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We study the high-energy limit of projectable Hořava gravity using on-shell graviton scattering
amplitudes. We compute the tree-level amplitudes using symbolic computer algebra and analyze their
properties in the case of collisions with zero total momentum. The amplitudes grow with collision energy in
the way consistent with tree-level unitarity. We discuss their angular dependence and derive the expression
for the differential cross section that happens to depend only on the essential combinations of the couplings.
One of our key results is that the amplitudes for arbitrary kinematics are finite when the coupling λ in the
kinetic Lagrangian is taken to infinity—the value corresponding to candidate asymptotically free ultraviolet
fixed points of the theory. We formulate a modified action which reproduces the same amplitudes and is
directly applicable at λ ¼ ∞, thereby establishing that the limit λ → ∞ of projectable Hořava gravity is
regular. As an auxiliary result, we derive the generalized Ward identities for the amplitudes in
nonrelativistic gauge theories.
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I. INTRODUCTION

Hořava gravity (HG), proposed in [1], is a metric
quantum theory of gravity realized as a power-counting
renormalizable quantum field theory (see Refs. [2–6] for
reviews). The power-counting renormalizability is achieved
by separating spacetime into space and time: The theory at
tree level and at high energies is taken to be invariant under
anisotropic (Lifshitz) scaling

x → b−1x; t → b−zt; ð1:1Þ

where b is a scaling parameter and z is the Lifshitz
exponent. In HG the latter is taken to be equal to the
number of spatial dimensions, z ¼ d. Such a symmetry
implies that we can have a Lagrangian quadratic in first
time derivatives, yet containing terms with more than two
spatial derivatives of fields. The propagators then have
more powers of momenta than of energy in the denomi-
nators, which makes them decay fast in the ultraviolet (UV)
and improves convergence of the loop integrals in pertur-
bation theory. Since the equations of motion contain only

two time derivatives, we do not get any problematic extra
degrees of freedom (ghosts), in contrast to the generally
covariant higher curvature gravity [7–10].1
The price to pay is the violation of Lorentz invariance at

high energies that propagates down to low energies in the
form of a preferred spacelike foliation whose dynamics is
described by a new scalar field called scalar graviton or
khronon [2]. The violation of Lorentz invariance in the
visible sector can be sufficiently small in the nonproject-
able version of the theory [13] to reproduce the observed
phenomenology, albeit with some degree of tuning [14].
From the theoretical perspective, the nonprojectable theory
is complicated since it involves large (but still finite)
number of marginal couplings that describe its behavior
in the UV. Its renormalizability beyond power counting has
not yet been established, though there has been important
progress in this direction recently [15,16]. Further analysis
of its UV properties, such as the renormalization group
(RG) flow, is presently beyond reach.
In this paper we consider a simpler version of the theory:

the projectable model, which has been proven to be
perturbatively renormalizable [17,18] and whose one-loop
RG flow has been computed in [19,20]. The flow possesses
a number of UV fixed points with vanishing gravitational
constant which indicates asymptotically free behavior.
Some of these points, however, are characterized by a
divergent dimensionless coefficient in the kinetic term of
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the action conventionally denoted by λ. Since positive
powers of λ appear in the interaction vertices, one may
worry if this divergence jeopardizes the asymptotic
freedom.
The purpose of the present paper is to address this

concern by scrutinizing the projectable HG in the limit2

λ → ∞; other couplings fixed: ð1:2Þ

Early work [21] studied cosmological perturbations in HG
and showed that their power spectrum and cubic inter-
actions remain well behaved in the limit (1.2), suggesting
that it corresponds to a regular theory. More recently a
similar limit in a supersymmetric version of HG has been
connected to the Perelman-Ricci flows [22].
We take a different approach and use the scattering

amplitudes as gauge-invariant probes of the theory. We
compute the full set of tree-level amplitudes for 2 → 2
scattering of transverse and scalar gravitons in the project-
able HG taking into account all marginal couplings. This
calculation is of high algebraic complexity which we
overcome by making use of computer algebra [23–26].
The resulting expressions for the amplitudes at general
kinematics are too cumbersome to be analyzed explicitly,3

so we focus in the paper on the simplest case of scattering
with vanishing net momentum, to which we refer as “head-
on collisions.”4 We discuss the energy and angular depend-
ence of the amplitudes and observe that they are finite in the
limit (1.2). We verify the latter property for an arbitrary
kinematics using our code and encouraged by these results
develop an analytic proof of cancellation between poten-
tially divergent contributions. Further, we show that a
reformulation of the theory with introduction of an addi-
tional auxiliary field allows one to take the limit (1.2) at the
level of the action, implying that this limit is regular beyond
the tree-level and 2 → 2 processes.
The complexity of the amplitudes calls for subjecting

them to various consistency checks. An important class of
such checks are requirements of gauge invariance. In
relativistic theories and for relativistic gauges they imply
two types of conditions. First, the on-shell amplitudes for
physical states must be independent of the gauge-fixing
parameters. Second, they must satisfy the Ward identities
stating that an amplitude for scattering of a gauge boson
vanishes whenever its polarization vector (for Yang–Mills
theories) or tensor (for gravity) is replaced by a vector/
tensor proportional to the boson’s four-momentum.
While the first condition translates without change to
nonrelativistic theories, the second is less obvious since

the four-momentum is no longer a useful object. To
generalize the Ward identities to the case of HG, we go
back to first principles and construct its Hilbert space using
the Becchi-Rouet-Stora-Tyutin (BRST) quantization. The
sought after conditions then arise from the requirement of
the BRST invariance of the S-matrix. This approach is not
restricted to HG and applies to any nonrelativistic gauge
theory, as we illustrate on an example of a Yang–Mills
model with z ¼ 2 Lifshitz scaling in (4þ 1) dimensions.
It is worth noting that the phenomenological viability of

projectable HG is problematic since it does not possess a
stable perturbative Minkowski vacuum where gravitons
would propagate with the speed of light [2,29] (see also [6]
for recent discussion). References [3,30,31] suggested that
it may still reproduce general relativity with an additional
sector behaving as dark matter if the khronon field is
strongly coupled. We do not attempt to add anything to this
aspect of the model and focus on its properties at high
energies where it is stable and weakly coupled.
The paper is organized as follows. In Sec. II we review

the projectable HG and perform its BRST quantization. In
Sec. III we derive the generalized Ward identities for
scattering amplitudes in nonrelativistic gauge theories,
illustrating the general framework on the Yang-Mills theory
with Lifshitz scaling before applying it to HG. In Sec. IV
we outline the calculation of amplitudes in projectable
HG and present our results for scattering with zero total
momentum. In Sec. V we consider the limit (1.2) and show
that the amplitudes remain finite. We also present an
alternative formulation of the theory which allows us to
take the limit (1.2) directly at the level of the action. We
conclude in Sec. VI. Lengthy formulas are relegated to the
appendixes.

II. PROJECTABLE HOŘAVA GRAVITY

A. Formulating the theory

A theory symmetric under scaling (1.1) cannot be
invariant under the full group of spacetime diffeomor-
phisms. However, it can still be invariant under its foliation-
preserving subgroup (FDiffs):

x ↦ x̃ðx; tÞ; t ↦ t̃ðtÞ; ð2:1Þ

with t̃ðtÞ-monotonic function. Hořava gravity [1] is a metric
theory with this symmetry, conventionally formulated
using the Arnowitt-Deser-Misner (ADM) decomposition
of the spacetime line element,

ds2¼−N2dt2þγijðdxiþNidtÞðdxjþNjdtÞ; i;j¼1;2;3;

ð2:2Þ

where we have specified to three spatial dimensions. The
lapse, shift, and the spatial metric transform under FDiffs as

2The directionality of the limit, i.e. whether λ goes to þ∞ or
−∞ is unimportant, at least within the perturbation theory.

3They are available in the Mathematica [27] format at [28].
4In contrast to relativistic theories, this is a genuine restriction.

Due to the absence of Lorentz invariance in HG one cannot set the
net momentum to zero by boosting to the center-of-mass frame.
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N↦N
dt
dt̃
; Ni ↦

�
Nj ∂x̃

i

∂xj
−
∂x̃i

∂t

�
dt
dt̃
; γij↦ γkl

∂xk

∂x̃i
∂xl

∂x̃j
:

ð2:3Þ

These transformations are compatible with the project-
ability condition which states that the lapse N is only a
function of time, N ¼ NðtÞ. In this case it can be set to 1 by
an appropriate choice of the time coordinate. Equivalently,
at least in perturbation theory, we can consider a model
without time reparametrizations and with unit lapse from
the start. This is the formulation we adopt in this paper. An
alternative option—taking the lapse to be a function of both
time and space—leads to the nonprojectable HG.
Using the remaining variables γij and Ni we construct

the most general action with two time derivatives which is
invariant under FDiffs (2.3) and the Lifshitz scaling (1.1)
with z ¼ 3. To do this, we need to assign the scaling
dimensions to the metric and the shift, which will determine
how their quantum fluctuations scale in the UV. In more
detail, we say that a field Φ has scaling dimension
dimΦ ¼ r if under the symmetry (1.1) it transforms as

Φðx; tÞ ↦ Φ0ðb−1x; b−ztÞ ¼ brΦðx; tÞ: ð2:4Þ

The metric γij enters into the action nonlinearly, while its
time derivative enters through the extrinsic curvature of the
constant-time slices which transforms covariantly under the
FDiffs,5

Kij ¼
1

2
ðγ̇ij −∇iNj −∇jNiÞ: ð2:5Þ

To preserve the homogeneous scaling of different terms in
the action, we assign the dimensions 0 to γij and 2 to Ni,

dim γij ¼ 0; dimNi ¼ 2: ð2:6Þ

This leads us to the action,

S ¼ 1

2G

Z
d3xdt

ffiffiffi
γ

p ðKijKij − λK2 − VÞ; ð2:7Þ

whereG is the gravitational coupling controlling the overall
strength of the interactions and K ≡ γijKij is trace of the
extrinsic curvature. Note the free parameter λ which
appears in the kinetic term of HG compared to general
relativity, where it is fixed to be λ ¼ 1 by the full spacetime
diff-invariance.
The “potential” term V in Eq. (2.7) depends on three-

dimensional curvature invariants constructed using the
spatial metric γij. To be compatible with the Lifshitz

scaling, it must consist of operators with scaling dimension
6. The most general such potential reads,

Vdim¼6 ¼ ν1R3 þ ν2RRijRij þ ν3RijRjkRi
k þ ν4∇iR∇iR

þ ν5∇iRjk∇iRjk; ð2:8Þ

where Rij and R are the three-dimensional Ricci tensor and
the scalar curvature, respectively; νa, a ¼ 1;…; 5, are
coupling constants. Note that there are no terms with the
Riemann tensor, since in three dimensions it is not
independent and can be expressed through Rij.
One can also add to the potential the terms of lower

scaling dimension which represent relevant deformations of
the Lifshitz scaling,

Vdim<6 ¼ 2Λ − ηRþ μ1R2 þ μ2RijRij: ð2:9Þ

In fact, these terms are required for renormalizability since
the Lifshitz scaling is broken by quantum corrections, as
manifested by the RG running of the couplings [20]. In this
paper we disregard the low-dimension terms because we
are interested in the high-energy properties of the theory
controlled by the marginal operators collected in (2.8).

B. BRST quantization

The flat static metric γij ¼ δij with vanishing shift
Ni ¼ 0 is a solution of the classical equations following
from the action (2.7) with the potential (2.8). We want to
quantize the theory around this background, so we intro-
duce the metric perturbation

hij ≡ γij − δij: ð2:10Þ

Next we need to fix the gauge. This is done consistently
within the BRST formalism [32,33]; we follow here [17,34].
We introduce the fermionic Faddeev–Popov ghosts ci and
antighosts c̄i, bosonic Nakanishi-Lautrup field bi and the
Slavnov operator s which implements the BRST trans-
formations of the original and new fields,

shij ¼ ∂icj þ ∂jci þ ∂ickhjk þ ∂jckhik þ ck∂khij;

sNi ¼ ċi − Nj
∂jci þ cj∂jNi; ð2:11aÞ

sci ¼ cj∂jci; sc̄i ¼ bi; sbi ¼ 0: ð2:11bÞ

Note that from now on the indices are raised and
lowered with flat background metric δij. The first two
expressions here are, of course, nothing but the infinitesi-
mal gauge transformations of the metric and shift with
the gauge parameters replaced by the ghosts. With these
definitions it is straightforward to to show that the Slavnov5The indices are raised and lowered using the spatial metric γij.

SCATTERING AMPLITUDES IN HIGH-ENERGY LIMIT OF … PHYS. REV. D 108, 046017 (2023)

046017-3



operator is nilpotent, i.e. the action of s2 on any field
vanishes.6

The quantum tree-level action is constructed as the sum
of the original action (2.7) and the BRST variation of a
gauge-fixing fermion Ψ,

Sq ¼ Sþ 1

2G

Z
d3xdtsΨ: ð2:12Þ

Gauge invariance of the original action and the nilpotency
of the Slavnov operator imply that Sq is BRST invariant,
sSq ¼ 0. The gauge-fixing fermion is conventionally taken
in the form

Ψ ¼ 2c̄iFi − c̄iOijbj; ð2:13Þ
where Fi are the gauge-fixing functions and Oij is a
nondegenerate operator.
Following [17] we adopt a family of gauges compatible

with the Lifshitz scaling and possessing two free param-
eters σ, ξ:

Fi ¼ Ṅi þ 1

2
Oijð∂khkj − λ∂jhÞ;

Oij ¼ −
1

σ
ðδijΔ2 þ ξ∂iΔ∂jÞ; ð2:14Þ

where h≡ hkk is the trace of the metric perturbation and
Δ≡ ∂k∂

k is the spatial Laplacian.7 Upon substituting these
expressions into (2.12), it is convenient to integrate out the

nondynamical Nakanishi-Lautrup field, and the action
takes the form,8

Sq ¼ Sþ
Z

d3xdt

�
1

2G
FiO−1

ij F
j −

1

G
c̄isFi

�
: ð2:15Þ

The first term in the brackets is the gauge-fixing Lagrangian,
whereas the second term gives the Lagrangian for ghosts.
Note that the operator

O−1
ij ¼ −

σ

Δ2
þ σξ

ð1þ ξÞ
∂i∂j

Δ3
ð2:16Þ

is nonlocal in space which, however, does not lead to any
complications since it enters the action only at the quad-
ratic order.
Integrating out the Nakanishi–Lautrup field modifies the

BRST transformation of the antighosts which now reads

sc̄i ¼ O−1
ij F

j: ð2:17Þ
In other words, it is proportional to the gauge-fixing
functions. This fact will be exploited in the next section
when discussing the BRST invariance of the scattering
amplitudes. Note that the nilpotency of the transformation
(2.17) requires sFi ¼ 0 which is satisfied only on-shell.
Indeed, this is precisely the equation of motion for ghosts, as
one can see by varying the action (2.15) with respect to c̄i.
We are now ready to quantize the theory and define its

Fock space. To this end, we focus on the quadratic part of
the Lagrangian. From the action (2.15) we have

Lð2Þ
q ¼ 1

2G

�
ḣ2ij
4

−
λḣ2

4
þ ν5

4
hijΔ3hij þ

�
ν5
2
−

1

4σ

�
∂jhjiΔ2

∂khki þ
�
ν4 þ

ν5
2
þ ξ

4σ

�
∂i∂jhijΔ∂k∂lhkl

−
�
2ν4 þ

ν5
2
þ λð1þ ξÞ

2σ

�
Δ2h∂i∂jhij þ

�
ν4 þ

ν5
4
þ λ2ð1þ ξÞ

4σ

�
hΔ3h

− Ṅi
σ

Δ2
Ṅi − ∂iṄi

σξ

ð1þ ξÞΔ3
∂jṄj −

1

2
NiΔNi þ

�
1

2
− λ

�
ð∂iNiÞ2

�

þ 1

G

�
˙̄ciċi þ

1

2σ
c̄iΔ3ci þ

ξþ ð1þ ξÞð1 − 2λÞ
2σ

c̄iΔ2
∂i∂jcj

�
; ð2:18Þ

where we have made various integrations by part and
placed all indices downwards for simplicity. We see the
advantage of the gauge (2.14): it decouples hij andNi in the
quadratic action which significantly simplifies the quanti-

zation. We next perform the helicity decomposition of the
fields entering (2.18), diagonalize the Lagrangian and solve
the respective equations of motion. This leads us to a set of
positive-frequency modes which we label with the spatial
momentum k and helicity α:

hkα; α ¼ �2;�1; 0; 00; ð2:19aÞ

Nkα; ckα; c̄kα; α ¼ �1; 0: ð2:19bÞ

6In the proof one should recall that, since s is a fermionic
operator, it obeys a graded Leibniz rule: sðABÞ ¼ ðsAÞBþ
ð−1ÞjAjAðsBÞ, where jAj ¼ 0 (jAj ¼ 1) for a bosonic (fermionic)
field A.

