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We set up the computation of correlation functions for operators that are dual to semiclassical string
states in strongly coupled defect conformal field theories (dCFTs). In the dCFT that is dual to the D3-D5
probe-brane system, we calculate the correlation function of two heavy operators perturbatively, in powers
of the conformal ratio. We find that the leading term agrees with the prediction of the operator product
expansion (OPE). In the case of two heavy Berenstein-Maldacena-Nastase operators, we find agreement in
subleading orders as well.
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I. INTRODUCTION

Boundary and defect conformal field theories (CFTs) are
currently attracting increased attention,1 mainly because they
bridge the gap between idealistic, highly symmetric models
and real-world systems. These are generally characterized by
finite sizes: impurities, domain walls, defects, and bounda-
ries separate regions with different properties and break
many of the underlying symmetries [1]. Naturally, bounda-
ries and defects permeate all branches of physics, from high-
energy and particle physics, to condensed matter, statistical,
even gravity, and mathematical physics.
Deforming the gauge/string duality [2] by inserting probe

branes on its string theory side [3,4] has provided us with
more and more realistic holographic models (AdS/dCFT
correspondence) which are in principle solvable at strong
coupling by string theory. Probe branes break many sym-
metries and supersymmetries of holographic theories, yet
there is a single property that we would still like to keep.
This property is planar integrability [5,6]. Integrability has
the power of bridging the two opposing ends of holographic
dualities (which are generally disconnected due to the weak/
strong coupling dilemma), endowing holography with a
genuine nonperturbative capacity [7].

Integrability methods were introduced in the AdS/dCFT
correspondence in 2015 [8], sparking a wide range of
weak-coupling computations at tree level [9–12] and one-
loop order [13,14]. Asymptotic all-loop results appeared
in [15–19]. Classical string integrability was shown
in [20,21]. While the majority of works so far concerns
the D3-D5 probe-brane system, more integrable setups
are currently known,2 such as the D3-D7 [25–27] and the
D2-D4 probe-brane system [28–30].
The D3-D5 system consists of a probe D5-brane

embedded in the AdS5 × S5 background which is generated
by N D3-branes. The D5-brane wraps an AdS4 × S2

geometry which is supported by k units of Abelian flux
through S2. The flux forces k of the D3-branes to terminate
on one side of the D5-brane. On the dual gauge theory side,
we encounter a 4-dimensional dCFT. Two copies of N ¼ 4
super Yang-Mills (SYM) theory with different gauge groups,
SUðN − kÞ and SUðNÞ are separated by a codimension-1
defect [31]. Two-point functions in this theory have been
studied in [32–34].
However, apart from the early supergravity calculations of

one-point functions in [35,36], the systematic computation
of correlators in strongly coupled dCFTs with strings is still
missing.3 The aim of the present paper is to fill this gap. First
we address an important open problem in AdS/dCFT, that is
the computation of two-point functions at strong coupling.
Second, we provide a systematic framework for the calcu-
lation of correlators involving operators dual to semiclassical
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1See e.g. the review [1].

2See the review articles [22–24] for more.
3On the other hand, interesting results have been obtained with

supersymmetric localization [37–40]. Note also the holographic
computations [41–46] of correlation functions between open
strings and finite-size branes such as giant gravitons.
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string states in strongly coupled AdS/dCFT. We emphasize
that even though our method is illustrated in a specific dCFT
(the D3-D5 system), it can be implemented in any dCFT
with a gravity dual.
In Sec. II we compute the three-point function of two

heavy Berenstein-Maldacena-Nastase (BMN) operators and
a light BPS scalar at strong coupling in SOð3Þ × SOð3Þ
symmetric N ¼ 4 SYM. In Sec. III we revisit the compu-
tation of the one-point function of a BPS operator in
strongly coupled D3-D5 dCFT. In Sec. IV we set up the
computation of correlators for operators that are described
by semiclassical worldsheets in the presence of a defect
brane. To illustrate our method, we compute the two-point
function of two heavy operators in strongly coupled D3-D5
dCFT. In Sec. V we compare our findings for the two-point
function to the prediction of the OPE. We report complete
agreement between the leading term of our strong coupling
results and the leading term of the OPE for an arbitrary
choice of heavy operators. For the case of two BMN
operators, agreement is shown up to next-to-next-to-leading
(NNLO) order.

