
Convergence of hydrodynamics in a rotating strongly coupled plasma

Casey Cartwright *

Department of Physics and Astronomy, University of Alabama, 514 University Boulevard, Tuscaloosa,
Alabama 35487, USA and Institute for Theoretical Physics, Utrecht University,

Princetonplein 5, 3584 CC Utrecht, The Netherlands

Markus Garbiso Amano † and Matthias Kaminski ‡

Department of Physics and Astronomy, University of Alabama, 514 University Boulevard,
Tuscaloosa, Alabama 35487, USA

Jorge Noronha § and Enrico Speranza ∥

Illinois Center for Advanced Studies of the Universe, Department of Physics,
University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA

(Received 3 February 2022; revised 28 April 2023; accepted 1 August 2023; published 18 August 2023)

We compute the radius of convergence of the linearized relativistic hydrodynamic expansion around a
nontrivially rotating strongly coupled N ¼ 4 super-Yang-Mills plasma. Our results show that the validity
of hydrodynamics is sustained and can even get enhanced for conformal field theory (CFT) in a rotating
state. Analytic equations for the hydrodynamic dispersion relations and transport coefficients of the rotating
plasma as a function of their values in a plasma at rest are given.
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I. INTRODUCTION

Relativistic hydrodynamics is a powerful tool to describe
the late time, long wavelength behavior of the strongly
coupled quark-gluon plasma (QGP) formed in ultrarelativ-
istic heavy-ion collisions [1–3]. Recent experimental results
show that certain hadrons (e.g. Lambda-hyperons) emitted in
noncentral collisions exhibit nonzero spin polarization,
which indicates that the QGP is the most vortical fluid
observed to date [4]. Despite some early successes [5], a
number of questions concerning the vorticity of the QGP still
remain, see e.g. [5–21]. One crucial aspect yet to be under-
stood is how the large angularmomentumpresent at the early
stages of the collision influences the emergence of hydro-
dynamics [22] in the presence of vorticity. A fundamental
related question is then: what is the range of validity of
hydrodynamics in a rapidly rotating strongly coupled QGP?
This is a challenging mathematical problem to answer in a

general hydrodynamic or kinetic theory setting and is
currently beyond the reach of standard first-principles
approaches [23], as it requires knowledge about the real-
time properties of QCD in the strongly coupled regime.
In this work we answer this question for a particular

solution to a well-established “toy-model” of the rotating
QGP, i.e., the strongly coupled N ¼ 4 super-Yang-Mills
(SYM) plasma at nonzero temperature and angular momen-
tum, using the gauge/gravity correspondence (holography)
[24]. This model consists of a rotating plasma of quarks and
gluons (in the adjoint representation) of N ¼ 4 SYM
theory with gauge symmetry SUðNcÞ in the limit of an
infinite number of colors, Nc → ∞, and a large (’t Hooft)
coupling constant λ. By investigating the critical points of
spectral curves as developed in Refs. [25,26], we show that
the radius of convergence of the hydrodynamic series,
which quantifies the range of validity of the (linearized)
hydrodynamic gradient expansion, remains finite at non-
zero angular momentum. The radius of convergence can
even increase for a sufficiently rapidly rotating plasma.
Furthermore, we demonstrate, in an appropriate limit, that
the transport coefficients of the rotating plasma can be
explicitly obtained from their values in the plasma at rest.

