0ysOeapeair“wo A Vair“rsidt (wo)
4€adeV0 AV 97/“654([//0)
0 a : a
‘Ngl '= 2V A VO aysist (wo) + 2i0y,rs0Vs* (wo)
= 2V& A VBeapealy 16* (wo) + 2i0y,ys0VES* (wy), (3.51)
|
and find that there are three independent closed YO, y014) — Y(SOW + Yfl‘*) + 4Y(0\4
Namely the most general solution of the equation B
YO — 0 is - (eavg A VETYapt + By50VE A VETy st
4) _ o/ O4) g (014) 0K (014) _y/(04) + €apealr“7sOVE A VSTY"I) 5 (wo)- (3.54)
YOO =aV ™ 4+ YR +2(a+p)Y, oV =Y, e
(3.52) Note that we can combine the first two terms Y(OM) + Y(OM)

where a, 3, o are arbitrary constants. However, to compute
the cohomology we have to check whether (3.52) is exact.
We observe that there are two possible candidates

”If;l \4)’ ,753—1 |4)’
;1<S‘”4> = V& A VE(000ys1+0y5001)1y 116* (),
ny ' = Ve AVE(B08ys1+By5000)Ty 7515 (wo).  (3.53)

whose differentials can be added to YO as YOM) 4
wdn " + pdn'T"™. This implies that there is only one
cohomology class of H%(d) and we can choose the

representative of the class by choosing 7 and p. We find it
convenient to adopt the following representative:

into a chiral and an antichiral expression. Another con-
venient choice is « = —f and ¢ = 0. This leads to

V(0|4) — y§0‘4) _ Y}([?M‘)

- (9evg A VETyapt = By50VE A Vgiyaby51> 5 (wo).
(3.55)

Finally, note that all representatives are related also to

04) _ 797
Yiomh = 068y505* (o).

(3.56)
which is closed and not exact, but completely breaks
supersymmetry and, inserted into the action, yields the
component action.
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One may wonder whether it may be possible to build a
PCO Y% which is manifestly supersymmetric invariant,
namely written in terms of V&, ¢, and 5*(y,) and con-
tractions along the y§’s of the Dirac deltas. The require-
ment to be a O-form restricts the possible choices to

VEAVEraid (o), Vi AVEirarsid* (wo)-

(3.57)

54 (WO)?

These three terms turn out to be exact. Therefore,
in the present case, there is no manifestly supersymmetric
PCO. The same situation occurs also for extended super-
symmetric models.

We want now to extend flat PCO (constructed out of flat
V§ and w{) to a PCO for a dynamical curved manifold. We
can deform (3.54) without changing its cohomology class
by acting with a super-diffeomorphism. This can be done
by acting infinitesimally with a Lie derivative Ly along a
vector field X since

SYOH) = £, yOH) — d<lxv<0\4>> (3.58)

or, in the same way, by performing a finite transformation
generated by X such that

ebxve = ve, eLxyd =y, eFx0* = 0%, (3.59)

where O is the curved fermionic coordinate. Then we have

YOH) _y pLxy(04)
= (@@V“ A VI ot + Oys®OVE A VPTy st

+ €,pca®77sOVE A Vciydl) 5 (w) (3.60)

or, for the second choice (3.55),

YO 5 pLxy(014)
= ((:)GV“ A VPIy 1 — Oys@OVE A V”Tyaby5l) 5 (w),
(3.61)

where V¢ and w* are the dynamical vielbeins. These curved
Y©4) belong to the same cohomology class of the origi-
nal YO 3

>The topology of the manifold is unchanged by local diffeo-
morphisms, and therefore, we cannot study in this way the case of
curved rigid supermanifolds not connected by infinitesimal
diffeomorphisms to the flat space.