7The operator Oij corresponds to −σ−1ðO−1Þij in the notations
of [17]. The sign difference is due to the fact that [17] works with
the Euclidean version of the theory obtained upon the Wick
rotation, whereas here we work in the physical time.

8This procedure produces a factor ðdetOijÞ−1=2 in the path
integral measure of the theory, which is irrelevant at tree level.
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The details, including the expressions for the polarization
vectors/tensors of the modes, are given in Appendix A.
The modes with helicities �2 are present only in the

metric and correspond to transverse traceless (tensor)
gravitons. Their on-shell dispersion relation is manifestly
gauge invariant,

ω2
tt ¼ ν5k6: ð2:20Þ

The stability of the mode requires ν5 > 0. The modes with
helicities �1 and 0 are pure gauge and have dispersion
relations

ω2
1 ¼

k6

2σ
; ω2

0 ¼
ð1 − λÞð1þ ξÞ

σ
k6; ð2:21Þ

which clearly depend on the gauge parameters. We choose
the latter in such a way that both ω2

1 and ω2
0 are positive.

Finally, an additional scalar mode 00 is present in the metric.
This is physical and corresponds to a scalar graviton of HG.
Its dispersion relation is gauge invariant and reads

ω2
s ¼ νsk6; νs ¼

1 − λ

1 − 3λ
ð8ν4 þ 3ν5Þ: ð2:22Þ

The mode is stable provided νs > 0 which together with
the positivity of the kinetic term (see Appendix A) implies
λ < 1=3 or λ > 1 and 8ν4 þ 3ν5 > 0.
Upon quantization, the coefficients of the positive-

frequency modes (2.19) become the annihilation operators
and together with their respective creation operators hþkα,
Nþ

kα, c̄
þ
kα, c

þ
kα generate the Fock space. The states with only

the transverse traceless and scalar 00 gravitons have positive
norm, whereas the gauge sector with helicities �1 and 0
contains both positive and negative-norm states. As usual,
the negative norm states are eliminated by restricting to the
cohomology of the BRST operator Q—the Noether charge
associated with the BRST invariance. Importantly, we are
dealing here with the action of the BRST transformations
on the asymptotic states made of free particles, implying
that the transformations are restricted to linear order.
Accordingly, the operator Q is restricted to the quadratic
part, which we will highlight with the superscript “(2)”.
Applying the Noether theorem to the quadratic Lagrangian
(2.18) we obtain

Qð2Þ ¼ 1

2G

Z
d3x

�
ċið∂jhji − λ∂ihÞ − cið∂jḣji − λ∂iḣÞ

− 2ċi

�
σ

Δ2
Ṅi −

σξ

ð1þ ξÞΔ3
∂i∂jṄj

�

þ ciΔNi þ ð1 − 2λÞci∂i∂jNj

�
: ð2:23Þ

Note that if we want the BRST charge to be Hermitian,
we must choose the ghost field ci to be Hermitian as well.

Then the Hermiticity of the Lagrangian requires the
antighost c̄i to be anti-Hermitian. Using the commutation
relations from Appendix A, one verifies that

i½Qð2Þ;Φ�∓ ¼ ðsΦÞlin; ð2:24Þ

for any field Φ of the theory. Here the square brackets
with subscript ∓ mean commutator (anticommutator) for
bosonic (fermionic) fields, and ðsΦÞlin is the linear part of
the BRST transformations (2.11), (2.17). Clearly, Qð2Þ is
nilpotent since s is nilpotent on-shell.
Physical states jψi have zero ghost number9 and are

Qð2Þ-closed. Besides, two states are equivalent if their
difference is Qð2Þ-exact. Thus, we have

Qð2Þjψi ¼ 0;

jψ1i ∼ jψ2i ↔ jψ1i ¼ jψ2i þQð2Þjχi: ð2:25Þ

Then using the standard arguments [35,36] one can show
that each equivalence class contains a state made only of
the physical tensor and scalar gravitons. The norm of all
states in the equivalence class coincides with the norm of
this state and is positive definite.

III. GENERALIZED WARD IDENTITIES

In this section we derive the constraints imposed on the
scattering amplitudes by the BRST invariance of the S-
matrix. We then illustrate them on an example of non-
relativistic Yang-Mills theory and finally apply to the
projectable HG.

A. General considerations

We consider a gauge theory that may or may not be
relativistic, the latter case being of primary interest to us.
We assume that there exists an S-matrix which establishes a
map between the asymptotic in and out states,

hq0; outjq; ini ¼ hq0; injSjq; ini; ð3:1Þ

where q, q0 stand for the collection of quantum numbers
such as particle types, momenta and polarizations in the
initial and final states. The space of asymptotic states is
assumed to be isomorphic to the Fock space of non-
interacting theory. In what follows we will omit the labels
in when writing the S-matrix elements.
It should be noted that in making these assumptions we

disregard the infrared divergences plaguing the definition
of the S-matrix in theories with massless particles. In
Lifshitz theories with z > 1 these problems can be further

9Defined as the number of ghosts minus the number of
antighosts. It corresponds to the symmetry of the action (2.15)
under opposite scaling of the ghost and antighost fields and is
preserved by the evolution.

SCATTERING AMPLITUDES IN HIGH-ENERGY LIMIT OF … PHYS. REV. D 108, 046017 (2023)

046017-5



aggravated due to a softer scaling of particle energy with
the momentum. Moreover, the dispersion relation ω ∝ kz

with z > 1 kinematically allows a single particle to split
into two particles, rendering all particles unstable and
further complicating the definition of asymptotic states.
Thus, our derivation below in this subsection should be
considered as rather formal and strictly applicable only at
tree level where the above problems do not arise. Still, we
believe that, with a proper infrared regularization, the end
result should also hold beyond the tree level. We leave its
rigorous derivation for future study.
The BRST transformations constitute a symmetry of the

gauge-fixed action implying that the S-matrix commutes
with the BRST charge. Since the S-matrix acts on the
asymptotic free-particle states, we have to restrict the
charge to its quadratic part Qð2Þ which gives

½Qð2Þ;S� ¼ 0: ð3:2Þ

The restriction to Qð2Þ here is nontrivial. Within the
interaction picture one can think of S as the operator
describing nonlinear evolution from t ¼ −∞ to t ¼ þ∞.
The full BRST charge Q commuting with the nonlinear
Hamiltonian contains terms of higher order in the fields, so
one may wonder if the higher-order terms inQmust be also
kept in the commutator (3.2). This is not the case, as can be
shown [37] using the Lehmann-Symanzik-Zimmermann
(LSZ) representation for the S-matrix. For completeness,
we reproduce the argument in Appendix B.
The property (3.2) implies that the S-matrix element

between a physical state jψ 0i and any Qð2Þ-exact state
vanishes,

hψ 0jSQð2Þjχi ¼ 0: ð3:3Þ

In particular, for jχi we can take a state obtained by adding
an antighost to another physical state,

jχi ¼ c̄þkαjψi: ð3:4Þ

In general, the BRST transformation of the antighost is
proportional to the gauge-fixing function and can be written
as the linear combination of gauge modes with the same
momentum and helicity,

i½Qð2Þ; c̄þkα�þ ¼ i
X
a

CaΦaþ
kα ; ð3:5Þ

where Φa are various gauge fields in the theory and Ca are
c-number coefficients that can depend on the momentum
and helicity. Substituting this into Eq. (3.3) and using
Qð2Þjψi ¼ 0 we obtain

X
a

Cahψ 0jSΦaþ
kα jψi ¼ 0: ð3:6aÞ

Similar arguments apply to the final state and give

X
a

C�ahψ 0jΦa
kαSjψi ¼ 0: ð3:6bÞ

These are linear constraints on the amplitudes involving the
gauge modes. As we are going to see, in relativistic Yang-
Mills theory they lead to the usual Ward identity implying
that an amplitude vanishes when the polarization vector of a
gluon is replaced by its four-momentum kμ. In general, they
are more complicated and do not reduce to a simple
replacement of polarization vectors. Note, in particular,
that in nonrelativistic theories, the dispersion relations of
gauge modes entering (3.6) need not be the same as those of
the physical particles.
We can continue the process and add another combina-

tion of gauge modes (3.5) to a state already containing one
such combination. The S-matrix element must again be
zero due to the identity (3.3) and the nilpotency of Qð2Þ.
This gives us

X
a;b

CaCbhψ 0jSΦaþ
k1α

Φbþ
k2β

jψi ¼ 0; ð3:7Þ

and so on.
Another condition that the amplitudes between physical

states must satisfy is independence of the choice of gauge.10

In concrete calculations, this is easily verified bymaking sure
that the gauge parameters drop out from the answer. Since
this condition is the same in relativistic and nonrelativistic
theories, we are not going to discuss it any further.

B. Examples: Yang-Mills

1. Relativistic

Let us first see how Eqs. (3.6) work in the standard case
of the relativistic Yang-Mills theory. For simplicity, we
work in the Feynman gauge, so the gauge-fixed Lagrangian
reads11

LYM
q ¼ −

1

4
Fa
μνFa

μν −
1

2
ð∂μAa

μÞ2 þ c̄a∂μDμca; ð3:8Þ

where

Fa
μν ¼ ∂μAa

ν − ∂νAa
μ þ gfabcAb

μAc
ν;

Dμca ¼ ∂μca þ gfabcAb
μcc; ð3:9Þ

g is the coupling constant, and fabc are the structure
constants of the gauge group. The quadratic kinetic term

10This condition can also be derived from the LSZ represen-
tation of the S-matrix, see Appendix B.

11The repeated Greek indices are summed with the Minkowski
metric ημν ¼ diagð−1;þ1;þ1;þ1Þ.
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for the gauge fields diagonalizes and they are straightfor-
wardly quantized with the result

Aa
μðxÞ ¼

Z
d3k

ð2πÞ32ωk
Aa
μke

−iωktþikx þ H:c; ð3:10aÞ

½Aa
μk; A

bþ
νk0 � ¼ 2ωkημνδ

abð2πÞ3δðk − k0Þ; ð3:10bÞ

where ωk ¼ k. The BRST transformation of the antighost
coincides, up to a sign, with the gauge-fixing function,

i½Qð2Þ; c̄a�þ ¼ sc̄a ¼ −∂μAa
μ; ð3:11Þ

where we read off

i½Qð2Þ; c̄aþk �þ ¼ −ikμAaþ
μk : ð3:12Þ

Substituting this expression into Eqs. (3.6) we find

kμhψ 0jSAaþ
μk jψi ¼ kμhψ 0jAa

μkSjψi ¼ 0: ð3:13Þ

On the other hand, the scattering amplitudes involving a
physical gluon with helicity �1 in the initial or final state
are given by

eð�1Þ
μ hψ 0jSAaþ

μk jψi; eð�1Þ�
μ hψ 0jAa

μkSjψi; ð3:14Þ

where the transverse polarization vectors are defined as in
(A8), with their temporal components set to zero. Thus, we
recover the standard Ward identity stating that the ampli-
tudes in relativistic Yang-Mills vanish whenever a gluon
polarization vector is replaced by kμ.

2. Yang-Mills with Lifshitz scaling

As a new application of the conditions (3.6) we consider
a nonrelativistic Yang-Mills theory with the Lagrangian

LYM ¼ 1

2
Fa
i0F

a
i0 −

κ1
4
DiFa

jkDiFa
jk −

κ2
2
DiFa

ikDjFa
jk

− g
κ3
3
fabcFa

ijF
b
jkF

c
ki; ð3:15Þ

where we use the notations (3.9) and κ1;2;3 are new constant
parameters. In what follows we will denote the zeroth
component of the gauge field by the calligraphic letter,

Aa ≡ Aa
0; ð3:16Þ

to avoid confusion with the helicity 0 polarization. The
action built from this Lagrangian is invariant under Lifshitz
scaling (1.1) with z ¼ 2 in (4þ 1)-dimensional spacetime
with the following assignment of the scaling dimensions:

dimAa ¼ 2; dimAa
i ¼ 1: ð3:17Þ

When supplemented with a relevant operator Fa
ijF

a
ij, the

model is renormalizable. A similar model with Uð1Þ gauge
group and fermionic matter was studied in [38].
We take the gauge fixing function and the operator O−1

in the gauge fixing term in the form consistent with the
Lifshitz scaling,

Fa ¼ Ȧa þ ξΔ∂iAa
i ; O−1

ab ¼ δab
ξΔ

: ð3:18Þ

Here ξ is an arbitrary gauge fixing parameter. The tree-level
quantum Lagrangian then reads

LYM
q ¼ LYM þ 1

2ξ
ðȦa þ ξΔ∂iAa

i Þ
1

Δ
ðȦa þ ξΔ∂jAa

j Þ

þ ˙̄caðċa þ fabcAbccÞ þ ξ∂ic̄aΔð∂ica þ fabcAb
i c

cÞ:
ð3:19Þ

The choice of the gauge ensures cancellation of the quadratic
mixing terms between Aa and Aa

i . Diagonalization of the
remaining quadraticLagrangian is straightforward andyields
the general linear solution:

Aaðx; tÞ ¼
Z

d4k
ð2πÞ4

ffiffiffi
ξ

p
k

2ωk0
Aa

ke
−iωk0tþikx þ H:c:; ð3:20aÞ

Aa
i ðx; tÞ ¼

Z
d4k
ð2πÞ4

Xþ1

α¼−1

eαi ðkÞ
2ωkα

Aa
kαe

−iωkαtþikx þ H:c:;

ð3:20bÞ

caðx; tÞ ¼
Z

d4k
ð2πÞ4

1

2ωk0
cake

−iωk0tþikx þ H:c:; ð3:20cÞ

c̄aðx; tÞ ¼
Z

d4k
ð2πÞ4

1

2ωk0
c̄ake

−iωk0tþikx − H:c:; ð3:20dÞ

where the polarization vectors eαi ðkÞ are defined in (A8).
The dispersion relations are different for the transverse and
longitudinal modes, as expected in theories without Lorentz
invariance:

ω2
k1 ¼ ðκ1 þ κ2Þk4; ω2

k0 ¼ ξk4: ð3:21Þ
Canonically quantizing the fieldswe obtain the commutation
relations,

½Aa
k;A

bþ
k0 � ¼ −2ωk0δ

abð2πÞ4δðk − k0Þ; ð3:22aÞ

½Aa
kα; A

bþ
k0β� ¼ 2ωk1δ

abδαβð2πÞ4δðk − k0Þ; ð3:22bÞ

½cak; c̄bþk0 �þ ¼ ½c̄ak; cbþk0 �þ
¼ −2ωk0δ

abð2πÞ4δðk − k0Þ; ð3:22cÞ

with all other (anti)commutators vanishing.
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According to the general rules, the BRST transformation
of the antighost is

i½Qð2Þ; c̄a�þ ¼ sc̄a ¼ 1

ξΔ
ðȦa þ ξΔ∂iAa

i Þ: ð3:23Þ

Comparing the Fourier decomposition of the left- and right-
hand sides we get

i½Qð2Þ; c̄aþk �þ ¼ ikðAaþ
k þ Aaþ

k0 Þ: ð3:24Þ

Incidentally, this has the same form as in the relativistic
case, cf. Eq. (3.12). Hence, the constraint (3.6) becomes

hψ 0jSAaþ
k0 jψi þ hψ 0jSAaþ

k jψi ¼ 0; ð3:25Þ

and similarly for the outgoing mode. It can be represented
graphically as shown in Fig. 1, where we explicitly indicate
the energy and polarization factors carried by the external
legs. Note that the factor for theA-leg is negative due to the
minus sign in the commutator (3.22a). We now observe an
important difference from the relativistic case. The verifi-
cation of the gauge invariance does not reduce to a mere
substitution of the longitudinal polarization in the external
leg of a diagram for transverse gluons—the first diagram in
the figure. First, since the dispersion relations of the
longitudinal modes is different from that of the transverse
modes, the diagram must be reevaluated with a different
incoming energy. Second, the interaction vertices for the
spatial and temporal parts of the gauge field are essentially
different, so the green blob in the second diagram is
different from the red blob and must be evaluated sepa-
rately. We have verified by an explicit calculation that the

identity shown in Fig. 1 holds for tree-level 2 → 2
amplitudes in the theory (3.15).

