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Pole skipping has been discussed in black-hole backgrounds, but we point out that pole skipping
exists even in a non-black-hole background, the anti–de Sitter soliton. For black holes, the pole-skipping
points are typically located at imaginary Matsubara frequencies ω ¼ −ð2πTÞni with an integer n.
The anti–de Sitter soliton is obtained by the double Wick rotation from a black hole. As a result, the
pole-skipping points are located at qz ¼ −ð2πnÞ=l, where l is the S1 periodicity and qz is the S1

momentum. The “chaotic” and the “hydrodynamic” pole-skipping points lie in the physical region. We also
propose a method to identify all pole-skipping points instead of the conventional method.
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I. INTRODUCTION AND SUMMARY

Retarded Green’s functions play fundamental roles in
physics, and considerable knowledge has been accumu-
lated over the years. However, surprisingly, a new universal
feature of Green’s functions are found using the AdS=CFT
duality or holographic duality [1–4] (see, e.g., Refs. [5–10]).
This feature is known as pole skipping [11–15]. Since then,
various aspects of pole skipping have been investigated
(see, e.g., Refs. [16–39]).
Typical bulk perturbation problems are the scalar field,

the Maxwell field, and the gravitational field. Dual Green’s
functions are not uniquely determined at “pole-skipping
points” in the complex momentum space ðω; qÞ where ω is
the frequency and q is the wave number. Near a pole-
skipping point, Green’s function typically takes the form

GR ∝
δωþ δq
δω − δq

: ð1:1Þ

In this sense, Green’s function is not uniquely determined,
and it depends on the slope δq=δω how one approaches the

pole-skipping point. The hydrodynamic pole is an elemen-
tary example. For example, the sound mode behaves as

GR ∝
q2

3ω2 − q2
→

δðq2Þ
3δðω2Þ − δðq2Þ : ð1:2Þ

From the bulk point of view, pole skipping occurs because
the bulk solution is not uniquely determined there.
There is a universality for the pole-skipping points ω.

In these examples, the pole-skipping points are located
at Matsubara frequencies.1 The pole-skipping points start
from w ≔ ω=ð2πTÞ ¼ ðs − 1Þi (s is the spin of the bulk
field) and continue town ¼ ðs − 1 − nÞi for a non-negative
integer n. Namely, for the scalar field, they start from
w1 ¼ −i. For the Maxwell field, they start from w0 ¼ 0,
which is the hydrodynamic pole. In the gravitational sound
mode, they start fromw−1 ¼ þi. It is argued that thew−1 ¼
þi point is related to many-body quantum chaos [40–44].
Pole skipping was first found in the context of holo-

graphic chaos [11,12], so one naturally has studied pole
skipping at a finite temperature or in a black-hole back-
ground. However, an analogous phenomenon was found
even in an elementary quantum mechanics problem [33], so
one may discuss the phenomena in a broader context.
In this paper, we study pole skipping in a non-black-hole

geometry, the anti–de Sitter (AdS) soliton [45]. The AdS
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1A rotating black hole is an exception [28]. For the rotating
Bañados-Teitelboim-Zanelli black hole, the pole-skipping points
ω depend on the left-moving temperature TL, the right-moving
temperature TR, and the conformal dimension Δþ of the dual
boundary operator.
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soliton is obtained by the double Wick rotation from the
AdS black hole (Sec. III). The AdS soliton is not a black
hole. The geometry has a compact S1-direction z with
periodicity l, and the geometry ends smoothly at the
“horizon.” The AdS black hole describes the plasma phase
of a large-Nc gauge theory, whereas the AdS soliton
describes the confining phase.
Our results are summarized as follows:
(1) Because of the double Wick rotation, the universal-

ity of the pole-skipping points ω is translated
to the universality of the pole-skipping points qz ≔
qz=ð2π=lÞ, where qz is the wave number in the
S1-direction z.

(2) The pole-skipping points start from qz ¼ ðs − 1Þ and
continue to qz ¼ −n. While some pole-skipping
points lie in the physical region (Sec. IV), most
pole-skipping points do not lie in the physical
region. The former corresponds to the pole-skipping
points in the upper-half ω-plane in the black-hole
case, namely the “chaotic” mode and the “hydro-
dynamic” mode. Of course, the AdS soliton is not a
black hole, so the chaotic mode does not imply a
chaotic behavior.

(3) Because qz is the S1 momentum, there is also the
mirror image of the pole-skipping tower. Namely,
they start from qz ¼−ðs−1Þ and continue to qz ¼ n.

We discuss the bulk scalar field, the Maxwell field, and the
gravitational field. There is a conventional pole-skipping
method, but we propose an alternative method in order
to analyze the pole skipping systematically (Sec. II). The
conventional method requires a separate treatment for the
chaotic and hydrodynamic pole skippings, but our method
covers them as well. The perturbation problems in the AdS
soliton with qz ≠ 0 are little discussed in the literature, and
our work is interesting from this point of view as well.

II. POLE SKIPPING

In this section, we briefly review pole skipping in the
context of the Schwarzschild-AdS5 (SAdS5) black hole:

ds25 ¼ r2ð−fdt2 þ dx2 þ dy2 þ dz2Þ þ dr2

r2f
ð2:1aÞ

¼ r20
u
ð−fdt2 þ dx2 þ dy2 þ dz2Þ þ du2

4u2f
; ð2:1bÞ

f ¼ 1 −
�
r0
r

�
4

¼ 1 − u2; ð2:1cÞ

where u ≔ r20=r
2. For simplicity, we set the AdS radius

L ¼ 1 and the horizon radius r0 ¼ 1. The Hawking
temperature is given by πT ¼ r0=L2.

We consider the perturbation of the form

ZðuÞe−iωtþiqx: ð2:2Þ

Near the horizon, the field equation typically takes the form

0 ∼ Z00 þ 1

u − 1
Z0 þ w2

4ðu − 1Þ2 Z ðu → 1Þ; ð2:3Þ

where 0 ¼ ∂u and w ≔ ω=ð2πTÞ ¼ ω=2, so the solution
behaves as

Z ∝ ðu − 1Þ�iw=2: ð2:4Þ

As usual, we impose the “incoming-wave” boundary
condition at the horizon, so we set the ansatz

Z ¼ ðu − 1Þ−iw=2Z̃: ð2:5Þ

As a typical example of pole skipping, we consider the
field equation of the form

0 ¼ Z̃00 þ PðuÞZ̃0 þQðuÞZ̃: ð2:6Þ

The horizon u ¼ 1 is a regular singularity, and P and Q are
expanded as

P ¼ P−1

u − 1
þ P0 þ P1ðu − 1Þ þ � � � ; ð2:7aÞ

Q ¼ Q−1

u − 1
þQ0 þQ1ðu − 1Þ þ � � � : ð2:7bÞ

One typically has P−1 ¼ 1 − iw and Q−1 ¼ Q−1ðw; q2Þ,
where q ≔ q=ð2πTÞ.
We first review a conventional method [14] and then

propose an alternative method.

