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We consider positivity constraints applicable to the effective field theory (EFT) of gravity in arbitrary
dimensions. By considering scattering of indefinite initial and final states, we highlight the existence of a
gravitational scattering amplitude for which full crossing symmetry is manifest and utilize the recently
developed crossing symmetric dispersion relations to derive compact nonlinear bounds. We show that the
null constraints built into these dispersion relations lead to a finite energy sum rule for gravity which may
be extended to a one-parameter family of continuous moment sum rules. These sum rules enforce a UV-IR
relation which imposes constraints on both the Regge trajectory and residue. We also highlight a situation
where the Regge trajectory is uniquely determined in terms of the sub-Regge scale amplitude. Generically
the Regge behavior may be split into an IR sensitive part calculable within a given EFT, which mainly
depends on the lightest fields in nature, and an IR independent part, which is subject to universal positivity
constraints following from unitarity and analyticity.
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I. INTRODUCTION

The physics of low-energy degrees of freedom of a
system of fields may be described via an effective field
theory (EFT) built out of (in general) all operators
that respect the symmetries of the system, along with
their coupling constants. The Standard Model and the
Lagrangian formulation of general relativity are under-
stood best as effective field theories, with a cutoff scale
beyond which new degrees of freedom are needed to
extend their applicability to higher energies [1–5]. It is now
well understood that for the UV completion to satisfy the
familiar properties of causality, unitarity, locality,1 and
Lorentz invariance there must be nontrivial constraints on
its low-energy description [7]. In our analysis these
constraints take the form of the well-established positivity
bounds that restrict the values of the low-energy effective
action coupling constants by way of inequalities [8–10].

The most familiar positivity bounds are applied to the
amplitude in the forward limit t → 0 where the optical
theorem (unitarity) immediately grants positivity to the
imaginary part (or rather the absorptive part in the general
spin case) of the amplitude. However, it has long been
understood that these positivity properties may be extended
to the finite fixed t > 0 amplitude within a region of
analyticity in the complex t-plane [11–14], and this plays
an important role in more recent developments [15–24]. The
application of these methods to gravitational effective
theories is, however, problematic due to a number of issues
related to the divergences at t ¼ 0 that prevent a direct
continuation of the usual dispersion relation from the
physical region t < 0 to t > 0. One straightforward way
to deal with this is to focus on weakly coupled theories for
which graviton loops (and hence the problematic t ¼ 0
branch points) are absent. Familiar positivity bounds may
then be applied to scattering amplitudes with one more
subtraction than usual for which the t-channel pole drops
out. This is the approach taken for example in [25,26], and
we shall follow a similar procedure here for some of the
bounds, while folding-in information about the UV to
connect with double subtracted ones. A second approach
is the smeared amplitude method of [27] which constructs
positive quantities out of integrals over t < 0. More recently
this has been applied successfully in four dimensions [28]
and higher-dimensional gravitational EFTs [29].
Causality constraints on higher curvature operators in an

EFT of gravity have been considered in the past. There is
long-standing theoretical evidence to suggest constraints on
the two quartic curvature couplings, ðRμνρσRμνρσÞ2 and
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1For nongravitational theories locality imposes a Froissart-like
bound. The role of locality in quantum gravity is expected to be
softer; however, one would expect the main input from locality,
namely a bound in the growth of scattering amplitudes to remain
true [6], and this will be sufficient to justify the positivity bounds.
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ðRαβμνϵμνρσRρσ
αβ=2Þ2. In [30] it is shown that positive signs

for both quartic curvature corrections ensures subluminal
group velocity of UV perturbations. Positivity of the quartic
coefficients has been shown via analyticity and unitarity
arguments in [25,26] where in the latter, a tighter bound is
derived involving the size of the cubic curvature coupling.
Recently further considerations of “infrared causality” have
been shown to corroborate these previous bounds while also
producing a lower bound on the cutoff of the gravitational
EFT [31]. The quartic curvature terms are of particular
interest as they are known to arise in the low-energy action
of compactified string theories [32], and potential implica-
tions for gravitational wave observations were considered
in [33–35]. Cubic curvature couplings are also known to
arise from nonsupersymmetric string UV completions [36],
with effects on observables considered in [37–40]. Recently
approaches [28,29] have sharpened the constraints on
some of the operators, in particular make use of the null
constraints considered for scalar theories in [22,23] to
strengthen the power of the positivity bounds.
In the present work, we consider the positivity bounds

that apply to effective field theories of gravity in any
dimension, including four. For simplicity we shall focus
on the case of EFTs where the only light state is the
graviton, although additional massless or light degrees of
freedom such as the photon or dilaton may easily be
incorporated. Our central object then is the appropriately
scaledMPl → ∞ limit of the graviton four-point scattering
amplitude, to which graviton loops explicitly decouple
[41]. The high-energy limit of this amplitude is then
considered after appropriate decoupling of graviton loops,
implying s ≪ M2

Pl → ∞. In this limit, the Regge behavior
at high energy can be seen to be a direct consequence of
the existence of a gravitational exchange pole. This
behavior differs from the Regge resummation that occurs
in the limit s → ∞, keeping MPl fixed in full quantum
gravity, where graviton loops are then essential to see the
softening of the amplitude at high energy [6]. We
explicitly compute the scattering amplitude up to and
including dimension-12 EFT operators [ð∇RÞ4]. We show
that in any dimension, there is a judicious choice of
indefinite incoming polarization states for which we can
construct a one parameter family of manifestly crossing
symmetric amplitudes with the same analytic structure
of a scalar theory (4.5). It is straightforward to obtain
positivity bounds for gravitational theories in any dimen-
sion both from semianalytic arguments and numerical
optimization procedures leading rapidly to results com-
parable with previous approaches [26,28,29]. In particular,
we make use of the elegant crossing symmetric dispersion
relations utilized in [42–45].
One of the virtues of the crossing symmetric approach is

that it allows a trivial derivation of the null constraints and
sum rules which follow from them. In particular, it is
straightforward to see that in the scattering amplitude for

gravitons2 the leading s2 (or its triple crossing symmetric
version, x ¼ stþ tuþ us) always identically vanishes in
any consistent gravitational amplitude (be it following
from string theory or from a local and covariant EFT). It is
of course precisely the presence of this coefficient and
its positivity which is crucial in the arguments of [8,10],
and its absence for example for Galileon theories is what
rules them out from having such a conventional comple-
tion [22]. In gravitational EFTs, it is the presence of the
t-channel graviton pole which also scales as s2 which
prevents us making any analog conclusion directly. We
show that the vanishing of this coefficient imposes a sum
rule3 which for a specific choice of indefinite polarizations
contains no contribution from any low energy coefficient
other than the Planck mass. This sum rule is closely
analogous to the superconvergence relations which were
influential in the development of Dolen-Horn-Schmid
duality [46] which was the motivation for the Veneziano
amplitude. In particular, following a similar argument
to [46], considered more recently in [41,47], we show
that in a gravitational effective theory in any dimension,
there is a finite energy sum rulewhich can be used to relate
the Regge behavior of the would-be UV completion to the
IR expansion coefficients. Remarkably this sum rule
allows one to infer how IR physics contributes to the
Regge behavior through a particular combination of the
Regge trajectory and residue, without relying on ad hoc
resummations of perturbative diagrams. We further extend
this to a one-parameter family of “continuous moment sum
rules” which can in principle be used to give separate
information on the Regge trajectory and residue.
The rest of this work is organized as follows: We start

with providing a one-parameter family of manifestly triple
crossing symmetric gravitational amplitudes in Sec. II. With
this formalism at hand, we can then derive null constraints
for gravity and infer a set of analytic bounds on the
coefficients of the gravitational amplitude in Sec. III. We
then apply these constraints to the EFTof gravity in Sec. IV,
involving up to dimension-12 operators providing con-
straints in agreement with previously found analytic and
numerical ones as well as new higher order constraints.
Section V focused on improved versions of the finite energy
sum rule and on the implications for the trajectory and
residue of the Regge behavior, emphasizing how IR physics
is inbuilt in that behavior. We provide various outlooks in
Sec. VI. In order to gain a better insight of the crossing
symmetric dispersion relations used in this work, we
compare them with the Mandelstam double spectral repre-
sentation in Appendix A for a manifestly crossing

2This result also holds in higher than four dimensions, at the
very least when focusing on the scattering of the four-dimensional
subset of polarizations.

3Related sum rules are obtained by slightly different means
in [28,29].
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symmetric amplitude. We also provide explicit examples
from (partial) UV completions or string theory in
Appendix B, while details on how to use the Hilbert series
to infer the number of independent dimension-12 operators
are summarized in Appendix C.

II. KINEMATICS, CROSSING, AND POSITIVITY

A. Factorizable polarization

If we consider the scattering of gravitons with helicity h,
we can denote the scattering amplitude for the process with
the in-state of helicity jh1; h2i and the out-state of helicity
j − h3;−h4i as

Ah1h2→−h3−h4ðs; t; uÞ ¼ Ah1h2h3h4ðs; t; uÞ: ð2:1Þ

The form Ah1h2h3h4ðs; t; uÞ describes all helicities as
ingoing. As the external states are massless and bosonic,
s-u crossing symmetry is simple and is encoded in

Ah1h2h3h4ðs; t; uÞ ¼ Ah1h4h3h2ðu; t; sÞ: ð2:2Þ

Similarly s-t crossing is encoded in the statement

Ah1h2h3h4ðs; t; uÞ ¼ Ah1h3h2h4ðt; s; uÞ; ð2:3Þ

and u-t crossing in

Ah1h2h3h4ðs; t; uÞ ¼ Ah1h2h4h3ðs; u; tÞ: ð2:4Þ

For the elastic scattering of an indefinite helicity state
jini ¼ P

h1;h2 ah1h2 jh1; h2i, the corresponding u-channel
amplitude defined via s-u crossing as

Auðs; t; uÞ ¼ Asðu; t; sÞ
¼

X
hi¼�2

ah1h2a
�
−h3−h4Ah1h2h3h4ðu; t; sÞ

¼
X
hi¼�2

ah1h2a
�
−h3−h4Ah1h4h3h2ðs; t; uÞ ð2:5Þ

does not in general have a positive discontinuity since the
final expression does not correspond to an elastic ampli-
tude. However, if we focus on factorizable indefinite
helicity combinations for which ah1h2 ¼ αh1βh2 , then

Auðs; t; uÞ ¼
X
hi¼�2

αh1βh2α
�
−h3β

�
−h4Ah1h4h3h2ðs; t; uÞ

¼
X
hi¼�2

αh1β
�
−h2α

�
−h3βh4Ah1h2h3h4ðs; t; uÞ; ð2:6Þ

and so Auðs; t; uÞ can be interpreted as an elastic scattering
amplitude with initial state jini ¼ P

h1;2¼�2 αh1β
�
−h2 jh1h2i.