C. Application to Hořava gravity

We return to the projectable HG. All preliminary work
has been already done in Sec. II B. We can directly use the
BRST transformation of the antighost (2.17) which we
write explicitly:

i½Qð2Þ; c̄i�þ ¼ −
σ

Δ2
Ṅi þ

σξ

ð1þ ξÞΔ3
∂i∂jṄj

þ 1

2
ð∂jhij − λ∂ihÞ: ð3:26Þ

Expanding the left- and right-hand sides into Fourier modes
according to Eqs. (A6) we obtain simple relations

i½Qð2Þ; c̄þkα�þ ¼ ikffiffiffi
2

p ðNþ
kα þ hþkαÞ; α ¼ �1; ð3:27aÞ

i½Qð2Þ; c̄þkα�þ ¼ ik
ffiffiffiffiffiffiffiffiffiffiffiffi
j1−λj

p
ðNþ

kαþhþkαÞ; α¼ 0: ð3:27bÞ

Substitution into Eqs. (3.6) yields the identities

hψ 0jShþkαjψi þ hψ 0jSNþ
kαjψi ¼ 0; α ¼ 0;�1; ð3:28Þ

which are depicted graphically in Fig. 2. The polarization
tensors corresponding to the external legs of the diagrams
in the figure are given in Eqs. (A9), (A10). Note that the
shift polarization is multiplied by (−1) due to the dif-
ferent signs in the commutators of the h and N creation-
annihilation operators, see Eqs. (A7a), (A7b).
We use the above identities to cross-check the validity of

our calculation of 2 → 2 scattering amplitudes in the next
section.

IV. CALCULATING THE AMPLITUDES

A. Algorithm and overview of the result

We have automated the computation of scattering
amplitudes in HG using the xAct package [23–26] for
Mathematica [27]. Our code [28] starts by extracting
propagators and vertices from the action. For the
propagators, we use the gauge-fixed Lagrangian (2.18).

FIG. 1. Generalized Ward identity satisfied by the amplitudes in
Yang-Mills theory with Lifshitz scaling. Wavy lines correspond
to spatial gauge fields Aa

i , whereas the straight double line
corresponds to the temporal component Aa.

FIG. 2. Generalized Ward identities for the amplitudes in projectable Hořava gravity. Wavy lines and the straight double line represent
the spatial metric hij and the shift Ni, respectively.
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The gauge-fixing term is quadratic and thus does not affect
the vertices, which we obtain directly from the original
action (2.7) by taking variational derivatives with respect to
the metric perturbation hij and the shift Ni. Since we
restrict to the tree level, we do not need the propagators or
vertices involving ghosts. Finally, the external lines are
determined from the mode decomposition of the fields (A6)
and their commutators (A7). More details on the Feynman
rules used in the calculation are given in Appendix C.
We then follow the standard procedure to construct all

diagrams contributing to a given scattering process. For
example, the scattering amplitudes for two gravitons in the
initial and final states is given by the sum of the diagrams
shown in Fig. 3. We treat all momenta and energies as
flowing into the diagram. The polarization tensors for
incoming particles with negative energies are defined
according to

εαijð−k;−ωÞ ¼ εαijðk;ωÞ ¼ ½ε−αij ðk;ωÞ��: ð4:1Þ

This is consistent with the crossing rule that an incoming
particle is equivalent to an outgoing particle with opposite
momentum and helicity. The amplitudeM is defined in the
standard manner, as the S-matrix element with unit
operator subtracted and the energy-momentum conserving
δ-function stripped off,

S¼ 1þ iMðkI;ωI;αIÞð2πÞ4δ
�X

I

ωI

�
δ

�X
I

kI

�
: ð4:2Þ

The scattering of physical states corresponds to choosing
the helicities αI in Fig. 3 equal to �2 or 00. We have
checked that such amplitudes, evaluated on-shell, are

independent of the gauge parameters σ, ξ. In addition,
we have evaluated the amplitudes with one gauge mode
having α ¼ �1 or 0, as well as the amplitudes with the shift
in the external line, and verified that on-shell they satisfy
the generalized Ward identity shown in Fig. 2. Finally, we
validated the code on the example of general relativity and
reproduced the standard results [39]. The success of these
tests makes us confident that the code works correctly.
The resulting expressions for the amplitudes are very

long and are available in the form of a Mathematica
file [28]. Similar to general relativity [39], they can be
cast into a sum of terms representing various contractions
of the polarization tensors with the external momenta,
multiplied by scalar functions of momenta and energies.
However, the variety of structures in our case is richer due
to the presence of higher powers of momenta (higher spatial
derivatives) in the vertices. In particular, we obtain terms
containing six and eight momenta contracted with the
polarizations, such as e.g.,

ðk3ε1ε2k4Þðk1ε3k1Þðk2ε4k2Þ;
ðk2ε1k2Þðk1ε2k1Þðk4ε3k4Þðk3ε4k3Þ; ð4:3Þ

where we have used condensed notations

ðk1ε3k1Þ ¼ ki1ε3ijk
j
1;

ðk3ε1ε2k4Þ ¼ ki3ε1ijε2jkk
k
4; etc: ð4:4Þ

We have not been able to reduce the structures (4.3) to those
with fewer momenta by using the momentum conservation
or other identities.

FIG. 3. Feynman diagrams for 2 → 2 scattering of gravitons at tree level. Wavy lines represent an external leg or propagator of the
metric hij, and the double line is the propagator of the shift Ni. All momenta and energies are incoming; ðt; uÞ stands for the diagrams
with permutations ðk2;ω2; ε2Þ ↔ ðk3;ω3; ε3Þ and ðk2;ω2; ε2Þ ↔ ðk4;ω4; ε4Þ.
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The coefficient functions multiplying the aforemen-
tioned structures depend on the scalar invariants of the
momenta—their absolute values kI , I ¼ 1, 2, 3, 4, and
scalar products. We express the latter through the
“Mandelstam-like” variables

S¼ðk1þk2Þ2; T¼ðk1þk3Þ2; U¼ðk1þk4Þ2: ð4:5Þ

Note that as a consequence of momentum conservation
these variables obey the identity

Sþ T þU ¼ k21 þ k22 þ k23 þ k24: ð4:6Þ

The energy-conservation is implemented by using a set of
three independent combinations,

ΩS ¼ω1þω2; ΩU ¼ω1þω3; ΩT ¼ω1þω4: ð4:7Þ

In this way we arrive at the coefficient functions depending
on ten variables k1, k2, k3, k4, S, T, U, ΩS, ΩT , ΩU related
by the constraint (4.6). We keep this form and simplify the
expressions as much as possible, without using the
dispersion relations until the very last step. The reason
for this strategy is twofold. First, it allows us to easily
switch between physical and gauge modes in order to verify
the cancellation (3.28). Second, the dispersion relations
introduce nonanalyticity [square roots of the coefficients in
Eqs. (2.20)–(2.22)] which complicate the manipulation
of the formulas. The price to pay is that the off-shell
amplitudes preserve the dependence on the gauge param-
eters σ, ξ. This dependence disappears once we put the
amplitudes on-shell and assign physical polarizations to the
particles.

B. Head-on collisions

The expressions for the amplitudes greatly simplify in
the special case of head-on collisions when the momenta of
two colliding particles are opposite in direction and equal
in magnitude.12 In more detail, we choose the particle
momenta and energies to be

k1 ¼

0
B@

0

0

k

1
CA; k2 ¼

0
B@

0

0

−k

1
CA;

k3 ¼

0
B@

−k0 sin θ
0

−k0 cos θ

1
CA; k4 ¼

0
B@

k0 sin θ

0

k0 cos θ

1
CA; ð4:8aÞ

ω1 ¼
ffiffiffiffiffiffiffi
νð1Þ

p
k3; ω2 ¼

ffiffiffiffiffiffiffi
νð2Þ

p
k3;

ω3 ¼ −
ffiffiffiffiffiffiffi
νð3Þ

p
k03; ω4 ¼ −

ffiffiffiffiffiffiffi
νð4Þ

p
k03; ð4:8bÞ

where νðIÞ ¼ ν5 or νs, depending on the type of the physical
graviton—tensor or scalar. The final momentum k0 is
determined by the energy conservation,

ð ffiffiffiffiffiffiffi
νð1Þ

p þ ffiffiffiffiffiffiffi
νð2Þ

p Þk3 ¼ ð ffiffiffiffiffiffiffi
νð3Þ

p þ ffiffiffiffiffiffiffi
νð4Þ

p Þk03 ≡ E: ð4:9Þ

Note that the physical momenta of the final particles 3 and
4 are−k3 and−k4 and thus θ is the scattering angle defined
in the usual way as the angle between the directions of
incoming particle 1 and outgoing particle 3.
The amplitude depends on the polarizations of the

particles αI ¼ �2 or 00 which we will write as þ;−; s
for short.13 We find it more convenient for the discussion of
the physical properties of the amplitudes in this section to
label them with the physical polarizations, i.e. upon
performing the crossing for final particles. In these nota-
tions, the amplitude Mþþ;þþ stands for elastic scattering
of two right-handed gravitons, the amplitude Mþþ;þ−
describes a process where one right-handed graviton flips
helicity, etc.
We find that the helicity amplitudes have the form,

Mα1α2;α3α4 ¼ GE2fα1α2;α3α4ðcos θ;us; va; λÞ; ð4:10Þ

where

us ¼
ffiffiffiffiffi
νs
ν5

r
; va ¼

νa
ν5

; a ¼ 1; 2; 3; ð4:11Þ

are the essential couplings of the theory introduced in [6].
They are singled out by the requirement that their RG
running is independent of the gauge choice (this is not true
for νa individually). Note that the gravitational coupling G
multiplying the overall amplitude is not essential, implying
that its RG improvement depends on the gauge. This is not
a problem since the amplitude is not directly observable.
We will say more about this shortly.
The functions fα1α2;α3α4 describing the angular depend-

ence of the amplitudes are listed in Appendix D. They are
rational functions of cos θ. Many of them have singularities
in the forward scattering limit, as is typical in theories with
massless particles. The strongest singularity is featured by
elastic amplitudes with α1 ¼ α3, α2 ¼ α4 which behave as
∼θ−6 at small θ. On the other hand, the helicity violating
amplitude fþþ;−− is regular at all angles and is much

12In relativistic theories any collision can be brought to the
head-on kinematics by a boost to the center-of-mass frame. This
is not possible in HG.

13A technical remark: The overall phases of the polarization
vectors eð�1Þ

i defined in (A8) and used to construct the graviton
polarization tensors are ambiguous for particle 2 moving in the
direction opposite the 3d axis. We set the phases to 0 which
renders all amplitudes real.
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simpler than the elastic amplitudes, though, in contrast to
general relativity, it does not vanish completely.
Notably, when the dispersion relations of the transverse

traceless and scalar gravitons do not coincide (us ≠ 1), the
amplitudes involving both types of particles have poles at
nonzero angles. They arise in t- and u- channels and are a
consequence of the fact that in HG a single graviton is
kinematically allowed to decay into a pair of gravitons with
lower energies. Thus, whenever, say, ω3 ≠ ω1, the propa-
gator in the t-channel diagram can go on-shell. For the
head-on collisions this is possible only if particles partici-
pating in the process are of different types. For more
general kinematics, we expect these resonant poles to occur
also in 2 → 2 amplitudes for identical particles and in all
three s, t, u channels.
One more peculiarity of amplitudes involving both

tensors and scalars can be illustrated on the example of
fþþ;þs. When us ≠ 1, this amplitude is finite in the forward
and backward limits and in fact vanishes in the way
consistent with the conservation of angular momentum.
The incoming state has zero projection of the angular
momentum on the 3d axis. On the other hand, for the final
state the projection of the graviton spin becomes þ2 or −2
for θ → 0 or π. This means that two units of angular
momentum must be carried away by the orbital wave
function implying a d-wave scattering. This leads to
suppression θ2 and ðπ − θÞ2 in the two limits, respectively,
which we indeed obtain from the direct computation,
cf. Eq. (D8). By contrast, in the case us ¼ 1 we recover
the collinear singularities, which are only partially com-
pensated by the d-wave factors, see Eq. (D9). A similar
pattern emerges for other amplitudes. More details on their
angular dependence can be found in Appendix D.
The quadratic growth of the amplitudes with energy is

the same as in general relativity where it is known to
contradict the tree-level unitarity. Nevertheless, it is con-
sistent with unitarity in theories with the Lifshitz scaling
[40]. It is instructive to derive the cross section correspond-
ing to the amplitude (4.10). We define the cross section σ in
the standard way, through the number of collisions happen-
ing in a unit of time and volume in the intersection of two
beams of particles with number densities n1, n2:

dNcoll

dtdV
¼ σn1n2vrel; ð4:12Þ

where

vrel ¼ jv1 − v2j ¼
				 dω1

dk1

−
dω2

dk2

				 ð4:13Þ

is the relative group velocity of colliding particles. Following
the usual steps, we obtain the standard expression

σ ¼ 1

4ω1ω2vrel

Z
d3k3

ð2πÞ32ω3

d3k4
ð2πÞ32ω4

jMj2ð2πÞ4

× δ

X

ωI

�
δ

X

kI

�
: ð4:14Þ

Let us for simplicity focus on the case when all par-
ticles participating in the scattering are transverse trace-
less gravitons—the results for other cases are similar.
Performing integration over the phase space and expressing
the energy and relative velocity through the absolute value
of graviton’s momentum, E ¼ 2

ffiffiffiffiffi
ν5

p
k3, vrel ¼ 6

ffiffiffiffiffi
ν5

p
k2, we

arrive at the differential cross section

dσα1α2;α3α4
sin θdθ

¼ G2

72πν5k2
jfα1α2;α3α4 j2: ð4:15Þ

We observe that the cross section at fixed angle decreases as
the square of the inverse momentum (de Broglie wave-
length squared) which is a typical behavior in weakly
coupled local theories compatible with unitarity. On the
other hand, the total cross section diverges at small angles
signaling the necessity of an infrared regulator.
The cross section (4.15) is proportional to the square of

the essential coupling [6]

G ¼ Gffiffiffiffiffi
ν5

p : ð4:16Þ

Also, as already noted, fα1α2;α3α4 depends only on essential
couplings. This is reassuring. In contrast to the amplitude,
the cross section is a physical observable and its RG
improvement must be gauge invariant. We see that this is
indeed the case.