H. Superspace action

Having found the group manifold Lagrangian using
geometric means, we use now the PCOs to construct
the action. On one side, using the flat nonsupersymmetric
PCO (3.56), namely Y = 000y°05*(y), the action
reduces to the component supergravity action with
auxiliary fields on spacetime. On the other side, we would
like to use the supersymmetric PCO (3.61) to obtain the
superspace action as given in [5,6], which is manifestly
invariant under local supersymmetry. For this purpose, we
use (3.61) to project the action to only a few terms, and then
we use the parametrizations (3.14)—(3.19) to simplify the
result and discover that the complete superspace action is
encoded in the auxiliary superfields terms of (3.23). This
allows the comparison with the result given in [6]. Finally,
using the relation between chiral volume forms and the
superdeterminant (discussed in Sec. IID), we show the
equivalence with the superspace formulation of [5].

By inserting Y(° into the supermanifold integral, we
have

s:/ LU0 A Y0, (3.62)
SM@H)

The action £*% is a superform and therefore can be
expanded in powers of V and y as follows:

LEO) = Le,VVEVEVE 4 L pep®VEVEVE
+ LN (M apyp) VEV?
+ Efl(lbcll/a (ll_/M?bW) VC

+ L, MPw) (G MG y). (3.63)

The indices I and J denote the different Dirac matrix
structures for bilinears (M y). Inserting these

expressions in (3.62) and using the PCO (3.61) we are
left with

§— / £0) A y/(04)
SM @4
= [ Moy vev?) A v
SME4)

_ /S 1, (7500 + iPOLO)V'S' ). (3.64)

A crucial role is played by the derivative of Dirac delta
functions of y’s in the PCO: with integration by parts, only
the piece (3.64) is selected. To compare the result with
superspace literature [5,6,22] we use the chiral notation
©,/r =3 (1 £75)0, and rewrite the above expression as

S = / u (RR®L®L + RLéRGR)V454(l//), (365)
SM 4/4)
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where R; and Ry are the auxiliary fields as discussed in
Sec. IIT E, Eq. (3.33). In [5,6] a complete description of R,
Rr, and their component expansion is given. We notice
that, using the off-shell parametrization given in (3.14)—
(3.19), the complete action (3.63) reduces to the terms
containing the auxiliary superfields S, P, or equivalently to
the R;, Ry terms. This is a well-known phenomenon (see
[18]), and the full superspace action is obtained by the
superspace expansion of the auxiliary field terms.

The expression (3.66) can be conveniently rewritten as

S— / (ReVoly? AV, +R VoIl AYg),  (3.66)
SMEH

where we used the notation Yy = ©z0,6%(yg) and Y, =
0,0,5(y,) to denote the PCO projecting on the con-
straints @ = 0 and ®; = 0. In the above equation, we
used Vol%"z) and V01<L4|2) to denote the chiral densities.
Finally, integrating on the “cotangent” coordinates

(Ve w9, w%), we arrive at the simplified expression [6]

L R SME)

where we used a chiral integration formula by Siegel [5,22]
giving a relation between the chiral measures &; , £ and the
superdeterminant E. The integrals in the above formula
f L/R Are over the chiral superspaces, and the integral f E
is extended to the entire superspace. The last expression
finally shows the relation of the superspace action with the
Hodge dual of a constant. Reinstalling the appropriate
dimensions, this constant coincides with Newton’s constant.

IV. NEW MINIMAL SUPERGRAVITY

A. Off-shell degrees of freedom

We can match off-shell d.o.f. by adding an auxiliary
bosonic 1-form A (3 d.o.f.) and an auxiliary bosonic 2-form
T (3 d.o.f.). The theory with these auxiliary fields was first
constructed in Ref. [24], and recast in the group manifold
formulation in Ref. [9].