The scattering amplitude will exhibit manifest s-u crossing
symmetry if

βh ¼ β�−he
iγ1 : ð2:7Þ

B. Manifest s ↔ t crossing symmetry

In principle, we could apply positivity bounds to any
factorizable indefinite polarizations. However, in order to
obtain more precise bounds, it is useful to input the
consequences of s ↔ t crossing symmetry which are
largely hidden in the standard fixed t dispersion relations.
Indeed, it was shown in [22,23] that the imposition of s ↔
t crossing symmetry imposes a set of “null constraints”
which can be used to infer upper and lower bounds on
Wilson coefficients.
The t-channel amplitude defined via s-t crossing for

factorizable states is given by

Atðs;t;uÞ¼Asðt;s;uÞ
¼

X
h1;h2;h3;h4

αh1βh2α
�
−h3β

�
−h4Ah1h2h3h4ðt;s;uÞ ð2:8Þ

¼
X
hi¼�2

αh1α
�
−h3βh2β

�
−h4Ah1h3h2h4ðs; t; uÞ ð2:9Þ

¼
X
hi¼�2

αh1α
�
−h2βh3β

�
−h4Ah1h2h3h4ðs; t; uÞ; ð2:10Þ

where in the last step we interchanged labels. It is therefore
sufficient to impose

βh ¼ α�−he
iψ ð2:11Þ

to ensure that the scattering amplitude is manifestly s ↔ t
symmetric,

Atðs; t; uÞ ¼ Asðs; t; uÞ: ð2:12Þ

Up to an overall irrelevant phase, there is a two-parameter
family of such in-states

jini ¼
X

h1;2¼�2

αh1βh2 jh1h2i; ð2:13Þ

for which αþ2 ¼ cos χ and α−2 ¼ sin χeiϕ so that

jini ¼ eiψ ðcos χ sin χe−iϕj þ þi þ cos2 χj þ −i
þ sin2 χj −þi þ cos χ sin χeiϕj − −iÞ:

C. Manifest triple crossing symmetry

By combining (2.7) and (2.11) we can construct
elastic scattering amplitudes which are manifestly crossing
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symmetric under all three interchanges s ↔ t, s ↔ u, and
t ↔ u,

Auðs; t; uÞ ¼ Atðs; t; uÞ ¼ Asðs; t; uÞ: ð2:14Þ

Up to an overall irrelevant phase, there remains a one
parameter family of in-states (2.13) which respect (2.7)
and (2.11). Full crossing symmetry is manifest upon setting
the phases ψ ¼ ϕ and χ ¼ π=4, so that

αþ ¼ 1ffiffiffi
2

p ; α− ¼ eiϕffiffiffi
2

p ; βþ ¼ 1ffiffiffi
2

p ;

β− ¼ eiϕffiffiffi
2

p ; ϕ ∈ R: ð2:15Þ

For a general incoming state as defined in (2.13), using the
shorthand notation a1 ¼ αþβþ, a2 ¼ αþβ−, a3 ¼ α−βþ,
a4 ¼ α−β− the indefinite helicity elastic amplitude (simpli-
fied using the crossing symmetric properties of our ampli-
tudes) is expressed as

hinjT̂jini ¼ A11ðja1j2 þ ja4j2Þ þA22ðja2j2 þ ja3j2Þ
þ 2A23Reða2a�3Þ þ 2A14Reða1a�4Þ
þ 2A21ðReða1a�2Þ þ Reða1a�3Þ
þ Reða2a�4Þ þ Reða3a�4ÞÞ; ð2:16Þ

where the finite helicity amplitudes are Aij ≔ hjjT̂jii, and
we have used the shorthand notation

j1i ¼ j þ þi; j2i ¼ j þ −i;
j3i ¼ j −þi; j4i ¼ j − −i: ð2:17Þ

With the triple crossing symmetric parametrization (2.15) we
therefore get

hinjT̂jini ¼ 1

2
ðA11 þA22 þA23Þ þ 2A21 cosϕ

þ 1

2
A14 cos 2ϕ: ð2:18Þ

In the low-energy EFTof gravity, the manifestly crossing
symmetric amplitude is given in what follows in (4.5), but
we note that this formalism is applicable for the scattering
of particles of any spin, including photons and higher spins.

D. Partial wave expansion

For convenience we start by focusing on the scattering of
two massless spin-2 particles in four dimensions, and the
extension to arbitrary dimensions is carried out in Sec. II E.
We also emphasize once again that the procedure is directly
applicable to the scattering of particles of other spins. In

four dimensions, the partial wave expansion in the standard
s-channel is given in4 [16,48]

Ah1h2h3h4ðs; θÞ ¼ 32π
X
J

ð2J þ 1ÞdJλμðθÞTJ
h1h2h3h4

ðsÞ;

ð2:19Þ

where

λ ¼ h1 − h2; μ ¼ h4 − h3; ð2:20Þ

and

TJ
h1h2h3h4

ðsÞ ¼ hpfJM − h3 − h4jT̂jpuJMh1h2i: ð2:21Þ

The Wigner matrices satisfy dλμð−θÞ ¼ ð−1Þλ−μdλμðθÞ.
As long as the external states are spin-2 (or spin-0) then
ð−1Þλ−μ ¼ 1 so that the partial wave expansion may be
written as

Ah1h2h3h4ðs; θÞ ¼ 16π
X
J

ð2J þ 1ÞðdJλμðθÞ

þ dJλμð−θÞÞTJ
h1h2h3h4

ðsÞ; ð2:22Þ

which is to say that all amplitudes will be even in θ. Further
using the following relation for the Wigner matrices [16]

dJλμðθÞ þ dJλμð−θÞ ¼ 2ei
π
2
ðλ−μÞ XJ

ν¼−J
dJλν

�
π

2

�
dJμν

�
π

2

�
cosðνθÞ;

ð2:23Þ

and considering an arbitrary indefinite helicity elastic
scattering amplitude associated with a scattering in-state
jini ¼ P

h1;h2 ah1h2 jh1h2i,

Asðs;t;uÞ¼
X

h1;h2;h3;h4

ah1h2a
�
−h3−h4Ah1h2h3h4ðs;t;uÞ; ð2:24Þ

it is straightforward to see that

DiscsAðs; θÞ ¼
X
J

ð2J þ 1Þ
XJ
ν¼−J

cosðνθÞFν;JðsÞ

¼
X∞
ν¼0

cosðνθÞF̃ν;JðsÞ; ð2:25Þ

where the function Fν;J is defined as

4This differs by a factor of 2 from the result in [16] due to the
inclusion of a factor of

ffiffiffi
2

p
in the normalization of identical

scattering states as in [48]. This convention difference will not be
important in what follows.
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Fν;JðsÞ ¼
X
hi¼�2

Cν
−h3−h4

�DiscsðTJ
h1h2h3h4

ðsÞÞCν
h1h2

ð2:26Þ

¼
X
hi¼�2

Cν
h3h4

�DiscsðTJ
h1h2→−h3−h4ðsÞÞCν

h1h2
≥ 0;

ð2:27Þ

with

Cν
h1h2

¼ ei
π
2
ðh1−h2ÞdJðh1−h2Þν

�
π

2

�
ah1h2 ; ð2:28Þ

which in turn implies positivity of the spectral densities
F̃ν;JðsÞ ≥ 0. Using the positivity of

∂
n cosðνθÞ
∂ cosn θ

≥ 0; ð2:29Þ

and given t ¼ − 1
2
sð1 − cos θÞ, we infer that

∂
n

∂tn
DiscsAsðs; tÞj

t¼0
≥ 0; for s > 0; ð2:30Þ

for all integers n ≥ 0. This is true as long as these
derivatives exist which assumes that DiscsAðs; tÞ is ana-
lytic in t at t ¼ 0. In general loops of massless particles
destroy this, so we can only use this property for amplitudes
computed at tree level in the low-energy effective theory in
which massless loops are not included. In reality for spin
S ≤ 1 particles we can always introduce an IR regulating
mass. As for the graviton loops, they are always suppressed
by additional powers of the Planck scale.
With the factorizable choice of polarization made in

Sec. II A, we can show that we also have positivity along
the left-hand branch cut

∂
n

∂tn
DiscsAuðs; 0Þj

t¼0
≥ 0; for s > 0: ð2:31Þ

This is sufficient to ensure a set of positivity bounds for
factorizable indefinite states. Positivity bounds for such
indefinite states have been considered at length in the
literature [17–19,25,41,49,50].

E. Higher dimensions

In four dimensions scattering amplitudes of massless
particles suffer from IR divergences related to the infinite
range nature of their interactions and Coulomb asymptotics.
This problem can partly be avoided by only computing tree-
level scattering amplitudes. At tree level, the only remaining
IR divergence is that attributed to the t-channel spin-2 pole
which drops out of higher subtracted positivity bounds. In
more than four dimensions, the gravitational potential falls

off sufficiently fast at large distances so that scattering
amplitudes are IR finite. Thus it is of great interest to
consider positivity bounds for higher dimensional theories.
The full set of such bounds becomes increasingly compli-
cated due to the increased number of polarizations.
However, there is a rather simple truncation which is already
sufficient to determine significant bounds. In a higher
dimensional theory, we can always focus on scattering
states which have only momenta and polarization depend-
ence in four of the D dimensions. This has the significant
advantage that the scattering amplitude inD ≥ 5 dimensions
for such external states can still be expressed via a partial
wave expansion of the form (2.19), with positivity properties
for the discontinuity, with the only difference being the
precise implementation of unitarity.
To illustrate this, consider the simpler problem of the

scattering of scalars in D dimensions where the natural

expansion variables are Gegenbauer polynomials CðD−3Þ=2
l

ðcos θÞ where l is the multipole and θ the scattering angle. It
is an elementary result that the Gegenbauer polynomials in
D dimensions admit an expansion in terms of D ¼ 4
Legendre polynomials with positive coefficients, or indeed
in terms of D ¼ 3 Chebyshev polynomials of the first kind
with positive coefficients. To be precise the expansion of
D-dimensional Gegenbauer polynomials in terms of D̃ < D
Gegenbauer’s is [51]

CðD−3Þ=2
l ðcosθÞ ¼

X½l=2�
k¼0

�
1
2
ðD− D̃Þ

�
k

�
1
2
ðD− 3Þ

�
l−k

k!
�
1
2
ðD− 2Þ

�
l−k

×

�ðD̃− 3Þ=2þ l− 2k

ðD̃− 3Þ=2
�
CðD̃−3Þ=2
l−2k ðcosθÞ;

ð2:32Þ

where for the case D̃ ¼ 3 we should recognize the limit in
terms of Chebyshev polynomials

lim
D̃→3

�ðD̃ − 3Þ=2þ n

ðD̃ − 3Þ=2
�
CðD̃−3Þ=2
n ðcos θÞ

¼
�
2 cosðnθÞ; if n ≥ 1;

1; for n ¼ 0:
ð2:33Þ

Here ðxÞk are the Pochammer symbols which are all
manifestly positive for x > 0 and k ≥ 0. Since these
expansion coefficients are positive, all of the positivity
arguments we have made remain intact.

1. Polarizations and momenta

To be specific, in four dimensions the scattering ampli-
tudes are computed with the following momenta and vector
polarizations:
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kμ1 ¼ kð1; 0; 0; 1Þ; εμ1 ¼ ð0; 1; ih1; 0Þ=
ffiffiffi
2

p
;

kμ2 ¼ kð1; 0; 0;−1Þ; εμ2 ¼ ð0;−1; ih2; 0Þ=
ffiffiffi
2

p
;

kμ3 ¼ −kð1; sin θ; 0; cos θÞ; εμ3 ¼ ð0; cos θ; ih3;− sin θÞ=
ffiffiffi
2

p
;

kμ4 ¼ −kð1;− sin θ; 0;− cos θÞ; εμ4 ¼ ð0;− cos θ; ih4; sin θÞ=
ffiffiffi
2

p
; ð2:34Þ

where k ¼ ffiffiffi
s

p
=2 and hi ¼ �1 are the helicities of

each vector polarization. The graviton polarizations are
simply given by the direct product of vector polarizations,
i.e. εμνi ¼ εμi ε

ν
i which describe states with helicity 2hi.