V. THE LIMIT λ → ∞

It was conjectured in [21] that projectable Hořava gravity
can have a regular limit at λ → ∞. This is supported by the
regularity of the dispersion relation for physical transverse
traceless and scalar gravitons, Eqs. (2.20), (2.22), and by
the regularity of the one-loop β-functions for the essential
couplings [20]. This limit is interesting since it corresponds
to a likely behavior of the theory in the deep UV [20,21].
In this section we discuss evidence for its regularity from
the scattering amplitudes’ perspective. We then prove the
above conjecture by recasting the λ → ∞ theory in a
manifestly regular form.

A. Cancellation of enhanced terms in σ, ξ gauge

A scrutiny of the expressions in Appendix D for the
head-on scattering amplitudes between physical states
shows that they are regular in the limit (1.2). Using our
symbolic code, we have checked that this property holds
also for arbitrary kinematics. This is nontrivial. Indeed,
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interaction vertices contain contributions proportional to λ.
Thus, the amplitudes given by the diagrams in Fig. 3 could,
a priori, contain terms as large as Oðλ2Þ. It is instructive to
study how these large contributions cancel.
We start by observing that the polarizations of physical

states are traceless in the limit (1.2). This is, of course,
always true for the helicity �2 gravitons, whereas for the
scalar graviton we obtain from Eqs. (A10)

ε0
0
ijðkÞ ¼

ffiffiffi
2

3

r
ðδij − 3k̂ik̂jÞ þOðλ−1Þ: ð5:1Þ

This removesmany terms in the contraction of the interaction
verticeswith the polarization tensors. Let us first consider the
building blocks involving a cubic vertex and two graviton
external legs. Using Eqs. (c6a), (c6b) we get

ð5:2aÞ

ð5:2bÞ

where ðε1ε2Þ≡ ε1ijε2ij and we have taken into account the symmetry factors 3! and 2! for the two diagrams, respectively, as
well as a factor

ffiffiffiffi
G

p
for each external leg.

Next, the contraction of the graviton propagator (C3) with δmn yields

ð5:3Þ

In deriving this expression we have used the limiting form of the longitudinal mode pole factor,

P0 ¼
i

ω2 − ð1−λÞð1þξÞ
σ k6

¼ i
σ

λð1þ ξÞk6 þOðλ−2Þ: ð5:4Þ

Note that the first term in (5.3) is again traceless and vanishes when contracted with δpq. Combining this with Eq. (5.2a) we
conclude that for the physical states the diagram

is Oðλ0Þ, i.e. it is finite in the limit (1.2).
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Consider now the diagram with the exchange of the shift. Here we have from Eq. (C3a) for the propagator:

ð5:5Þ

where we have again used the limiting form (5.4). Combining with Eq. (5.2b), we find a OðλÞ contribution,

ð5:6Þ

Note the minus sign in this expression which comes from the fact that the momentum in the propagator is inflowing into one
vertex and outflowing from the other. Similar contributions with exchange of particles ð2 ↔ 3Þ and ð2 ↔ 4Þ come from the
t and u channels.
These OðλÞ contributions are precisely canceled by the diagram with the 4-point vertex. Indeed, contraction with the

traceless polarizations leaves only terms in the third line in Eq. (c6c) which upon symmetrization read

ð5:7Þ

Thus, we have confirmed explicitly the cancellation of
dangerous contributions to the amplitudes in the limit
λ → ∞. It relies on a rather delicate interplay between
the tracelessness of the physical polarizations and the
structure of the vertices and propagators.

B. Regular limit with an auxiliary field

Encouraged by the previous results, we look for a way to
cast the action of HG in the form which would be
manifestly regular at λ → ∞. This is indeed possible to
do by integrating in an auxiliary nondynamical scalar field
χ and rewriting the λ-term in the Lagrangian as

−
λ

2G
ffiffiffi
γ

p
K2 →

ffiffiffi
γ

p
G

�
−χK þ χ2

2λ

�
: ð5:8Þ

Clearly, at finite λ the two forms of the theory are
equivalent, since we can always integrate out χ and restore
the original action. On the other hand, in the new form we
can easily take the limit (1.2) and get for the action of HG,

S⟶
λ→∞

S0 ¼ 1

2G

Z
d3xdt

ffiffiffi
γ

p ðKijKij − 2χK − VÞ: ð5:9Þ

We see that the field χ takes the role of a Lagrange
multiplier constraining the extrinsic curvature to be trace-
less, K ¼ 0. Note that the new action is still invariant under
Lifshitz scaling (1.1) if we assign dim χ ¼ 3.
Quantization of theories with Lagrange multipliers is in

general subtle. We need to make sure that the propagators
of all the fields, including χ, are well defined and the theory
can be perturbatively quantized. We also want to preserve
renormalizability. For this, it will suffice to have a gauge
choice which renders all propagators regular [17,41]. In
real-time signature adopted here the regularity condition is
formulated as follows: A propagator hΦ1Φ2i of two fields
Φ1, Φ2 with scaling dimensions r1, r2 is regular if it
decomposes into a sum of terms of the form

Pðk;ωÞ
Dðk;ωÞ ; ð5:10aÞ
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where D is a product of monomials,

D ¼
YM
m¼1

ðAmω
2 − Bmk6 þ iϵÞ ð5:10bÞ

with strictly positive coefficients Am, Bm, and Pðk;ωÞ is
a polynomial of scaling degree less than or equal to
r1 þ r2 þ 6ðM − 1Þ.
We cannot use the functions Fi from Eq. (2.14) for gauge

fixing since they contain terms proportional to λ that
preclude setting λ ¼ ∞. Then it appears impossible to
design a gauge that would eliminate the quadratic mixing
between the scalar parts of the metric hij, the shift Ni and χ.
Thus, we just pick up a gauge compatible with the scaling
and disentangling at least the helicity �1 parts:

F̃i ¼ Ṅi þ 1

2
Oij

∂khkj ; ð5:11Þ

with the same operator Oij, as in Eq. (2.14). The propa-
gators in this gauge are derived in Appendix E. We obtain
many off-diagonal propagators between hij, Ni and χ
which make practical calculations rather cumbersome.
Most importantly, however, all these propagators are
regular in the above sense guaranteeing the perturbative
renormalizability of the theory with the χ field. In particu-
lar, this implies that no terms14 with gradients or time
derivatives of the field χ are generated by quantum
corrections and χ remains nondynamical.
To check the equivalence between the λ → ∞ limit of the

original formulation of HG and the action (5.9), we have
computed the graviton scattering amplitudes directly with
the Feynman rules following from (5.9). To avoid, pro-
liferation of diagrams, we fix one of the gauge parame-
ters,15 ξ ¼ −1. This eliminates the off-diagonal propagators

involving the shift Ni, as well as the overlap of the shift
with the scalar graviton state (see Appendix E). On the
other hand, the mixing between the metric and χ still
remains, implying that we need to include diagrams with
internal, and for scalar gravitons, external, χ-lines. This
gives us the set of new diagrams shown in Fig. 4 which
must be added to those of Fig. 3, with all possible
permutations of the external states. Note that the h3, h4

and h2N vertices for this new calculation can be obtained
from the expressions used in Sec. IV by simply dropping
the parts containing λ. At the same time we have new cubic
and quartic vertices with a χ-line giving rise to diagrams
in Fig. 4.
We have evaluated the amplitudes for the physical

transverse-traceless and scalar gravitons in the χ-theory
using our code and found that they exactly coincide with
the λ → ∞ limit of the amplitudes computed with the
original HG action. This confirms that the action (5.9)
correctly captures the dynamics of HG at λ → ∞.
All in all, we conclude that the limit (1.2) of projectable

HG is regular and is described by the action (5.9).

VI. CONCLUSIONS

In this paper we computed tree-level scattering ampli-
tudes in projectable HG in (3þ 1) dimensions. For this
purpose, we developed a symbolic computer code which
can be found at [28]. We focused on the high-energy
behavior of the theory keeping only marginal interactions
with respect to Lifshitz scaling with z ¼ 3.
We started by deriving the Ward identities for the

amplitudes which we used to cross-check our computation.
Our approach is based on the BRST quantization and is not
restricted to HG. We illustrated it on the case of a Yang–
Mills theory with Lifshitz scaling. To the best of our
knowledge, this is the first derivation of Ward identities in
nonrelativistic gauge theories.
We next discussed the general structure of the HG

scattering amplitudes and presented explicit results for
the case of head-on collisions, i.e. collisions with vanishing
total momentum. The amplitudes have peculiar dependence
on the scattering angle. Their dependence on the collision

FIG. 4. Additional diagrams for the graviton scattering in the theory (5.9) describing the λ ¼ ∞ limit of projectable Hořava gravity.
The diagrams in the first row contribute to the amplitudes for the helicity �2 states, and the diagrams in the second row must be further
added for scattering of scalar gravitons.

14Such terms would be irrelevant by Lifshitz power counting.
15This special choice spoils the regularity of the propagators in

the above sense: The pole term corresponding to the helicity-0
gauge mode becomes P̃0 ¼ iðω2 þ iϵÞ−1, i.e. it does not depend
on the spatial momentum. This, however, is not a problem for the
tree-level calculation where no possible divergences associated
with this behavior can arise.
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energy is compatible with tree-level unitarity. In particular,
the differential cross section decreases as the square of the
colliding particles’ momentum, as it should be for a theory
weakly coupled in UV.
We found that the amplitudes remain finite in the limit

when the coupling constant λ in the kinetic term of the
Lagrangian is taken to infinity.We have further reformulated
the action of the theory in the form which is manifestly
regular at λ → ∞ and checked that it reproduces the same
scattering amplitudes. This establishes the λ → ∞ limit as a
viable location for asymptotically free UV fixed points [20].
Our research opens several directions. The tree ampli-

tudes that we computed have analytic properties quite
similar to those in relativistic theories: They have poles
corresponding to physical particles in the internal propa-
gators, feature soft and collinear singularities, etc. It would
be interesting to understand if these properties can be
exploited in adapting to HG the powerful on-shell methods
developed for relativistic gauge theories and gravity [42].
An obvious missing ingredient is the spinor-helicity for-
malism which relies on Lorentz invariance. Whether an
adequate substitute for it exists in nonrelativistic theories is
an open question.
Another possible extension of our is the study of

amplitudes beyond tree level. On top of the usual issues
associated with infrared divergences, which are also present
in relativistic context, such study will have to face several
new challenges. To see them consider a single tensor or
scalar graviton with the dispersion relation (2.20) or (2.22).
Energy and momentum conservation allow it to decay into
two or more gravitons of lower energy. This implies
absence of any stable asymptotic states, thus undermining
the standard assumptions used in the definition of the
S-matrix. Hopefully, this problem can be overcome by
adapting the methods used in relativistic theories to
describe scattering of metastable particles. Another pecu-
liarity of HG gravity and nonrelativistic theories in general
is that the parameters entering into particles’ dispersion
relations receive loop corrections and exhibit RG running.
The definition of the asymptotic states must take these
corrections into account order by order in the loop
expansion, which further challenges the standard construc-
tion of the S-matrix.
Having established good behavior of the projectable HG

in UV, our work motivates revisiting its low-energy proper-
ties. It is known [2,29] that Minkowski background in this
theory suffers from a tachyon-like instability associated
with the scalar graviton mode. It is important to understand
the fate of this instability. Can it lead to a new phase of the
theory which could be phenomenologically viable? We
plan to address this question in the future.
Finally, it will be interesting to apply the amplitude-based

approach developed in this work to the nonprojectable
version of HG where it can provide valuable information
about the UV properties of the theory.
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APPENDIX A: HELICITY DECOMPOSITION

In this appendix we diagonalize the quadratic
Lagrangian (2.18) and summarize the relations obeyed
by particle creation-annihilation operators. We start by
splitting the fields into tensor, vector and scalar parts,

hij ¼ ζij þ ∂ivj þ ∂jvi þ
�
δij −

∂i∂j

Δ

�
ψ þ ∂i∂j

Δ
E; ðA1aÞ

Ni ¼ uiþ∂iB; ci ¼wiþ∂iC; c̄i ¼ w̄iþ∂iC̄; ðA1bÞ

where the components satisfy

∂iζij ¼ ζii ¼ ∂ivi ¼ ∂iui ¼ ∂iwi ¼ ∂iw̄i ¼ 0: ðA2Þ

The Lagrangian separates into contributions of different
sectors:

Lð2tÞ
q ¼ 1

2G

�
ζ̇2ij
4
þ ν5

4
ζijΔ3ζij

�
; ðA3aÞ

Lð2vÞ
q ¼ 1

2G

�
−
1

2
v̇iΔv̇i −

1

4σ
viΔ4vi − u̇i

σ

Δ2
u̇i −

1

2
uiΔui

þ 2 ˙̄wiẇi þ
1

σ
w̄iΔ3wi

�
; ðA3bÞ

Lð2sÞ
q ¼ 1

2G

�
1 − 2λ

2
ψ̇2 − λĖ ψ̇ þ 1 − λ

4
Ė2

þ
�
8ν4 þ 3ν5

2
þ λ2ð1þ ξÞ

σ

�
ψΔ3ψ

−
λð1 − λÞð1þ ξÞ

σ
EΔ3ψ þ ð1 − λÞ2ð1þ ξÞ

4σ
EΔ3E

þ Ḃ
σ

ð1þ ξÞΔ Ḃþ ð1 − λÞBΔ2B − 2 ˙̄CΔĊ

−
2ð1 − λÞð1þ ξÞ

σ
C̄Δ4C

�
: ðA3cÞ

The scalar part still contains mixing between the ψ and E
components, which is removed by the change of variables,
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E ↦ Ẽ ¼ E −
2λ

1 − λ
ψ : ðA4Þ

The final Lagrangian in this sector reads

Lð2ψẼÞ
q ¼ 1

2G

�
1 − 3λ

2ð1 − λÞ ψ̇
2 þ 8ν4 þ 3ν5

2
ψΔ3ψ þ 1 − λ

4
˙̃E2

þ ð1 − λÞ2ð1þ ξÞ
4σ

ẼΔ3Ẽ

�
: ðA5Þ

Note that the positivity of the kinetic term for the
gauge invariant scalar ψ requires λ to be outside the range
1=3 ≤ λ ≤ 1. From Eqs. (A3), (A5) we read off the
dispersion relations (2.20), (2.21), (2.22) quoted in the
main text.
Collecting the helicity modes together, we obtain the

expressions for the local fields which we write in the form

hijðx; tÞ ¼
ffiffiffiffi
G

p Z
d3k
ð2πÞ3

X
α

εαijðkÞ
2ωkα

hkαe−iωkαtþikx þ H:c:;