A. Conventional method

The solution can be written as a power series:

Z̃ðuÞ ¼
X
n¼0

anðu − 1Þnþλ: ð2:8Þ

Substituting this into the field equation, one obtains the
indicial equation at the lowest order:

λ ¼ 0; 1 − P−1: ð2:9Þ

The coefficient an is obtained by a recursion relation. The
mode with λ ¼ 0 (λ ¼ 1 − P−1 ¼ iw) represents the
incoming (outgoing) mode, and we choose the incoming
mode λ ¼ 0 hereafter.
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To obtain pole-skipping points systematically, write the
rest of the field equation in a matrix form [14]:

0 ¼ MZ̃ ð2:10aÞ

¼

0
B@

M11 M12 0 0 � � �
M21 M22 M23 0 � � �
� � � � � � � � � � � � � � �

1
CA
 a0

a1
� � �

!
: ð2:10bÞ

One can show that Mn;nþ1¼nðn−1þP−1Þ¼nðn− iwÞ.
The matrixMðnÞ is obtained by keeping the first n rows and
n columns of M. The pole-skipping points are obtained by

Mn;nþ1ðwnÞ ¼ 0; detMðnÞðwn; qnÞ ¼ 0: ð2:11Þ

For example, consider the first row:

0 ¼ M11a0 þM12a1 ¼ Q−1a0 þ P−1a1 ¼ 0: ð2:12Þ

Normally, this equation determines a1 from a0. However,
when M12 ¼ M11 ¼ 0 or P−1 ¼ Q−1 ¼ 0, both a0 and a1
are free parameters, and the bulk solution is not uniquely
determined.
Similarly, whenM23 ¼ detMð2Þ ¼ 0, a0 and a2 become

free parameters. One gets

M23 ¼ 2ð2 − iwÞ ¼ 0; ð2:13aÞ

detMð2Þ ¼ Q−1ðQ−1 þ P0Þ − P−1Q0 ¼ 0: ð2:13bÞ

As is clear from the construction, one can find pole-
skipping points only in the lower-half ω-plane wn ¼
−inðn > 0Þ in this method. The chaotic pole-skipping
n ¼ −1 and the hydrodynamic pole-skipping n ¼ 0 need
a separate treatment as pointed out in Ref. [14]. In the next
subsection, we propose an alternative method where one
can find all pole-skipping points wn ¼ −inðn ≥ −1Þ.

B. Alternative method

1. The formalism

We start to write the field equation in a matrix form:

0 ¼ X⃗ 0 −MX⃗; ð2:14aÞ

X⃗ ≔
�

Z̃

Z̃ 0

�
; ð2:14bÞ

M ≔
�

0 1

−Q −P

�
: ð2:14cÞ

The matrix M can be expanded as

M ¼ M−1

u − 1
þM0 þM1ðu − 1Þ � � � : ð2:15Þ

The solution can be written as a power series:

X⃗ ¼
X
n¼0

a⃗nðu − 1Þnþλ: ð2:16Þ

Substituting this into the field equation, at the lowest order,
one obtains

0 ¼ ðλ −M−1Þa⃗0: ð2:17Þ

This indicial equation is an eigenvalue equation for M−1.
The eigenvalue and the eigenvector of M−1 are

λ ¼ 0; a⃗0 ¼
�

1

b1

�
; b1 ¼ −

Q−1

P−1
; ð2:18aÞ

λ ¼ iw − 1; a⃗0 ¼
�
0

1

�
: ð2:18bÞ

The mode with λ ¼ 0 (λ ¼ iw − 1) represents the
incoming (outgoing) mode, and we choose the incoming
mode λ ¼ 0 hereafter.
In this matrix formalism, one looks for the points where

the coefficient a⃗n becomes ambiguous. The functions P−1
and Q−1 are polynomials in ðw; q2Þ, so b1 is a rational
function of ðw; q2Þ. Then, b1 becomes ambiguous or
becomes 0=0 when P−1 ¼ Q−1 ¼ 0. Then, the bulk sol-
ution is not uniquely determined because the coefficient of
the Frobenius series becomes ambiguous. This agrees with
the first pole-skipping point in the conventional formalism
in the last subsection.
Once one obtains a⃗0, a⃗n is obtained recursively:

ðλþ n −M−1Þa⃗n ¼
Xn−1
k¼0

Mn−1−ka⃗k; ð2:19Þ

with λ ¼ 0.
For example, at the next order,

ð1 −M−1Þa⃗1 ¼ M0a⃗0; ð2:20aÞ

a⃗1 ¼
�

b1
2b2

�
; ð2:20bÞ

2b2 ¼
Q−1ðQ−1 þ P0Þ − P−1Q0

P−1ðP−1 þ 1Þ : ð2:20cÞ
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Thus, b2 becomes ambiguous when

P−1 þ 1 ¼ 0; Q−1ðQ−1 þ P0Þ − P−1Q0 ¼ 0: ð2:21Þ

This agrees with the second pole-skipping point in the
conventional method (2.13).
In general, the coefficient a⃗n can be written as

a⃗n ¼
�

bn
ðnþ 1Þbnþ1

�
ð2:22Þ

with b0 ¼ 1. The pole-skipping condition is

bnðwn; qnÞ ¼
0

0
: ð2:23Þ

2. Advantages

The matrix formalism has two advantages compared
with the conventional method.
First, as discussed above, this formalism gives the

equivalent results to the conventional formalism, but there
are important exceptions. When Q−1 ¼ 0=0, b1 becomes
ambiguous as well. This is the case for the chaotic pole
skipping and the hydrodynamic pole skipping. We show
this explicitly in the context of the AdS soliton (Sec. IV).
Of course, to obtain all pole-skipping points, one would use
the conventional formalism and impose the condition
Q−1 ¼ 0=0 separately. But in this matrix formalism, all
pole-skipping points are included naturally.
Namely, there are two kinds of pole skipping:
(1) The first one is the pole skipping in the lower-half ω-

plane. It comes from the fact that field equations
have a regular singularity at the horizon. In the
conventional method, two roots of the indicial
equation are λ ¼ 0; iw. λ depends on w because
of a regular singularity, and the pole skipping occurs
when they differ by an integer.

(2) The second one is the pole skipping in the upper-half
ω-plane, namely the chaotic and hydrodynamic pole
skipping. In this case, the coefficients of the field
equations themselves partly have the 0=0 structure.

Second, the conventional method is applicable if one can
find a master equation, but the matrix formalism is
applicable even if one cannot find a master equation:
(1) It is often not easy to find a master field.
(2) Even if one finds a master field, the choice of a

master field is not unique. This is particularly
problematic for the pole-skipping analysis. As dis-
cussed in Appendix D, one is not able to find some
pole-skipping points if one chooses a different
master variable.