For a D-dimensional spacetime, we use the momenta
KA

i ¼ ðkμi ; 0Þ and vector polarizations EA
i ¼ ðεμi ; 0Þ, with

A¼0;…;D−1. In D dimensions, the graviton has ðD−4Þ
ðDþ1Þ=2 additional polarization state; however, we are
free to focus on scattering between the polarizations
described above, which again have helicities �2. The
additional polarizations enter internal lines in a dimension-
dependent way; however, positivity of the appropriately
subtracted amplitudes is ensured from unitarity in any
dimensions.

III. GRAVITATIONAL POSITIVITY BOUNDS

The most familiar positivity bounds focus on the forward
and positive t region of the scattering amplitude where the
discontinuity is known to satisfy positivity properties (2.30).
The presence of the spin-2 exchange pole at t ¼ 0 as well as
the branch cut associated with graviton loops obstructs
continuation of the partial wave expansion from the physical
region t < 0, to positive values of t. In addition, the pole
itself has a residue growing faster with jsj than what the
Froissart/Jin-Martin bound allows [52,53] or the equivalent
Regge bound for massless amplitudes [6], and thus cannot
be subtracted without leading to the resulting pole-
subtracted amplitude violating the bound. This prevents
us from deriving the usual positivity bounds for theories of
gravity. There are essentially three ways to deal with this:
(1) Consider further subtractions to remove the

t-channel pole. This is the approach taken for
example in [25,26]. This approach only works when
the t-channel branch cut may be ignored as in a
weakly coupled UV completion for which the
branch cut may be assumed to start at a finite value
s ¼ Λ2.5

(2) Work exclusively in the negative t region and obtain
independent positivity statements. This is the ap-
proach taken in [27–29] as well as in other related
bootstrap programs [54]. To be functional it also
relies on the assumption of weak coupling in order to

consider t as negative as t ∼ −Λ2 to get useful
bounds.

(3) Fold an assumed UV behavior into the dispersion
relation to allow us to analytically continue from
t < 0 to t ≥ 0. This is the approach considered
in [41,47,55–58] and will be discussed further
below.

All three approaches assume the existence of a dispersion
relation with two subtractions for t < 0. The first and third
approaches seek to leverage information at t > 0, whereas
the second uses only t < 0. All three approaches rely on
assuming some level of weak coupling or neglect of loops of
massless states so that the branch cut starts at finite values
Λ2. In particular, the strength of the second approach comes
from considering amplitudes for 0 > t ∼ −Λ2.

A. Crossing symmetric dispersion relation

For scattering amplitudes which exhibit manifest triple
crossing symmetry, as in the case of our one parameter
family of elastic indefinite polarizations, we can use
the crossing symmetric dispersion relation reintroduced
in [42–45], based on earlier work [59,60]. For this we
introduce the standard crossing symmetric variables

x¼ stþ tuþus¼−
1

2
ðs2þ t2þu2Þ; and y¼ stu; ð3:1Þ

and further defined a ¼ y=x. It is apparent that as jsj → ∞,
a → t. Thus a may be regarded as the crossing symmetric
version of t. With this in mind, it is natural to ask if there is
a dispersion relation in the variable x ∼ −s2 defined at
fixed a. For large x, this will be equivalent to the
dispersion relation in s at fixed t, which in turn means
we expect the same overall number of subtractions,
namely that for small a < 0 two subtractions in s, which
is equivalent to one subtraction in x as x ∼ −s2, should be
sufficient. Putting this together, we obtain a crossing
symmetric dispersion relation

Aðs; t; uÞ ¼ cðaÞ þ 1

π

Z
∞

Λ2

dμ DiscsAðμ; τðμ; aÞÞ

×

�
s2

μ2ðμ− sÞ þ
t2

μ2ðμ− tÞ þ
u2

μ2ðμ− uÞ
�

ð3:2Þ
5Typically Λ2 is either 4m2 where m is the mass of the lightest

state with spin S < 2 or Λ2 ¼ M2� where M� is the mass of the
lightest spin S ≥ 2 state (usually S ¼ 4).
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¼ cðaÞ þ x
π

Z
∞

Λ2

dμ
DiscsAðμ; τðμ; aÞÞ

μ3

� ð2μ − 3aÞμ2
xða − μÞ − μ3

�
ð3:3Þ

¼ cðaÞ þ x
Z

∞

Λ2

dμ
X∞
ν¼0

ρνðμÞTν

�
1þ 2τðμ; aÞ

μ

�

×

� ð2μ − 3aÞμ2
xða − μÞ − μ3

�
; ð3:4Þ

where cðaÞ is a subtraction function and we have defined
the positive distribution

ρνðμÞ≡ F̃νðμÞ
πμ3

> 0; ð3:5Þ

associated with each Chebyshev polynomial Tνðcos θÞ ¼
cosðνθÞ. t ↔ u crossing symmetry guarantees that
ρνðμÞ ¼ 0 for ν odd, and thus the partial waves only
include even 3D multipoles.
The dispersion relation (3.2) may be put in a simpler

form by performing a redefinition of the spectral variable to

ω ¼ μ3

μ − a
; ð3:6Þ

so that

Aðx; aÞ ¼ cðaÞ− x
π

Z
∞

Λ6

ðΛ2−aÞ

dω DiscsAðμ; τðμ; aÞÞ 1

ωðωþ xÞ ;

ð3:7Þ

at the price of a dependence on a in the lower limit and
a less transparent ω dependence of the discontinuity
through μ ¼ μðω; aÞ.
In practice, locality imposes the subtraction function to

be of the form

cðaÞ ¼ c0 þ
c1
a
; ð3:8Þ

with c1 associated with any massless spin-0 pole since
other powers of a would give unphysical 1=x singularities.
Unless otherwise stated, in what follows we shall only be
interested in theories in which only the graviton is massless

for which c1 ¼ 0, but it is easily reintroduced when
necessary. The variable τ is defined via

τðμ; aÞ ¼ −
μ

2

0
@1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μþ 3a
μ − a

s 1
A; ð3:9Þ

which is simply how t is expressed as a function of a at
fixed s ¼ μ, that is τðs; aÞ ¼ t. Indeed, if we compute the
discontinuity of (3.2) at fixed t < 0 on the right-hand
branch cut (where a remains < 0 throughout), we obtain

DiscsAðs; t; uÞ ¼ DiscsAðμ; τðμ; aÞÞjμ¼s ¼ DiscsAðs; tÞ:
ð3:10Þ

The validity of this crossing symmetric dispersion relation
superficially requires − 1

3
Λ2 ≤ a ≤ Λ2 in order that τ is

real, and so necessitates a gap μ ≥ Λ2. Thus (3.2) can only
be applied to amplitudes for which massless loops are not
included. Outside of this region we expect double dis-
continuities in the manner of the Mandelstam double
spectral representation [61]. From this (as we will argue
in Appendix A) we can see that (3.2) acquires a branch cut
beginning at a ¼ 2Λ2=3.
Unlike the standard fixed t dispersion relation, expand-

ing the dispersive integrands in powers of Mandelstam
variables s, t, u will give rise to an infinite number of terms
with inverse powers of x, coming from powers of a ¼ y=x,
i.e. terms of the form ym=xn with m ≥ 0, n > 0 positive.
Since the scattering amplitude is local, all such terms must
vanish, and this gives an independent derivation of the null
constraints utilized in [22,23] which are constraints on the
discontinuity.
In the case of scattering in a gravitational theory with a

massless spin-2 state, Eq. (3.2) is only expected to hold for
a < 0 due to the same t-channel pole which is realized here
in crossing symmetric form

A ∼
x

MD−2
Pl a

: ð3:11Þ

Consequently, to run the traditional positivity arguments
it is necessary to perform another subtraction in the
dispersion relation, which in analogy with the fixed t case
is given simply by

Aðs; t; uÞ ¼ x2

MD−2
Pl y

þ cðaÞ þ xbðaÞ þ x2

π

Z
∞

Λ2

dμ
DiscsAðμ; τðμ; aÞÞ

μ6

�ðμ − aÞð2μ − 3aÞμ2
ðμ3 − xða − μÞÞ

�

¼ x
MD−2

Pl a
þ cðaÞ þ xbðaÞ þ x2

Z
∞

Λ2

dμ
X∞
ν¼0

ρνðμÞTν

0
@

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μþ 3a
μ − a

s 1
A�ðμ − aÞð2μ − 3aÞμ2

μ3ðμ3 − xða − μÞÞ
�
:
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Here bðaÞ is an unknown subtraction function which itself
admits an expansion in a at low energies. Indeed, locality
demands that

bðaÞ ¼ b0 þ b1a; ð3:12Þ

since any higher powers of a would lead to spurious 1=x
dependence in the amplitude.

B. Leading positivity bounds

The pole subtracted amplitude

Âðx; yÞ ¼ Aðx; aÞ − x
MD−2

Pl a
ð3:13Þ

admits the expansion6

Âðx; yÞ ¼
X
i≥0

X
j≥0

ai;jxiyj ¼
X
i≥0

X
j≥0

ai;jxiþjaj: ð3:14Þ

Due to the number of subtractions, the traditional positivity
bounds can only give us useful information on the
coefficients ai;j for iþ j ≥ 2. As in the case of the fixed
t dispersion relation, we may easily derive an infinite
number of nonlinear positivity bounds. For example,
defining an N × N Hankel matrix HðaÞ whose nm ele-
ments with n;m ¼ 0 � � �N − 1 are specified by

HnmðaÞ ¼ ð−1Þ2þnþm 1

ð2þnþmÞ!∂
2þnþm
x Âð0;aÞ ð3:15Þ

¼
Z

∞

Λ2

dμDiscsAðμ;τðμ;aÞÞðμ−aÞ1þnþmð2μ−3aÞ
μ7þ3nþ3m ;

ð3:16Þ

then we have

Det½HðaÞ� > 0; 0 ≤ a <
2

3
Λ2; ð3:17Þ

together with positivity of the determinant of any minors
of this matrix. Bounds of this type have been considered
for fixed t dispersion relations in [20,21,62,63]. These
bounds constrain higher orders in the EFT expansion
when those can be computed explicitly; however, in what
follows we only work with EFT expansions including the
first few orders. Thus the real question we want to ask is
given the first few terms in the EFT expansion: what are
the strongest bounds that can be made and how can this be
folded back into statements on the UV behavior? Below
we explicitly calculate the graviton scattering amplitudes

to order ðs; t; uÞ6 in Mandelstam variables (or up to cubic
in x, quadratic in y).
In the forward limit, positivity of the following dis-

continuities:

ð−1Þn
2

∂
2n
x Âð0; 0Þ ¼ n!