B. The extended super-Poincaré algebra

The starting superalgebra is the super-Poincaré algebra,
extended with a 1-form A and a 2-form 7. The deformed
Cartan-Maurer equations for the extended soft super-
Poincaré manifold are

R = dw® — 0 .0, (4.1)

R = dV® — w®, Vb — %l/'/y“l// =DV - él/'f?“l//’ (4.2)
1, i i

p=dy =0y = 5yswA =Dy —SyspA,  (4.3)

RY = dA, (4.4)

R® = dT — %lpyal//V“, (4.5)
where D is the Lorentz covariant derivative. These equa-
tions can be considered definitions for the Lorentz curva-
ture, the (super)torsion, the gravitino field strength, and the
1-form and 2-form field strengths, respectively. The Cartan-
Maurer equations are invariant under rescalings

wab _)iowab’

A — 204,

Ve - Ave, W — /1%1//,

T — 2°T. (4.6)

Taking exterior derivatives of both sides yields the Bianchi
identities:

DR = 0, 4.7)

DR + R, VP — ifgryp = 0, (4.8)

Dp + %M'A + iR“"yahw - %ml//RD =0, (49)
dR" =0, (4.10)

dR® — iy ,pV* + i.t/‘/yav/l‘?“ =0, (4.11)

2

invariant under the rescalings (4.6).

C. Curvature parametrizations

According to the group manifold approach, we again
parametrize the curvatures so that “outer’” components (i.e.,
components along at least one fermionic direction) are
related to inner components (i.e., components on bosonic
directions). The most general parametrization compatible
with the scalings (4.6) and SO(3, 1) x U(1) gauge invari-
ance is the following:

Rab — Rabcdvcvd + éabc‘llvc + icleadell_/}’cll/fd’ (4.12)
R* =0, (4.13)

P =papVVP +iaysyf Ve —icoysyay Ve, (4.14)
RO = FVaVP iy, Vo + icsiray e, (4.15)

R® = favbyevde,, .. (4.16)

Dfy = (Dpfu)V" + B, (4.17)

The VV component F,;, of F and the VVV component f,,
of R® scale, respectively, as F,, = A"2F, and
fa— A7'f,. The Bianchi identities require that
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0120225, c3=3-a, (4.18)
and
0, = 2ipl"y) — ipety,., (4.19)
—a l abDcC
= T3¢ Y bPeas (4.20)
ia i
Xa=?2 <7’57hpub + yeabcdy”ﬂ‘d) (4.21)

Note that thanks to the presence of the auxiliary fields,
the Bianchi identities do not imply equations of motion for
the spacetime components of the curvatures.

D. The group manifold action

With the usual group manifold methods, the action is
determined to be

Sa=4s6 = / \ R©OVVae g+ 4pysy,pV —4RIT
M
1

—|—a< f.R®VE +3 f. feV“V”VCVdeabcd) (4.22)
This action is obtained by taking for the Lagrangian £(*0)
the most general SO(3, 1) x U(1) scalar 4-form, invariant
under the rescalings discussed above, and then requiring
that the variational equations admit the vanishing curva-
tures solution

RY®=R'=p=RI=R®=f,=0. (4.23)

The remaining parameter « is fixed by requiring the closure
of LU0 ie., dC™% = 0. This yields a = 4(4a — 3) and
ensures off-shell closure of the supersymmetry transforma-
tions given below. Notice that a is essentially free, since the
term iaysyf,V¢ in the parametrization of the gravitino
curvature p can be reabsorbed into the definition of the
SO(3.1) x U(1)-covariant derivative on y, by redefining
A" =A +2af,V*. Choosing a :% simplifies the action,
reducing it to the first three terms, so that the O-forms f, do
not appear.