The matrix formalism does not have such disadvantages. In
perturbation problems, one typically has coupled first-order

differential equations with a multiple number of variables.
For example, the Maxwell scalar mode (Sec. IV C 2)
consists of two coupled first-order differential equations
with two variables ðAz;AuÞ. In this case, it is easy to find
the master equation for the master field Az. But if one
chooses the master field Au, one is not able to find the
hydrodynamic pole-skipping (Appendix D).
In this case, it is not really necessary to use a master

equation. It is enough to rewrite the coupled equations in a
matrix form setting X⃗ as

X⃗ ≔
�
Az

Au

�
: ð2:24Þ

3. A subtlety

There is a subtlety to use the matrix formalism for higher
n. For example, consider b2. In general, b2 takes a
complicated form, and its numerator may have an acci-
dental zero at the first pole-skipping point n ¼ 1. Such
points are not pole-skipping points and should be excluded.
In fact, one can easily check that the eigenvector a⃗1 does
not have the slope dependence. a⃗1 is given by

a⃗1 ¼
�

b1
2b2

�
; ð2:25Þ

and b1 determines the first pole-skipping point. The
accidental zero is not included in b1, so b1 diverges there.
Also, such accidental ones in general do not appear at
higher orders. We show this explicitly in the context of the
AdS soliton (Sec. IV). To avoid them, a simple rule is

Find bn ¼ 0=0 at wn;

and one should not consider smaller n because the fake
ones appear.
We end this section with a list of first pole-skipping points:
(1) Massive scalar: ðw; q2Þ ¼ ð−i;−ð6þm2Þ=4Þ.
(2) Maxwell vector: ðw; q2Þ ¼ ð−i;−1=2Þ.
(3) Maxwell scalar: ðw; q2Þ ¼ ð0; 0Þ; ð−i;þ1=2Þ.
(4) Gravitational vector (shear):

ðw; q2Þ ¼ ð0; 0Þ, (−i, 3=2).
(5) Gravitational scalar (sound):

ðw; q2Þ ¼ ðþi;−3=2Þ, (0, 0), (−i, ð1� 2
ffiffiffi
2

p
iÞ=2).

The above results can be obtained from the master equations
by Kovtun and Starinets [46] (Appendix A).

III. AdS SOLITON

The SAdS5 black hole is given by Eq. (2.1). We now
compactify the z-direction as 0 ≤ z < l. However, the
compactified solution is not the only geometry with
asymptotic geometry R1;2 × S1. The AdS soliton is also
the solution with the same asymptotic geometry. The AdS
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soliton is obtained by the double Wick rotation from the
SAdS5 black hole:

t ¼ iẑ; t̂ ¼ iz: ð3:1Þ

Then, the metric becomes

ds25 ¼
r20
u
ð−dt̂2 þ dx2 þ dy2 þ fdẑ2Þ þ du2

4u2f
; ð3:2Þ

with f ¼ 1 − u2. We set r0 ¼ 1.
For the SAdS5 black hole, the imaginary time direction

has the periodicity β ¼ π=r0 to avoid a conical singularity.
Similarly, for the AdS soliton, ẑ has the periodicity
l ¼ π=r0. The AdS soliton is not a black hole. Rather,
it has a cigarlike geometry, and the geometry ends smoothly
at u ¼ 1 because of the factor f just as the Euclidean
black hole. We focus on the asymptotically AdS5 geometry,
but the generalization to the other dimensions is straight-
forward.
The SAdS5 black hole describes the plasma phase,

whereas the AdS soliton describes the confining phase.
Some evidences are
(1) The spectrum has a mass gap [3,47,48].
(2) The quark-antiquark potential is linear and describes

the confining potential.
(3) The SAdS5 black hole has entropy density

s ∼OðN2
cÞ, whereas the AdS soliton has s ∼ 0 at

leading order in Nc because it is not a black hole.
See Appendix B for more details.
For the SAdS5, there is a SOð3Þ invariance for the

boundary direction ðx; y; zÞ, so one can set the perturbation
of the form

ϕðuÞe−iωtþiqx ð3:3Þ

without loss of generality. For the AdS soliton, the
invariance is broken due to the S1-direction z, so we
consider the perturbation of the form

ϕðuÞe−iω̂ t̂þiqxxþiq̂zẑ: ð3:4Þ

However, there is a remaining SOð1; 2Þ invariance for
ðt̂; x; yÞ, so ω̂ and qx appear only in the combination
p2 ≔ −ω̂2 þ q2x.
Because the z-direction is compact, q̂z physically takes

only a discrete value:

q̂z ¼
2πn
l

or qz ≔
q̂z
2π
l

¼ n ð3:5Þ

for an integer n. But we make it continuous. Such a
treatment is often done in the pole-skipping literature. For
example, the Bañados-Teitelboim-Zanelli black hole has a
compact S1-direction x, but one makes it noncompact for

the pole-skipping analysis. It is similar in spirit to the
S-matrix approach: even though the angular momentum l is
discrete physically, one analytically continues to the whole
complex l-plane.

A. Expected results

The double Wick rotation t ¼ iẑ, t̂ ¼ iz means that

iq̂z ¼ ω; iqz ¼ ω̂: ð3:6Þ

Namely, the role of ω and qz is exchanged. Thus, one
expects that
(1) There is no universality for ω̂ at pole-skipping

points. Rather, there is a universality for q̂z.
(2) The pole-skipping points start from q̂z ¼ s − 1,

where s is the spin of the bulk field. The pole-
skipping tower continues to q̂z ¼ s − 1 − n where n
is a non-negative integer.

(3) Because q̂z can be both positive and negative, there
is also the mirror image of the pole-skipping tower.
Namely, they start from q̂z ¼ −ðs − 1Þ and continue
to q̂z ¼ −ðs − 1 − nÞ. For simplicity, we consider
only the tower of item 2.

(4) For SAdS5, the pole-skipping points depend on q.
For the AdS soliton, the pole-skipping points depend
on p2 ≔ −ω̂2 þ q2x.

These results are easily expected, but we derive various
field equations in the AdS soliton background explicitly
and show that the above results indeed hold. Also, we
have not discussed the boundary condition at the tip of
the cigar u ¼ 1. One should ask about the double Wick
rotation including the boundary condition, so we discuss
the boundary condition below.
To distinguish the SAdS5 and the AdS soliton, we

use variables such as t̂, but we omit “̂ " in the rest of
our paper.

B. Boundary condition at the tip of the cigar

As we see below, all master fields behave as

0 ∼ Z00 þ 1

u − 1
Z0 −

q2z
4ðu − 1Þ2 Z ðu → 1Þ; ð3:7Þ

near the tip of the cigar. Thus, there are two independent
solutions:

Z ∝ ðu − 1Þ�qz=2: ð3:8Þ

For simplicity, we set qz > 0 below. The generic solution is
a linear combination of these two solutions. The problem is
how to choose the boundary condition at u ¼ 1.
We follow the standard textbook treatment of quantum

mechanics (Chap. 35 of [49]). By redefining Z ¼ Gφ
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where G ¼ ðu − 1Þ−1=2, the master equation reduces to the
Schrödinger problem near u → 1:

0 ∼ φ00 −
q2z − 1

4x2
φ ðx → 0Þ; ð3:9Þ

where x ≔ u − 1. We impose the “UV cutoff” at small x:

VðxÞ ¼
�
VðxÞ; x > x0;

Vðx0Þ ¼ V0; x < x0:
ð3:10Þ

As usual, we impose the conditions that the solution and its
derivative are continuous at x ¼ x0, and we take the x0 → 0
limit. When x > x0, the generic solution is

φ ∼ C1xs1 þ C2xs2 ; ð3:11aÞ

s1 ¼
1þ qz

2
; s2 ¼

1 − qz
2

; ð3:11bÞ

where s1 > s2. One can show

C2

C1

∝ xs1−s20 ∼ xqz0 → 0: ð3:12Þ

So, it is enough to consider the solution φ ∼ ðu − 1Þs1
which falls faster. This is equivalent to choose Z ∼
ðu − 1Þqz=2 as the boundary condition.
For a black hole, we impose the incoming-wave boun-

dary condition Z ∼ ðu − 1Þ−iw=2, and the above choice is
the analytic continuation from the black-hole case. Both the
geometry and the boundary condition are obtained by the
double Wick rotation, so one expects that the pole-skipping
results are also obtained by the double Wick rotation.
For simplicity, we set qz > 0 here; namely we set qz > 0

as the physical region. But qz < 0 should also be possible.
In this case, one chooses Z ∼ ðu − 1Þ−qz=2 as the boundary
condition.