π

Z
∞

Λ2

dμ
DiscsAðμ; 0Þ

μ2nþ1
> 0; ð3:18Þ

directly implies

ð−1Þnan;0 > 0 ∀ n ≥ 2: ð3:19Þ

Away from the forward limit, the leading bounds come
from the positivity of

1

2
∂
2
xÂð0; aÞ ¼ 1

π

Z
∞

Λ2

dμ DiscsAðμ; τðμ; aÞÞ

×
ðμ − aÞð2μ − 3aÞ

μ7
> 0; 0 ≤ a <

2

3
Λ2:

ð3:20Þ

In terms of the above parametrization this is

a2;0 þ a1;1aþ a0;2a2 > 0; for 0 ≤ a <
2

3
Λ2; ð3:21Þ

where we obviously recover a2;0 > 0 from a ¼ 0 and
sliding a to its maximum at a ¼ ð2=3ÞΛ2, we infer

a2;0 þ
2

3
a1;1Λ2 þ 4

9
a0;2Λ4 > 0: ð3:22Þ

Similarly, differentiating7 with respect to a and evaluating
at a ¼ 0 we obtain

1

2
∂a∂

2
xÂð0; 0Þ ¼ 1

π

Z
∞

Λ2

dμ

�
2∂τ DiscsAðμ; 0Þ

μ5

−
5 DiscsAðμ; 0Þ

μ6

�
; ð3:23Þ

from which we easily infer

∂a∂
2
xÂð0; 0Þ þ 5

2Λ2
∂
2
xÂð0; 0Þ > 0; ð3:24Þ

or equivalently

6This assumes there are no other massless poles. If spin-0
massless poles are present, then these should also be subtracted.

7By taking further derivatives of the dispersion relation
and considering its forward limit, we can also obtain
19þ 10â1;1 þ 4â0;2 > 0; however, by considering the lower
bound on â11, this bound is not as strong as the one obtained
from allowing a to take its maximum value in the expansion of
∂
2
xÂð0; aÞ.
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a1;1 þ
5

2Λ2
a2;0 > 0: ð3:25Þ

Safe in the knowledge that the leading coefficient a2;0 > 0,
it will be useful in what follows to define the dimensionless
coefficient ratios:

ân;m ¼ an;m
a2;0

Λ4ðn−2Þþ6m; ð3:26Þ

with μ̂ ¼ μ=Λ2. The above linear bounds can then be
stated as

â0;2 þ
3

2
â1;1 > −

9

4
and â1;1 > −

5

2
: ð3:27Þ

C. Two-sided nonlinear bounds

To further sharpen these statements we can use the
explicit form of the partial wave expansion in terms of
Chebyshev polynomials from which we find

a2;0 ¼
�
2

μ2

	
; a1;1 ¼

�
4ν2 − 5

μ3

	
;

a0;2 ¼
�
4ν4 − 34ν2 þ 9

3μ4

	
; ð3:28Þ

together with an infinite set of null constraints from the
vanishing of ∂ma ∂2xÂðx; 0Þ with m ≥ 3 whose leading two
expressions are

�
ν2ð316 − 95ν2 þ 4ν4Þ

μ5

	
¼ 0 and

�
ν2ð−3292þ 1183ν2 − 98ν4 þ 2ν6Þ

μ6

	
¼ 0; ð3:29Þ

and we have defined the integral/sum over μ and ν via

�
Xðμ; ν2Þ

	
¼

Z
∞

Λ2

dμ
X∞
ν¼0

ρνðμÞXðμ; ν2Þ: ð3:30Þ

To the order that we calculate the amplitudes in the next
section we can also make use of the coefficients of x3 which
is the same order as the coefficient a0;2 of y2,

a3;0 ¼ −
�
2

μ4

	
: ð3:31Þ

An obvious bound is then 0 < −a3;0 < a2;0=Λ4.
Defining the following normalized moments:

D
Xðμ; ν2Þ

E
ν
¼

R∞
Λ2 dμρνðμÞ 1

μ2
Xðμ; ν2ÞR∞

Λ2 dμ0
P∞

ν0¼0
ρν0 ðμ0Þ 1

ðμ0Þ2
; ð3:32Þ

so that

D
Xðμ; ν2Þ

E
¼

X∞
ν¼0

D
Xðμ; ν2Þ

E
ν
; ð3:33Þ

we have

â1;1 ¼


2ν2 − 5

2

μ̂

�
; â0;2 ¼



2ν4 − 17ν2 þ 9

2

3μ̂2

�
;

â3;0 ¼ −


1

μ̂2

�
: ð3:34Þ

The leading two null constraints are



ν2ð316 − 95ν2 þ 4ν4Þ

μ̂3

�
¼ 0 and



ν2ð−3292þ 1183ν2 − 98ν4 þ 2ν6Þ

μ̂4

�
¼ 0;…: ð3:35Þ

As first noted in [22,23], the null constraints automatically
impose two sided bounds on the amplitude coefficients.
There are a number of ways to see this, but this is most
explicit from recognizing that the only negative contribution
from these first two null constraints comes from the ν ¼ 4
multipole (remembering that only even ν contribute by
virtue of crossing symmetry). Explicitly we have [the
notation on the right-hand side (RHS) indicating summation
over ν ≥ 6],



1

μ̂3

�
4

¼ 1

2880



ν2ð316 − 95ν2 þ 4ν4Þ

μ̂3

�
ν≥6

; ð3:36Þ



1

μ̂4

�
4

¼ 1

20160



ν2ð−3292þ 1183ν2 − 98ν4 þ 2ν6Þ

μ̂4

�
ν≥6

;

ð3:37Þ

where the terms in brackets on the RHS of these two
equations are positive for all even ν ≥ 6. Pragmatically
this implies that all higher multipoles with ν ≥ 6 are
bounded in terms of ν ¼ 4. From this observation alone it
is straightforward to derive semianalytic bounds on the
Wilson coefficients.

D. Semianalytic bounds

To demonstrate this, let us consider separately the
contribution from ν ≥ 6 and define

b̂1;1 ≡


2ν2 − 5

2

μ̂

�
ν≥6

; b̂0;2 ≡


2ν4 − 17ν2 þ 9

2

3μ̂2

�
ν≥6

;

b̂3;0 ≡ −


1

μ̂2

�
ν≥6

: ð3:38Þ
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In the prescribed range the coefficient of each term in
brackets is positive. From a straightforward application of
Cauchy-Schwarz hXi2 ≤ hX2ih1i we have

b̂21;1≤β


ð2ν2− 5
2
Þ2

μ̂2

�
ν≥6

¼β

�
6b̂0;2þ


ð24ν2−11=4Þ
μ̂2

�
ν≥6

�
ð3:39Þ

≤ β

�
6b̂0;2 þ 12


ð2ν2 − 5
2
Þ

μ̂2

�
ν≥6

−
109

4
b̂3;0

�
ð3:40Þ

≤ β

�
6b̂0;2 þ 12b̂1;1 −

109

4
b̂3;0

�
; ð3:41Þ

where

β ¼ h1iν≥6 ¼
�
1 −

X4
ν¼0

h1iν
�
: ð3:42Þ

Following a similar reasoning using the second null
constraint we have

b̂20;2 ≤
1

9
β


ð2ν4 − 17ν2 þ 9=2Þ2
μ̂4

�
ν≥6

: ð3:43Þ

Given that the null constraint (3.37) imposes a bound on
each multipole with ν ≥ 6 in terms of ν ¼ 4 we may
perform a straightforward maximization of the term in
brackets in (3.43) in terms of the ν ¼ 4 multipole, which
leads to

b̂20;2 ≤ 43758β



1

μ̂4

�
4

: ð3:44Þ

Given that each term in b1;1 is positive we have as an
extension of Cauchy-Schwarz

b31;1 ≤ β2

ð2ν2 − 5

2
Þ3

μ̂3

�
ν≥6

; ð3:45Þ

and similarly maximizing the RHS subject to the constraint
(3.36) in terms of the ν ¼ 4 multipole gives

b31;1 ≤ 12911β2


1

μ̂3

�
4

: ð3:46Þ

Together with the fact that 0 ≤ −b̂0;3 ≤ β and 0 ≤ β ≤ 1,
the constraints (3.41), (3.44), and (3.46) impose compact
bounds on b̂0;2, b̂1;1, and b̂0;3 in terms of the ν ¼ 4

multipole. The actual amplitude coefficients are related
to these by

â1;1 ¼ b̂1;1 −
5

2



1

μ̂

�
0

þ 11

2



1

μ̂

�
2

þ 59

2



1

μ̂

�
4

; ð3:47Þ

â0;2 ¼ b̂0;2 þ
3

2



1

μ̂2

�
0

−
21

2



1

μ̂2

�
2

þ 163

2



1

μ̂2

�
4

; ð3:48Þ

â3;0 ¼ b̂3;0 −


1

μ̂2

�
0

−


1

μ̂2

�
2

−


1

μ̂2

�
4

: ð3:49Þ

Thus to infer bounds on the actual amplitudes it is sufficient
to further extremize over the ν ¼ 0, 2, 4 multipoles. Given
each of these multipoles is independent (unrelated by the
null constraints) it is sufficient to impose the positivity of
the Hankel determinant of moments for ν ¼ 0, 2, 4

Detnm

�

1

μ̂nþm

�
ν

	
> 0; ð3:50Þ

for nþm ¼ 0;…; 4, together with positivity of the minor
determinants. A straightforward extremization over the
ν ¼ 0, 2, 4 moments yields the bounds

−
5

2
≤ â1;1 ≤ 31.4; −

21

2
≤ â0;2 ≤ 153; −1 ≤ â3;0 ≤ 0:

ð3:51Þ

Although not optimal, these bounds which follow from
extremizing the first three moments are already powerful
and apply equally in any dimension.

E. Numerical bounds

A simple numerical linear optimization which treats all
multipoles equally and approximates the scattering ampli-
tude by a finite number of multipoles and imposes the null
constraints by hand over a range of a [including negative
a − Λ2=3 < a < ð2=3ÞΛ2] results in

−
5

2
≤ â1;1 ≤ 31; −

21

2
≤ â0;2 ≤ 101; −1 ≤ â3;0 ≤ 0:

ð3:52Þ

The lower bounds remain the same because they are
determined by the ν ¼ 0 and ν ¼ 2 multipoles from
(3.47), (3.48), (3.49). The upper bound for a1;1 matches
well the simple semianalytic approach (3.51), whereas the
bound on a0;2 is strengthened. Note, however, that this
makes use of the simplest simple linear optimization
technique, and implementing the bounds (including non-
linear ones) within a fully numerical setup has the potential
to significantly tighten these bounds.