II. THREE-POINT FUNCTION

Three and higher-point correlators can be computed in
strongly coupled AdS=CFT when one of the operators is
dual to a supergravity mode, based on a method that was
developed in [47] and applied to N ¼ 4 SYM by [48,49].
LetW be a nonlocal operator ofN ¼ 4 SYM (e.g. a Wilson
loop or a product of local operators) that is dual to a classical
string worldsheet and OIðyÞ a local operator of N ¼ 4
SYM that is dual to the scalar supergravity field ϕIðy; wÞ.
Defining

hOIðyÞiW ≡ hWOIðyÞiN¼4

hWiN¼4

; ð1Þ

the correlator can be computed at strong coupling from

hOIðyÞiW ¼ lim
w→0

2
4 π

wΔI

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

ΔI − 1

s

×

�
ϕIðy; wÞ ·

1

Zstr

Z
DXe−Sstr½X�

�
bulk

3
5: ð2Þ

Sstr½X� is the classical string action

Sstr ¼ −
T2

2

Z
d2σ

ffiffiffiffiffiffi
−γ

p
γab∂aXM

∂bXNgMN þ… ð3Þ

T2 ≡ ð2πα0Þ−1 is the string tension and X are the embed-
ding coordinates of the string worldsheet in AdS5 × S5.
Also λ ¼ l4=α02 for the ’t Hooft coupling λ≡ g2YMN.
The string action Sstr depends indirectly on the bulk

supergravity modes ϕI via a disturbance that is induced on

the fields of type IIB supergravity by a local operator
insertion. The relevant perturbations are

gMN ¼ ĝMN þ δgMN ð4Þ

CMNPQ ¼ ĈMNPQ þ δCMNPQ; ð5Þ

where gMN is the graviton and CMNPQ is the 4-form
Ramond-Ramond (RR) potential of type IIB supergravity.
The corresponding background solution consists of the
AdS5 × S5 metric ĝMN (A1) and the 4-form potential
ĈMNPQ (A3). Both perturbations in (4)–(5) can be expressed
as linear combinations of the bulk modes ϕI and their
derivatives:

δgMN ¼ VI
MN · ϕI; δCMNPQ ¼ vIMNPQ · ϕI; ð6Þ

where VI
MN and vIMNPQ are differential operators which

depend on the target-space coordinates X.
In the strong coupling regime (λ → ∞), the path integral

in (2) is dominated by a saddle point which corresponds to
classical solutions Xcl, so that

hOIðyÞiW ¼ −
1

4l2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2λ

ΔI − 1

s Z
d2σ∂aXM

∂
aXN

× VI
MNðX; ∂x; ∂zÞGΔI

ðx; z; yÞ þ…; ð7Þ

in the conformal gauge, γab ¼ diagð−;þÞ. The boundary
limit GΔI

of the bulk-to-bulk propagator (A4) is (A6).
Now take OI to be a chiral primary operator (CPO) of

N ¼ 4 SYM with length L.4 Then the vertex operators
that appear in (6) are given by (B3)–(B5). It follows that
the string correlator (1), (7) simplifies significantly in the
yi → ∞ limit [48]:

hOCPO
I ðyÞiW ¼ −

L
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðL− 1Þλp

4π2N Ly2L

Z
d2σYIðxμÞ

× f−zL−2∂aXi
∂
aXi þ zL−2∂aXz

∂
aXz

þ zLl−2
∂aXμ

∂
aXνĝμνg; i¼ 0;…;3; ð8Þ

where N L is defined in (B6). Taking the operator W to be
W ≡O†

1O2, where Oi (i ¼ 1, 2) is a BMN chiral primary
of length Li,

Oi ¼
1ffiffiffiffiffi
Li

p
�
4π2

λ

�Li
2

tr½ZLi �; Z≡Φ1 þ iΦ2; ð9Þ

and L ¼ L1 − L2 is small,5 the classical string solution
that is holographically dual to W is given by [50,51]

4See appendix B for the definition of CPOs.
5So that O1 ≈O2 and OCPO

I is a light operator.
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x3 ¼ x̄þ R tanhωτ; z ¼ R
coshωτ

ð10Þ

ψ ¼ 0; φ ¼ iωτ; θ ¼ π

2
; ð11Þ

where ω ¼ L2=
ffiffiffi
λ

p
and the 5-sphere parametrization can

be found in (A2). The operators O1;2 are located at the
points x1;2 on the x3 axis and a small distance from each
other. In other words, R ¼ x12=2 is also small:

R ¼ jx1 − x2j
2

¼ x12
2

; x̄ ¼ x1 þ x2
2

: ð12Þ

The three-point function is depicted in Fig. 1. The red line
represents the string worldsheet (heavy state) and the curly
line represents the CPO (light state).
Plugging (10)–(12) into (8) we obtain, for yi → ∞:

hOCPO
I ðyÞiBMN

W ¼ ð−1ÞL=2l2

2Lþ3
2N

· L2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
LðLþ 1ÞðLþ 2Þ

p
× B

�
L
2
þ 1;

1

2

�
·
xL12
y2L

: ð13Þ

For reasons that will become apparent in Sec. V, we have
used the SOð3Þ × SOð3Þ invariant spherical harmonics
(given by CL=2 in (31) below), for which L ¼ 2j.
Inserting (13) and the (generic CFT) 2-point function,

hWðx1; x2ÞiN¼4 ¼ hO†
1ðx1ÞO2ðx2ÞiN¼4 ¼

δ12
xL1þL2

12

ð14Þ

into the definition (1), we may compare the result with the
generic form of three-point functions in CFTs and extract
the HHL structure constant

CI12 ¼
ð−1ÞL=2L2

2Lþ3
2N

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
LðLþ 1ÞðLþ 2Þ

p
·B

�
L
2
þ 1;

1

2

�
: ð15Þ

The structure constant (15) is protected from receiving
quantum corrections [52]. Interesting further works on

holographic three-point functions (e.g. calculations involv-
ing twist operators and conserved currents) can be found
in [53–58].

III. ONE-POINT FUNCTION

We now revisit the computation of one-point functions in
strongly-coupled dCFTs. We focus on the D3-D5 system.
The action of the probe D5-brane is the sum of the Dirac-
Born-Infeld (DBI) and the Wess-Zumino (WZ) term:

SD5 ¼ −
T5

gs

Z h
d6ζ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det ðGab þ 2πα0FabÞ

p
þ 2πα0F ∧ C

i
;

Gab ≡ ∂aYM
∂bYNgMN; ð16Þ

where T5 ≡ ð2πÞ−5α0−3 is the D5-brane tension, gs ¼
g2YM=4π is the string coupling, Gab is the pullback of
the IIB graviton field gMN (4) on the 5-brane, Fab is the
field strength of the world volume gauge field and C is the
4-form RR potential (5). For the embedding coordinates Y
we set

hab ≡ ∂aYM
∂bYNĝMN þ 2πα0Fab; h≡ det hab: ð17Þ

As it turns out, the D5-brane wraps an AdS4 × S2 geometry
that is parametrized by [4]

y3 ¼ κ · w; κ≡ πkffiffiffi
λ

p ≡ tan α; ψ̃ ¼ 0; ð18Þ

where k are the units of magnetic flux through S2:

Z
S2

F
2π

¼ k; F ¼ k
2
· d cos θ̃ ∧ dφ̃; ð19Þ

ðy; wÞ are the AdS5 coordinates in (A1) and the S5

coordinates in (A2) carry a tilde. The world volume
coordinates of the D5-brane are ðζ0;…; ζ5Þ ¼ ðy0; y1;
y2; w; θ̃; φ̃Þ.
One-point functions of dCFT operators that are dual to a

supergravity mode ϕI can be computed in strongly coupled
AdS/dCFT by the recipe (2):

hOIðxÞiD5 ¼ lim
z→0

"
π

zΔI

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2

ΔI − 1

s
·

�
ϕIðx; zÞ

×
1

ZD5

Z
DYe−SD5½Y �

�
bulk

#
; ð20Þ

where ΔI is the scaling dimension of ϕI and SD5 is given
by (16). By means of (4)–(6), we obtain [35,59,60]:

FIG. 1. Heavy-heavy-light (HHL) correlator.
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hOIðxÞiD5 ¼ −
π

zΔI

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2

ΔI − 1

s
·
T5

gs

Z
d6ζðδLDBI þ δLWZÞ

· GΔI
ðy; w; xÞ: ð21Þ

Again, GΔI
ðy; w; xÞ is the boundary limit (A6) of the bulk-

to-bulk propagator and

δLDBI ≡
ffiffiffi
h

p
hab∂aYM

∂bYNVI
MNðY ; ∂y; ∂wÞ ð22Þ

δLWZ ≡ 2πα0ðF ∧ vIðY ; ∂y; ∂wÞÞ: ð23Þ

Take OI to be a CPO of D3-D5 dCFT with length L,
situated at the point x0 ¼ x1 ¼ x2 ¼ 0, x3 > 0. Of all the
CPOs ofN ¼ 4 SYM, only those which share the SOð3Þ ×
SOð3Þ global symmetry of the defect are expected to have
nontrivial one-point functions. The spherical harmonics
depend on a single quantum number j which is related to
the length of the associated CPO via L ¼ 2j (see e.g. [35]).
The one-point function is depicted in Fig. 2. The blue line
represents the world volume of the D5-brane and the curly
line is the CPO.
Inserting the vertex operators (B3)–(B5) and the D5-brane

parametrization (18)–(19) into the one-point function for-
mula (21)–(23), we are led to

hOCPO
I ðx3ÞiD5 ¼

CI
xL3

: ð24Þ

The one-point function structure constant CI reads [35]:

CI ¼
ð−1ÞL=2 ffiffiffi

λ
p

π3=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Lþ 2

2LðLþ 1Þ

s
·
ΓðLþ 1

2
Þ

ΓðLÞ IL−2;Lþ1
2
; ð25Þ

for even L ¼ 2j and nonnegative integer j ¼ 0; 1;… The
analytic computation of the integral Ia;bðκÞ, for various
values of a, b can be found in appendix C.

IV. TWO-POINT FUNCTION

Two and higher-point correlators can still be computed to
leading order in strongly coupled AdS/dCFT by the recipe
(2), (20). LetW be a nonlocal operator ofN ¼ 4 SYM that
is dual to a classical string worldsheet. Suppose that there is
a probe D5-brane in the bulk of AdS5 × S5 which interacts
with the semiclassical string state via a scalar type IIB
supergravity mode ϕI whose scaling dimension isΔI and its
mass is m. The ratio of the correlator hWiD5 in D5-brane
deformed N ¼ 4 SYM over its value hWiN¼4 in pure
N ¼ 4 SYM will be given at strong coupling by [47]:

hW̃iD5 ≡ hWiD5
hWiN¼4

¼
�

1

Zstr

Z
DXe−Sstr½X�

×
1

ZD5

Z
DYe−SD5½Y �

�
bulk

: ð26Þ

This formula should include all possible virtual states that
can be exchanged between the string and the brane (CPOs
and non-protected heavy string states). Only the former are
taken into account in (26). To determine the contribution
of the latter, we should find the minimal surface A that
terminates on the brane. However, such states are exponen-

tially suppressed as e−
ffiffi
λ

p
A compared to the CPOs [61].

Moreover, their contribution to the two-point correlators
that we are considering below will be extremely suppressed
due to the large anomalous dimensions these operators
acquire at strong coupling.
In the strong coupling regime (λ → ∞) both path

integrals in (26) will be dominated by their saddle points
(corresponding to classical solutions Xcl, Y cl).

6 The defect
correlator of the operator W that is dual to an AdS5 × S5

semiclassical string state becomes:

hW̃iD5 ¼ 1þ T2T5

2gs

Z
d2σd6ζfδLstrðσ; x; zÞ

× δLD5ðζ; y; wÞGΔI
ðx; z; y; wÞg; ð27Þ

where GΔI
is the bulk-to-bulk propagator of a scalar field

(mass m, scaling dimension ΔI) in AdS5 and

δLstr ¼ ∂aXM
∂
aXNVI

MNðX; ∂x; ∂zÞ þ… ð28Þ

FIG. 2. One-point function of a CPO in defect CFT.

6The saddle point of the worldsheet connects all the boundary
points at which the operators are inserted. In principle there might
exist other saddle points consisting of several disconnected
worldsheets, some of which would directly join a boundary
insertion to the defect. Each of these bulk-boundary contributions
is essentially proportional to the one-point function and comes
with an extra 1=N factor. Because the connected contribution
(c.f. Fig. 3) scales as 1=N (as we will see below), it will dominate
over any disconnected saddle point in the large-N limit.
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δLD5 ¼
ffiffiffi
h

p
hab∂aYM

∂bYNVI
MNðY ; ∂y; ∂wÞ

þ 2πα0ðF ∧ vIðY ; ∂y; ∂wÞÞ: ð29Þ

Let the supergravity mode ϕI be dual to a CPO OCPO
I of

the D3-D5 dCFT with length L ¼ 2j. For simplicity let us
also assume that the string worldsheet lies very close to the
AdS boundary, that is z → 0. The near-boundary expansion
of the bulk-to-bulk propagator is

GLðx; z; y; wÞ ¼
L − 1

2π2
·

�
1þ LΛwz2

ðL − 1ÞK2
w
þOðz4Þ

�

·
�
zw
Kw

�
L
; ð30Þ

whereKw≡w2þðx−yÞ2 andΛw ≡ 2w2 − ðL − 1Þðx − yÞ2
(since ν ¼ L − 2). We first compute the integrand by
applying the vertex operators (B3)–(B5) on the propagator
(30). We find