C. Relation to quantum mechanical pole skipping

Reference [33] finds a pole-skipping-like phenomenon
in quantum mechanics. It studies various potential prob-
lems with angular momentum l≕ ν − 1=2:

0 ¼ −∂2xψ þ Vψ − k2ψ ; ð3:13aÞ

V ¼ ν2 − 1=4
x2

þ V1: ð3:13bÞ

It turns out that the S-matrix is not uniquely determined at

ν ¼ −
n
2

ðn ¼ 1; 2;…Þ ð3:14Þ

with appropriate k. Reference [33] considers

(1) The Coulomb potential
(2) The Pöshl-Teller potentials

as V1. In those examples, near x → 0, the angular momen-
tum part dominates:

0 ∼ −∂2xψ þ ν2 − 1=4
x2

ðx → 0Þ; ð3:15Þ

so the solution is

ψ ∼ xλ� ; λ� ¼ 1

2
� ν: ð3:16Þ

For physical momentum, ν ≥ 1=2, so one chooses λþ.
Comparing with the AdS soliton case, qz ¼ 2ν, so this
corresponds to choose s1. The quantum mechanical pole
skipping occurs at ν ¼ −n=2 (n ¼ 1; 2;…). This translates
into the qz ¼ −n pole skipping for the AdS soliton. As far as
the x → 0 behavior is concerned, the quantum mechanical
pole skip and the AdS soliton pole skip reduce to the same
problem.

IV. POLE SKIPPING IN THE AdS SOLITON
GEOMETRY

A. Massive scalar

We start with a massive scalar field. The field equation is
given by

0 ¼ ð∇2 −m2Þϕ ð4:1aÞ

∝ ϕ00 þ
�
f0

f
−
1

u

�
ϕ0 −

4q2z þ ð4p2 þm2=uÞf
4uf2

ϕ: ð4:1bÞ

where p2 ≔ −w2 þ q2x withw≔ω=ð2π=lÞ;qx≔qx=ð2π=lÞ.
Near the tip u ¼ 1, the field equation takes the form
of Eq. (3.7):

0 ∼ ϕ00 þ 1

u − 1
ϕ0 −

q2z
4ðu − 1Þ2 ϕ: ð4:2Þ

So, set the ansatz

ϕ ¼ ð1 − u2Þqz=2Z̃: ð4:3Þ

Then,

0 ∼ Z̃00 þ 1þ qz
u − 1

Z̃0 þO

�
1

u − 1

�
Z̃: ð4:4Þ

Using the matrix formalism, one obtains the eigenvalue
and the eigenvector a⃗0:

λ¼ 0; a⃗0 ¼
�

1

b1

�
; b1 ¼−

4p2þ 6q2z þm2

8ðqzþ 1Þ : ð4:5Þ

MAKOTO NATSUUME and TAKASHI OKAMURA PHYS. REV. D 108, 046012 (2023)

046012-6



Thus, the first pole-skipping point is given by

ðqz; p2Þ ¼
�
−1;−

6þm2

4

�
: ð4:6Þ

The pole-skipping point lies outside the physical region
qz ≥ 0. Now, move away from the pole-skipping point:
qz ¼ q� þ δqz; p2 ¼ p2� þ δðp2Þ, where ðq�; p2�Þ is the pole-
skipping point. Then, a⃗0 actually has the slope dependence:

b1 ¼
3

2
−
δðp2Þ
2δqz

: ð4:7Þ

At the next order, b2 has a complicated form, so we give
the m ¼ 0 result for simplicity:

2b2 ¼
4p4 þ 3q2zð2þ 6qz þ 3q2zÞ þ 4p2ð2þ 4qz þ 3q2zÞ

16ðqz þ 1Þðqz þ 2Þ ;

ð4:8Þ
and b2 is ambiguous at

ðqz; p2Þ ¼
�
−1;−

3

2

�
;

�
−1;

1

2

�
; ð−2;−3�

ffiffiffi
3

p
Þ: ð4:9Þ

It includes the first pole-skipping point (−1, −3=2). On the
other hand, a new first pole-skipping point (−1, 1=2) seems
to appear. But this is a fake one as discussed in Sec. II B. In
fact, it does not have the slope dependence. Near the point,

a⃗1 ¼
�

b1
2b2

�
; ð4:10aÞ

b1 ¼
−2 − δðp2Þ þ 3δqz

2δqz
→ ∞; 2b2 ¼

4δðp2Þ þ δqz
8δqz

:

ð4:10bÞ

Finally, b3 is ambiguous at

ðqz; p2Þ ¼ ð−3;−3=2Þ;
�
−3;−15� 2

ffiffiffi
6

p

2

�
;

ð−2;−3�
ffiffiffi
3

p
Þ; ð−2; 0Þ;

ð−1;−3=2Þ;
�
−1;−3�

ffiffiffi
3

p

2

�
: ð4:11Þ

Note that the fake one from b2 disappears. On the other
hand, new fake ones appear: ð−2; 0Þ, (−1, ð−3� ffiffiffi

3
p Þ=2).

B. Gauge-invariant variables and master equations

To discuss the Maxwell and gravitational perturbations,
we first decompose the background spacetime into two
parts xM ¼ ðxa; yiÞ, where xa ¼ ðz; uÞ and yi ¼ ðt; x; yÞ:

ds25 ¼ gabðuÞdxadxb þ
1

u
ηijdyidyj: ð4:12Þ

Here, the decomposition is chosen so that the yi-part remains
maximally symmetric. We decompose perturbations under
the transformation of yi. The scalar (vector) mode transforms
as a scalar (vector) under the transformation.
As an example, consider the Maxwell perturbations

AM ¼ ðAa; AiÞ. One normally fixes the gauge Au ¼ 0.
We do not fix the gauge and carry out analysis in a fully
gauge-invariant manner (Appendix C). This is essentially
the formalism by Kodama and Ishibashi [50].
For the Maxwell case, gauge-invariant variables are
(1) Scalar mode: Az and Au.
(2) Vector mode: ATx and ATy ¼ Ay.
However, gauge-invariant variables are not independent,

and they are related by the Maxwell equation. Both scalar
variables obey first-order differential equations, so one gets
a second-order differential equation for a single variable.
They are referred to as the master equation and the
master field.
Thus, there is only 1 degree of freedom, but the choice of

a master field is not unique. One can choose any linear
combination of gauge-invariant variables as a master field.
However, from the holographic point of view, it is natural to
choose a master variable that does not involve u-derivatives
of perturbations. This is because one imposes the Dirichlet
boundary condition on the boundary. We choose such
master fields below (see Appendix D for more comments).
The master equations we derive below coincide with the
master equations for the SAdS5 black hole [46] after the
double Wick rotation.