F. Preferred expansion variables

It is clear from the above considerations that the form
of the bounds is largely determined by the ν ¼ 0, 2, 4
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multipoles. Given this, it is natural to work with a
combination of the variables a1;1, a0;2, and a3;0 which is
dominated by each multipole specifically. The more appro-
priate choice of variables is8

α0 ¼
1

512
ð12a0;2 − 46a1;1 − 379a3;0Þ; ð3:53aÞ

α2 ¼
1

128
ð−4a0;2 þ 10a1;1 − 31a3;0Þ; ð3:53bÞ

α4 ¼
1

512
ð4a0;2 þ 6a1;1 − 9a3;0Þ: ð3:53cÞ

The semianalytic bounds on these coefficients are

−0.95 ≤ α0 ≤ 2.85; ð3:54aÞ

−3.27 ≤ α2 ≤ 1.10; ð3:54bÞ

−0.007 ≤ α4 ≤ 1.56: ð3:54cÞ

A numerical linear optimization gives

−0.6 ≤ α0 ≤ 1; ð3:55aÞ

−0.5 ≤ α2 ≤ 1; ð3:55bÞ

−0.007 ≤ α4 ≤ 1.17: ð3:55cÞ

G. Smeared positivity bounds

Although we will not directly follow this approach in
what follows, it is straightforward to implement the analog
of the smeared “impact parameter” bounds introduced
in [27]. The crossing symmetric dispersion relation auto-
matically implies a set of sum rules which follow from the
null constraints/locality. These are obtained by expanding
the amplitude in powers of x at fixed a. The sum rule that
follows from the term linear in x for which the t-channel
pole contributes will be considered in Sec. VA. Those from
higher powers of x take the form (for n ≥ 2)

Xn
j¼0

an−j;jaj ¼ ð−1Þn
Z

∞

Λ2

dμ
X∞
ν¼0

ρνðμÞTν

0
@

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μþ 3a
μ − a

s 1
A

×

�ðμ − aÞn−1ð2μ − 3aÞμ2
μ3n

�
: ð3:56Þ

Following the spirit of [27], at each order n we may
introduce a set of functions fnðpÞ defined with a ¼ −p2

with 0 < p2 < Λ2=3 so that positivity of the following
integrals holds for all even ν:

Z
Λ=

ffiffi
3

p

0

dpfnðpÞ
Z

∞

Λ2

dμ
X∞
ν¼0

ρνðμÞTν

0
@

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ − 3p2

μþ p2

s 1
A

×

�ðμþ p2Þn−1ð2μþ 3p2Þμ2
μ3n

�
> 0 ∀ ν even:

It then follows that

Z
Λ=

ffiffi
3

p

0

dpfnðpÞð−1Þnþj
Xn
j¼0

an−j;jp2j > 0; ð3:57Þ

setting up a linear optimization problem which may be used
to constrain the set of coefficients an−j;j for each n. The
case n ¼ 1 can be treated similarly except that we must
account for the additional contribution from the pole

1

MD−2
Pl

1

a
þa1;0þa0;1a¼−

Z
∞

Λ2

dμ
X∞
ν¼0

ρνðμÞTν

0
@

ffiffiffiffiffiffiffiffiffiffiffiffiffi
μþ 3a
μ−a

s 1
A

×

�ð2μ− 3aÞμ2
μ3n

�
; ð3:58Þ

so that

Z
Λ=

ffiffi
3

p

0

dpf1ðpÞ
�

1

MD−2
Pl

1

p2
− a1;0 þ a0;1p2

�
> 0: ð3:59Þ

Crucially a1;0 ¼ 0 and a0;1 may be chosen to vanish for a
specific choice of polarizations as discussed later.

IV. CONSTRAINTS ON LOW-ENERGY
GRAVITATIONAL EFTs

A. EFT of gravity

We now consider a low-energy effective action of gravity
in D dimensions and focus on even-parity operators
relevant for the 2-2 graviton scattering amplitude A. In
what follows, we implicitly consider the following scaling
limit of the amplitude:

Ã ¼ lim
MPl→∞

MD−2
Pl A; ð4:1Þ

keeping Λ, s, and t fixed. Graviton loops then decouple in
that limit, and we can focus on tree-level contributions [41].
In full quantum gravity, graviton loops are expected to lead
to a softening of the fixed MPl high-energy limit of the
amplitude [6]; however, the positivity bounds we have
derived have to be satisfied already at the level of the
decoupled tree-level amplitude (4.1).

8For example, from (3.47) if the amplitude consists solely of a
single mass μ ¼ Λ2, ν ¼ 0 multipole, then α2 ¼ α4 ¼ 0.
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Relevant to this 2-2 tree-level amplitude Ã, the EFT
contains 11 parity-even operators of dimension 4 to 12 as
well as 5 parity-odd operators. A formalism using the
Hilbert series method for the derivation of a nonredundant
operator basis for the EFT of gravity in any dimension is
presented in [64] together with the explicit EFT of gravity
in D ¼ 4 up to dimension-10 operators and includes the
first line of (4.2). We are here interested in the EFTat higher
order, and the Hilbert series is discussed further in
Appendix C. Up to dimension-12, the EFT can be
expressed in terms of the parity-even set of operators,

S ¼ MD−2
Pl

Z
dDx

ffiffiffiffiffiffi
−g

p �
R
2
þ cGB

Λ2
Gþ c3

Λ4
R3 þ c1

Λ6
C2

þ c2
Λ6

C̃2 þ e1
Λ8

½F �C þ e2
Λ8

½F̃ �C̃ þ f1
Λ10

½F �2

þ f2
Λ10

½F̃ �2 þ g1
Λ10

½F 2� þ g2
Λ10

½F̃ 2� þ j1
Λ10

J
�
; ð4:2Þ

where square brackets represent the trace of tensors and we
have defined

G ≔ R2 − 4RμνRμν þ RμνρσRμνρσ; ð4:3Þ

R3 ≔ RαβρσRρσ
μνRμναβ; C ≔ RμνρσRμνρσ;

C̃ ≔
1

2
RαβμνϵμνρσRρσ

αβ; F αβ ≔ ∇αRμνρσ∇βRμνρσ;

F̃ αβ ≔
1

2
∇αRγδμν∇β

�
ϵμνρσRρσ

γδ

�
; ð4:4Þ

and

J ¼ ∇μ∇νRαβγδ∇εRχ
ζδγ∇ζRεαιβRι

νμχ :

In four dimensions, this includes all the even-parity
operators up to dimension-12 which contribute at tree level
to the 2-2 scattering amplitude. Any other operator hence
either is redundant (removable by field redefinition) or does
not contribute to the graviton 2-2 amplitude at tree level.
Along with these parity-even operators, one could also
include the 5 parity-odd operators CC̃; ½F �C̃; ½F �½F̃ �; ½FF̃ �,
and J̃ . In what follows, we shall only focus on parity-even
operators (aside when comparing with heterotic string
theory as considered in Appendix B).
On computing the four-point graviton amplitudes at tree

level we find the three independent helicity amplitudes,9

MD−2
Pl A11 ¼

s3

tu
−
8ðD− 4Þ
D− 2

c2GB
Λ4

s3 − 18c23s
3

�ðD− 4Þ
ðD− 2Þ s

2 þ 2stþ 2t2
�
þ 8

Λ6
cþs4 þ

4

Λ8
eþs5 þ

2fþ
Λ10

s6 þ gþ
Λ10

s4ðu2 þ t2Þ;

MD−2
Pl A14 ¼

12

Λ4

�
5c3 −

2ðD− 4Þ
ðD− 2Þ c2GB

�
y−

2

Λ8

�
9ð12−DÞ
ðD− 2Þ c23 þ 10e−

�
xyþ 16

Λ6
c−x2 þ

2f−
Λ10

ð3y2 − 2x3Þ− g−
Λ10

ð3y2 þ 2x3Þ

−
3

4Λ10
j1y2;MD−2

Pl A13 ¼
6

Λ4
c3y−

3

16Λ10
j1y2;

where we have defined c� ¼ c1 � c2, and similarly for e�; f�; g�, and where in the last two lines we have made use of the
explicitly s, t, u crossing symmetric variables x and y given in (3.1).
In terms of the crossing symmetric variables x and y, the manifestly indefinite crossing-symmetric amplitude (2.18) (now

denoted A≡ hinjT̂jini) is given by

MD−2
Pl A ¼ x2

y
þ 6

Λ4

�
2c3 cosϕþ 5c3 cos 2ϕ − 4c2GBcos

2ϕ
D − 4

D − 2

�
y

þ 8

Λ6
ðcþ þ cos 2ϕc−Þx2 −

10

Λ8
ðeþ þ cos 2ϕe−Þxyþ

18ðD − 12Þcos2ðϕÞ
Λ8ðD − 2Þ c23xy

þ ðfþ þ cos 2ϕf−Þ
Λ10

ð3y2 − 2x3Þ − ðgþ þ cos 2ϕg−Þ
2Λ10

ð3y2 þ 2x3Þ − 3ðcosϕþ cos 2ϕÞj1
8Λ10

y2: ð4:5Þ

As already mentioned, a striking feature of this amplitude is the vanishing coefficient of x, i.e. a1;0 in the low-energy
expansion while the coefficient of y, i.e. a0;1, is generally nonzero. For scalar theories, positivity bounds on triple crossing

9The remainder of the helicity amplitudes may be obtained using crossing symmetry and parity, e.g. A11ðs; t; uÞ ¼
Aþþ−−ðs; t; uÞ ¼ Aþ−þ−ðt; s; uÞ ¼ A23ðt; s; uÞ and so on. Parity flips the helicities of all external gravitons, under which the
amplitudes are invariant (e.g. Aþþ;−þ ¼ A−−;þ−). We can see that as a consequence of crossing symmetry the last two lines are
themselves totally symmetric in s, t, u.
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symmetric amplitudes would not allow the coefficient of
the x term to vanish without resulting in both a1;0 and a0;1
vanishing, as a0;1 is bounded from above and below by an
amount proportional to a1;0 [22].
Interestingly, the e� operators cannot be generically

absorbed into that of c23, and the coefficient of the xy term
needs not be generically positive definite. We shall therefore
see that positivity bounds do imply an upper and a lower
bound on the coefficients a1;1 (i.e. a1;1 needs not be taken
positive definite from the outset) which implies a genuine
upper and lower bound on the dimension-10 operators
captured by e�.

B. Constraints on Wilson coefficients

1. Indefinite helicity elastic amplitude

While our discussion has been thus far focused around
the triple crossing symmetric dispersion relation and
scattering amplitude, we also have at our disposal the
standard fixed t positivity bounds, applicable to the elastic
indefinite helicity amplitude [given in Eq. (2.16)]. From the
twice subtracted dispersion relation one may derive the
following positive quantities:

∂
4
sAð0; tÞ > 0; ð4:6aÞ

∂
6
sAð0; tÞ > 0; ð4:6bÞ

∂
5
sAð0; tÞ þ 5

tþ Λ2
∂
4
sAð0; tÞ > 0; ð4:6cÞ

∂
4
s∂tAð0; tÞ þ 5

tþ Λ2
∂
4
sAð0; tÞ > 0; ð4:6dÞ

∂
4
s∂

2
tAð0; tÞ þ 10

ðtþ Λ2Þ
�
∂
4
s∂tAð0; tÞ þ 5

tþ Λ2
∂
4
sAð0; tÞ

�
> 0; ð4:6eÞ

∂
5
s∂tAð0; tÞ þ 5

ðtþ Λ2Þ
�
∂
4
s∂tAð0; tÞ þ 5

tþ Λ2
∂
4
sAð0; tÞ

�
> 0: ð4:6fÞ

In the above inequalities the scale Λ is the energy at which
the branch cut of the exact scattering amplitude begins,
which we have chosen to identify with the scale appearing
in the EFT action. These inequalities when applied to the
exact scattering amplitude are valid for positive real twithin
the region of analyticity; however, when applied to the EFT
amplitude computed to finite order in powers of s and t they
have a reduced regime of validity in t. Due to this we
evaluate the positive quantities above at t ¼ 0 to avoid any
potential for inaccuracy. Applying these inequalities to the
elastic indefinite helicity amplitude we find the following:
Eq. (4.6a) implies

c− sinð2θÞ sinð2χÞ cosðψ þ ϕÞ þ cþ > 0

⇒ cþ > jc−j ⇔ c1;2 > 0: ð4:7Þ

Equation (4.6b) implies

ð2f− þ g−Þ sinð2θÞ sinð2χÞ cosðψ þ ϕÞ þ 2fþ þ gþ > 0

⇒ 2fþ þ gþ > j2f− þ g−j: ð4:8Þ

Bound (4.6c) gives

cosð2θÞ cosð2χÞ
�
2eþ − 9c23

ðD − 4Þ
ðD − 2Þ

�
þ 4ðc− sinð2θÞ sinð2χÞ cosðψ þ ϕÞ þ cþÞ > 0: ð4:9Þ

The second term is positive by virtue of bound (4.6a),
and so this inequality bounds a combination of eþ and c23
from above and below. For example taking cosðϕþ ψÞ ¼ 0
gives