II. HOLOGRAPHIC MODEL

In order to determine the values of hydrodynamic
transport coefficients, we compute hydrodynamic modes
and correlation functions of N ¼ 4 SYM plasma with
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the holographically dual Einstein gravity S ¼
1=ð16πG5Þ

R
d5x

ffiffiffiffiffiffi−gp ðR − 2ΛÞ, where R is the Ricci
scalar, G5 is the five-dimensional gravitational Newton
constant, and Λ the cosmological constant [27,28]. A
rotating plasma is holographically dual to the rotating
black hole metric which is asymptotic to AdS5 spacetime
[29,30]. In general, such a black hole is parametrized by
two angular momenta, a and b, and it has the structure
Rt ×Rr × S3 with a time coordinate t ∈ ð−∞;∞Þ, the
radial AdS coordinate r ∈ ð0;∞Þ, rH being the event
horizon radius, and the spatial 3-sphere S3 parametrized
by angles ðθ;ϕ;ψÞ. We set b ¼ a [31] and use a coordinate
transformation (diffeomorphism) [16] yielding the rotating
metric in the form [32–34]

ds2 ¼−
�
1þ r2

L2

�
dt2þ dr2

GðrÞþ
r2

4
ððσ1Þ2þðσ2Þ2þðσ3Þ2

�

þ2μ

r2

�
dtþa

2
σ3
�

2

GðrÞ¼ 1þ r2

L2
−
2μð1−a2=L2Þ

r2
þ2μa2

r4
;

μ¼ r4þðL2þ r2þÞ
2L2r2þ−2a2ðL2þ r2þÞ

; ð1Þ

with the radius of AdS, L, the AdS radial coordinate r, the
horizon radius rþ, the one-forms σ1, σ2, σ3, which each are
known covectors that depend on ðθ;ϕ;ψÞ [16]. Throughout
this work we use natural units, c ¼ ℏ ¼ kB ¼ 1, and
G5 ¼ L3π=ð2N2

cÞ. The solution in Eq. (1) will be referred
to as the Myers-Perry (MP) black hole.

III. ROTATING EQUILIBRIUM STATE

In N ¼ 4 SYM theory, the rotating gravitational metric
solution in the large black hole limit, keeping only the
leading order in α

rþ → αrþ; r → αr; α → ∞; ð2Þ

corresponds to a rotating conformal fluid solution of the
ideal hydrodynamic equations of motion ∇μTμν ¼ 0, with
total angular momentum of magnitude J ¼ aπμ=G5 [35].
In Milne coordinates ðτ; x1; x2; ξÞ of flat Minkowski space
[36], this flow can be written as

uτ ¼ λ½cosh ξðL2 þ τ2 þ x2⊥Þ þ 2ΩðLx1 sinh ξþ τx2Þ�
u1 ¼ λ½2ðLτΩ sinh ξþ τx1 cosh ξþ x1x2ΩÞ�;
u2 ¼ λ½ΩðL2 þ τ2 − x21 þ x22Þ þ 2τx2 cosh ξ�; ð3Þ

uξ ¼ −τ−1λ½− sinh ξðL2 − τ2 þ x2⊥Þ − 2Lx1Ω cosh ξ�;
ϵ ¼ ð16L8Θ4Þð1 −Ω2Þ−2ð2L2τ2 cosh 2ξþ ðL2 þ x2⊥Þ2

þ τ4 − 2τ2x2⊥Þ−2; ð4Þ

λ ¼
�

ϵ

16L8Θ4

�
1=4

; Θ ¼
�
3ð1 −Ω2Þμ
8πG5L3

�
1=4

; ð5Þ

where Ω ¼ a=L, x2⊥ ¼ x21 þ x22, τ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 − x23

p
, ξ ¼

arctanhðx3=tÞ, and we recall that μ has dimensions L2

and Θ carries units of energy because G5 ∼ l3
P, with the

Planck length, lP. This is a specific version of the fluid
flow found in [36,37].
The flow in (3) encodes a nontrivial rotation of the fluid

and is obtained from the eigenvalue equation for the energy
momentum tensor Tμ

νuν ¼ −ϵuμ of N ¼ 4 SYM theory
computed in the large black hole limit (2) after stereo-
graphic projection from Rt × S3 to R1;3. Initially, the
energy density (coloring) is uniformly distributed in rap-
idity, see left plot in Fig. 1. With time progressing, at
τ=L ¼ 1, see center plot in Fig. 1, the energy is now
concentrated at mid-rapidity and the fluid velocity spirals
outward. Finally at τ=L, see right plot of Fig. 1, the energy
density splits into two outgoing pieces at mid-rapidity.