C. Maxwell field

1. Maxwell vector mode

The vector mode Ay is gauge invariant by itself. The
Maxwell equation becomes

0 ¼ A00
y þ

f0

f
A0
y −

q2z þ p2f
uf2

Ay: ð4:13Þ

Asymptotically, Ay ∼ Aþ Bu. Near the tip u ¼ 1, the field
equation takes the form of Eq. (3.7), so set the ansatz
Ay ¼ ð1 − u2Þqz=2Z̃. Then,

0 ∼ Z̃00 þ 1þ qz
u − 1

Z̃0 þO

�
1

u − 1

�
Z̃: ð4:14Þ

Using the matrix formalism, one obtains

b1 ¼ −
2p2 þ 2qz þ 3q2z

4ðqz þ 1Þ : ð4:15Þ

Thus, the first pole-skipping point is given by
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ðqz; p2Þ ¼
�
−1;−

1

2

�
: ð4:16Þ

The pole-skipping point lies outside the physical
region qz ≥ 0.

2. Maxwell scalar mode

This mode corresponds to the “diffusive mode” in the
SAdS5 case. The gauge-invariant variables for the scalar
mode are given by

Az ¼ Az − iqzAL; ð4:17aÞ

Au ¼ Au − A0
L ð4:17bÞ

(Appendix C). The Maxwell equation becomes

0 ¼ iqz
2uf

Az þ ðfAuÞ0; ð4:18aÞ

0 ¼ ð2q2z þ p2fÞAu þ iqzA0
z: ð4:18bÞ

We choose Az as the master variable because Au
contains the u-derivative of the perturbation, A0

L. Then,
the master equation is given by

0 ¼ Az
00 þ q2zf0

ðq2z þ p2fÞfA
0
z −

q2z þ p2f
uf2

Az: ð4:19Þ

Asymptotically, Az ∼ Aþ Bu. Near the tip u ¼ 1, the field
equation takes the form of Eq. (3.7), so set the ansatz
Az ¼ ð1 − u2Þqz=2Z̃. Then,

0 ∼ Z̃00 þ 1þ qz
u − 1

Z̃0 þO

�
1

u − 1

�
Z̃: ð4:20Þ

Using the matrix formalism, one obtains

b1 ¼ −
2p2ðqz þ 2Þ þ q2zð3qz þ 2Þ

4qzðqz þ 1Þ : ð4:21Þ

Thus, the first pole-skipping point is given by

ðqz; p2Þ ¼ ð0; 0Þ;
�
−1;

1

2

�
: ð4:22Þ

The point qz ¼ 0 corresponds to the hydrodynamic mode in
the SAdS5 case. While the point qz ¼ −1 lies outside the
physical region qz ≥ 0, the qz ¼ 0 point lies in the physical
region.

D. Gravitational field

1. Gravitational vector mode

This mode corresponds to the “shear mode” in the
SAdS5 case. The gauge-invariant variables for the vector
mode are given by

hzy ¼ hð1Þzy − iqzh
ð1Þ
y ; ð4:23aÞ

huy ¼ hð1Þuy −
1

u
ðuhð1Þy Þ0: ð4:23bÞ

The Einstein equation becomes

0 ¼ iqz
2uf

hzy þ ðfhuyÞ0; ð4:24aÞ

0 ¼ −
2iu
qz

ðq2z þ p2fÞhuy þ ðuhzyÞ0: ð4:24bÞ

We choose hzy as the master variable because huy
contains the u-derivative of the perturbation. Then, the
master equation is given by

0 ¼ Z00 −
ðq2z þ p2fÞf − q2zuf0

ufðq2z þ p2fÞ Z0 −
q2z þ p2f

uf2
Z; ð4:25Þ

where Z ¼ uhzy. Asymptotically, Z ∼ Aþ Bu2. Near the
tip u ¼ 1, the field equation takes the form of Eq. (3.7), so
set the ansatz Z ¼ ð1 − u2Þqz=2Z̃. Then,

0 ∼ Z̃00 þ 1þ qz
u − 1

Z̃0 þO

�
1

u − 1

�
Z̃: ð4:26Þ

Using the matrix formalism, one obtains

b1 ¼ −
2p2ðqz þ 2Þ þ 3q3z

4qzðqz þ 1Þ : ð4:27Þ

Thus, the first pole-skipping points are given by

ðqz; p2Þ ¼ ð0; 0Þ;
�
−1;

3

2

�
: ð4:28Þ

The point qz ¼ 0 corresponds to the hydrodynamic mode in
the SAdS5 case. While the point qz ¼ −1 lies outside the
physical region qz ≥ 0, the qz ¼ 0 point lies in the physical
region.

2. Gravitational scalar mode

This mode corresponds to the “sound mode” in the
SAdS5 case. The gauge-invariant variables are hzz; hzu; huu,
and hL. Their field equations are given in Eq. (C28).
From Eq. (C27), the gauge-invariant perturbations con-

tain the parameters ηu, ηz, and their derivatives. ηu contains
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a derivative of a metric. So, choose the combination of
gauge-invariant variables which do not involve ηu. Such a
master field is given by

Z ¼ ufhzz − ðf − uf0ÞhLg ð4:29aÞ

¼ u

�
hzz−2iqzhz−

�
q2z þ

p2
i

3
ð1þu2Þ

�
hT − ð1þu2ÞhL

�
:

ð4:29bÞ

This is the master field, e.g., by Kovtun and Starinets [46].
One can obtain the master equation for Z from hzz and hL

equations. The master equation is given by

0¼ Z00 −
−3q2zð1þ u2Þ þ p2ð−3þ 2u2 − 3u4Þ

uff−3q2z þ p2ð−3þ u2Þg Z0

þ 3q4z þ p4ð3− 4u2 þ u4Þ þ p2fq2zð6− 4u2Þ− 4u3fg
uf2f−3q2z þ p2ð−3þ u2Þg Z:

ð4:30Þ

Asymptotically, Z ∼ Aþ Bu2. Near the tip u ¼ 1, the field
equation takes the form of Eq. (3.7), so set the ansatz
Z ¼ ð1 − u2Þqz=2Z̃. Then,

0 ∼ Z̃00 þ 1þ qz
u − 1

Z̃0 þO

�
1

u − 1

�
Z̃: ð4:31Þ

Using the matrix formalism, one obtains

b1 ¼ −
4p4 þ 9q4z þ 4p2ð3q2z þ 2qz − 2Þ

4ðqz þ 1Þð3q2z þ 2p2Þ : ð4:32Þ

Thus, the first pole-skipping points are given by

ðqz; p2Þ ¼
�
1;−

3

2

�
; ð0; 0Þ;

�
−1;

1

2
ð1� 2

ffiffiffi
2

p
iÞ
�
: ð4:33Þ

The points qz ¼ 1 and qz ¼ 0 correspond to the chaotic
mode and the hydrodynamic mode, respectively, in the
SAdS5 case. In the matrix formalism, one obtains all pole-
skipping points including the chaotic and the hydrody-
namic points as promised. While the point qz ¼ −1 lies
outside the physical region qz ≥ 0, the qz ¼ 1, 0 points lie
in the physical region.

V. DISCUSSION

A. Physical implication

In this paper, we study the pole skipping in the AdS
soliton geometry. Even though the AdS soliton is not a
black hole, the field equations have regular singularities at
the tip of the cigar, so the pole skipping occurs.