4cþ >





2eþ − 9c23
ðD − 4Þ
ðD − 2Þ





; ð4:10Þ

which reduces in D ¼ 4 to an upper and a lower bound
solely on eþ,

2cþ > jeþj: ð4:11Þ

Despite the fact that we made the particular choice of
cosðϕþ ψÞ ¼ 0, this previous bound is in fact the strongest
statement (when combined with cþ > jc−j) that one can
derive from the bound (4.6c). Bound (4.6d) gives
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1

D − 2
ðsinð2θÞ sinð2χÞ cosðψ þ ϕÞð9c23ðD − 12Þ þ 10ðD − 2Þð4c− − e−ÞÞ

− 5 cosð2θÞ cosð2χÞð9c23ðD − 4Þ − 2ðD − 2ÞeþÞ þ 9c23ðD − 12Þ þ 10ðD − 2Þð4cþ − eþÞÞ > 0: ð4:12Þ

Again setting cosðϕþ ψÞ ¼ 0 as well as cosð2θÞ cosð2χÞ ¼ 1 simplifies this greatly to an upper and a lower bound on the
value of c3, valid for any D ≥ 3,

c23 <
10

9
cþ: ð4:13Þ

Setting cosðϕþ ψÞ ¼ 0 and cosð2θÞ cosð2χÞ ¼ 0 and combining with bound (c), on the other hand, gives

9c23ðD − 12Þ
10ðD − 2Þ þ 4cþ > eþ > −2cþ þ 9ðD − 4Þ

2ðD − 2Þ c
2
3: ð4:14Þ

We can compare this with bound (4.6c) in the form

2cþ þ 9ðD − 4Þ
2ðD − 2Þ c

2
3 > eþ > −2cþ þ 9ðD − 4Þ

2ðD − 2Þ c
2
3; ð4:15Þ

however, we cannot conclude that either of these double sided bounds are stronger than the other as the difference between
the two upper-bounding quantities is sign indefinite. For D ¼ 4 these two bounds read

4cþ −
18

5
c23 > eþ > −2cþ; 2cþ > eþ > −2cþ: ð4:16Þ

Bound (4.6e) gives

1

D − 2
ðsinð2θÞ sinð2χÞ cosðψ þ ϕÞð360c23ðD − 12Þ þ ðD − 2Þð1600c− − 400e− þ 120f− þ 36g− − 3j1ÞÞ

− 20 cosð2θÞ cosð2χÞð90c23ðD − 4Þ − ðD − 2Þð20eþ − 6fþ − gþÞÞÞ

þ 4

�
90c23ðD − 12Þ

D − 2
þ 400cþ − 100eþ þ 30fþ þ 9gþ

�
− 3j1ðsinðθÞ cosðθÞ cosðϕÞ

þ sinðχÞ cosðχÞ cosðψÞÞ > 0; ð4:17Þ

which at D ¼ 4 reduces to

sinð2θÞ sinð2χÞ cosðψ þ ϕÞð−80ð18c23 þ 5e−Þ þ 1600c− þ 3ð40f− þ 12g− − j1ÞÞ − 80ð18c23 þ 5eþÞ
þ 1600cþ − 20 cosð2θÞ cosð2χÞðð6fþ þ gþÞ − 20eþÞ þ 12ð10fþ þ 3gþÞ
− 3j1ðsinðθÞ cosðθÞ cosðϕÞ þ sinðχÞ cosðχÞ cosðψÞÞ > 0: ð4:18Þ

One simple example case of this bound is at χ ¼ ψ ¼ 0; θ ¼ π=4;ϕ ¼ π=2 giving

400cþ þ 30fþ þ 9gþ > 10

�
10eþ þ 9c23ð12 −DÞ

D − 2

�
: ð4:19Þ

Bound (4.6f) gives

sinð2θÞ sinð2χÞ cosðψ þ ϕÞð9c23ðD − 12Þ þ ðD − 2Þð40c− − 10e− þ 6f− þ 3g−ÞÞ
þ cosð2θÞ cosð2χÞððD − 2Þð10eþ − 6fþ − gþÞ − 45c23ðD − 4ÞÞ
þ 9c23ðD − 12Þ þ ðD − 2Þð40cþ − 10eþ þ 6fþ þ 3gþÞ > 0; ð4:20Þ
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which in D ¼ 4 simplifies to

sinð2θÞ sinð2χÞ cosðψ þ ϕÞð−2ð18c23 þ 5e−Þ
þ 40c− þ 3ð2f− þ g−ÞÞ − 2ð18c23 þ 5eþÞ
þ 40cþ − cosð2θÞ cosð2χÞðð6fþ þ gþÞ − 10eþÞ
þ 3ð2fþ þ gþÞ > 0: ð4:21Þ

From bound (4.6f), taking χ ¼ θ ¼ ψ ¼ 0 and ϕ ¼ π=2
gives a bound on gþ from below, valid for any D ≥ 3,

gþ > −2j9c23 − 10cþj: ð4:22Þ

2. Manifestly crossing symmetric amplitude

Bounds on dim-8 operators (Riemann4).—Having explic-
itly computed the amplitude for our one parameter family
of polarizations it is now straightforward to read off the
bounds. The leading bound is

a2;0 ¼
8

Λ2
ðcþ þ cos 2ϕc−Þ > 0; ð4:23Þ

which is clearly most informative at the extremes cos 2ϕ ¼
�1 where we learn that

c1;2 > 0; ð4:24Þ

consistent with [25,26] as well as with pure infrared
causality constraints [30,31].

Bounds on Riemann3 and dim-10 operators.—Bounds on
the Wilsonian coefficient of the Riemann3 were already
discussed in [26] including dimension-10 operators in [28],
and for completeness we briefly discuss them in the context
of our analytic compact bounds here.

Even though the amplitude is sensitive to the coefficient
c3 of the Riemann3 operator, the subtleties associated with
applying double-subtracted bounds imply that there is to
date no positivity bounds on the coefficient c3 directly, i.e.
on its sign,10 and only c23 can be bounded using higher order
moment bounds. It enters the relevant coefficient â1;1 as
follows:

−
5

2
<â1;1¼−

1

4

ð18ð1þcos2ϕÞc23þ5ðeþþcos2ϕe−ÞÞ
ðcþþcos2ϕc−Þ

<31;

ð4:25Þ

and evaluating again at the extreme cos 2ϕ ¼ �1 leads to
the following two bounds:

−124c1 < 18c23 þ 5e1 < 10c1 and −
124

5
c2 < e2 < 2c2:

ð4:26Þ

In addition, from the standard fixed t positivity bounds
given above we have the bound c23 < 10cþ=9 which
implies

−
144

5
c1 − 4c2 < e1 < 2c1; ð4:27Þ

which are slightly weaker but similar in spirit to those
obtained in [28] at that order. Any supersymmetric EFT
would satisfy c3 ¼ 0 and hence would require

−
124

5
c1 < esusy1 < 2c1: ð4:28Þ

Bounds on dim-12 operators.—The remaining coefficient
ratios are

−
21

2
< â0;2 ¼

3

8

ðfþ þ f− cos 2ϕ − 1
2
ðgþ þ g− cos 2ϕÞ − 1

8
j1ðcosϕþ cos 2ϕÞÞ

ðcþ þ cos 2ϕc−Þ
< 101; ð4:29Þ

−1< â3;0 ¼ −
1

4

ðfþ þ f− cos2ϕþ 1
2
ðgþ þ g− cos2ϕÞÞ

ðcþ þ cos2ϕc−Þ
< 0:

ð4:30Þ
Evaluating them at the extremes, the relevant angles are at
ϕ ¼ π=3; π=2, and π, from where we infer the following
five bounds that can be used as compact bounds for
f1;2; g1;2, and j1,

at ϕ ¼ π; −56c1 < 2f1 − g1 <
1616

3
c1 and

0 < 2f1 þ g1 < 8c1; ð4:31Þ

at ϕ ¼ π=2;−56c2 < 2f2 − g2 þ
1

8
j1 <

1616

3
c2 and

0 < 2f2 þ g2 < 8c2; ð4:32Þ

at ϕ¼ π=3; −56<
2ðf1 þ 2f2Þ− ðg1 þ 3g2Þ

c1 þ 3c2
<
1616

3
:

ð4:33Þ

10Causality constraints can, on the other hand, provide direct
bounds on the sign of c3, which is required to be positive in any
tree-level high-energy completion [31].
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These relations imply compact bounds on each individual
Wilsonian coefficients in terms of ci,

−14c1 <f1 <
410

3
c1 and −

808

3
c1 < g1 < 32c1; ð4:34Þ

− 14c2 < f2 þ
1

32
j1 <

410

3
c2 and

−
808

3
c2 < g2 −

1

16
j1 < 32c2; ð4:35Þ

jj1j < 1903ðcþ þ 2c2Þ; ð4:36Þ

however, the bounds (4.31)–(4.33) are overall stronger and
should remain satisfied.
In many of the positivity bounds above, we see the

appearance of c23 which, when considering a loop-level
completion, is suppressed by factors of Λ=MPl compared to
expressions linear in the Wilson coefficients, and so may be
neglected in these cases. This is not the case for tree-level
completions such as the string theories for which the Wilson
coefficients are given in Appendix B. Interestingly though,
in all supersymmetric completions, c3 ¼ 0, so only the case
of bosonic string theory gives a concrete example where the
contribution from that operator is relevant.
We can visualize the allowed regions on different

combinations of Wilson coefficients from both the

fixed-t positivity bounds and the crossing symmetric
bounds and where different partial UV completions (aris-
ing from massive spin ≤ 2 particles or string theories) lie in
these regions. In all cases we take the spacetime dimension
to be D ¼ 4. As expected, and as can be seen explicitly in
Figs. 1 and 2, the double sided bounds from crossing
symmetry are all satisfied by the coefficients arising from
integrating out minimally coupled fields of spin ≤ 2. In
addition, we also include the equivalent coefficients for the
respective bosonic, heterotic, and superstring tree ampli-
tudes (BS, HS, and SS).
Using the explicit values of the coefficients given in

Appendix B, we can verify that the bounds are satisfied for
loop-level partial UV completions of a single spin ≤ 2

particle of mass m (for which Λ ¼ 2m), as well as for the
three string theory completions (BS, HS, and SS). We can
see that, especially for the lower spin loops, the choice of
angle ϕ can lead to a relatively large change in the
magnitude and also the sign of certain coefficients in the
expansion of the amplitude and so may prove a useful tool
for exploring the allowed parameter space.