FIG. 1. Flow velocity vectors for different times and Ω ¼ 1=2 in the x1 − ξ plane (with x2 ¼ 0). The shading corresponds to level sets
of the energy density [where Θ is the overall energy scale introduced in (5)]. We have rescaled the energy density by a factor of
approximately 250 in the first plot, and 15 in the second plot for the ease of visualization.
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One can compute explicitly that the vorticity ωi
vor ¼

1
2
ϵijkluj∇½kul� is nonvanishing for all components. These

images demonstrate that this inhomogeneous, time-
dependent flow profile has properties which resembles
the flow expected for a quark-gluon plasma created in a
heavy-ion collision [4,36]. Note that (3) contains also
nontrivial rotations in the transverse plane, the x1 − x2
plane. Moving to Cartesian coordinates, performing a
rescaling xμ → xμ=α, and subsequently expanding around
α → ∞

uμ

α
¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − Ω2
p

�
1;
2Ωx3
αL

;Ω;−
2Ωx1
αL

�
ð6Þ

one can see directly that to leading order the fluid flow is a
uniformly boosted fluid, and the first subleading correction
is a rotation about the boost direction. The expanded fluid
velocity is displayed in Fig. 2 in Milne coordinates. The
left most panel displays the leading order contribution, the
central panel the leading plus subleading contribution,
and the right panel displays the full solution. The full
solution displayed is a zoomed in region of the central
panel of Fig. 1.
It is important to distinguish this expansion from the

large black hole limit in Eq. (2). The fluid flow presented in
Eq. (3) is obtained as the leading contribution to the energy-
momentum tensor in the large black hole limit. The
expansion taken in Eq. (6) is a separate limit meant to
understand this leading contribution to the energy-
momentum tensor which satisfies the ideal relativistic fluid
equations. Furthermore, this expansion will be highly
instructive in what follows where we will study the
behavior of fluctuations whose momentum and frequencies
scale with the horizon radius. These fluctuations will only
see the leading contribution in Eq. (6), hence they will see a
boosted fluid. However in what follows, we will consider
not only this strict large black hole limit, but also the full

MP black hole for which Eqs. (3) and (6) cease to be valid
descriptions of the behavior of the dual CFT.
To summarize, in this work, we have performed two

holographic calculations in order to determine the hydro-
dynamic convergence radius:
(1) A calculation of metric fluctuations around the large

black hole metric corresponding to the flow (3),
which have frequency and momentum parametri-
cally small compared to the temperature. See hollow
symbols in figure 3.

(2) A calculation of metric fluctuations with arbitrary
frequency and momentum around the full rotating
black hole metric given in (1) with horizon radius
rþ=L ¼ 100. See the solid symbols in Fig. 3. If we
would expand this result in inverse powers of the
horizon radius, the case 1. would be the leading
order of this full calculation.

FIG. 2. Flow velocity vectors withΩ ¼ 1=2 in the x1 − ξ plane (with x2 ¼ 0 and τ=L ¼ 1). Left: Leading order. Center: Leading order
plus subleading order. Right: Full solution (center panel of Fig. 1 zoomed in).

FIG. 3. The convergence radius, Rc, of the hydrodynamic
expansion as a function of the angular momentum parameter
a=L. Hollow shapes indicate the value in the strict large black
hole limit, while solid shapes indicate the value in the full MP
black hole with horizon radius rþ=L ¼ 100.
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IV. HYDRODYNAMIC MODES

In this work, we are interested in hydrodynamic modes,
i.e., modes which have a vanishing frequency at vanishing
momentum. These hydrodynamic modes on the gravity
side correspond to a subset of the quasinormal modes
(QNMs) of metric fluctuations around the rotating back-
ground (1). Consider the metric fluctuations around (1),
which satisfy the linearized Einstein equations [38]