E. Field equations

Varying o, V¢, y, A, T, and f, in the action (4.22)
leads to the equations of motion:

2€,peqRVI=0= R =0, (4.24)
2Rbcvd€abcd - 41/_/9/57&0
1
+ a(_fuR® + Efefeeabcdvbvcvd) = O’ (425)

8ysvapV® — 4ysy W R —iay wVef, VP =0,  (4.26)
R® =0, (4.27)

_4RD + a(Vana - %falilj/al// - faRa> = O’ (428)
R® = faybyevde,, . (4.29)

These equations are satisfied by the curvatures parame-
trized as in Sec. IV C and also imply

R'=RV=R®=f,=0, (4.30)

ac 1 a pcd . .
R} — §5bR wa =0 (Einstein eq.), (4.31)
Ypar =0 (Rarita — Schwinger eq.). (4.32)

The theory has therefore the same dynamical content
as the usual N = 1, d = 4 supergravity without auxiliary
fields.

F. Off-shell supersymmetry transformations

Supersymmetry transformations are obtained by apply-
ing the Lie derivative along the fermionic directions (i.e.,
along tangent vectors dual to y):

5.V = —iye. (4.33)

. 3
Sy = D8+%ysA8+ iaysef,V* —ElysyabeV“fb . (4.34)

= la aDcC a o b= a
56A=8<§€ bedyupea—2vsyp" >+2l(3—a)87awf V.

(4.35)

Saw™ = 0 Ve — 3iethyy ef ;. (4.36)
6. T = —iyy,eV°, (4.37)

5.fe = eze, (4.38)

and close on all the fields without the need of imposing the
field equations (4.31) and (4.32).

G. Superspace action

Having found the rheonomic Lagrangian for the new
minimal set of auxiliary fields, by using the geometric
means of the group manifold approach, we would again
like to use the PCO to define its variational principle and
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write the corresponding action. On one side, it is easy to
check that using the flat nonsupersymmetric PCO
YO = 000y°05* (y), we obtain the usual component
action with auxiliary fields. On another side, we would
like to verify that using the supersymmetric PCO (3.61)
leads to a superspace action for the new minimal d = 4
supergravity. The latter has been discussed in [31-33] and
appears to be of a BF-type action. Therefore, the plan of the
present section is to insert the curved PCO which selects
some pieces of the Lagrangian and, using the parametriza-
tions, to compare the result with the superspace action
given in [33].

We begin by inserting Y into the supermanifold
integral and consider the Lagrangian with a =0 for
simplicity:

(0[4)

5= / L0 A Y01, (4.39)
SMEH)

The action £“*% is a superform and therefore can be
expanded in powers of V, y as follows:

LU0 = Le,, VVEVVE L Ly VaVEVE

+ LG M) VAV + Ly 0 (M y) VE

+ L ca @MW) (FMGy). (4.40)
The indices I and J denote the different Dirac matrix
structures for bilinears (l/'/./\/l‘}b w). Inserting these expres-

sions in (3.62) and using the curved PCO (3.61) we are left
with

S— / £10) 7 yOH)
SME4)

- /SM<44> (EI(IZ’MI,ab’/O ve Vb) AYHO)
- /SM(‘”) <€ab0d(Fabﬂ/cle +)((17bclTa)®®

+i(F p1ysycatT +)(a757bclTa)®J’5®) Vist(y). (4.41)

The additional superfields 7y.,T and 1,T, are defined in
terms of the 2-form potential T = T,,V*V? + T, Vy®+
Taﬁl//al//ﬂs

ealT = ngTaﬁ, 1,7, =Ty, (4.42)

Integrating on the cotangent space we are left with the
integral on the bosonic x? and on the fermionic 6%
coordinates:

S= /(Eeade(Fabiycle +ZaybclTa)®®
+ iEe®"“U(F yTysycatT +)(a}’57bclTa> Or50), (4.43)

where F,, and y, are the superfields appearing in the
parametrization of F [see (4.12)]. The superfield f, is
absent due to the Dirac matrix structure of the PCO that
projects out the Dirac structure corresponding to f,. Notice
that at the end we have to compute the Berezin integral over
the fermionic coordinates, and this selects inside the
superfields Top, Tyyr Fop, and g, all the needed pieces
for reconstructing the supergravity in the new minimal
formulation. Again, we notice that it is the auxiliary field
term that reproduces the entire supergravity action.