It is interesting to explore the physical implications.
However, even in the black-hole case, the physical impli-
cations of the pole skipping are unclear in general. This is
because many pole-skipping points do not lie in the
physical region (the wave number q is complex in general).
This makes the physical interpretations difficult in general.
The exceptions are the chaotic and the hydrodynamic pole
skippings.
In the AdS soliton case, the pole-skipping points in

general do not lie in the physical region at large n.
However, the chaotic and hydrodynamic pole-skipping
points lie in the physical region, so it is interesting to
explore physical implications.
The pole skipping itself occurs even in the AdS soliton,

but the physical interpretation is different from the black-
hole case. First, for a black hole, the chaotic pole-skipping
point lies in the upper-half ω-plane, which suggests a
chaotic behavior. But the AdS soliton is not a black hole,
and one does not expect the chaotic behavior. In fact, both
qz and p2 are real there.
Second, we make qz continuous following the conven-

tional pole-skipping analysis, but qz is physically discrete
qz ∈ Z. One may wonder if the pole skipping has any
physical relevance for the AdS soliton.
Actually, there is an evident physical interpretation for

the chaotic pole skipping in the AdS soliton. The chaotic
pole-skipping point is located at ðqz; p2Þ ¼ ð1;−3=2Þ. This
is a pole-skipping point, so
(1) It would be a pole.
(2) But the residue of the pole vanishes.

The former implies that the dual field theory would have a
normal mode with ðqz; m2

3Þ ¼ ð1; 6Þ, where m2
3 ¼ −p2 ¼

−4p2 is the dual (2þ 1)-dimensional mass. However, the
latter implies that the state is actually missing due to the
pole skipping.
In the black-hole case, near a pole-skipping point,

Green’s function typically takes the form

GR ∝
δωþ δq
δω − δq

; ð5:1Þ

so it depends on the slope δq=δω how one approaches the
pole-skipping point. However, if one first fixes δq ¼ 0, one
gets GR ¼ ðconstÞ, so the pole would disappear.
This is the situation that happens in the AdS soliton case.

In the AdS soliton case, qz is actually discrete, and one first
fixes qz ¼ 1, and so on, so one cannot choose the slope.
Instead, the pole skipping appears as the “missing state.”
Even though the black hole and the AdS soliton are

related by a double Wick rotation, the physical interpre-
tations of the chaotic pole skipping are very different. The
black hole and the AdS soliton have very different physical
interpretations in general. For the chaotic pole skipping,
(1) The black-hole case implies a chaotic behavior.
(2) The AdS soliton case implies a missing state.
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We will explore this issue further in a separate paper, in
particular the mass spectrum in details [51].

B. Other non-black-hole backgrounds

We focus on the AdS soliton, but a similar analysis
should be possible for the other non-black-hole geometries
with S1. The Witten geometry is an example [3]. This
geometry is obtained by the double Wick rotation from the
D4-brane geometry.
Of course, there are many non-black-hole geometries

without S1. For a non-black-hole background, field equa-
tions in general would not have regular singularities (except
u ¼ ∞) and have only ordinary points. However, as men-
tioned in Sec. II B, there are two kinds of pole skipping.
In the black-hole case, the pole skipping in the lower-half
ω-plane comes from regular singularities. But the pole
skipping in the upper-half ω-plane has a different origin.
In this case, the coefficients of field equations themselves
partly have the structure 0=0. In particular, the hydrody-
namic mode should survive as a pole-skipping point.
As a simple example, consider the cutoff SAdS where we

impose the IR cutoff at u ¼ u0 < 1. Because the cutoff is
an ordinary point, one can expand the solution as a Taylor
series:

0 ¼ Z00 þ PZ0 þQZ; ð5:2aÞ

P ¼
X
n¼0

Pnðu − u0Þn; ð5:2bÞ

Q ¼
X
n¼0

Qnðu − u0Þn; ð5:2cÞ

Z ¼
X
n¼0

anðu − u0Þn: ð5:2dÞ

At the lowest order, one gets

0 ¼ Q0a0 þ P0a1 þ 2a2: ð5:3Þ

One needs to impose a boundary condition at the cutoff.
If one imposes the Dirichlet boundary condition, a0 ¼ 0.
Then, Eq. (5.3) determines a2 from a1. However, if
P0 ¼ 0=0, both a1 and a2 are free parameters, and the
solution is not uniquely determined. For example, for
the Maxwell scalar mode, P0 ¼ 0=0 at ω ¼ q ¼ 0 [see
Eq. (4.19) for the AdS soliton counterpart].
It is unclear if there are any other pole-skipping points

for non-black-hole geometries. It would be interesting to
explore the issue further.
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APPENDIX A: THE SAdS5 BLACK-HOLE
MASTER EQUATIONS

Below we summarize the master equations for the SAdS5
black hole for the reader’s convenience [46]:
(1) Maxwell vector mode:

0 ¼ Z00 þ f0

f
Z0 þw2 − q2f

uf2
Z; ðA1Þ

where 0 ¼ ∂u and w ≔ ω=ð2πTÞ, q ≔ q=ð2πTÞ.
(2) Maxwell scalar mode:

0 ¼ Z00 þ w2f0

ðw2 − q2fÞf Z
0 þw2 − q2f

uf2
Z: ðA2Þ

(3) Gravitational tensor mode (massless scalar):

0 ¼ Z00 þ
�
f0

f
−
1

u

�
Z0 þw2 − q2f

uf2
Z: ðA3Þ

(4) Gravitational vector mode:

0 ¼ Z00 −
ðw2 − q2fÞf −w2uf0

ufðw2 − q2fÞ Z0 þw2 − q2f
uf2

Z:

ðA4Þ

(5) Gravitational scalar mode:

0¼ Z00 −
3w2ð1þu2Þþ q2ð−3þ 2u2− 3u4Þ

uff3w2þ q2ð−3þu2Þg Z0

þ 3w4þ q4ð3− 4u2þu4Þ− q2fw2ð6− 4u2Þþ 4u3fg
uf2f3w2þ q2ð−3þu2Þg Z:

ðA5Þ

All master fields behave as

0 ∼ Z00 þ 1

u − 1
Z0 þ w2

4ðu − 1Þ2 Z ðu → 1Þ; ðA6Þ

near the horizon, and one imposes the incoming-wave
boundary condition

Z ∝ ðu − 1Þ−iw=2: ðA7Þ

APPENDIX B: PROPERTIES
OF THE AdS SOLITON

1. Phase transition

At high temperature, the AdS soliton undergoes a first-
order phase transition (the Hawking-Page transition) to the
SAdS black hole. This describes the confinement/decon-
finement transition in the dual gauge theory.
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Because the (uncompactified) SAdS black hole is scale
invariant, the only dimensionful quantity is T. Thus, the
free energy should take the form

FBH ¼ −cT4V3; ðB1Þ

where c ¼ π4=ð16πG5Þ ¼ π2N2
c=8, and V3 is the gauge

theory volume. The S1-periodicity l appears only in V3.
The AdS soliton has the same Euclidean geometry, so the
free energy takes the same form when expressed in terms of
the “horizon” radius r0. But, for the AdS soliton, r0 is
related to the S1 periodicity l, so

Fsoliton ¼ −
c
l4
V3: ðB2Þ

Then, the free energy difference is

ΔF ¼ FBH − Fsoliton ∝ −
�
T4 −

1

l4

�
V3: ðB3Þ

So, at low temperature T < 1=l, the stable solution is the
AdS soliton. At high temperature T > 1=l, the stable
solution is the black hole. Because the black hole has
OðN2

cÞ entropy, the entropy is discontinuous at Tl ¼ 1. The
first derivative of free energy, S ¼ −∂TF, is discontinuous
there, so this is a first-order phase transition.