ðA6aÞ

Niðx; tÞ ¼
ffiffiffiffi
G

p Z
d3k
ð2πÞ3

X
α

ϵαi ðkÞ
2ωkα

Nkαe−iωkαtþikx þ H:c:;

ðA6bÞ

ciðx; tÞ ¼
ffiffiffiffi
G

p Z
d3k
ð2πÞ3

X
α

eαi ðkÞ
2ωkα

ckαe−iωkαtþikx þ H:c:;

ðA6cÞ

c̄iðx; tÞ ¼
ffiffiffiffi
G

p Z
d3k
ð2πÞ3

X
α

eαi ðkÞ
2ωkα

c̄kαe−iωkαtþikx − H:c:;

ðA6dÞ

where the sum runs over the helicities α contained in the
corresponding field [see Eq. (2.19)]. Note that the ghosts ci
are taken to be Hermitian, whereas the antighosts c̄i are
anti-Hermitian. The former property is needed for the
Hermiticity of the BRST operator, whereas the latter then
follows from the Hermiticity of the Lagrangian.
We normalize the mode coefficients in such a way that

upon quantization they become the annihilation-creation
operators with the commutation relations:

½hkα;hþk0β�¼2ωkαδαβð2πÞ3δðk−k0Þ½signð1−λÞ�δα0 ; ðA7aÞ

½Nkα; N
þ
k0β� ¼ −2ωkαδαβð2πÞ3δðk − k0Þ½signð1 − λÞ�δα0 ;

ðA7bÞ

½ckα; c̄þk0β�þ ¼ ½c̄kα; cþk0β�þ ¼ −2ωkαδαβð2πÞ3δðk − k0Þ:
ðA7cÞ

Two comments are in order. First note that we use the
“relativistic” normalization including a factor 2ω for the
operators and corresponding scattering states. Though in
our case it is not connected with Lorentz invariance, it is
still convenient since it results in dimensionless 2 → 2
scattering amplitudes. Second, the helicity�1modes of the
shift Ni clearly have negative norm. In the helicity 0 sector
the situation is subtler. Here the negative-norm state is inNi
or hij, depending on whether λ is less or bigger than 1, as
reflected by the last factor in Eqs. (A7a), (A7b).
It remains to specify the polarization vectors and tensors

entering Eqs. (A7). Let us start with the ghosts. Their
polarization vectors are given by the standard orthonormal
triad which for the momentum with polar and azimuthal
angles θ, ϕ has the form

eð0Þi ≡ k̂i ¼

0
B@

sin θ cosϕ

sin θ sinϕ

cos θ

1
CA;

eð�1Þ
i ¼ ∓ e�iϕffiffiffi

2
p

0
B@

cos θ cosϕ ∓ i sinϕ

cos θ sinϕ� i cosϕ

− sin θ

1
CA: ðA8Þ

The polarizations in Ni differ by normalizations that can be
read out of the Lagrangians (A3b), (A3c):

ϵð�1Þ
i ¼ k2ffiffiffi

σ
p eð�1Þ

i ; ϵð0Þi ¼ k2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
j1þ ξj

σ

r
k̂i: ðA9Þ

Finally, the polarization tensors in hij are constructed from
the triad as follows:

εð�2Þ
ij ¼ 2eð�1Þ

i eð�1Þ
j ;

εð�1Þ
ij ¼

ffiffiffi
2

p
ðeð�1Þ

i k̂j þ k̂ie
ð�1Þ
j Þ; ðA10aÞ

εð0Þij ¼ 2ffiffiffiffiffiffiffiffiffiffiffiffiffij1 − λjp k̂ik̂j;

εð0
0Þ

ij ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1 − λÞ
1 − 3λ

r �
δij −

1 − 3λ

1 − λ
k̂ik̂j

�
: ðA10bÞ

APPENDIX B: BRST-INVARIANCE
OF THE S-MATRIX

In this appendix we review the derivation of Eq. (3.2)
stating that the S-matrix of a gauge theory commutes with
the asymptotic quadratic BRST operator Qð2Þ. We follow
Ref. [37] generalizing the analysis to an abstract gauge
theory which need not enjoy Lorentz invariance. We adopt
the conventions and notations of [18] [except for (anti)
ghosts which we denote with c, instead of ω].
Consider a gauge theory with local gauge-invariant

action S built out of gauge and matter fields φa, where
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the label a collectively denotes all field indices and
coordinates. The fields linearly transform under the action
of the gauge group via

δεφ
a ¼ εαðPa

α þ Ra
bαφ

bÞ; ðB1Þ
where εα is the transformation parameter. The gauge fields
are supplemented by the Faddeev-Popov ghosts cα, anti-
ghosts c̄α, and the Nakanishi–Lautrup field bα, related by
the BRST transformations,

sφa ¼ cαðPa
α þ Ra

bαφ
bÞ; scα ¼ 1

2
Cα
βγc

βcγ;

sc̄α ¼ bα; sbα ¼ 0; ðB2Þ
where Cα

βγ are the structure constants of the gauge group.
Implementing the BRST quantization procedure we obtain
the quantum tree-level action Sq invariant under (B2),

Sq ¼ S½φ� þ bαχαaφa −
1

2
bαOαβbβ − c̄αχαaðPa

β þRa
bβφ

bÞcβ;
ðB3Þ

where we have chosen linear gauge-fixing functions χαaφa.
Note that since the transformations (B2) are nonlinear, the
conserved BRST charge Q generating them in the
Heisenberg picture is nonlinear as well. However, instead
of pursuing the operator quantization, we use the path
integral approach.
We define the generating functional with sources for all

the fields and their BRST variations:

Z½J; ξ̄;ξ; y;γ;ζ�

¼
Z

DΦA expfiðSq½φ;c; c̄;b�

þ Jaφaþ ξ̄αcαþ ξαc̄αþ yαbαþ γasφaþ ζαscαÞg; ðB4Þ

where ΦA stands collectively for all the fields φa, cα, c̄α
and bα. We further define the partition function (generating
functional for the connected diagrams):

W ¼ −i logZ; ðB5Þ
and its Legendre transform—the effective action

Γ½hφi; hci; hc̄i; hbi; γ; ζ�
¼ W − Jahφai − ξ̄αhcαi − ξαhcαi − yαhbαi; ðB6Þ

with the quantities in angular brackets denoting the mean
fields. By definition, the latter are variational derivatives of
W with respect to the sources,16

hφai ¼ δW
δJa

; hcαi ¼ δW

δξ̄α
;

hc̄αi ¼
δW
δξα

; hbαi ¼
δW
δyα

: ðB7Þ

Note that at tree level the effective action is

Γtree ¼ Sq þ γasφa þ ζαscα: ðB8Þ

The relation (B6) implies the equality of the variational
derivatives,

δΓ
δγa

¼ δW
δγa

: ðB9Þ

Importantly, the partition function satisfies the identities
(see e.g., [18] for the derivation),

DW ≡
�
−Ja

δ

δγa
þ ξ̄α

δ

δζα
þ ξα

δ

δyα

�
W ¼ 0; ðB10aÞ

�
χαa

δ

δJa
−Oαβ δ

δyβ
þ yα

�
W ¼ 0: ðB10bÞ

The first equation here is the Slavnov-Taylor identity
following from theBRSTsymmetry (B2),whereas the second
is the equation of motion for the Nakanishi–Lautrup field.
We now use the Lehmann-Symanzik-Zimmermann

(LSZ) reduction (see Ref. [43] for a recent discussion)
to define the S-matrix from the correlation functions. In a
compact form, it can be written as (see e.g., [44])

S≕ exp

�
−ΦA

asKAB
δ

δJB

�
∶ Z½J �jJ¼0 ≡KZ½J �jJ¼0:

ðB11Þ

Here ΦA
as ¼ fφa

as; cαas; c̄ as αg are the asymptotic gauge
and (anti)ghost field operators,17 and JA ¼ fJa; ξ̄α; ξαg
are the corresponding currents; we also denote by J ¼
fJa; ξ̄α; ξα; γa; ζα; yαg the currents supplemented with the
BRST sources. Colon around the exponent stand for
the normal ordering with respect to particle creation-
annihilation operators contained insideΦA

as. The differential
operator KAB is taken from the wave equations satisfied by
the asymptotic fields,

16We define the derivatives with respect to anticommuting
variables as acting from the left, i.e. the differential of a function
fðθÞ of a Grassmann variable θ is df ¼ dθf0ðθÞ.

17We consider the asymptotic states as being generated by the
free fields. This may not be true for a variety of reasons, such as
infrared divergences or particle instability, see discussion in
Sec. VI. We proceed under the assumption that these issues
can be properly handled on the case-by-case basis.

In principle, one could also introduce the asymptotic Nakanishi–
Lautrup field, but we choose not to do it since bα is not an
independent variable on-shell, being expressed through the gauge-
fixing function.
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KABΦB
as ¼ 0: ðB12Þ

Despite these equations, the exponent in (B11) is nontrivial
because the operator KAB in it acts to the right and cancels
with the on-shell poles of the Green’s functions produced
by the variational derivatives with respect to the currents.
The vertical line with subscript “J ¼ 0” means that all
sources must be set to zero after taking the variational
derivatives.
In the second equality in (B11) we have introduced the

notation K for the exponential factor acting on Z½J �. This
object is a “double operator”: it is a variational operator
acting on functionals of the currents, and a quantum-
mechanical operator in the asymptotic Fock space. We
observe that

½K;D�W½J �jJ¼0 ¼ KDW½J �jJ¼0 − DKW½J �jJ¼0 ¼ 0:

ðB13Þ

Indeed, the first term vanishes due to the Slavnov-Taylor
identity (B10a), whereas the second term is zero because D
is proportional to the sources. Evaluating ½K;D� on the left-
hand side as the commutator of two variational operators
we obtain18

½K;D�W½J �jJ¼0

≕K ·

�
φa
asK

φ
ab

δ

δγb
− c̄as αðKcÞαβ

δ

δζβ
þ cαasðKcÞβα

δ

δyβ

�
∶

W½J �jJ¼0: ðB14Þ

Let us discuss the terms in brackets one by one, starting
from the last. Using the relation (B10b) it can be trans-
formed as

δW
δyβ

¼ O−1
βα χ

α
a
δW
δJa

þO−1
βαy

α: ðB15Þ

The second term on the right-hand side does not contribute
because upon acting with K it either leaves something
proportional to yα which is zero when we take currents to be
zero, or, if the derivatives from K hit yα instead of the
generating functional, we are not getting poles from the
Green’s functions to compensate the action of ðKcÞβα.
The second term in (B14) amounts to

δW
δζβ

¼ hscβi ¼
�
1

2
Cβ
γδc

γcδ þ…


ðB16Þ

with the dots representing corrections coming from renorm-
alization. The diagrams contributing to this matrix element

do not have poles since there are no one-particle states with
ghost number 2. Hence they vanish once we act on them by
Kc and restrict on-shell.
The first term in Eq. (B14) requires a bit more work.

Using Eqs. (B7), (B9) we can write a Taylor expansion,

δW
δγb

¼ δΓ
δγb

¼ δ2Γ
δhcαiδγb

				
hΦi¼0

hcαi

þ δ3Γ
δhφaiδhcαiδγb

				
hΦi¼0

hcαihφai þ…

¼ δ2Γ
δhcαiδγb

				
hΦi¼0

δW
δξ̄α

þ δ3Γ
δhφaiδhcαiδγb

				
hΦi¼0

δW
δξ̄α

δW
δJa

þ…: ðB17Þ

The expansion starts with the term linear in the ghost
field since the left-hand side has unit ghost number19

and thus vanishes at hcαi ¼ 0. The second and subsequent
terms lead to the diagrams of the form shown on the left of
Fig. 5 which do not have poles. Thus, the only pole
contribution comes from the first term. We notice that at
tree level the second variational derivative entering it
coincides with the generator of linear gauge transformations,

δ2Γ
δhcαiδγb

				
hΦi¼0

¼ Pb
α: ðB18Þ

In fact, this relation remains valid also after taking into
account loop corrections, with Pb

α understood as the gen-
erator acting on properly normalized asymptotic fields [37].
We further have the identity

Kφ
abP

b
α ¼ ðKφ⊥

ab þ χβaO−1
βγ χ

γ
bÞPb

α ¼ χβaO−1
βγ χ

γ
bP

b
α; ðB19Þ

FIG. 5. Diagrams arising from the second terms in Eq. (B17)
(left) and Eq. (B26) (right). They do not have on-shell poles to
cancel the vanishing vertex factor φasKφ.

18Note the different signs of the ghost and the antighost
terms stemming from their anticommutativity: c̄αðKcÞαβcβ ¼
−cβðKcÞαβc̄α.

19The source γa has ghost number −1 from the way it enters the
partition function (B4) in combination with the BRST variation
of the gauge field.
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where we have split the wave operator for the asymptotic
gauge fields into the “transverse” and “longitudinal” parts
and used that the former is gauge invariant. By “transverse”
part here we mean the operator coming from the original
action S, whereas the “longitudinal” part arises upon
eliminating from the action (B3) the nondynamical field
bα. Finally, we recall the structure of the ghost wave
operator which is again read off from (B3),

ðKcÞαβ ¼ −χαaPa
β: ðB20Þ

Combining together the above results gives

½K;D�W½J �jJ¼0≕K ·

�
−φa

asχ
α
aO−1

αβ ðKcÞβγ
δ

δξ̄γ

−cαasPa
αK

φ
ab

δ

δJb

�
∶W½J �jJ¼0: ðB21Þ

We recognize here the linear BRST variations of the
asymptotic fields generated by Qð2Þ,

i½Qð2Þ; c̄as α�þ ¼O−1
αβ χ

β
aφa

as; i½Qð2Þ;φa
as� ¼Pa

αcαas: ðB22Þ

Recall also that the linear BRST variation of the ghost field
vanishes, i½Qð2Þ; cαas�þ ¼ 0. This allows us to write

½K;D�W½J �jJ¼0 ¼ i½Qð2Þ;K�W½J �jJ¼0; ðB23Þ

where on the right-hand side we have the commutator of
operators acting on the asymptotic Fock space. Together
with Eq. (B13) and the definition of the S-matrix (B11) it
implies Eq. (3.2).
For completeness, let us also show that the elements of

the S-matrix (B11) between the states containing only
physical particles do not depend on the choice of gauge.
The physical particle states are interpolated by transverse
components of the asymptotic fields satisfying χαaφ

a⊥
as ¼ 0.

Thus, the restriction of the S-matrix to the physical states
can be written as

Sphys ≕ exp

�
−φa⊥

as K
φ⊥
ab

δ

δJb

�
∶ Z½J �jJ¼0: ðB24Þ

An infinitesimal change of the gauge-fixing functions δχαa
can be compensated by a properly chosen gauge trans-
formation δεφ

a of the integration variables in the path
integral (B4), so that we have

δZ½J � ¼ hiJaδεφaiZ½J �

¼ Jaεα
�
iPa

α þ Ra
bα

δ

δJb

�
Z½J �: ðB25Þ

Substituting this into Eq. (B24) we obtain

δSphys ≕K ·

�
−iφa⊥

as K
φ⊥
ab ε

αPb
α

− φa⊥
as K

φ⊥
ab ε

αRb
cα

δ

δJc

�
∶ Z½J �jJ¼0: ðB26Þ

The first term in brackets vanishes due to the gauge
invariance of Kφ⊥

ab , whereas the second term leads to the
diagrams shown on the right of Fig. 5 and does not have on-
shell poles. This implies δSphys ¼ 0, as expected.