To compare the final action with the superspace action,
one needs to identify all components of the superfields in
(4.42) and then perform the integration. We do not present
this computation here; for this we refer to [31,32,34] and to
the review [33]. This concludes the proof of the equivalence
between the group-manifold approach and the superspace
approach to new minimal d = 4 supergravity.
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APPENDIX A: FORMS ON SUPERMANIFOLDS

We collect here some basic definitions and facts about
integration on supermanifolds and on integral forms. For
exhaustive introductions to integral forms, we refer the
reader to [25,26], while for their use in physics, we refer
to [14,15,35].

Given a (smooth) supermanifold M4, the cotangent
space 75 M@ at a given point P € M@* has both an
even and an odd part, generated, in a given system of local
coordinates (x%,0%),i = a,....,4,a =1, ...,4, by the (1]0)
forms {dx“,d6*}, called superforms, which are, respec-
tively, odd and even. They have the following (super)
commuting properties:

44)

d6* A doP = deP A der,
(A1)

dx® A dx? = —dx? A dx?,

dx* N dO* = —dO* A dx“.

A generic (p|0) form is an object of the (graded) symmetric
power of T }SM(‘”“), and it locally reads as
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0P = @, oy (X, 0)dXDT A A dx A dOT A A O™,

where the coefficients @[,,..q j(,q,)(X,0) are a set of
superfields and the indices a; - - - a,, a; - - - a, are antisym-
metrized and symmetrized, respectively, due to (Al). The
analog of the determinant bundle can be found in a different
form complex, the complex of integral forms. One can
introduce the Berezinian bundle Ber(M®“9), ie., the
space of objects which transform as the Berezinian (i.e.,
the superdeterminant) under coordinate transformations.
|

p=r-+s, (A2)

[
Integral forms are then constructed on open sets starting
from this space and tensoring with (graded) symmetric
powers of the parity-changed tangent space (see the recent
review [26] for a rigorous introduction to the subject). A
practical and computationally powerful realization of the
Berezinian and integral forms is given in terms of (formal)
Dirac distributions on the cotangent space; a generic (p|4)-
integral form can be locally described as

PN = (6, O)dx A - A d Aty 1, 8(d0V) A A 8(d6),

a.
al“'ar]

p=r-—s, (A3)

and the second number of the (p|4) form keeps track of the number of Dirac deltas and is called Picture number. The
contraction 1, is defined as 1, = d/dw®. The formal Dirac deltas satisfy the following properties:

A o0 = 1. 5(d9a) A 5(d9ﬂ) - —5(d9ﬂ) A 5(d9”’),

1
dx A 5(d6) = +6(d0) A dx.  5(2d0) =~ 8(db).

do A 5(d6) =0,

do A 1P5(d0) = —piP=15(d6). (A4)
The first property defines how 5(d6)’s have to be used to perform form integration along the commuting directions d@’s; the
second property reflects the usual property of the support of the Dirac distribution; the third and fourth properties imply
5(d6)’s are odd objects and together with the fifth property they indicate that actually, these are not distributions, but rather
de Rham currents, i.e., they define an oriented integration; and the last property allows the usual integration by parts of the

Dirac delta.
A top form reads as

(414)

Wiy = 0 = 0(x,0)€y, .0 dxD A - A dx A €q g, 0(dOM) A -

A 5(d6™), (A5)

where w(x, 6) is a superfield. Any integral form of any form degree p can be obtained by acting with 4 — p contractions

on (AS5).

One can also consider other classes of forms, called pseudoforms, with a nonmaximal and nonzero number of deltas.