Ṙμν ¼
2Λ

D − 2
hμν; ð7Þ

where

Ṙμν ¼ −
1

2
∇μ∇νh −

1

2
∇λ∇λhμν þ∇λ∇ðμhνÞλ;

and h ¼ hμμ ¼ hνμgμν. The diffeomorphism-covariant
derivatives are defined with respect to the background
metric (1). The rotating black hole metric (1) has a spatial
SUð2Þ × Uð1Þ symmetry such that Wigner-D functions,
DJ

KMðθ;ϕ;ψÞ, form an orthonormal basis on the S3. This is
similar to the more familiar spherical harmonics on S2.
Hence, we choose to expand all metric fluctuations in terms
of Wigner-D functions.
The fluctuation equations (7) can be separated into three

sectors which decouple because of their different Wigner-
charges: the tensor sector contains hþþ with K0 ¼ J þ 2,
the momentum diffusion sector contains hþt; hþ3 withK0 ¼
J þ 1 (hþþ will decouple in the large black hole limit
we will consider), while the sound sector contains
hþ−; htt; ht3; h33 with K0 ¼ J (hþþ; hþ3; hþt will decouple
in the large black hole limit), in radial gauge hμr ≡ 0. This
yields the following form for the vector fluctuations, see
[39] for the distinction between K0 and K (see
Supplemental Material [40] for tensor and scalar fluc-
tuation ansatz)

hVμν ≡ e−iωτr2ðhþþðrÞσþμ σþν DJ
ðJ−1ÞM

þ 2ðhþrðrÞσþðμσrνÞ þ hþtðrÞσþðμσtνÞ
þ hþ3ðrÞσþðμσ3νÞÞDJ

JMÞ; ð8Þ

where we chose a convenient frame basis σ� ¼
1
2
ðσ1 ∓ iσ2Þ, indicated by the frame index þ. One may

write the Wigner-D functions as

DJ
KMðθ;ϕ;ψÞ ¼ e−iðMϕþKψÞdJKMðθÞ; ð9Þ

revealing the two Fourier-like exponential factors associat-
ing M with ϕ and K with ψ .
Each sector can be considered separately, which is

reminiscent of the standard procedure considering e.g.
sound modes separately from shear diffusion modes in

the nonrotating fluid. Due to time-translation invariance
the time-derivative can be replaced by its eigenvalue,the
frequency through a Fourier transformation hμνðτÞ ∝
e−iωτhμνðωÞ: ∂τhμν ¼ −iωhμν, as usual. Similarly, the spatial
partial derivatives can be replaced by the eigenvalues of the
Wigner-D functions as follows [32–34]

∂þD
J
KM ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðJ þKÞðJ −Kþ 1Þ

p
DJ

K−1M;

∂−D
J
KM ¼ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðJ −KÞðJ þKþ 1Þ

p
DJ

Kþ1M;

∂3D
J
KM ¼ −iKDJ

KM; ð10Þ

where ∂� ¼ e�μ
∂μ, ∂3 ¼ e3μ∂μ, with orthonormal frame

covectors, σ� ¼ 1
2
ðσ1 ∓ iσ2Þ. So, for example, ∂ψ ¼

σaψ∂a ¼ ∂3 and, thus, ∂ψD
J
KM ¼ −iKDJ

KM.
As a result of the steps above, the fluctuation equations

in a given sector (sound, momentum diffusion, or tensor)
depend only on J , r, and ω (not onM, K or on ∂θ; ∂ϕ; ∂ψ ).
The fluctuation equations in the momentum diffusion
sector and sound sector are each still complicated sets of
coupled differential equations relating three or seven fields,
respectively. For illustration, the set of shear diffusion
equations is provided in the Supplemental Material [40],
Eq. (24). The large black hole limit will simplify them and
give rise to a powerful boost symmetry.