APPENDIX C: FEYNMAN RULES
IN σ, ξ GAUGE

Here we summarize the Feynman rules used in the
computation of graviton 2 → 2 scattering amplitudes in the
gauge of Sec. II B. We also include the ingredients entering
diagrams with an external shift Ni which are used for
verification of the gauge consistency relation (3.28).
External lines:

ðC1aÞ

ðC1bÞ

with

ϵαi ðk;ωÞ ¼
�
ϵαi ðkÞ; ω > 0

−ϵαi ð−kÞ; ω < 0
;

εαijðk;ωÞ ¼
� εαijðkÞ; ω > 0

εαijð−kÞ; ω < 0
: ðC2Þ

The positive-frequency polarization factors ϵαi ðkÞ, εαijðkÞ
are given by Eqs. (A9), (A10). Note that we treat all
momenta and energies as flowing into the diagram.
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Propagators:

ðC3aÞ

ðC3bÞ

Here k̂ is the unit vector along the momentum, and the pole factors are

P1 ¼
i

ω2−ω2
1ðkÞþ iϵ

; P0¼
i

ω2−ω2
0ðkÞþ iϵ

; ðC4aÞ

Ptt ¼
i

ω2−ω2
ttðkÞþ iϵ

; Ps¼
i

ω2−ω2
sðkÞþ iϵ

; ðC4bÞ

with the dispersion relations (2.20)–(2.22). The Euclidean version of these propagators was derived in [17].
Vertices: In our calculation we use the following vertices:

ðC5aÞ

ðC5bÞ

The vertices in the first line enter the graviton scattering
amplitude, see Fig. 3, whereas the vertices in the second
line are used to verify the identity (3.28).
The full expressions for the vertices are lengthy and

not illuminating. We present explicitly only the parts of

(C5a) which are proportional to the coupling constant λ
and could lead to large contributions to the graviton
amplitudes in the limit λ → ∞. These are used in the
proof of Sec. VA that the divergent contributions actually
cancel.
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ðC6aÞ

ðC6bÞ

ðC6cÞ

In the last expression “sym” stands for symmetrization over the graviton lines.

APPENDIX D: ANGULAR DEPENDENCE OF HEAD-ON AMPLITUDES

Throughout this appendix we denote x ¼ cos θ. The subscripts þ;−; s stand for the �2, and 00-helicity gravitons. Here
we use the physical helicities to label the incoming and outgoing particles: For example, the subscript þþ;þþ means that
both gravitons in the initial and final states are right-handed. For the relation of the angular functions fα1α2;α3α4 to the full
amplitude see Eq. (4.10).

1. Processes without scalar gravitons

Using the notation û2s ¼ 1−3λ
1−λ u

2
s ¼ 8ν4

ν5
þ 3, we have

fþþ;þþ ¼ f−−;−−

¼ 1

512û2sð1 − x2Þ3 ½x
8ð−161 − 320v22 þ v2ð464 − 720v3Þ þ 39û2s − 9v23ð45 − 11û2sÞ þ 6v3ð87 − 85û2sÞÞ

þ 4x6ð231þ 443û2s − 72v23û
2
s − 16v2ð21 − 8û2sÞ þ 6v3ð63 − 53û2sÞÞ

þ 2x4ð−287þ 448v22 − 4783û2s − 16v2ð49 − 63v3 þ 48û2sÞ þ 63v23ð9þ û2sÞ − 6v3ð147þ 295û2sÞÞ
− 4x2ð581þ 128v22 − 6343û2s − 16v2ð35 − 18v3 þ 24û2sÞ þ 54v23ð3 − û2sÞ − 6v3ð105þ 269û2sÞÞ
− 169 − 64v22 − 19921û2s − 9v23ð9þ 17û2sÞ þ 16v2ð13 − 9v3 þ 32û2sÞ þ 6v3ð39 − 613û2sÞ�; ðD1Þ
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fþþ;þ− ¼ f−−;−þ ¼ fþ−;þþ ¼ f−þ;−−

¼ 1

512û2sð1 − x2Þ ½x
4ð133þ 64v22 − 16v2ð13 − 12v3Þ − 243û2s þ 9v23ð15 − û2sÞ

− 12v3ð23 − 13û2sÞÞ − 2x2ð211þ 64v22 − 16v2ð7 − 9v3Þ − 285û2s þ 9v23ð9þ û2sÞ
− 12v3ð15 − 11û2sÞÞ þ 64v22 − 16v2ð1 − 6v3Þ þ 27v23ð1þ û2sÞ þ 12v3ð5þ 21û2sÞ
− 11ð13þ 69û2sÞ�; ðD2Þ

fþþ;−− ¼ f−−;þþ

¼ 1

512û2s
½3x2ð−35þ 64v22 − 16v2ð1 − 7v3Þ þ 501û2s þ 3v23ð15 − û2sÞ þ 2v3ð5 − 79û2sÞÞ

þ 121þ 64v22 − 1375û2s þ 9v23ð1þ û2sÞ þ 66v3ð1þ 13û2sÞ þ 16v2ð11þ 3v3 þ 32û2sÞ�; ðD3Þ

fþ−;þ− ¼ 1þ x
512û2sð1 − xÞ3 ½−x

4ð64v22 − 16v2ð13 − 12v3Þ þ 27v23ð5þ û2sÞ − 12v3ð23þ 15û2sÞ þ 7ð19þ 59û2sÞÞ

− 6x3ð4 − v3Þð16v2 þ 3v3ð7þ 3û2sÞ − 4ð5þ 7û2sÞÞ
þ 2x2ð−221þ 64v22 − 16v2ð7 − 9v3Þ − 205û2s þ 18v23ð3 − û2sÞ þ 12v3ð3þ 13û2sÞÞ
þ 6xð4 − v3Þð16v2 þ 3v3ð3 − û2sÞ þ 4ð1 − û2sÞÞ
− 145 − 64v22 þ v2ð16 − 96v3Þ þ 103û2s þ v3ð84 − 60û2sÞ − 9v23ð5þ û2sÞ�: ðD4Þ

2. Processes with one scalar graviton

Due to different dispersion relations of scalar and tensor
modes the structure of the amplitudes involving both types of
particles is more complicated. Let us consider the case when
the scalar graviton is in the final state. Then themomentum of
outgoing particles is related to the incoming momentum k as

k0 ¼ ϰk; ϰ ¼
�

2

1þ us

�
1=3

: ðD5Þ

Using this notation, we can write

fα1α2;α3s ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1 − λÞ
1 − 3λ

r
Pα1α2; α3sðxÞ

g1ðxÞ
; αI ¼ þ;−;

ðD6Þ
where

g1ðxÞ ¼ ðð1 − 2xϰ þ ϰ2Þ3 − ð1 − usϰ3Þ2Þ
× ðu2sð1 − 2xϰ þ ϰ2Þ3 − ð1 − usϰ3Þ2Þ
× ðð1þ 2xϰ þ ϰ2Þ3 − ð1 − usϰ3Þ2Þ
× ðu2sð1þ 2xϰ þ ϰ2Þ3 − ð1 − usϰ3Þ2Þ; ðD7Þ

and Pα1α2;α3sðxÞ are polynomials of 14th degree in x that
are too cumbersome to present explicitly. Note that
for us ≠ 1 the denominator (D7) has roots at nonzero
scattering angles. As discussed in Sec. IV B, this
corresponds to resonant poles in the amplitude due
to on-shell graviton decays. On the other hand, g1ðxÞ
is regular in the forward and backward limits
x ¼ �1. In fact, the amplitude vanishes in these limits
since the polynomials in the numerator can be factor-
ized as

Pþþ;þs ¼ ð1 − x2ÞP̃þþ;þs; Pþþ;−s ¼ ð1 − x2ÞP̃þþ;−s;

Pþ−;−s ¼ ð1 − xÞ3ð1þ xÞP̃þ−;−s; ðD8Þ

and similarly for the channels obtained by parity and time
inversion. This is consistent with conservation of angular
momentum (see Sec. IV B).
The amplitudes greatly simplify if the dispersion rela-

tions of the tensor and scalar gravitons coincide: us ¼ 1,
ϰ ¼ 1. Then we have
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fþþ;þs ¼ f−−;−s ¼ fþs;þþ ¼ f−s;−−

¼ 1

128
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1 − λÞð1 − 3λÞ3

p
ð1 − x2Þ2 ½x

6ð81þ 80v22ð1 − λÞ2 − 245λþ 230λ2

þ 18v23ð5 − 8λþ 3λ2Þ − 3v3ð31 − 21λ − 8λ2Þ − 4v2ð1 − λÞð49 − 80λ − v3ð48 − 51λÞÞÞ
− x4ð447þ 240v22ð1 − λÞ2 − 1175λþ 402λ2 þ 18v23ð17 − 38λþ 21λ2Þ
− 3v3ð111 − 165λþ 76λ2Þ − 4v2ð1 − λÞð85 − 60λ − 3v3ð48 − 59λÞÞÞ
þ x2ð−1221þ 112v22ð1 − λÞ2 þ 5729λ − 5870λ2 þ 54v23ð5 − 16λþ 11λ2Þ
þ 3v3ð159 − 821λþ 608λ2Þ þ 4v2ð1 − λÞð121 − 536λþ 3v3ð32 − 59λÞÞÞ
þ ð1587þ 48v22ð1 − λÞ2 − 6851λþ 6426λ2 − 4v2ð1 − λÞð253 − ð708þ 51v3ÞλÞ
− 54v23ð1 − 6λþ 5λ2Þ − 3v3ð335 − 1253λþ 884λ2ÞÞ�; ðD9Þ

fþþ;−s ¼ f−−;þs ¼ f−s;þþ ¼ fþs;−−

¼ 1

128
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1 − λÞð1 − 3λÞ3

p ½x2ð299þ 18v23ð1 − λÞ þ 48v22ð1 − λÞ2 − 1247λþ 882λ2

− 3v3ð7 − 49λþ 40λ2Þ þ 4v2ð1 − λÞð17 − 48λþ 3v3ð6 − 5λÞÞÞ − 299 − 48v22ð1 − λÞ2
þ 1211λ − 36v23ð1 − λÞλ − 810λ2 − 4v2ð1 − λÞð35þ 3v3ð4 − λÞ − 84λÞ
− 3v3ð11 − 9λþ 4λ2Þ�; ðD10Þ

fþ−;−s ¼ f−þ;þs ¼ f−s;þ− ¼ fþs;−þ

¼ 1

128
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1 − λÞð1 − 3λÞ3

p
ð1þ xÞ2 ½x

4ð187þ 16v22ð1 − λÞ2 − 651λþ 466λ2

þ 27v23ð2 − 5λþ 3λ2Þ − 6v3ð34 − 105λþ 72λ2Þ − 4v2ð1 − λÞð33 − 64λ − 3v3ð5 − 6λÞÞÞ
þ 3x3ð4 − v3Þð18 − 4v2ð1 − λÞ − 56λþ 36λ2 − 3v3ð3 − 7λþ 4λ2ÞÞ
− x2ð64v22ð1 − λÞ2 þ 9v23ð13 − 31λþ 18λ2Þ þ 2ð25 − 69λþ 62λ2Þ
− 6v3ð47 − 140λþ 96λ2Þ − 4v2ð1 − λÞð78 − 160λ − 9v3ð5 − 6λÞÞÞ
þ 3xð4 − v3Þð−18þ 64λ − 52λ2 þ 4v2ð5 − 13λþ 8λ2Þ þ 3v3ð7 − 19λþ 12λ2ÞÞ
− 137þ 48v22ð1 − λÞ2 þ 561λ − 438λ2 þ 9v23ð3 − 4λþ λ2Þ
− 6v3ð1þ 5λ − 8λ2Þ − 12v2ð1 − λÞð7 − 16λ − v3ð6 − 4λÞÞ�: ðD11Þ

3. Processes with two scalar gravitons

a. Two scalars in the final state

Here the relation between the outgoing and incoming momenta is

k0 ¼ ϰk; ϰ ¼ u−1=3s ; ðD12Þ

and the angular functions have the form

fα1α2;ss ¼
2ð1 − λÞ
ð1 − 3λÞ

Pα1α2;ssðxÞ
g2ðxÞ

; αI ¼ þ;−; ðD13Þ

with the denominator

g2ðxÞ ¼ ð1þ ð2 − 4x2Þϰ2 þ ϰ4Þ6: ðD14Þ
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We observe that this denominator does not have any zeros
for us ≠ 1. The absence of resonances is explained as
follows. For the processes at hand the energies of initial
and final particles are the same. So the energy flowing in
the propagators of intermediate states in t- and u-channels
vanishes, whereas the momentum does not. For the
s-channel the situation is opposite. Thus these propaga-
tors never become on-shell. For the case of different

helicities α1 ≠ α2 the amplitude vanishes in the collinear
limits since

Pþ−;ss ¼ ð1 − x2Þ2P̃þ−;ss; ðD15Þ
as required by the angular momentum conservation.
The 14th order polynomials Pα1α2;ssðxÞ are again too

lengthy in general. We explicitly present the amplitude for
the case us ¼ 1:

fþþ;ss ¼ f−−;ss ¼ fss;þþ ¼ fss;−−

¼ 1

128ð1 − λÞ2ð1 − 3λÞ2ð1 − x2Þ ½−x
4ð87 − 527λþ 887λ2 − 421λ3 − 42λ4 − 9v23ð1 − λÞ3ð2 − 3λÞ

þ 12v3ð1 − λÞ2ð8 − 24λþ 17λ2Þ þ 8v2ð1 − λÞ3ð20 − 51λ − v3ð3 − 6λÞÞÞ
þ x2ð1 − λÞð270þ 36v3 − 207v23 − 1416λ − 36v3λþ 900v23λþ 1874λ2 þ 216v3λ2

− 1179v23λ
2 − 548λ3 − 216v3λ3 þ 486v23λ

3 − 1536v1ð1 − λÞ2ð1 − 3λÞ
− 16v22ð1 − λÞ2ð9 − 22λÞ − 8v2ð1 − λÞð26 − 122λþ 70λ2 þ 9v3ð5 − 17λþ 12λ2ÞÞÞ
− 183þ 60v3 þ 225v23 þ 1159λ − 360v3λ − 1206v23λ − 2387λ2 þ 432v3λ2 þ 2268v23λ

2

þ 1953λ3 − 24v3λ3 − 1818v23λ
3 − 558λ4 − 108v3λ4 þ 531v23λ

4 þ 1536v1ð1 − λÞ3ð1 − 3λÞ
þ 16v22ð1 − λÞ3ð13 − 30λÞ þ 8v2ð1 − λÞ2ð46 − 185λþ 105λ2 þ 18v3ð3 − 10λþ 7λ2ÞÞ�; ðD16Þ

fþ−;ss ¼ fss;þ−

¼ −1
128ð1 − λÞ2ð1 − 3λÞ2ð1 − x2Þ ½x

4ð273 − 1633λþ 3433λ2 − 3179λ3 þ 1122λ4

þ 9v23ð1 − λÞ3ð4 − 9λÞ − 12v3ð1 − λÞ2ð22 − 80λþ 59λ2Þ
− 8v2ð1 − λÞ3ð20 − 51λ − v3ð3 − 6λÞÞÞ − x2ð1 − λÞð242 − 1240λþ 2126λ2 − 1372λ3