V. CONSTRAINTS ON UV REGGE BEHAVIOR
FROM ANALYTICITY AND POSITIVITY

If we were dealing with a lower spin EFT (with light
states of spin < 2), the absence of a term linear in x would
by itself be sufficient to cast doubt on the existence of a
standard high-energy completion, as is the case for

FIG. 1. Coefficients arising from the string completions (dashed lines) and loops of lower spin (solid lines). As expected, for these
(partial) UV completions, all coefficients lie within the allowed range defined by positivity. Parameters lying within the shaded regions
are deprived from ever enjoying a standard (Wilsonian) high-energy completion. As indicated analytically in (3.51) or seminumerically
in (3.52), the allowed region is compact for all three amplitude parameters â1;1, â0;2, and â3;0; however, the upper or lower bounds are
sometimes well away from the regions explored by BS, HS, or SS string theory completions or by lower-spin contributions and hence
not always represented in these figures.
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instance in massless Galileon EFTs [10,21,22,50]. In the
EFT of gravity, the presence of the t-channel pole prohibits
the direct application of standard positivity bounds without
folding in other assumptions [41,47,55,56,58,65,66]. In
what follows we shall therefore see that the absence of a
term linear in x implies constraints on the UV Regge
behavior.11 In particular, we will see that the Regge
trajectory and residue are sensitive to the loops of the
lightest massive particles, and we are able to determine this
contribution by utilizing analyticity. This is similar in spirit
to what was proven in [41] in the context of graviton-
photon scattering and [58] for photon-photon scattering.
For example the fact that the Regge behavior in the
presence of Uð1Þ gauge fields was necessarily sensitive
to the lightest charged particles was pointed out in [41]. We
will see that this behavior appears to be ubiquitous to any
gravitational EFT, involving in the UVa nontrivial depend-
ence on the scale of the lightest massive particles, charged
or not. This connection between the UV and IR was of
course integral to the bootstrap approach of the historical
finite energy sum rules [46,67–70] and may be summarized
in the following statement:

(i) Knowledge of the IR scattering amplitude for en-
ergies < Λr is sufficient to determine the UV
scattering amplitude for energies > Λr,

where Λr is the energy scale at which the Regge behavior
kicks in. Our goal is to extend this observation to
gravitational theories.

A. Crossing symmetric Regge behavior

Following the procedure of [41], we derive a fully
crossing symmetric dispersion relation for the pole sub-
tracted amplitude that is valid across the forward limit
singularity. As already discussed, for a triple crossing
symmetric configuration of polarizations the graviton scat-
tering amplitude will contain exchange poles in the form
x2=y ¼ x=a (or x=a where a ¼ y=x) in the low-energy
expansion. Noting that this term does not explicitly appear
in the once (in x) subtracted dispersion relation, it must be
produced implicitly from a divergence of the integral over
the discontinuity. In terms of the crossing symmetric
variables, the dispersion relation reads

Aðx; aÞ ¼ cðaÞ þ x
π

Z
∞

Λ2

dμ
DiscsAðμ; τðμ; aÞÞ

μ3

×

� ð2μ − 3aÞμ2
xða − μÞ − μ3

�
; a < 0: ð5:1Þ

Considering the amplitude at fixed a, we have

FIG. 2. Amplitude contributions from the μ ¼ 0, 2, 4 multipoles expressed as the α0;2;4 introduced in (3.53), from string completions
(dashed lines) and loops of lower spin (solid lines). All coefficients lie within the allowed range defined by positivity bounds. The
shaded regions denote forbidden values from positivity bounds. As indicated analytically in (3.54) or seminumerically in (3.55), the
contribution from all three multipoles are bounded; however, the upper or lower bounds are sometimes well away from the regions
explored by BS, HS, or SS string theory completions or by lower-spin contributions and hence not always represented in these figures.

11The existence of a Regge behavior does not rely on the
assumption of a string theory completion. Rather, as discussed
in (5.4) and (5.5), it is an unavoidable outcome of the graviton
t-channel pole when assuming the existence of a dispersion
relation with two subtractions for t < 0 (or here a < 0).
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∂xAðx; aÞjx¼0 ¼
1

MD−2
Pl

1

a
þ a1;0 þ a0;1a; ð5:2Þ

where any gravitational amplitude necessarily has a1;0 ¼ 0,
in contradistinction to the more familiar scalar case. As for
the coefficient a0;1 it depends in principle on the Wilsonian
coefficients of the EFT, so one could in principle be tempted
to interpret the running of these coefficients with the scaling
of Λ in the dispersion relation. However, this interpretation

would be incorrect as can clearly be seen by choosing the
choice of indefinite parameter ϕ ¼ ϕ0 for which the
coefficient a0;1 vanishes for any gravitational theory in
the absence of gravitationally nonminimally coupled mass-
less scalars (consistent with the realization of nature we
observe). For that specific choice of indefinite parameter ϕ0

(which in D ¼ 4 satisfies cosϕ0 ¼ −5=2 cos 2ϕ0), we see
that the dispersion relation satisfies the universal relation
(for negative a),

−
1

MD−2
Pl

1

a
≡ 1

π

Z
∞

Λ2

dμ
DiscsAðμ; τðμ; aÞ;ϕ0Þ

μ4
ð2μ − 3aÞ; a < 0; ð5:3Þ

for any gravitational theory (in the absence of massless
scalars), irrespective of the scale Λ and the details of IR or
UV physics. This relation already proves the presence of
nontrivial IR/UV mixing whereby IR contributions to the

dispersion relation from the region
RΛ2

c

Λ2 dμ ought to be
entirely compensated by UV contributions in the regionR∞
Λ2
c
dμ, so that the combination of both always leads to the

same 1=a outcome.
We can make the previous arguments more concrete by

extending these relations to the region of positive a where
unitarity rules can be applied. So far the dispersion
relation is valid for negative values of a and diverges
as a → 0− due to the graviton exchange pole. This implies
that

lim
μ→∞

DiscsAðμ; τðμ; aÞÞ
�
< μ2; for a < 0;

> μ2; for a > 0:
ð5:4Þ

In order to produce the necessary divergence as a → 0−

we assume that at least in the vicinity of a ¼ 0, where this

transition occurs, we have at high energies the crossing
symmetric Regge behavior12

lim
μ→∞

DiscsAðμ; τðμ; aÞÞ ¼ rðaÞΛ4
r

�
μ

Λ2
r

�
αðaÞ

; ð5:5Þ

for some analytic αðaÞ and arbitrary scale Λr for which
αð0Þ ¼ 2 and α0ð0Þ > 0. We will not need to assume
that this form is valid at larger a and can simply work
perturbatively about a ¼ 0, where αðaÞ¼2þα0ð0Þaþ���.
The ansatz above describes the asymptotic behavior
of the discontinuity at energies well above the scale, at
which the “Reggeizing physics” becomes relevant,
prompting the definition of the difference function,

Rðμ; aÞ≡ DiscsAðμ; τðμ; aÞÞ − rðaÞΛ4
r

�
μ

Λ2
r

�
αðaÞ

; ð5:6Þ

which vanishes as μ → ∞. This allows us to perform the
integral over energies above Λr for a < 0, subtract the
pole, and rearrange the dispersion relation,

Aðx; aÞ − x
MD−2

Pl a
¼ cðaÞ − 2x

π

Z
Λ2
r

Λ2

dμ
DiscsAðμ; τðμ; aÞÞ

μ3
−
2x
π

Z
∞

Λ2
r

dμ
Rðμ; aÞ
μ3

þ 2xrðaÞ
πðαðaÞ − 2Þ

−
x

MD−2
Pl a

þ x
π

Z
∞

Λ2

dμ
DiscsAðμ; τðμ; aÞÞ

μ3

�
2xða − μÞ − 3aμ2

xða − μÞ − μ3

�
: ð5:7Þ

In particular, if we insert αðaÞ ¼ 2þ α0ð0Þaþ � � �, then we produce the expected pole via the Regge behavior,

12Subleading logarithmic corrections are considered in [71] in order to account for massless loops, and a different ansatz is
considered in [58]. Here we will not include the contribution of massless graviton loops since they prevent the dispersion relation from
being continued from t < 0 to t > 0 (equivalently here through a ¼ 0), and it is therefore unclear what if any positivity properties
remain for t > 0.
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lim
a→0−

2xrðaÞ
πðαðaÞ − 2Þ ∼

2rð0Þ
πα0ð0Þ

x
a
⇒

rð0Þ
α0ð0Þ ¼

π

2

1

MD−2
Pl

: ð5:8Þ

As the integrals on the right-hand side of (5.7) are now
convergent for 0 ≤ a < Λ2, we may continue the dispersion
relation representation of Aðx; yÞ to 0 ≤ a < Λ2.
Starting from this representation of the pole subtracted

amplitude defined as

Âðx; aÞ≡Aðx; aÞ − x
MD−2

Pl a
; ð5:9Þ

we may now derive positivity bounds on the low-energy
expansion coefficients, which involve the functions rðaÞ
and αðaÞ through the Regge function PðaÞ defined as

PðaÞ≡ 2rðaÞ
πðαðaÞ − 2Þ −

1

MD−2
Pl a

: ð5:10Þ

Crucially, as defined, this Regge function is fully analytic in
the vicinity of a ¼ 0. It contains no poles; P and all its
derivatives are finite and well-defined at a ¼ 0. In fact we
will argue later that it is likely an analytic function of a up
to a right-hand branch cut beginning at a ¼ 2Λ2=3.
Using the expansion of the discontinuity in terms of

Chebyshev polynomials TnðxÞ,

DiscsAðμ; τðμ; aÞÞ ¼
X∞
ν¼0

Tν

�
1þ 2τ

μ

�
F̃νðμÞ

¼
X∞
ν¼0

Tν

0
@

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μþ 3a
μ − a

s 1
AF̃νðμÞ; ð5:11Þ

the dispersion relation becomes

Âðx; aÞ ¼ cðaÞ þ xPðaÞ − 2x
π

Z
∞

Λ2
r

dμ
Rðμ; aÞ
μ3

− 2x
Z

Λ2
r

Λ2

dμ
X∞
ν¼0

ρνðμÞTν

0
@

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μþ 3a
μ − a

s 1
A

þ x
Z

∞

Λ2

dμ
X∞
ν¼−∞

ρνðμÞTν

0
@

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μþ 3a
μ − a

s 1
A�

2xða − μÞ − 3aμ2

xða − μÞ − μ3

�
; ð5:12Þ

which we can now use to infer finite sum rules at positive a.

B. Finite energy sum rule

Considering the low-energy expansion of the crossing-
symmetric amplitude in the variables x and a, we have

Âðx; aÞ ¼
X
i≥0

Xi

j¼0

ai−j;jxiaj: ð5:13Þ

Terms with powers of a greater than that of x would lead to
poles at x ¼ 0 which cannot be physically present. This

explains why the sum has to be truncated over finite powers
of a, leading to an infinite number of null constraints. Since
we are working in a framework where full crossing
symmetry is manifest from the outset, the existence of
the null constraints is here trivial. In particular, at leading
order in the x expansion, this implies

∂xÂðx; aÞjx¼0 ¼ a1;0 þ a0;1a: ð5:14Þ

Applying this to the dispersion relation (5.12) gives

a1;0 þ a0;1a ¼ 1

π

Z
Λ2
r

Λ2

dμDiscsAðμ; τðμ; aÞÞ
�
3a − 2μ

μ4

�
þ PðaÞ − 3arðaÞ

πΛ2
rðαðaÞ − 3Þ þ

1

π

Z
∞

Λ2
r

dμRðμ; aÞ
�
3a − 2μ

μ4

�

¼ 1

π

Z
Λ2
r

Λ2

dμDiscsAðμ; τðμ; aÞÞ
�
3a − 2μ

μ4

�
þ P̂ðaÞ; ð5:15Þ

where in the final line we have absorbed the two subdomi-
nant terms into the function P̂ðaÞ. Henceforth we will
assume that Λr is taken sufficiently large that P̂ðaÞ ≈ PðaÞ.
In our family of fully crossing symmetric amplitudes the

coefficient a1;0 is zero and a0;1 continuously varies with the

parameter ϕ and can take positive or negative values. As
discussed above (5.3), there is a single choice of parameter
ϕ (ϕ ¼ ϕ0 with ϕ0 satisfying cosϕ0 ¼ −5=2 cos 2ϕ0) for
which a0;1 vanishes at all scales for any theory describing
nature, meaning the function P̂ðaÞ encoding the information
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about the Regge behavior is uniquely fixed in terms of the
finite energy sum rule [46,67–70], now also valid for
positive a,

P̂ðaÞ≡ 1

π

Z
Λ2
r

Λ2

dμ DiscsAðμ; τðμ; aÞ;ϕ0Þ
�
2μ − 3a

μ4

�
:

ð5:16Þ

In particular, this implies that for a < 2=3Λ2, IR physics
encoded in the discontinuity at low energy ought to be
fundamentally encoded within the Regge behavior P̂ðaÞ as
it cannot be absorbed in the remaining part of the positive
dispersion relation. For arbitrary polarization ϕ we have

P̂ðaÞ≡ a0;1aþ
1

π

Z
Λ2
r

Λ2

dμ DiscsAðμ; τðμ; aÞ;ϕÞ
�
2μ− 3a

μ4

�
:

ð5:17Þ

C. Dispersion relation for Regge function

For any perturbative low-energy EFT, the amplitude can
be put in the Mandelstam double spectral representation
form as discussed in Appendix A. Then comparing our
crossing symmetric dispersion relation with this double
spectral representation, we can infer that DiscsAðμ;τðμ;aÞ;
ϕ0Þ is an analytic function of a with a right-hand branch cut
starting at a ¼ μΛ2ðΛ2 þ μÞ=ðμ2 þ μΛ2 þ Λ4Þ and ending
at a ¼ μ2. In terms of P̂ðaÞ, this implies that P̂ðaÞ should be
an analytic function of a with a right-hand branch cut
starting at a ¼ 2Λ2=3 and ending at a ¼ Λ2

r , i.e.