Z
d6ζδLD5GL ¼ −

16π1=2CL=2l6LðL − 1Þ
N L

×
X∞
n¼0

Fn ·
zLþ2n

xLþ2n
3

;

CL=2 ¼
�
−
1

2

�L
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Lþ 2

2Lþ 2

r
; ð31Þ

where the first two coefficients read, for L ¼ 2j:

F0 ¼
Γð2jþ 1

2
Þ

Γð2jþ 2Þ · I2j−2;2jþ1
2

¼
ffiffiffi
π

p
κ2jþ1

2jð2jþ 1Þ ·
�
1þ jð2jþ 1Þ

2ð2j − 1Þ ·
1

κ2
þ…

�
ð32Þ

F1 ¼
−1

2ð2j − 1Þ
	
Γð2jþ 1

2
Þ

Γð2jþ 2Þ · I2j−2;2jþ1
2

þ 2ð2jþ 2Þ · Γð2jþ
3
2
Þ

Γð2jþ 3Þ ½2κ · I2j−1;2jþ3
2

þ ð2j − 1Þ · I2j−2;2jþ3
2
� − 2ð2jþ 2Þð2jþ 3Þ

·
Γð2jþ 5

2
Þ

Γð2jþ 4Þ · I2j;2jþ5
2




¼ −
ffiffiffi
π

p
κ2jþ1

4ð2j − 1Þ ·
�
1þ jð2jþ 1Þ

2ð2j − 1Þ ·
1

κ2
þ…

�
: ð33Þ

We have also computed F2 but it is far too lengthy to be
included here. The integrals Ia;b are known as power series
of κ → ∞ (see appendix C). Note however that the ratios of
the coefficients Fn depend only on j:

F1

F0

¼−
jð2jþ 1Þ
2ð2j− 1Þ ;

F2

F0

¼ ðjþ 1Þð2jþ 1Þð2jþ 3Þ
16ð2j− 1Þ : ð34Þ

To obtain the value of the correlation function (27) we
must also integrate over the string worldsheet coordinates.
The integrand is again obtained by applying the vertex
operators (B3) on the D5-brane integral (31):

δLstrðσ; x; zÞ
Z

d6ζδLD5ðζ; y; wÞGLðx; z; y; wÞ: ð35Þ

Putting together the two contributions, we obtain the
general form of the defect correlator (26):

hW̃iD5 ¼ 1þ ð−1ÞLðLþ 2Þλ
16Nπ5=2

Z
2π

0

Z þ∞

−∞
dσdτ ·

X∞
n¼0

Fn ·
zLþ2n

xLþ2n
3

f½ðL2 þ Lþ 4nÞð∂aXi
∂
aXiÞ

− ðL2 þ ð8nþ 1ÞLþ 8n2Þð∂aXz
∂
aXzÞ�z−2 − LðLþ 1Þðl−2

∂aXμ
∂
aXνĝμνÞ

þ 4ðLþ 2nÞðLþ 2nþ 1Þð∂aX3
∂
aXzÞx−13 z−1 − 2ðLþ 2nÞðLþ 2nþ 1Þð∂aX3

∂
aX3Þx−23 g: ð36Þ

For arbitrary heavy semiclassical operators, the leading
term (n ¼ 0) in the correlator (36) factorizes into the
product of the correlator (8) and the one-point function
(24) as follows (for yi → ∞ and x3 ¼ x2 ¼ const):

hW̃iD5 ¼ 1þ hOCPO
I ðx2ÞiD5hOCPO

I ðyÞiWy2L þ… ð37Þ

Non-protected operators that are exchanged between the
heavy states and the D5-brane acquire very large dimensions

at strong coupling and contribute only to subleading orders.
For two heavy operators O1;2, (37) becomes:

hO1ðx1ÞO2ðx2ÞiD5
hO1ðx1ÞO2ðx2ÞiN¼4

¼ 1þ 2LCICI
12ξ

j þOðξjþ1Þ; ð38Þ

where CI is the one-point function structure constant
(25) and CI

12 is the HHL structure constant. Moreover
L ¼ L1 − L2 ¼ 2j (L1;2 are the lengths of the operators) and
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ξ≡ x212
4x1x2