þ 16v22ð1 − λÞ2ð1þ 2λÞ þ 9v23ð1 − λÞ2ð7 − 6λÞ − 8v2ð1 − λÞð46 − 9v3ð1 − λÞ − 150λþ 98λ2Þ
þ 12v3ð−35þ 151λ − 194λ2 þ 78λ3ÞÞ − 31þ 151λ − 51λ2 − 367λ3 þ 282λ4

þ 9v23ð1 − λÞ3ð7 − 5λÞ þ 16v22ð1 − λÞ3ð5 − 6λÞ − 12v3ð1 − λÞ3ð13 − 27λÞ
þ 8v2ð1 − λÞ2ð−26þ 18v3ð1 − λÞ2 þ 87λ − 63λ2Þ�: ðD17Þ

b. Tensor-scalar scattering

In this case the absolute value of the initial and final
momenta is the same, k0 ¼ k. The amplitude has the form

fα1s; α2s¼
2ð1−λÞ
ð1−3λÞ

Pα1s; α2sðxÞ
g3ðxÞ

; αI ¼þ;−; ðD18Þ

with

g3ðxÞ ¼ 64u2sð1 − xÞ3ðð1 − usÞ2 − 8ð1þ xÞ3ÞÞ
× ðð1 − usÞ2 − 8u2sð1þ xÞ3Þ; ðD19Þ

and Pα1s;α2sðxÞ an 11th order polynomial. The amplitude
has resonant poles at nonzero values of x and diverges in

the forward limit. The divergence is alleviated if the
helicities of tensor gravitons in the initial and final states
are different,

Pα1s;α2s ¼ ð1 − xÞ2P̃α1s;α2s for α1 ≠ α3; ðD20Þ

consistently with the angular momentum conservation. For
the same initial and final helicities and us ≠ 1 the amplitude
vanishes in the backward limit:

Pα1s;α2s ¼ ð1þ xÞ2P̃α1s;α2s for α1 ¼ α3: ðD21Þ

The case of identical tensor and scalar dispersion
relations, us ¼ 1, leads to
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fþs;þs ¼ f−s;−s

¼ −1
256ð1 − λÞ2ð1 − 3λÞ2ð1 − xÞ3ð1þ xÞ ½x

6ð64v22ð1 − λÞ4 þ 27v23ð1 − λÞ3ð4 − 5λÞ

− 3v3ð119 − 605λþ 1081λ2 − 819λ3 þ 224λ4Þ þ 4ð93 − 533λþ 1052λ2 − 878λ3 þ 262λ4Þ
þ 4v2ð1 − λÞ2ð3v3ð15 − 34λþ 19λ2Þ − 4ð21 − 67λþ 43λ2ÞÞÞ
þ x5ð−342þ 198v3 þ 153v23 − 192v1ð1 − λÞ4ð7 − 8v2 − 9v3Þ þ 1618λ − 1014v3λ

− 657v23λ − 2450λ2 þ 1854v3λ2 þ 1053v23λ
2 þ 1178λ3 − 1434v3λ3 − 747v23λ

3

þ 60λ4 þ 396v3λ4 þ 198v23λ
4 þ 16v22ð1 − λÞ3ð31 − 30λÞ

þ 8v2ð1 − λÞ2ð−20þ 8λþ 18λ2 þ 3v3ð29 − 59λþ 30λ2ÞÞÞ
þ x4ð−738þ 1461v3 − 441v23 − 192v1ð1 − 8v2 − 9v3Þð1 − λÞ4 þ 4086λ − 8187v3λ

þ 2394v23λ − 7522λ2 þ 15903v3λ2 − 4536v23λ
2 þ 6178λ3 − 13029v3λ3 þ 3654v23λ

3

− 2084λ4 þ 3852v3λ4 − 1071v23λ
4 þ 16v22ð1 − λÞ3ð9þ 2λÞ − 4v2ð1 − λÞ2ð−324þ 69v3

þ 1156λ − 348v3λ − 848λ2 þ 279v3λ2ÞÞ þ 2x3ð1 − λÞð770 − 918v3 þ 117v23

þ 192v1ð13 − 8v2 − 9v3Þð1 − λÞ3 − 3708λþ 4704v3λ − 684v23λþ 5250λ2 − 6990v3λ2

þ 1017v23λ
2 − 2132λ3 þ 3180v3λ3 − 450v23λ

3 − 16v22ð1 − λÞ2ð21 − 10λÞ
þ 8v2ð1 − λÞð28 − 264λþ 262λ2 þ 3v3ð11 − λ − 10λ2ÞÞÞ þ x2ð−1072þ 453v3 þ 90v23

þ 384v1ð1 − λÞ4ð7 − 8v2 − 9v3Þ þ 7688λ − 2223v3λ − 855v23λ − 18724λ2 þ 3843v3λ2

þ 2025v23λ
2 þ 17692λ3 − 2913v3λ3 − 1845v23λ

3 − 5504λ4 þ 840v3λ4 þ 585v23λ
4

− 32v22ð1 − λÞ3ð21 − 16λÞ þ 4v2ð1 − λÞ2ð276 − 700λþ 404λ2 − 3v3ð55 − 54λ − λ2ÞÞÞ
þ xð−910þ 1638v3 − 531v23 − 192v1ð1 − λÞ4ð19 − 8v2 − 9v3Þ þ 5322λ − 10422v3λ

þ 2979v23λ − 10634λ2 þ 22302v3λ2 − 5751v23λ
2 þ 8882λ3 − 19866v3λ3 þ 4689v23λ

3

− 2724λ4 þ 6348v3λ4 − 1386v23λ
4 − 16v22ð1 − λÞ3ð5 − 42λÞ þ 8v2ð1 − λÞ2ð76 − 568λ

þ 570λ2 − 3v3ð23 − 105λþ 82λ2ÞÞÞ − 192v1ð1 − λÞ4ð13 − 8v2 − 9v3Þ þ 1726 − 1557v3

þ 387v23 − 11658λþ 8787v3λ − 1800v23λþ 26998λ2 − 17271v3λ2 þ 3078v23λ
2

− 25446λ3 þ 14445v3λ3 − 2304v23λ
3 þ 16v22ð1 − λÞ3ð45 − 62λÞ þ 8396λ4 − 4404v3λ4

þ 639v23λ
4 − 4v2ð1 − λÞ2ð516 − 285v3 þ 1652λ − 696v3λ − 1208λ2 þ 411v3λ2Þ�; ðD22Þ

fþs;−s ¼ f−s;þs

¼ 1

256ð1 − λÞ2ð1 − 3λÞ2ð1 − x2Þ ½−x
4ð64v22ð1 − λÞ4 þ 81v23ð1 − λÞ3λ

þ 4ð2 − 30λþ 67λ2 − 51λ3 þ 16λ4Þ þ 3v3ð81 − 459λþ 871λ2 − 685λ3 þ 192λ4Þ
þ 4v2ð1 − λÞ2ð3v3ð7 − 10λþ 3λ2Þ þ 4ð13 − 51λþ 35λ2ÞÞÞ
− x3ð78 − 108v3 þ 279v23 − 192v1ð1 − λÞ4ð7 − 8v2 − 9v3Þ − 194λþ 240v3λ

− 1089v23λ − 694λ2 þ 1593v23λ
2 þ 1878λ3 − 312v3λ3 − 1035v23λ

3 − 1036λ4 þ 180v3λ4

þ 252v23λ
4 þ 16v22ð1 − λÞ3ð39 − 38λÞ þ 8v2ð1 − λÞ2ð−48þ 64λ − 22λ2 þ 3v3ð40 − 79λþ 39λ2ÞÞÞ

þ x2ð1 − λÞð10þ 54v3 − 81v23 − 192v1ð1 − λÞ3ð11þ 8v2 þ 3v3Þ
− 84λ − 528v3λþ 252v23λ − 46λ2 þ 918v3λ2 − 261v23λ

2 þ 44λ3 − 444v3λ3 þ 90v23λ
3

þ 16v22ð1 − λÞ2ð−29þ 26λÞ − 8v2ð1 − λÞð56 − 72λþ 26λ2 þ v3ð39 − 69λþ 30λ2ÞÞÞ
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þ xð294 − 180v3 þ 315v23 − 192v1ð7 − 8v2 − 9v3Þð1 − λÞ4 − 1706λþ 792v3λ

− 1269v23λþ 2994λ2 − 1416v3λ2 þ 1917v23λ
2 − 1842λ3 þ 1152v3λ3 − 1287v23λ

3

þ 292λ4 − 348v3λ4 þ 324v23λ
4 þ 16v22ð1 − λÞ3ð43 − 46λÞ þ 8v2ð1 − λÞ2ð−48þ 72λ

− 38λ2 þ 3v3ð44 − 91λþ 47λ2ÞÞÞ − 218þ 192v1ð1 − λÞ4ð11þ 8v2 þ 3v3Þ þ 261v3

þ 117v23 þ 1486λ − 1251v3λ − 432v23λ − 3426λ2 þ 2199v3λ2 þ 594v23λ
2 þ 3330λ3

− 1677v3λ3 − 360v23λ
3 − 1156λ4 þ 468v3λ4 þ 81v23λ

4 þ 16v22ð1 − λÞ3ð37 − 38λÞ
þ 4v2ð1 − λÞ2ð3v3ð41 − 80λþ 39λ2Þ þ 4ð41 − 83λþ 40λ2ÞÞ�: ðD23Þ

4. Processes with three and four scalar gravitons

For scattering with three scalar gravitons—one in the
beginning and two in the end—the final and initial
momenta are related by

k0 ¼ ϰk; ϰ ¼
�
1þ us
2us

�
1=3

: ðD24Þ

The angular dependence of the amplitude reads

fαs;ss¼
�
2ð1−λÞ
1−3λ

�
3=2ð1−x2ÞPαs;ssðxÞ

g4ðxÞ
; α¼þ;−; ðD25Þ

where

g4ðxÞ ¼ ðð1þ 2xϰ þ ϰ2Þ3 − ð1 − usϰ3Þ2Þ
× ðu2sð1þ 2xϰ þ ϰ2Þ3 − ð1 − usϰ3Þ2Þ
× ðð1 − 2xϰ þ ϰ2Þ3 − ðus − usϰ3Þ2Þ
× ðu2sð1 − 2xϰ þ ϰ2Þ3 − ðus − usϰ3Þ2Þ; ðD26Þ

and Pαs;ssðxÞ is a 12th order polynomial. For us ≠ 1 the
denominator has zeros at nonzero angles, and the amplitude
vanishes in the forward and backward limits.
For us ¼ 1 the amplitude simplifies (though it still

remains quite lengthy):

fþs;ss ¼ f−s;ss ¼ fss;þs ¼ fss;−s

¼ 1

64
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1 − λÞ3ð1 − 3λÞ5

p
ð1 − x2Þ2 ½x

6ð1 − λÞð119 − 16v22ð1 − λÞ3 − 582λþ 825λ2 − 422λ3

þ 9v23ð1 − λÞ2ð1 − 6λÞ − 6v3ð30 − 147λþ 193λ2 − 74λ3Þ − 4v2ð1 − λÞð35 − 139λþ 92λ2

− v3ð3þ 3λ − 6λ2ÞÞÞ þ x4ð−275þ 102v3 þ 90v23 − 192v1ð1 − λÞ3ð15 − 4v2ð1 − λÞ
− 6v3ð1 − λÞ − 29λÞ þ 1717λ − 966v3λ − 234v23λ − 3811λ2 þ 2286v3λ2 þ 162v23λ

2

þ 3799λ3 − 2058v3λ3 þ 18v23λ
3 − 1422λ4 þ 636v3λ4 − 36v23λ

4 þ 16v22ð1 − λÞ3ð17 − 15λÞ
− 4v2ð1 − λÞð161 − 554λþ 653λ2 − 264λ3 − 6v3ð1 − λÞ2ð19þ 13λÞÞÞ
− x2ð167 − 480v3 þ 387v23 − 384v1ð1 − λÞ3ð15 − 8v2ð1 − λÞ − 9v3ð1 − λÞ − 31λÞ
− 1381λþ 2214v3λ − 1539v23λþ 3615λ2 − 3540v3λ2 þ 2295v23λ

2 − 3319λ3

þ 2322v3λ3 − 1521v23λ
3 þ 902λ4 − 516v3λ4 þ 378v23λ

4 þ 16v22ð1 − λÞ3ð67 − 71λÞ
− 4v2ð1 − λÞð451 − 1790λþ 2183λ2 − 836λ3 − 3v3ð1 − λÞ2ð129 − 134λÞÞÞ
þ 323 − 546v3 þ 288v23 − 576v1ð1 − λÞ3ð5 − 4v2ð1 − λÞ − 4v3ð1 − λÞ − 11λÞ
− 2493λþ 3126v3λ − 1224v23λþ 6595λ2 − 6234v3λ2 þ 1944v23λ

2 − 6927λ3 þ 5226v3λ3

− 1368v23λ
3 þ 2478λ4 − 1572v3λ4 þ 360v23λ

4 þ 48v22ð1 − λÞ3ð17 − 19λÞ
− 12v2ð1 − λÞð101 − 450λþ 609λ2 − 256λ3 − 2v3ð1 − λÞ2ð46 − 53λÞÞ�: ðD27Þ

Finally, we consider the amplitude with four scalar gravitons. The kinematics in this case is simple, k0 ¼ k. Still, the
amplitude is rather lengthy since it involves all vertices in an intricate way. In general it has the form
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fss;ss ¼
�
2ð1 − λÞ
1 − 3λ

�
2 Pss;ssðxÞ
ð1 − x2Þ3 ; ðD28Þ

where Pss;ssðxÞ is an even polynomial of degree 8. The amplitude has only forward singularities. For us ¼ 1 we have

fss;ss ¼
1

64ð1 − λÞ2ð1 − 3λÞ3ð1 − x2Þ3 ½x
8ð1 − λÞ2ð185 − 32v22ð1 − λÞ3 − 992λþ 1525λ2 − 838λ3 − 9v23ð1 − λÞ2ð1þ 6λÞ

− 8v2ð1 − λÞð15þ 6v3ð1 − λÞ − 68λþ 41λ2Þ þ 12v3ð−15þ 80λ − 103λ2 þ 36λ3ÞÞ
þ x6ð−500þ 408v3 þ 171v23 þ 3592λ − 3624v3λ − 954v23λ − 9152λ2 þ 11280v3λ2 þ 2106v23λ

2 þ 10584λ3

− 16344v3λ3 − 2304v23λ
3 − 5340λ4 þ 11304v3λ4 þ 1251v23λ

4 þ 768λ5 − 3024v3λ5 − 270v23λ
5

þ 192v22ð1 − λÞ4ð1 − 2λÞ − 384v1ð1 − λÞ3ð1þ 2λ − 15λ2Þ − 48v2ð1 − λÞ2ð−2þ 34λ − 98λ2 þ 70λ3

− v3ð1 − λÞ2ð8 − 15λÞÞÞ þ x4ð458þ 585v23 þ 73728v21ð1 − λÞ5 − 3844λþ 792v3λ − 2574v23λþ 12580λ2