V. LARGE BLACK HOLE LIMIT

In the hydrodynamic regime temperature is large, hence,
we consider large AdS black holes for which the temper-
ature increases monotonically with the horizon radius rþ.
As a side effect, these black holes are safe from all known
instabilities [16,32–34]. We impose this limit on the level of
the metric fluctuation equations scaling the frequency and
the angular momentum of the fluctuation

ω → 2ανrþ=L; J → αjrþ=L; α → ∞; ð11Þ

simultaneously with the black hole horizon radius and
radial coordinate limit given by (2), keeping leading order
terms in α. This may be visualized as zooming in on a small
patch of the S3 located at a large radius. Locally, this patch
appears noncompact to fluctuations with long wavelengths,
i.e., small ν, j ≪ 1 in the limit (11). In this limit, using
standard properties [41], also the third angle, θ, in the
Wigner-D function is associated with a combination of
eigenvalues PðJ ;K;MÞ, such that DJ

KMðθ;ϕ;ψÞ ∝
exp½−iðMϕþKψ þ PθÞ�. This closely resembles the
Fourier modes exp½iðkxxþ kyyþ kzzÞ� in noncompact
Minkowski space and signals the emergence of translation
and boost invariance with the effective boundary geometry
now being R3;1 ∼ Rt ×R3.
This leads to the decoupling of several fluctuations, as

pointed out above. Furthermore, all fluctuation equations
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around the rotating black hole can now be transformed into
their form in a black hole at rest (originally stated in
[27,28]) by using suitable master fields and the following
boost [42] transformation [16]:

q2 ¼ ðaνþ jÞ2
1 − a2

; w2 ¼ ðνþ ajÞ2
1 − a2

: ð12Þ

Specifically, the four coupled shear diffusion equations
reduce to a single equation, namely the shear diffusion
fluctuation equation in a nonrotating fluid [43], see the
Supplemental Material [40]. The sound sector fluctuation
equations with (12) reduce similarly to the single master
field equation in a nonrotating fluid given in [43].
In summary, the frequencies and momenta of hydro-

dynamic modes in our rotating fluid can be analytically
computed from the known [43] hydrodynamic modes in a
fluid at rest. This analytic relation is the Lorentz boost
transformation (12).

VI. CRITICAL POINTS AND HYDRODYNAMIC
CONVERGENCE

Recent insights gained from the analysis of critical
points of spectral curves provide a means to determine
the radius of convergence of the hydrodynamic series in the
linear regime [25,26,44–47]. In hydrodynamics the spectral
curve arises from the determinant of a system of hydro-
dynamic fluctuation equations that encode the hydrody-
namic dispersion relations. Hence, the spectral curves are
implicit functions of frequency and momentum, i.e.,
Pðw; q2Þ ¼ 0, where q2 ¼ q⃗ · q⃗.
Critical points of spectral curves can be used to deter-

mine the radius of convergence of the hydrodynamic
gradient expansion in complex momentum space
[48,49]. A subset of critical points are branch points from
the point of view of complex analysis and, thus, the
hydrodynamic dispersion relation of a given mode is not
analytic at such critical points. The hydrodynamic expan-
sion is performed about the origin of complex momentum
space, w ¼ 0; q⃗ ¼ 0. Hence, those branch points closest to
that origin determine the radius of convergence of the
expansion.
However, not all of the critical points of a spectral curve

are branch points or any other type of singularity [46].
Hence, in general the radius of convergence based on the
nearest critical point is a lower bound for the actual radius
of convergence [50]. More precisely, considering the
complex q⃗-space, the distance of the magnitude-wise
smallest critical momentum from the origin, Rc ¼ jq⃗cj, is
a lower bound on the radius of convergence.
Critical points are defined as those frequencies w and

momenta q which satisfy the constraints

Pðw; qÞjðwc;qcÞ ¼ 0; ∂wPðw; qÞjðwc;qcÞ ¼ 0; ð13Þ

where P is a complex-valued function of the complex-
valued frequency and momentum ðw; qÞ ∈ C2, and
ðwc; qcÞ denotes a discrete set of critical points of the
spectral curve. Note, we have used rotation invariance to let
the fluctuation travel in one single momentum-direction, q.
As an example, consider the analytically continued shear
diffusion mode defined by the spectral curve