≡ v2

1 − v2
; x12 ≡ jx1 − x2j; ð39Þ

defines the conformal ratios.Wewill see in Sec. V below that
the leading order behavior (38) is in complete agreement
with the OPE. For two BMN chiral primary operators (9),
agreement will also be shown for the subleading terms. Let
us first compute their two-point function.
Take W to be the operator W ≡O†

1O2, where Oi
(i ¼ 1, 2) are BMN chiral primaries (9) that are located
at the points x1;2 on the x3 axis and a small distance x12
from each other (see Fig. 3). As we have already
mentioned in Sec. II, when L ¼ L1 − L2 is small, W is
holographically dual to the classical (pointlike) string
solution (10)–(12) with R ¼ x12=2 → 0. In addition, the
two heavy operators O1;2 are nearly equal (O1 ≈O2) and
OCPO

I is a light operator. Using the identification (12) we
may write the conformal ratios ξ and v as

ξ≡ x212
4x1x2

¼ R2

x̄2 − R2
⇒

R2

x̄2
¼ ξ

ξþ 1
≡ v2: ð40Þ

Inserting the ansatz (10)–(12) into the formula (36) for the
defect two-point function hW̃iD5 we arrive at

hO†
1ðx1ÞO2ðx2ÞiD5

hO†
1ðx1ÞO2ðx2ÞiN¼4

¼ 1 −
ð−1ÞLðLþ 2Þωλ

8Nπ3=2

X∞
n¼0

Fn · f2½L2 þ 2nþ L − v−2ðLþ 2nÞðLþ 2nþ 1Þ�J L
2
þn;Lþ2nþ2

þ 8nðLþ nÞ½2v−1J L
2
þn−1;Lþ2nþ1 − ðv−2 − 1ÞJ L

2
þn−1;Lþ2nþ2�g; ð41Þ

where the integralsJ a;b are known as power series of v → 0
(see appendix C). Plugging (C7)–(C9) into the two-point
function (41) we find, for L ¼ 2j:

hO†
1ðx1ÞO2ðx2ÞiD5

hO†
1ðx1ÞO2ðx2ÞiN¼4

¼ 1þ 2j2ðjþ 1ÞL2

ffiffiffi
λ

p

Nπ3=2
Bðj; 1=2Þ

×F0ξ
j

�
1þ 2j

ð2jþ 1Þ
F1

F0

ξ

þ 4jðjþ 1Þ
ð2jþ 1Þð2jþ 3Þ

F2

F0

ξ2 þ…

�
:

ð42Þ

Taking into account the ratios (34), our finding (checked up
to NNLO) is in perfect agreement with our expectations
from the operator product expansion (OPE) as we show right
below. It is quite straightforward to obtain the two-point
function to any subsequent perturbative order. Complete
agreement with the OPE is expected.

V. OPERATOR PRODUCT EXPANSION

In the present section we show that the leading-order
defect two-point function (38) of two arbitrary heavy
operators and the NNLO defect two-point function of
two BMN chiral primaries (42) agree with the OPE. The
bulk channel OPE reads:

O1ðx1ÞO2ðx2Þ ¼
δ12

xΔ1þΔ2

12

þ
X
I

CI
12

xΔ1þΔ2−ΔI
12

· C½x1 − x2; ∂x2 �OIðx2Þ; ð43Þ

where C is a differential operator, Δ1;2, ΔI are the
dimensions of the operators O1;2, OI , and CI

12 their CFT
three-point function. Inserting (43) into the general formula
for the defect two-point function

hO1ðz1;x1ÞO2ðz2;x2Þi ¼
f12ðξÞ

jz1jΔ1 jz2jΔ2
ð44Þ

and using the generic form of one-point functions (24),7

f12ðξÞ ¼ ð4ξÞ−Δ1þΔ2
2

	
δ12 þ

X
I

2ΔICICI
12

× FbulkðΔI;Δ1 − Δ2; ξÞ


; ξ≡ x212

4z1z2
: ð45Þ

The bulk conformal blocks Fbulk have been determined in
[62,63] from the expression C½x1 − x2; ∂x2 �x−ΔI

2 :

FIG. 3. Two-point function of BMN operators in D3-D5.