2. Energy-momentum tensor

The SAdS5 black hole has the following energy-
momentum tensor:

Tμν ¼
r40

16πG5

diagð3; 1; 1; 1Þ ¼ π2

8
N2

cT4diagð3; 1; 1; 1Þ:

ðB4Þ

The energy-momentum tensor for the AdS soliton is
computed in Ref. [52]. One can obtain it by the double
Wick rotation from the SAdS result:

Tμν ¼
π2

8

N2
c

l4
diagð−1; 1; 1;−3Þ: ðB5Þ

It remains traceless. The nonvanishing energy density is
interpreted as the Casimir energy. The directions ðt; x; yÞ
have the Lorentz invariance, so Tijði ¼ t; x; yÞ has the
Lorentz invariance and is proportional to ηij. The Lorentz
invariance is broken in the z-direction, so one obtains an
anisotropic pressure.

3. Mass gap

For the SAdS black hole, one imposes the incoming-
wave boundary condition at the horizon. Because a
perturbation is absorbed by the black hole, one obtains

quasinormal modes; namely poles are located in the
complex ω-plane. The AdS soliton does not have a horizon,
and the geometry smoothly ends at u ¼ 1, so one obtains
normal modes.
For simplicity, consider the massless scalar field

0 ¼ ∇2ϕ, and consider the perturbation of the form eipixi .
The field has the asymptotic behavior

ϕ ∼ Aþ Bu2 ðu → 0Þ; ðB6Þ

and Green’s function is given by

GR ∝
B
A
: ðB7Þ

So, a pole corresponds to A ¼ 0. Then, it is enough to
solve the perturbation equation under the boundary con-
dition A ¼ 0.
Near the tip of the cigar u ¼ 1, the field equation

becomes

0 ∼ ϕ00 þ 1

u − 1
ϕ0 ðu → 1Þ; ðB8Þ

when qz ¼ 0, so the solution is

ϕ ∼ C1 þ C2 lnð1 − uÞ: ðB9Þ

We impose C2 ¼ 0 from the regularity condition at u ¼ 1.
One can solve the perturbation equation by a power

series expansion around the tip of the cigar u ¼ 1:

ϕ ¼
X∞
n¼0

anðu − 1Þnþλ: ðB10Þ

Substituting this into the field equation, one gets the
indicial equation at the lowest order: λ2 ¼ 0. The boundary
condition A ¼ 0 corresponds to

ϕju¼0 ¼
XN
n¼0

ð−Þnan ¼ 0: ðB11Þ

One truncates the series after a large number of terms
n ¼ N. One can check the accuracy as one goes to higher
series. The problem has a nontrivial solution only for
particular values of p2 ¼ −m2

3 which give the mass
spectrum. The first few states are m2

3 ≈ 11.59; 34.53;….

APPENDIX C: GAUGE-INVARIANT VARIABLES

We follow Ref. [16] with slight changes in the con-
ventions. First, decompose the background spacetime
into a two-dimensional space xa and a p-dimensional
spacetime yi:

ds2pþ2 ¼ gabðxÞdxadxb þ e2φgijðyÞdyidyj: ðC1Þ
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Here, the decomposition is chosen so that the yi-part
remains maximally symmetric:
(1) For the SAdS5, the metric is Eq. (2.1), so xa ¼ ðt; uÞ,

yi ¼ ðx; y; zÞ, and gij ¼ δij.
(2) For the AdS soliton, the metric is Eq. (3.2), so

xa ¼ ðz; uÞ, yi ¼ ðt; x; yÞ, and gij ¼ ηij.
Below, we focus on the AdS soliton case: e2φ ¼ 1=u, and

gab ¼
�
gzz 0

0 guu

�
: ðC2Þ

We decompose perturbations under the transformation
of yi. The scalar (vector) mode transforms as a scalar
(vector) under the transformation. We consider the pertur-
bation of the form

ϕðuÞeipixiþiqzz; ðC3Þ

where pi ¼ ð−ω; qx; 0Þ.2

1. Maxwell perturbations

The Maxwell perturbations consist of AM ¼ ðAa; AiÞ.
Ai can be decomposed as

Ai ¼ ∂iAL þ ATi; ∂
iATi ¼ 0; ðC4Þ

or

Ai ¼ ipiAL þ ATi; piATi ¼ 0: ðC5Þ

Thus, for p ¼ 3,
(1) The scalar mode consists of three perturbations

AaðAz; AuÞ and AL.
(2) One can use the Lorenz gauge condition to eliminate

a component of ATi, e.g., ATt. Then, the vector mode
consists of two perturbations ATx and ATy ¼ Ay.
They satisfy the identical equation.

In total, there are five perturbations.
The scalar mode has three perturbations, but one is

redundant due to the gauge symmetry. The gauge trans-
formation δAM ¼ −∂Mλ becomes

δAa ¼ −∂aλ; ðC6aÞ

δAi ¼ ipiδAL þ δATi ¼ −ipiλ ðC6bÞ

so that

δATi ¼ 0; δAL ¼ −λ: ðC7Þ

The gauge-invariant variables are obtained by eliminating
the gauge parameter λ. The variables ATi are gauge
invariant by themselves. From Eq. (C7), λ is expressed
by AL as λ ¼ −δAL. Substituting this into Eq. (C6a) gives

δðAa − ∂aALÞ ¼ 0; ðC8Þ

so the gauge-invariant scalar perturbations are given by

Aa ≔ Aa − ∂aAL: ðC9Þ

2. Gravitational perturbations

The gravitational perturbations consist of hMN ¼
ðhab; hai; hijÞ. Again, perturbations are decomposed as
scalar, vector, and tensor modes. hab gives three scalar
perturbations. Just as the Maxwell perturbations, hai is
decomposed as

hai ¼ ∂iha þ hð1Þai ; ∂
ihð1Þai ¼ 0: ðC10Þ

ha gives two scalar perturbations, and hð1Þai gives 2ðp − 1Þ
vector perturbations. The superscript “(1)” refers to the
number of index i (“spin”). Similarly, hij is decomposed as

hij≕ hLηij þ PijhT þ 2∂ðih
ð1Þ
TjÞ þ hð2ÞTij; ðC11Þ

where

∂
ihð1ÞTi ¼ 0; ∂

jhð2ÞTij ¼ 0; hð2ÞTi
i ¼ 0; ðC12Þ

and Pij is the projection operator given by

Pij ≔ ∂i∂j −
1

p
ηij∂

2
k: ðC13Þ

The first term of hij (hL) is the trace part which is a scalar
perturbation. The rest is the traceless part which is

decomposed as a scalar hT, vector h
ð1Þ
Tj , and tensor pertur-

bations hð2ÞTij. Thus,
(1) The scalar mode consists of seven perturbations

(hab, ha, hL, hT).
(2) The vector mode consists of perturbations (hð1Þai ,

hð1ÞTi ). The former has 2ðp − 1Þ components, and the
latter has (p − 1) components, so there are 3ðp − 1Þ
components.