Pshearðw; qÞ ¼ wþ iq2Dðw; qÞ þOðq4Þ; w; q ∈ C;

ð14Þ

with the diffusion coefficient D, which in general is a
function of the complex momentum. To leading order in
derivatives, this encodes the familiar form of the shear
mode dispersion relationwðq2Þ ¼ −iDq2 þOðq4Þ, with all
quantities analytically continued to be complex-valued.
For the actual rotating QGP formed in heavy-ion

collisions, the hydrodynamic spectral curve P is not known.
Thus, we here consider the spectral curve of a rotatingN ¼
4 SYM plasma, in the nontrivial time- and space-dependent
equilibrium state shown in Fig. 1, as a substitute for the
spinning QGP. In that SYM plasma at rest (a ¼ 0) the
critical points closest to the origin of complex momentum
space were found numerically [25], as an example in the
sound channel,

wc ≈�1 − i; q2c ≈�2i ðsoundÞ: ð15Þ

These are calculated from the holographically defined
spectral curve Pðw; qÞ ¼ 0, where P is the determinant
of all possible metric fluctuations evaluated at the AdS-
boundary [26], see the Supplemental Material [40].

VII. CRITICAL POINTS IN THE LARGE
BLACK HOLE LIMIT

In the rotating case, the spectral curve can be expressed
as Pðν; jÞ ¼ 0 in terms of the frequency, ν, and angular
momentum variable, j. Here, P is the determinant of the
metric fluctuations (8) and (33) evaluated at the AdS-
boundary. Here we used the fact that the large black hole
limit, (2) and (11), implies that the fluctuations depend only
on one of the three possible momentum directions, which
leads us to consider critical points in one momentum-
direction only. This can be rewritten in terms of the
nonrotating quantities as Pðν; jÞ ¼ P̄ðw; qÞ, using (12) in
the invertible form j ¼ q−awffiffiffiffiffiffiffiffi

1−a2
p and ν ¼ w−aqffiffiffiffiffiffiffiffi

1−a2
p . Thus, the

critical point condition in the rotating plasma is given by

Pðν; jÞ ¼ 0 ⇔ P̄ðw; qÞ ¼ 0; ð16aÞ

∂νPðν; jÞ ¼ 0 ⇔ ∂wP̄ðw; qÞ þ a∂qP̄ðw; qÞ ¼ 0: ð16bÞ

We have used the conditions on the nonrotating spectral
curve P̄ðw; qÞ, given on the right side of (16a) and (16b), in
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order to obtain Fig. 3. This method was verified by a second
calculation in which we explicitly calculate numerically the
closest critical point in our rotating system using the left
side of (16a) and (16b) on the rotating spectral curve
Pðν; jÞ ¼ 0.
The resulting lower bound on the radius of convergence

Rc ¼ jjcj for each sector is given in Fig. 3. In the sound
sector (squares), the radius first increases at small angular
momentum a=L < 0.075, then it decreases to a minimum
at a=L ≈ 0.75. In the shear diffusion sector (circles in
Fig. 3), Rc decreases monotonously to a minimum at
a=L ≈ 0.6. This shows that the radius of convergence for
the sound (shear diffusion) modes may drop at worst to
approximately 60% (35%) of its value in a nonrotating
fluid. For large angular momentum beyond their respective
minima, a > amin, the radius of convergence of the hydro-
dynamic expansion increases monotonously and quickly in
both, sound and shear sector. The convergence is enhanced
for all hydrodynamic modes in a rapidly rotating fluid with
a=L > 0.95 [51].