A general pseudoform with ¢ deltas is locally given by

0P = Wl 0] (% O)AXD A <o A X A O A - A dO% A S (d@ﬁl) A

where we used the compact notation 8 (d6) = (1)'5(d6).
The form number is obtained as

p=r+s—iti.
i=1

If ¢ = 0, we have superforms; if ¢ = 4, we have integral
forms; and if 0 <g <4, we have pseudoforms.
These kinds of forms are to be used, for example, in
[35] to construct objects which implement naturally the
self-duality condition on supermanifolds. This is a conse-
quence of the fact that the Hodge operator [14,15] on
supermanifolds changes not only the form number but also
the picture number:

(A7)

A 5 (d@ﬂq), (A6)

% Qla) ( M<4\4>) - Qlé-pld—a) ( M(4|4>), (A8)

A notable example of an integral form is the picture
changing operator: it is a (0]4) form, in the cohomology
of the operator d. It is used to lift a superform to an integral
form by multiplication:

y(014)  (pl0) ( M<4\4>) = Q) ( M(4|4))’

0?10 s P4 = 5(Pl0) A YO4) (A9)
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APPENDIX B: CURVED SUPERSPACE

One interesting formula in [5,22] used in the context
of superspace supergravity gives the right action of an
even vector field K on a superfield. It is a complicated
formula, albeit useful and important, and can be translated
into our language using the Hodge dual operator. We
hope that our reformulation might add some new
insights to the original work in [5,22] from a different
perspective.

We consider the following definition:

§- K = (1", (k™) (B1)
for an even superfield ¢ and an even vector K. This also
implies

ek = (1-eK)eko, (B2)
where ¢ is a superfield.

We would like to translate (B1) using our Hodge
dual operator. For that we observe that (B1) corresponds
to the action of a vector field on a density, which can be
obtained by acting with the Hodge dual of a Lie derivative
on a top form. Then, using the Hodge dual operator *
we set

¢ K = Lidp=*Lx(*¢), (B3)
where x¢ = ¢Vol**). The equation can easily be verified

using the properties of Vol** and of the Lie derivative L.
The derivation of (B2) is now straightforward:

¢ ek = <e£K)T¢ = *ebr (k)
— el (1) = *(eﬂK(*1)> eLrgp

- <*eﬁKVol<4\4>)eﬁk = (1-eK)eKgp, (B4
where x1 = Vol and
(1- el?) = (e£%)T1 = xelr@i)
- *(Sdet(J)w<4\4>) — Sdet(J).  (B5)
Another interesting formula is
(1-eK)1 = eK(1 - eK), (B6)
which can be proven as follows:
(l-e"?)-e’?: (e£K>T(e‘LK>T1:1; (B7)

therefore, the superfield (1 - e"z) is the inverse of the

operator -¢X, and therefore, it is the inverse of (1 - eX)ekX.

Analogously, (1 - eX) is the inverse of eX(1 - e7X).

This is only an example of how the use of the Hodge dual
operator simplifies several complicated computations in
superspace. We believe that this new point of view might
prove to be useful in the superspace formulation of
supergravity.

APPENDIX C: THE CHIRAL PROJECTORS
USING PICTURE LOWERING OPERATORS

Here we want to show the correspondence between
the geometric formulation of d =4, N =1 old minimal
supergravity, via the super-Hodge operator, with its super-
space formulation using the picture lowering operators. In
particular, we have seen that the action can be written as

/ LA _ / «1
SMEH SME4)
(412)

(42)
= R.Vol; —l—/ RrVoly"™.
/SMSEL SMipiin
(C1)

We can obtain a (4]2) form out of a (4|4) form by decreasing
the picture number by two. The geometrical operator that
decreases the picture number is given by
0-1 .
z{"™" = {d.-i0(ix)}. (C2)
where X is an odd vector field and the (odd) operator ® is
defined via its Fourier integral representation:

o dt
O(ix) = —ilim

—eifix, (C3)
-0 |_ 1+ i€

The key point about the operator Z is that it is a
quasi-isomorphism; i.e., it maps cohomology classes into
cohomology classes. This means that it allows one to obtain
a form with the same degrees of freedom but with a different
picture number out of a known form. This is strictly related
to the same properties of the picture-changing operator Y
described in the previous sections. Indeed, Y represents a
quasi-isomorphism and is related to Z via a quasi-inverse
relation (i.e., they are inverse on cohomology classes),

which can be schematically represented as

N7 =7, YZY =Y. (C4)
In the case under consideration, we can project from the
whole supermanifold to the chiral/antichiral submanifolds

using the following operator:

701-2) — Z(COI_2> + Z(-CO‘_Z) = Z%Zvi + 2y, 2Zy,. (C5)
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Thus, ZﬁoH) is made out of the two vector fields vd and
ZEOCH) is made out of the two vector fields Va.(’ We will

discuss the action of ZS;O‘_Z) only, the antichiral calculation

being similar. Let us start by applying the first operator Zvi
to the Lagrangian LU%) = x1 = Vevbvevie,, .6(y?)
€ (w?) (0" )e, ﬂé(zpﬁ); first of all, we notice that since
L% is a top form, its exterior derivative is trivially zero;
hence, the action of the operator Zg, reads

Zg LU = do (zv) VaVPVeVde,, 18(y°)
e (0)5(5) ()
1 .
—d [V01<L42) _—15(1,72)} .
74

At this point, it is worth observing that the intermediate step
of calculation involves inverse forms, i.e., forms of the type
1/y. For details of their geometrical interpretation and
string-theoretic counterpart, we refer the reader to [36].
Here, we only note that inverse forms emerge in intermediate

|

(Co)

W

passages, but disappear at the end of calculations. In (C6) we
collected the V’s and the undotted y’s in the chiral volume
form Vol(L4|2) [see (2.13)]; notice that this volume form is d-
closed (the same holds for the anti-chiral one): since the
expression is covariant, we can substitute the action of the
differential d with the action of the covariant one, defined in
(3.1)—(3.3). The closure is directly verified: the covariant
derivative on V’s either involves the torsion R%, which is
zero, or involves ywy, hence, giving zero because of the
presence of the two undotted delta’s 5(y*)e,z6(y?”); the
covariant derivative on y’s is the curvature p, which is
proportional to at least one V, which is then annihilated by
the presence of the other four V’s. Hence, (C6) becomes

_ 1 .
Zo L) = V01<L42>d[—5(1p2)}. (C7)

i l/_ll

Now the key point is that the expression between square
brackets is not covariant; hence, the action of the exterior
derivative involves the spin connection. In particular,
we have

1 - 1 o1 i ; 1 ;1 ; ;
Voli#?a {_—15(1/72)] = Vol {— ~— (pl + - (aabu‘/) 1) 8p°) +— <p2 + -0 (oabv‘/)z) 5! (1/72)}

Cu@ | T NI s
Vol | o (o) 0) +
4(p')?

where the terms involving p have been dropped, since they contain at least one vielbein V. We use the notation

—(6pW)* = [P_(rap¥)]* = [(rarP-w)]%, P_

O-uaﬂ = (1, ai)aﬂv Uadﬂ =

1 \2 _4
o (oo |0 ) =
-
2 bl
d _ O Gaa/’}
(=odtp ra=(_ . o) (C9)
—04%

o; being the Pauli matrices. We could move to the more convenient chiral notation for the action of Lorentz generators:

R e (e (C10)
Equation (C8) then becomes
Zo LU = Vol _ (coi 7+l 2>5( %) +L (a) L4 wz—z) s (-2)

Vi - L 4(1)7/])2 lw ZW L4 4ll—/l lw 2w v

— Vo) {_1 n _2} 5@-;) L8250 (u—/2>

4yt 4! 4
1 4 .
= Vol Pl (1,72) . (C11)

®In the present section we use the Weyl/anti-Weyl notation to simplify the computations; see [6] for the conventions.
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Notice that the terms containing inverse forms have canceled, as expected, because of the relation a)} = —w% We can now
act with the second PCO Zvi; since Z is a cohomology operator, its action can be simplified as