7We have also set ΔI ¼ L. The defect is located at z ¼ 0 and
xi ¼ ðzi;xiÞ, for i ¼ 1, 2. The extra factor 2ΔI in (45) compen-
sates for the missing 2x3 in the denominator of (24), cf. [62,63].
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FbulkðΔI;δΔ; ξÞ ¼ ξ
ΔI
2
2F1

�
ΔI þ δΔ

2
;
ΔI − δΔ

2
;ΔI − 1;−ξ

�
;

ð46Þ

for δΔ≡ Δ1 − Δ2. Dividing the (generic) dCFT two-point
function (44) by the (generic) CFT two-point function (14)
(for Δ1;2 ¼ L1;2) we are led to

hO1ðx1ÞO2ðx2ÞiD5
hO1ðx1ÞO2ðx2ÞiN¼4

¼ ξ
L1þL2

2 ·
f12ðξÞ
δ12

: ð47Þ

Plugging (45)–(46) into (47) and concentrating on the
contribution of a single protected primary operator of
dimension ΔI ¼ L ¼ 2j, we get

hO1ðx1ÞO2ðx2ÞiD5
hO1ðx1ÞO2ðx2ÞiN¼4

¼ 1þ 2LCICI
12ξ

j

× 2F1ðj; j; 2j − 1;−ξÞ; ð48Þ

so that by expanding the hypergeometric around ξ ¼ 0,

hO1ðx1ÞO2ðx2ÞiD5
hO1ðx1ÞO2ðx2ÞiN¼4

¼ 1þ 2LCICI
12ξ

j

×

�
1 −

j2

2j − 1
· ξþ jðjþ 1Þ2

4ð2j − 1Þ

· ξ2 þ…

�
; ð49Þ

where CI is the one-point function structure constant (25)
and CI

12 is the generic three-point function structure
constant. Comparing (49) with the strong coupling expan-
sion (38) for the leading-order defect correlator of two
arbitrary heavy operators and (42) for the NNLO defect
correlator of two BMN chiral primaries [so that CI

12 ¼ CI12
is the structure constant (15)], we find complete agreement.
In the case of two arbitrary heavy states, it would be
interesting to verify the agreement of the subleading terms
in (38). To this end, an integral representation of the bulk-
to-bulk propagator or even the Mellin transform of the
amplitude could be useful [64,65].
The agreement of the leading-order correlator (38) of

two arbitrary heavy operators and the OPE (49) implies
that the value of the defect two-point function at strong
coupling (38) will agree with its value at weak coupling
whenever the heavy state is dual to a protected operator
[e.g. for the correlator (42)]. This is guaranteed by the fact
that the three-point function structure constant CI

12 is
protected and, in the large κ limit [see (18)], the one-point
function structure constant CI agrees between weak and
strong coupling. Obviously, agreement is no longer
expected to hold for non-protected operators.
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APPENDIX A: CONVENTIONS

The equations of motion of type IIB supergravity afford a
solution [66] which consists of the AdS5 × S5 metric,

ds2 ¼ l2

z2
ðdx20þ dx21 þ dx22þ dx23þ dz2Þþl2dΩ2

5; ðA1Þ

written out here in the Poincaré coordinate system and
Euclidean time. The line element of the unit 5-sphere dΩ5

takes the following SOð3Þ × SOð3Þ symmetric form:

dΩ2
5 ¼ dψ2 þ cos2ψðdθ2 þ sin2θdφ2Þ

þ sin2ψðdϑ2 þ sin2ϑdχ2Þ; ðA2Þ

where ψ ∈ ½0; π=2�, θ; ϑ ∈ ½0; π�, φ; χ ∈ ½0; 2πÞ. The sol-
ution (A1) is supported by a 4-form RR potential Ĉ. The
corresponding field strength F̂ ¼ dĈ reads:

F̂mnpqr ¼ εmnpqr; F̂μνρστ ¼ εμνρστ: ðA3Þ

The bulk-to-bulk propagator of a massive scalar field
(mass m, scaling dimension Δ) in AdS5 is given by

GΔðx; z; y; wÞ ¼
ΓðΔÞηΔ

2Δþ1π2ΓðΔ − 1Þ

× 2F1

�
Δ
2
;
Δþ 1

2
; νþ 1; η2

�
; ðA4Þ

where we have defined,

η≡ 2zw
z2 þ w2 þ ðx − yÞ2 ; ν≡

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4þm2l2

p
: ðA5Þ

The asymptotic value of the propagator (A4) near the AdS
boundary (w ¼ 0) becomes, for Kz ≡ z2 þ ðx − yÞ2:

GΔðx; z; yÞ≡ lim
w→0

GΔðx; z; y; wÞ
wΔ ¼ Δ − 1

2π2
·
zΔ

KΔ
z
: ðA6Þ
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APPENDIX B: CHIRAL PRIMARY OPERATORS

The CPOs of N ¼ 4 SYM are given by symmetrized
single-trace products of the theory’s six scalar fields:

OCPO
I ðxÞ ¼ 1ffiffiffiffi

L
p

�
8π2

λ

�L
2

Ψμ1…μL
I tr½Φμ1…ΦμL �; ðB1Þ

where Ψμ1…μL
I are traceless symmetric tensors of SOð6Þ.