VIII. CRITICAL POINTS IN GENERAL

In the large black hole limit the radius of convergence of
the hydrodynamic series is the same as that of a boosted
fluid. However, as seen in Eq. (6), rotational corrections to
the fluid velocity occur away from the strict large black
hole limit. Hence to investigate this case we cannot simply
keep the leading term in a series around rþ → ∞, rather we
must include all terms in the equations. Naturally, this
suggests how we can systematically move away from the
large black hole limit as we can consider solutions for the
critical points as a function of the horizon radius. While
computationally more complex (see the Supplemental
Material [40] where we briefly detail the computational
method), the spectral curve and the condition to obtain
critical points is still defined as

Pðν; jÞ ¼ 0 ∂νPðν; jÞ ¼ 0 ð17Þ

the major difference now is that we may not use a Lorentz
boost as defined in Eq. (12) to relate the frequency, ν, and
momentum, j, to their values at rest. Remarkably, however,
as seen in Fig. 4, the finite radius corrections have little
effect. As already shown in [16], the quasinormal mode
spectrum behaves hydrodynamically for black hole radii
rþ=L ≈Oð102Þ. Hence, the large black hole limit, in a
sense, is a hydrodynamic limit of the rotating AdS black
hole solution. And, it is precisely in this limit that the
geometry may be considered to be a boosted black brane.
Here we have discovered that the quasinormal modes,
which are also critical points, also already behave hydro-
dynamically for black hole radii rþ=L ≈Oð102Þ. This is
displayed in Fig. 4 where we have plotted the ratio of the
radius of convergence of the series at finite rþ to radius of
convergence of the series in the strict rþ → ∞ limit. Given

that this quantity is very close to unity, to see the deviation,
we consider the difference between this quantity and unity.
Appreciable differences (on the percent level) in the radius
of convergence only begin to appear for rþ=L ≈Oð102Þ.
There is, however, a further effect which more severely

limits the radius of convergence of the hydrodynamic series
away from the large black hole limit. The sectors which can
be defined for the MP black hole are defined as tensor,
shear, and scalar. The shear sector contains an interaction
with the tensor sector and scalar sector contains interactions
with the shear and tensor sector (the example of the
decoupling of the shear sector is displayed in the
Supplemental Material [40]). In the large black hole limit
Eq. (2) these interactions are subleading and the sectors
decouple. Hence, away from the large black hole limit one
must consider the effect of the additional sectors. For
example, the spectral curve of the shear sector now contains
interactions with tensor sector. While the tensor sector does
not contain any modes which can be considered as “hydro-
dynamic,” it does also contain critical points and these
points are closer to the origin in the complex momentum
plane. This is reflected in the radius of convergence as
displayed as the solid shapes in Fig. 3. While the radius of
convergence is still a nonzero finite value, its behavior has
changed dramatically as a result of the appearance of the
inter-sector couplings.

IX. TRANSPORT COEFFICIENTS

At nonzero angular momentum, transport coefficients
split into the ones which measure transport along the
angular momentum (longitudinal) and the ones measuring
transport perpendicular to it (transverse). This is similar to
the case of a charged plasma in the presence of a magnetic
field, see [52–55]. Transport coefficients in a fluid at rest

FIG. 4. The deviation of the convergence radius, Rc, of the
hydrodynamic expansion as a function of the horizon radius
normalized to its value in the large black hole limit. The various
points represent different values of the angular momentum
parameter a=L. The vertical width of the bands displays the
“strength” of rotational effects on the radius of convergence. The
plot markers are the same as those used in Fig. 3.
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have been extracted from the dispersion relations of the
hydrodynamic QNMs [43]. We compute the dispersion
relations in a rotating fluid using the transformation (12).
We also calculate the QNMs directly in the rotating fluid
and confirm that the results agree. For example, when
applying (12) the shear diffusion mode dispersion relation
in a fluid at rest given in [43], wðqÞ ¼ −iq2=2þOðq3Þ,
becomes