= = 1 42) 5 _4 1 42 ;1
Zg,Zq LY = d@(zvz)L—lVol(L )a)%é(l)(l//z)} - Vol Pa aﬁw . (C12)
Again, inverse forms arise, but they cancel after the action of the exterior derivative. In particular, we have
Lo | 5 1 L@ | 01 5 1 S R
—ZVOIL d (1)l 7 =—--V lL dw? > 5 +2a)] 5 3 ((1)11// +(1)21// )
() ) ()
1 b . .
= —ZVOIEI ) - [da)? + Zw?a)ﬂ (C13)
(v
|
The expression in square brackets represents exactly a *T4 =0,
component of the curvature (3.2) in the chiral/antichiral B de cd 5 4
notation. The terms containing V’s and y’s are automati- *p® = ppVees (y) +p V51,0 (w). (D2)

cally annihilated by the presence of wt?

some algebra is it possible to verify that only the (i7%)” term
survives. In particular, we arrive at the final expression (up
to an overall factor)

, while only after

VANA

Zg LY = Vol (5 + iP) = VoI'PR,. (C14)

Analogous computations can be performed by acting on
L#% with the picture lowering operators along the V,
directions, so that finally one obtains

(Zg,Zg, + Zv,29,) L4 = Vol PR, + Vol Ry,
(C15)

reproducing the usual action (C1).

APPENDIX D: SOME FORMULAS FOR
SUPERGRAVITY

In this appendix, we give some explicit formulas used in
the text and their Hodge dual. Using supergravity para-
metrizations we have

T¢ =0,

P =PV AV pl A VE (D1)

with pf. = i(y,S — iyaysP +vs(26, —v5)A,)%s (where 1
set ¢4 = 1). Then,

Now acting with the differential d, we finally get

VxT¢ =0,
Vxp® = V02", V6 (y)
+ (Vi + pippiae™ ! + pegCP )

X V41,8* (), (D3)

and

*Vxp® =V, p% ebcddy . Ve
+ (1" Voply + Pappeac™ + pigCP PN )

X Cop©. (D4)

It is very instructive to compute dxd¢p explicitly using a
generic supergravity parametrization for the super vielbeins’

VVe=T*=T§ V' AV +T5 97 AV Thyl Ay,
Ve = p® = pg. VP AVt pl? AVt pgul Ay,
(D5)

where the superfields 77, ..., pj, are defined in terms of the

superspace constraints (also known as rheonomic con-
straints) and using the Bianchi identities. Then, we get

7Following the conventions of [10] we use the notation
T = p*.
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dxdp = d(V§6* (y)Vap) + d(CPV41,8* (w) V)

1
= Eeadevvach54(l//)va¢ - Vf’,zv’//ala64(l//)va¢ - V§154(V/>(Vdvdva¢ + W5V6Va¢)
aff

+ C:;,—l ANV V, V.V 1,8 (W) Vs + CPVAIVY 11,54 W)V sp + CPV1,8* (w) (VIV Vs + OV 5V 5h)

1
= 5eadeTbrsVrVSVch54(W>va¢ - V? (pzcl//ﬁvc)la54(ll,)va¢ - V§54(‘//) Vdvdva¢
c#
+ ?eadeTaﬂrl//ﬂ V'V, V.V atad ()Y + C7 V4/)$yll/ﬂ Wi,1,6 (W) Vs + CPV4,8 (w)y° VsV
= VW) (TS — pe )V + (TS + 9 )V = 1"V V,0p + CPV, V)],
where the coefficients in front of V¢ and V¢ are obtained by a suitable contraction of the supertorsion 7, p.
Applying the Hodge dual directly on the torsion, we find

KT = T4 VA () + T Vitad* () + T, V006 ).

*p* = pi VSt W) + P Vet (w) + pf, VI 8 ().

(D7)
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