(3) The tensor mode consists of hð2ÞTij which has
ðpþ 1Þðp − 2Þ=2 components.

In total, there are ðpþ 2Þðpþ 3Þ=2 components.
Again consider the gauge transformation δxM ¼ −ξM.

The infinitesimal transformation ξi is decomposed as

ξi ≕ ∂iξL þ ξTi; ∂
iξTi ¼ 0: ðC14Þ

2For the quantities defined in the p-dimensional subspacetime
such as pi, the index i is raised and lowered with ηij, i.e.,
pi ¼ ηijpj.
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The scalar part has three components, ξa and ξL, and the
vector part has (p − 1) components, ξTi.

a. Tensor mode

The tensor mode is gauge invariant by itself:

δhð2ÞTij ¼ 0: ðC15Þ

The combination (uhð2ÞTij) satisfies the field equation for the
minimally coupled massless scalar field, so we do not
discuss this mode further.

b. Vector mode

Under the gauge transformation δxM ¼ −ξM, the vector
mode transforms as

δhð1Þai ¼ ∂aξTi − 2ξTið∂aφÞ; ðC16aÞ

δhð1ÞTi ¼ ξTi: ðC16bÞ

To obtain gauge-invariant variables, we again express
gauge parameters ξTi by perturbations. Equation (C16b)

expresses ξTi by δhð1ÞTi . Substituting Eq. (C16b) into
Eq. (C16a) gives

δðhð1Þai − ∂ah
ð1Þ
Ti þ 2hð1ÞTi ∂aφÞ ¼ 0; ðC17Þ

so the gauge-invariant vector perturbations are

hai ≔ hð1Þai − e2φ∂aðe−2φhð1ÞTi Þ: ðC18Þ

Eliminating ξTi gives 2ðp−1Þ gauge-invariant perturbations.

c. Scalar mode

1. The gauge-invariant variables

Under the gauge transformation, the scalar mode trans-
forms as

δhab ¼ 2ð2Þ∇ðaξbÞ; ðC19aÞ

δha ¼ ξa þ ∂aξL − 2ξLð∂aφÞ; ðC19bÞ

δhL ¼ ξað2Þ∇ae2φ þ
2

p
∂
2
kξL; ðC19cÞ

δhT ¼ 2ξL; ðC19dÞ

where ð2Þ∇a is the covariant derivative with respect to gab.

Equation (C19d) expresses ξL by δhT. Substituting
Eq. (C19d) into Eq. (C19b), ξa is expressed by δha and δhT :

ξa ¼ −δηa; ðC20aÞ

ηa ≔
1

2
∂ahT − hT∂aφ − ha: ðC20bÞ

Substituting ξa into Eq. (C19a), one obtains

δðhab þ 2ð2Þ∇ðaηbÞÞ ¼ 0; ðC21Þ

so one gets the gauge-invariant perturbations

hab ≔ hab þ 2ð2Þ∇ðaηbÞ: ðC22Þ

Similarly, Eq. (C19c) becomes

δ

�
hL þ ηað2Þ∇ae2φ −

1

p
∂
2
i hT

�
¼ 0; ðC23Þ

which gives

hL ≔ hL þ ηað2Þ∇ae2φ −
1

p
∂
2
i hT: ðC24Þ

The scalar mode has seven perturbations, but four gauge-
invariant perturbations remain after one eliminates ξL
and ξa.
Writing these formulas in components for p ¼ 3, one

gets

hzz ¼ hzz þ 2iqzηz þ
g0zz
guu

ηu; ðC25aÞ

hzu ¼ hzu þ iqzηu −
g0zz
gzz

ηz þ η0z; ðC25bÞ

huu ¼ huu −
g0uu
guu

ηu þ 2η0u; ðC25cÞ

hL ¼ hL þ p2
i

3
hT −

1

u2guu
ηu: ðC25dÞ

From Eq. (C20b), ηa becomes

ηz ¼
1

2
iqzhT − hz; ðC26aÞ

ηu ¼
1

2u
ðuhTÞ0 − hu: ðC26bÞ
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2. The field equations

The scalar mode has four variables hzz, hzu, huu, hL. The
linearized Einstein equation reduces to

0 ¼ hzz þ fhL þ 4uf2huu; ðC27aÞ

0 ¼ 2p2 þ 3u
2f

hzz þ f3q2z þ p2ð2 − fÞg hzu
iqz

þ 6q2z þ 4p2f − 3uð2 − fÞ
2f

hL; ðC27bÞ

0 ¼
�
u
d
du

þ 1

f

�
hzz − 2ð1 − fÞhL þ 2

3q2z þ 2p2f
3

×
uhzu
iqz

þ 2ufð2 − fÞhuu; ðC27cÞ

0 ¼
�
u
d
du

þ 1

f

�
hL −

2p2

3

uhzu
iqz

þ 2ufhuu: ðC27dÞ

Here, we arranged field equations. Namely, these equations
are not just the bare Einstein equation components. The
bare equations involve first and second derivatives in u.
Combining the equations appropriately, one can eliminate
all second derivatives. The resulting equations involve
various first derivatives. Combining equations further
eliminates some first derivatives, and one obtains equations
where the first derivative appears at most once in each
equation. Finally, we use the constraint equations for
cosmetic purposes.
There are two constraint equations without u-derivatives

and two differential equations with one u-derivative. The
constraint equations (C27a) and (C27b) allow us to choose
two independent variables. Both obey first-order differ-
ential equations, so one gets a second-order differential
equation for a single variable.

APPENDIX D: THE CHOICE OF MASTER FIELD

As mentioned in Sec. IV B, the choice of a master field is
not unique. One needs to find which variable is most

suitable, or one needs to take all variables into account [16].
This is sometimes problematic for the pole-skipping
analysis. One cannot find some pole-skipping points if
one chooses a different variable. In this appendix, we show
this explicitly for the Maxwell scalar mode and for the
gravitational vector mode.
For the Maxwell scalar mode, there are two gauge-

invariant variables Az, Au, and we choose Az. If one
chooses Au as the master variable, the master equation is
given by

0 ¼ Z00
2 þ

�
f0

f
þ 1

u

�
Z0
2 −

q2z þ p2f
uf2

Z2; ðD1Þ

where Z2 ¼ fAu. In this case, one obtains

b1 ¼ −
2p2 þ qzð4þ 3qzÞ

4ðqz þ 1Þ ; ðD2Þ

so the first pole-skipping point is given by ðqz; p2Þ ¼
ð−1; 1=2Þ. Namely, one cannot see the hydrodynamic pole-
skipping ðqz; p2Þ ¼ ð0; 0Þ.
Similarly, for the gravitational vector mode, there are two

gauge-invariant variables hzy, huy, and we choose hzy. If
one chooses huy as the master variable, the master equation
is given by

0 ¼ Z00
2 þ

�
f0

f
þ 2

u

�
Z0
2 −

q2z þ p2f
uf2

Z2; ðD3Þ

where Z2 ¼ fhuy. In this case, one obtains

b1 ¼ −
−4þ 2p2 þ 2qz þ 3q2z

4ðqz þ 1Þ ; ðD4Þ

so the first pole-skipping point is given by ðqz; p2Þ ¼
ð−1; 3=2Þ, and again one cannot see the hydrodynamic pole
skipping.
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