− 3840v3λ2 þ 4446v23λ
2 − 20984λ3 þ 7128v3λ3 − 3744v23λ

3 þ 17554λ4 − 5904v3λ4 þ 1521v23λ
4 − 5684λ5

þ 1824v3λ5 þ 64v22ð1 − λÞ4ð124 − 119λÞ − 234v23λ
5 þ 384v1ð1 − λÞ3ð−3þ 128v2ð1 − λÞ2 þ 42v3ð1 − λÞ2

þ 30λ − 55λ2Þ − 16v2ð1 − λÞ2ð3 − 151λþ 469λ2 − 341λ3 þ 15v3ð1 − λÞ2ð−20þ 17λÞÞÞ
þ x2ð−300þ 936v3 − 1647v23 − 147456v21ð1 − λÞ5 þ 2744λ − 6936v3λþ 8082v23λ − 9120þ 18288v3λ2

− 15858v23λ
2 þ 13992λ3 − 22728v3λ3 þ 15552v23λ

3 − 10532λ4 þ 13656v3λ4 − 7623v23λ
4 þ 3200λ5 − 3216v3λ5

þ 1494v23λ
5 − 64v22ð1 − λÞ4ð255 − 254λÞ − 384v1ð1 − λÞ3ð−33þ 256v2ð1 − λÞ2 þ 84v3ð1 − λÞ2 þ 150λ − 137λ2Þ

þ 16v2ð1 − λÞ2ð234 − 1290λþ 1978λ2 − 926λ3 − 15v3ð1 − λÞ2ð44 − 43λÞÞÞ
þ 733 − 1164v3 þ 900v23 þ 73728v21ð1 − λÞ5 − 6890λþ 8448v3λ − 4536v23λþ 23886λ2 − 22392v3λ2

þ 9144v23λ
2 − 37880λ3 þ 28080v3λ3 − 9216v23λ

3 þ 27949λ4 − 16956v3λ4 þ 4644v23λ
4 − 7814λ5 þ 3984v3λ5

− 936v23λ
5 þ 32v22ð1 − λÞ4ð257 − 259λÞ þ 384v1ð1 − λÞ3ð−29þ 128v2ð1 − λÞ2 þ 42v3ð1 − λÞ2 þ 122λ − 97λ2Þ

− 8v2ð1 − λÞ2ð459 − 2399λþ 3497λ2 − 1549λ3 − 6v3ð1 − λÞ2ð113 − 115λÞÞ�: ðD29Þ

APPENDIX E: MODES AND PROPAGATORS
WITH AUXILIARY FIELD

The tensor and vector parts of the quadratic Lagrangian
following from the action (5.9) with the gauge fixing (5.11)
are the same as in the original HG action, see Eqs. (A3a),
(A3b). The difference, however, occurs in the scalar sector.
Using the same decomposition as in Eqs. (A1) we obtain

L̃ð2sÞ
g ¼ 1

2G

�
ψ̇2

2
þ Ė2

4
− 2χψ̇ − χĖþ 8ν4 þ 3ν5

2
ψΔ3ψ

þ 1þ ξ

4σ
EΔ3Eþ Ḃ

σ

ð1þ ξÞΔ Ḃþ BΔ2Bþ 2χΔB

− 2 ˙̄CΔĊ −
2ð1þ ξÞ

σ
C̄Δ4C

�
: ðE1Þ

The ghost part, of course, decouples and leads to a simple
propagator which, combined with the vector contribution,
gives

ðE2Þ

where P1 is given in (C4) and

P̃0 ¼
i

ω2 − ν̃0k6 þ iϵ
; ν̃0 ≡ 1þ ξ

σ
: ðE3Þ

The other components ψ , E, B, χ all mix with each other.
To find their propagators, we switch to the Fourier
space and invert the mixing matrix. Combining with
the propagators of tensor and vector components we
arrive at

ðE4aÞ
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ðE4bÞ

ðE4cÞ

ðE4dÞ

ðE4eÞ

ðE4fÞ

Here Ptt and Ps are the same as in (C4), and νs is given
by the λ → ∞ limit of Eq. (2.22), νs ¼ ð8=3Þν4 þ ν5.
We observe that all propagators (E2), (E4) are regular in

the sense defined in Sec. V B. This follows from three
properties. First, the pole factors Ptt, Ps, P1, P̃0 are
regular. Second, the propagators scale homogeneously
under the Lifshitz transformations, in the way compatible
with the scaling dimensions of the corresponding fields.
And third, the inverse powers of the spatial momentum k
contained in the unit vector k̂i cancel when we bring the
combinations in the square brackets to the common
denominator. As shown in Ref. [17], the regularity of
the propagators is sufficient for the renormalizability of
the theory.
Let us also note the presence of double poles P̃2

0. They
signal presence of a linearly growing gauge mode, similarly

as it happens in the Maxwell theory in general covariant
gauges (see e.g., Sec. 18 of [45]).
Mixing between different components in the Lagrangian

(E1) implies that the scalar graviton state has overlap not
only with the metric hij, but also the shiftNi and the field χ.
To see this, let us write the eigenmode equations following
from (E1):

ω2ψ − 2iωχ − 3νsk6ψ ¼ 0; ðE5aÞ

ω2E − 2iωχ − ν̃0k6E ¼ 0; ðE5bÞ

−ω2Bþ ν̃0k6B − ν̃0k4χ ¼ 0; ðE5cÞ

2iωψ þ iωE − 2k2B ¼ 0: ðE5dÞ
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Substituting here the dispersion relation of the scalar
graviton, ω ¼ ffiffiffiffi

νs
p

k3, and expressing all fields in terms of
ψ we obtain

E¼−
2νs

νs− ν̃0
ψ ; B¼−

iν̃0
ffiffiffiffi
νs

p
k

νs− ν̃0
ψ ; χ¼ i

ffiffiffiffi
νs

p
k3ψ : ðE6Þ

So indeed, for the scalar graviton eigenmode all fields are in
general nonvanishing.
The situation simplifies considerably if we choose the

gauge ξ ¼ −1, entailing ν̃0 ¼ 0. Then the admixture of the
scalar graviton to the shift vanishes, which also eliminates
the mixed propagators (E4b), (E4e). The normalization of
the scalar graviton mode is deduced by imposing the
canonical commutations relations on ψ and its conjugate
momentum

πψ ¼ ψ̇ − 2χ

2G
:

Collecting everything together, we find the scalar graviton
contribution to the metric and the field χ in the ξ ¼ −1
gauge,

hijðx; tÞ ∋
ffiffiffiffi
G

p Z
d3k

ð2πÞ32ωs
εð0

0Þ
ij hk00e−iωstþikx þ H:c:;

εð0
0Þ

ij ¼
ffiffiffi
2

3

r
ðδij − 3k̂ik̂jÞ; ðE7aÞ

χðx; tÞ ¼
ffiffiffiffi
G

p Z
d3k

ð2πÞ32ωs
iωs

ffiffiffi
2

3

r
hk00e−iωstþikx

þ H:c:; ðE7bÞ

where hk00 is the scalar graviton annihilation operator
satisfying

½hk00 ; hþk000 � ¼ 2ωsð2πÞ3δðk − k0Þ: ðE8Þ

This provides us with the expressions for the external lines
of the scalar diagrams for the scalar graviton scattering. The
form of the h-line is unchanged, see Eq. (C1b), with the
polarization tensor from (E7a). Whereas the χ-line reads

ðE9Þ
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Hořava gravity, Phys. Rev. D 93, 064022 (2016).

[18] A. O. Barvinsky, D. Blas, M. Herrero-Valea, S. M.
Sibiryakov, and C. F. Steinwachs, Renormalization of gauge
theories in the background-field approach, J. High Energy
Phys. 07 (2018) 035.

[19] A. O. Barvinsky, M. Herrero-Valea, and S. M. Sibiryakov,
Towards the renormalization group flow of Horava gravity
in (3þ 1) dimensions, Phys. Rev. D 100, 026012 (2019).

[20] A. O. Barvinsky, A. V. Kurov, and S. M. Sibiryakov, Beta
functions of (3þ 1)-dimensional projectable Hořava grav-
ity, Phys. Rev. D 105, 044009 (2022).

[21] A. E. Gumrukcuoglu and S. Mukohyama, Horava-Lifshitz
gravity with λ → ∞, Phys. Rev. D 83, 124033 (2011).

SCATTERING AMPLITUDES IN HIGH-ENERGY LIMIT OF … PHYS. REV. D 108, 046017 (2023)

046017-29

https://doi.org/10.1103/PhysRevD.79.084008
https://doi.org/10.1103/PhysRevD.79.084008
https://doi.org/10.1007/JHEP04(2011)018
https://doi.org/10.1088/0264-9381/27/22/223101
https://doi.org/10.1088/1742-6596/283/1/012034
https://doi.org/10.1142/S0218271817300142
https://arXiv.org/abs/2301.13580
https://doi.org/10.1103/PhysRevD.16.953
https://doi.org/10.1007/BF00760427
https://doi.org/10.1007/BF00760427
https://doi.org/10.1007/JHEP06(2014)080
https://doi.org/10.1007/JHEP06(2014)080
https://doi.org/10.1007/JHEP03(2015)047
https://doi.org/10.1140/epjc/s10052-016-4079-8
https://doi.org/10.3390/physics1010003
https://doi.org/10.1103/PhysRevLett.104.181302
https://doi.org/10.1103/PhysRevD.97.024032
https://doi.org/10.1103/PhysRevD.97.024032
https://doi.org/10.1103/PhysRevD.106.044055
https://doi.org/10.1103/PhysRevD.106.044055
https://doi.org/10.1103/PhysRevD.107.044059
https://doi.org/10.1103/PhysRevD.107.044059
https://doi.org/10.1103/PhysRevD.93.064022
https://doi.org/10.1007/JHEP07(2018)035
https://doi.org/10.1007/JHEP07(2018)035
https://doi.org/10.1103/PhysRevD.100.026012
https://doi.org/10.1103/PhysRevD.105.044009
https://doi.org/10.1103/PhysRevD.83.124033


[22] A. Frenkel, P. Horava, and S. Randall, Perelman’s Ricci
flow in topological quantum gravity, arXiv:2011.11914.

[23] J. M. Martin-Garcia, xAct: Efficient tensor computer alge-
bra for the Wolfram Language, http://www.xact.es/.

[24] J. M. Martin-Garcia, xPerm: Fast index canonicalization for
tensor computer algebra, Comput. Phys. Commun. 179, 597
(2008).

[25] D. Brizuela, J. M. Martin-Garcia, and G. A. Mena Marugan,
xPert: Computer algebra for metric perturbation theory,
Gen. Relativ. Gravit. 41, 2415 (2009).

[26] T. Nutma, xTras: A field-theory inspired xAct package for
mathematica, Comput. Phys. Commun. 185, 1719 (2014).

[27] Wolfram Research, Inc., Mathematica, Version 12.2,
Champaign, IL, 2020.

[28] J. I. Radkovski, https://github.com/JIRadkovski.
[29] K. Koyama and F. Arroja, Pathological behaviour of the

scalar graviton in Hořava-Lifshitz gravity, J. High Energy
Phys. 03 (2010) 061.

[30] K. Izumi and S. Mukohyama, Nonlinear superhorizon
perturbations in Horava-Lifshitz gravity, Phys. Rev. D 84,
064025 (2011).

[31] A. E. Gumrukcuoglu, S. Mukohyama, and A. Wang,
General relativity limit of Horava-Lifshitz gravity with a
scalar field in gradient expansion, Phys. Rev. D 85, 064042
(2012).

[32] C. Becchi, A. Rouet, and R. Stora, Renormalization of
gauge theories, Ann. Phys. (N.Y.) 98, 287 (1976).

[33] I. V. Tyutin, Gauge invariance in field theory and statistical
physics in operator formalism, arXiv:0812.0580.

[34] S. Weinberg, The Quantum Theory of Fields. Vol. 2:
Modern Applications (Cambridge University Press,
Cambridge, England, 2013).

[35] T. Kugo and I. Ojima, Manifestly covariant canonical
formulation of Yang-Mills field theories. 1, Prog. Theor.
Phys. 60, 1869 (1978).

[36] T. Kugo and I. Ojima, Local covariant operator formalism of
nonabelian gauge theories and quark confinement problem,
Prog. Theor. Phys. Suppl. 66, 1 (1979).

[37] C. Becchi, Introduction to BRS symmetry, arXiv:hep-th/
9607181.

[38] R. Iengo and M. Serone, A simple UV-completion of QED
in 5D, Phys. Rev. D 81, 125005 (2010).

[39] S. Sannan, Gravity as the limit of the type II superstring
theory, Phys. Rev. D 34, 1749 (1986).

[40] D. Blas, O. Pujolas, and S. Sibiryakov, Comment on “Strong
coupling in extended Horava-Lifshitz gravity”, Phys. Lett. B
688, 350 (2010).

[41] D. Anselmi, Weighted power counting and Lorentz violat-
ing gauge theories. I. General properties, Ann. Phys.
(Amsterdam) 324, 874 (2009).

[42] H. Elvang and Y.-t. Huang, Scattering amplitudes, arXiv:
1308.1697.

[43] J. Collins, A new approach to the LSZ reduction formula,
arXiv:1904.10923.

[44] C. Itzykson and J. Zuber, Quantum Field Theory, Dover
Books on Physics (Dover Publications, New York, 2012).

[45] J. Strathdee, QED Lecture Notes, ICTP, 1995, http://
streaming.ictp.it/preprints/P/95/315.pdf.

JURY I. RADKOVSKI and SERGEY M. SIBIRYAKOV PHYS. REV. D 108, 046017 (2023)

046017-30

https://arXiv.org/abs/2011.11914
http://www.xact.es/
http://www.xact.es/
http://www.xact.es/
https://doi.org/10.1016/j.cpc.2008.05.009
https://doi.org/10.1016/j.cpc.2008.05.009
https://doi.org/10.1007/s10714-009-0773-2
https://doi.org/10.1016/j.cpc.2014.02.006
https://github.com/JIRadkovski
https://github.com/JIRadkovski
https://doi.org/10.1007/JHEP03(2010)061
https://doi.org/10.1007/JHEP03(2010)061
https://doi.org/10.1103/PhysRevD.84.064025
https://doi.org/10.1103/PhysRevD.84.064025
https://doi.org/10.1103/PhysRevD.85.064042
https://doi.org/10.1103/PhysRevD.85.064042
https://doi.org/10.1016/0003-4916(76)90156-1
https://arXiv.org/abs/0812.0580
https://doi.org/10.1143/PTP.60.1869
https://doi.org/10.1143/PTP.60.1869
https://doi.org/10.1143/PTPS.66.1
https://arXiv.org/abs/hep-th/9607181
https://arXiv.org/abs/hep-th/9607181
https://doi.org/10.1103/PhysRevD.81.125005
https://doi.org/10.1103/PhysRevD.34.1749
https://doi.org/10.1016/j.physletb.2010.03.073
https://doi.org/10.1016/j.physletb.2010.03.073
https://doi.org/10.1016/j.aop.2008.12.005
https://doi.org/10.1016/j.aop.2008.12.005
https://arXiv.org/abs/1308.1697
https://arXiv.org/abs/1308.1697
https://arXiv.org/abs/1904.10923
http://streaming.ictp.it/preprints/P/95/315.pdf
http://streaming.ictp.it/preprints/P/95/315.pdf
http://streaming.ictp.it/preprints/P/95/315.pdf
http://streaming.ictp.it/preprints/P/95/315.pdf
http://streaming.ictp.it/preprints/P/95/315.pdf