shear∶ νðjÞ ¼ −aj − i
1

2
ð1 − a2Þ3=2j2 þOðj3Þ; ð18Þ

where we now set L ¼ 1 for ease of notation for the
remainder of this section. The sound diffusion dispersion
relation is obtained in the same way

sound∶ νðjÞ ¼ �1 −
ffiffiffi
3

p
affiffiffi

3
p ∓ a

j − i
ffiffiffi
3

p ð1 − a2Þ3=2
ð ffiffiffi

3
p

− aÞ3 j
2 þOðj3Þ:

ð19Þ

From these computations, the following generalized rela-
tions are found for the longitudinal diffusion coefficient,
Djj, which turns into a damping of a mode now propagating
with the speed of shear vjj, two modified speeds of sound
vs;� and two sound attenuation coefficients Γ�:

vjj ¼ a; vs;� ¼ vs;0

ffiffiffi
3

p
a� 1

1� affiffi
3

p ; ð20Þ

Djj ¼ D0ð1 − a2Þ3=2; Γs;� ¼ Γ0

ð1 − a2Þ3=2�
1� affiffi

3
p
�
3
; ð21Þ

where for the holographic model the quantities at vanishing
angular momentum, a ¼ 0, are: D0 ¼ 1=2, vs;0 ¼ 1=

ffiffiffi
3

p
,

and Γ0 ¼ 1=3. Meanwhile, the two shear viscosities, η⊥
and ηjj were computed in [16] from the corresponding
energy-momentum tensor two-point functions, according
to the recipe [27,28]

η⊥ðaÞ ¼ η0
1ffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − a2
p ; ηjjðaÞ ¼ η0

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − a2

p
; ð22Þ

and the shear viscosity at a ¼ 0 is given by η0 ¼ N2πT3
0=8.

These quantities are related to each other by generalizations
of their a ¼ 0 Einstein relations

DjjðaÞ ¼ 2πT0

ηjjðaÞ
ϵðaÞ þ P⊥ðaÞ

;

Γ�ðaÞ ¼
2ηjjðaÞ

3ðϵðaÞ þ P⊥ðaÞÞ
1

ð1� a=
ffiffiffi
3

p Þ3 : ð23Þ

and the bulk viscosity ζðaÞ ¼ 0 in our conformal plasma.

X. DISCUSSION

We have computed two main results for rotating N ¼ 4
SYM plasma: (i) The radius of convergence, which
quantifies the range of validity of the hydrodynamic
gradient expansion, remains nonzero at nonzero angular
momentum and eventually increases for fluids with suffi-
ciently large angular momentum (as one approaches
extremality in the bulk theory), see Fig. 3. (ii) The values
of the shear diffusion, shear viscosity, speed of shear
propagation, speed of sound, sound attenuation in the
rotating plasma are given analytically as a function of their
values in the fluid at rest and as a function of the fluid
angular momentum, see Eqs. (20)–(23).
Our analysis reveals new aspects about the domain of

applicability of hydrodynamics by determining the fate of
the hydrodynamic series in a quantum system undergoing
rapid rotation. This is the first time such a study has been
performed at nonzero angular momentum, both in non-
relativistic and relativistic systems. In fact, different than
previous works which employed a constant and uniform
equilibrium state in relativistic systems [25,26,44,56–58],
here the convergence analysis is performed in a nontrivial
time- and space-dependent flow [59]. Assuming our results
can be used as a proxy for the rapidly rotating QGP formed
in heavy-ion collisions, our work indicates that hydro-
dynamics remains a good approximation to describe the
evolution of this system even when it is subjected to
gradients that can be already large enough to spoil the
hydrodynamic expansion of its nonrotating counterpart. As
such, these results provide useful guidance for future
hydrodynamic simulations of heavy-ion collision with
nonzero angular momentum.
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