The tensors Ψμ1…μL
I define the S5 spherical harmonics:

YIðxμÞ≡Ψμ1…μL
I xμ1…xμL ;

Ψμ1…μL
I Ψμ1…μL

J ¼ δIJ;
X9
μ¼4

x2μ ¼ 1; ðB2Þ

where I, J are the corresponding quantum numbers. The
overall factor in front of the CPOs (B1) ensures that their 2-
point functions are normalized to unity [52].
The scalar supergravity modes sIðxmÞ that are dual to the

CPOs (B1) have been identified [52,66]. They are linear
combinations of the scalar modes of the metric and the RR
potential with m2l2 ¼ LðL − 4Þ and ν ¼ L − 2. The per-
turbation (4)–(5) can be expressed in terms of the modes
sðxm; xμÞ≡ sIðxmÞYIðxμÞ so that the vertex operators that
show up in (6) are given by:

VI
mn ¼

2

N L

1

Lþ 1
YI½2l2∇m∇n − LðL − 1Þĝmn� ðB3Þ

VI
μν¼

2L
N L

YIĝμν; vImnpq¼
l
N L

ffiffiffiffiffiffiffiffiffi
ĝAdS

p
εmnpqr∇rYI ðB4Þ

vIμνρσ ¼ −
l
N L

ffiffiffiffi
ĝs

p
εμνρστYI∇τ; ðB5Þ

where the Latin indices (m, n, p, q, r) refer to the AdS5 and
the Greek indices (μ, ν, ρ, σ, τ) to the S5 coordinates. The
normalization factor N L is defined as

N 2
L ¼ N2LðL − 1Þ

2L−3π2ðLþ 1Þ2 : ðB6Þ

APPENDIX C: INTEGRALS

The integrals Ia;b are defined as follows:

Ia;bðκÞ≡
Z∞
0

du
ua

½u2 þ ð1 − κuÞ2�b ; b >
1

2
: ðC1Þ

For j > 1=2 and κ → ∞, we find:

I2j−2;2jþ1
2
¼ κ2jþ1B

�
2j;

1

2

�

×

�
1þ

	
3

2
þ ð2j− 3Þðj− 1Þ

2ð2j− 1Þ


1

κ2
þ…

�
ðC2Þ

I2j−1;2jþ3
2
¼ κ2jþ2B

�
2jþ 1;

1

2

�

×
�
1þ

	
3

2
þ ð2j− 1Þðj− 1Þ

4j



1

κ2
þ…

�
ðC3Þ

I2j−2;2jþ3
2
¼ κ2jþ3B

�
2jþ 1;

1

2

�

×
�
1þ

	
5

2
þ ð2j− 3Þðj− 1Þ

4j



1

κ2
þ…

�
ðC4Þ

I2j;2jþ5
2
¼ κ2jþ3B

�
2jþ 2;

1

2

�

×
�
1þ

	
3

2
þ jð2j− 1Þ
2ð2jþ 1Þ



1

κ2
þ…

�
: ðC5Þ

The integrals J a;b are defined as:

J a;b ≡
Zþ∞

−∞

vbsech2aþ2s · ds
ð1þ v tanh sÞb ; ðC6Þ

so that for j; n ¼ 0; 1; 2;… and v → 0 they are given by:

J jþn;2jþ2nþ2 ¼
Γð1

2
Þ

Γðjþ nþ 3
2
Þ

×
X∞

m¼jþnþ1

ΓðmÞ
Γðm − j − nÞ · v

2m;

× jþ n ¼ 0; 1;… ðC7Þ

J jþn−1;2jþ2nþ1 ¼
Γð1

2
Þ

ðjþ nÞΓðjþ nþ 1
2
Þ

×
X∞

m¼jþnþ1

ΓðmÞ
Γðm − j − nÞ · v

2m−1;

× jþ n ¼ 1; 2;… ðC8Þ

J jþn−1;2jþ2nþ2 ¼
Γð3

2
Þ

ðjþ nÞΓðjþ nþ 3
2
Þ

X∞
m¼jþnþ1

× ð2m − 1Þ ΓðmÞ
Γðm − j − nÞ · v

2m;

× jþ n ¼ 1; 2;… ðC9Þ
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