P̂ðaÞ ¼
XNp−1

n¼0

pnan þ
aNp

π

Z
Λ2
r

2Λ2
3

dã
DiscaP̂ðãÞ
ãNpðã − aÞ ; ð5:18Þ

where we have allowed for Np subtractions. In fact it is
reasonable to suppose Np ¼ 0 given that we do not expect
DiscaP̂ðρÞ to carry any singular behavior near ρ ¼ Λ2

r as
this is an arbitrarily chosen point. The discontinuity of the
Regge function is itself related to the double discontinuity of
the amplitude via

DiscaP̂ðãÞ ¼
1

π

Z
Λ2
r

Λ2

dμ ρðμ; μ̃Þ ð2μ − 3ãÞðμþ μ̃Þ
μðμ2 þ μμ̃þ μ̃2Þ2 ; ð5:19Þ

where ρðμ; μ̃Þ is the Mandelstam double discontinuity (see
Appendix A) and μ̃ ¼ μ̃ðã; μÞ in the integrand is the solution
of ã ¼ μμ̃ðμþ μ̃Þ=ðμ2 þ μμ̃þ μ̃2Þ.

D. Trees versus loops

For weakly coupled UV completions, we can generally
split the contributions to the amplitude into those from loops
of low spin particles (spin < 4), and those from tree-level

effects of higher spin particles (spin≥ 4). Explicitly splitting
the Regge behavior into each contribution

P̂ðaÞ ¼ P̂ðtreeÞðaÞ þ P̂ðloopÞðaÞ: ð5:20Þ

Then on dimensional grounds, one would expect the
following approximate scalings for the low-energy expan-
sion in a,

P̂ðtreeÞðaÞ ∼ 1

MD−2
Pl M2�

X
n

ctn
an

M2n�
; ð5:21Þ

P̂ðloopÞðaÞ ∼ mD−4

M2ðD−2Þ
Pl

X
n

cln
an

m2n : ð5:22Þ

Here it is assumed that the dimensionless tree and loop
coefficients ct;ln are of order unity, M� is the scale at which
the tower of higher spin states kicks in (i.e. typically the
lightest spin-4 state) and m is the mass of the lightest low
spin state. In realistic examples we expectm ≪ M� ≲MPl.

13

For example the form (5.22) is exactly what we obtain in the
examples (5.29), (5.30), and (5.31) considered below.
Owing to the overall additionalMPl suppression in (5.22)

relative to (5.21) that penalizes loops of lower spin particles,
one might naively have expected tree-level contributions to
always dominate over loops. However, the inverse scaling
of the coefficients ∼m−2n in terms of the lightest mass m,
implies that at higher orders in the a expansion, loops from
massive light fields will always dominate contributions to
the Regge behavior P̂ðaÞ. In particular, assuming that the
low-energy theory exhibits a single state of mass m ≪
M2�=MPl in D ¼ 4, then loop contributions dominate all a
derivatives of P̂ðaÞ. Fundamentally this is because the
branch cut from light loops starts at smaller values of a
and so the regime of convergence of the Taylor expansion is
much smaller. Indeed, following our previous argument that
PðaÞ is an analytic function of a with branch cut beginning
at a ¼ 2Λ2=3, then expansions (5.21) and (5.22) are
expected to come from functions of the form

P̂ðtreeÞðaÞ ¼ 1

MD−2
Pl M2�

Z
∞

2M2�=3
dã

ptreeðãÞ
ã − a

; ð5:23Þ

P̂ðloopÞðaÞ ¼ mD−4

M2ðD−2Þ
Pl

Z
∞

8m2=3
dã

ploopðãÞ
ã − a

; ð5:24Þ

where ptreeðaÞ and ploopðaÞ are order unity functions which
are consistent with (5.21) and (5.22). InD ≥ 4 for any finite
a, loops are suppressed relative to tree-level effects, but the

13For instance, current axionic models of dark matter consider
masses as small as about 10−20 eV, while models of dark energy
consider massive fields with masses that could be as low as the
Hubble scale today, ∼H0 ∼ 10−32 eV.

DE RHAM, JAITLY, and TOLLEY PHYS. REV. D 108, 046011 (2023)

046011-20



Taylor expansion is clearly dominated by loops. Thus it is
necessary to subtract out the light loop contribution by some
means in order to make useful statements. We discuss how
to achieve this below.

E. Improved Regge positivity bounds

The statement of unitarity, encoded through positivity of
the low-energy discontinuity for a > 0 simply implies

P̂ðaÞ > 0 ∀ 0 < a < 2Λ2=3: ð5:25Þ

By itself this condition does not go too far beyond what is
already expected. Indeed, in the case of tree-level string
theory, the Regge slope may be taken as linear αðaÞ ¼
2þ α0a. In this case

PðaÞ ¼ 2

πα0a
ðrðaÞ − rð0ÞÞ: ð5:26Þ

On the other hand, unitarity of the UV part of the
discontinuity requires that rðaÞ ≥ rð0Þ for a ≥ 0, which
already implies PðaÞ > 0. The bound (5.25) is nevertheless
independent since it does not require any linear assumption
on the Regge slope.
As is often the case, statements derived from the

dispersion relation may be strengthened by leveraging
information regarding the low-energy physics. Let us
now assume that the low-energy physics can be captured
by an EFTwith a cutoff Λc that is parametrically below Λr
but above the beginning of the branch cut set by Λ. When
this is the case, the part of the discontinuities from Λ to Λc
is calculable. This is the situation when loops of light fields
are included.
For an EFT at sufficiently low energy, the most natural

and conservative perspective is that the leading EFT
corrections are due to massive loops of a lower-spin
(< 4) particle, with mass m. For concreteness consider an
EFT, valid well below Λc, that contains a particle of mass m
(none of the following features will depend on the precise
low-energy field content of the low-energy EFT; rather the
sensitivity is on the mass of the lightest massive modes).
Loops of the light field produce a discontinuity in the
amplitude above μ ¼ 4m2. We could explicitly compute the
discontinuity due to these loops and subtract their contri-
bution (from the branch point at Λ2 ¼ 4m2 up to a scale Λ2

c
well below the cutoff of the EFT that includes this massive
particle). Following this approach, we split P̂ðaÞ into its
“low” and “high” energy contributions P̂low and P̂high as

P̂ðaÞ¼ P̂lowðaÞþ P̂highðaÞ

¼
�Z

Λ2
c

4m2

þ
Z

Λ2
r

Λ2
c

�
dμDiscsAðμ;τðμ;aÞ;ϕ0Þ

�
2μ−3a
πμ4

�
:

ð5:27Þ

Performing a “small a” expansion for each part,

P̂ðaÞ ¼ 1

M2ðD−2Þ
Pl

X∞
n¼0

dnan; ð5:28Þ

and similarly for P̂low=high, so that at each order
dn ¼ dlown þ dhighn .
Given that the branch cut from loops begins at 4m2, it is

clear that the coefficients dlown will scale with increasing
inverse powers of m2 as n increases, reflecting the regime
of convergence of the Taylor expansion. For concreteness
and illustrative purposes, we focus here on the disconti-
nuity from a single massive scalar loop in D ¼ 4 and
establish its contribution to P̂ðaÞlow; see Appendix B 1 for
details. Specifically we find

P̂ðaÞ ¼ M−4
Pl

X∞
n¼0

dlown an þ
Z

Λ2
r

Λ2
c

dμ DiscsAðμ; τðμ; aÞ;ϕ0Þ

×

�
2μ − 3a
πμ4

�
; ð5:29Þ

with

dlow0 ¼
Z

Λ2
c

4m2

dμ DiscsAðμ; 0;ϕ0Þ
�

2

πμ3

�

¼ 20 log Λ2
c

m2 þ 5 cosð2ϕ0Þ − 68

19200π2
þ m2

48π2Λ2
c

−
3m4

32π2Λ4
c
þO

�
m6

Λ6
c

�
ð5:30Þ

and

dlow1 ¼
Z

Λ2
c

4m2

dμ

�
2μ∂τ DiscsAðμ;0;ϕ0Þ−3DiscsAðμ;0;ϕ0Þ

πμ4

�

¼6−5cosð2ϕ0Þ
80640π2m2

−
7

1920π2Λ2
c
þ 5m2

96π2Λ4
c
þO

�
m6

Λ6
c

�
;

ð5:31Þ

where we recall that ϕ0 is the special value of the indefinite
scattering for which the coefficient a0;1 of the amplitude
cancels at all scales and for all four-dimensional theories
(cosϕ0 ¼ −5=2 cos 2ϕ0). To illustrate the scaling of these
coefficients with the lightest mass, the leading terms of
several higher order coefficients dlown are given:

dlow2 ¼ 1

2!

5þ 3 cosϕ0

604800π2m4
þ � � � ;

dlow3 ¼ 1

3!

5þ 4 cosϕ0

2217600π2m6
þ � � � ; ð5:32Þ
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dlow4 ¼ 1

4!

21þ 20 cosϕ0

20180160π2m8
þ � � � ;

dlow5 ¼ 1

5!

14þ 15 cosϕ0

20180160π2m10
þ � � � : ð5:33Þ

At higher order, the coefficients generically scale as
dlown ∼m−2n, unless the high-energy theory is precisely
fine-tuned so as to allow for exact cancellations to occur.
Generically, higher terms in the expansion are hence
dominated by the lightest mass states, and despite the
additional M2

Pl suppression, at higher orders in the expan-
sion loops will dominate over tree-level effects by virtue of
the branch cut.

F. Linear and nonlinear Regge positivity bounds

In principle one could conceive of a situation where the
contributions dhighn arising from higher-energy physics
(below the Regge scale) could absorb the dlown ∼m−2n

dependence on the low-energy physics. We shall prove
below that such a situation can never occur due to positivity.
At sufficiently high order in a small a expansion beyond the
forward limit, one cannot prevent the Regge behavior from
being dominated by the loops of the lightest massive states
in nature. To see this, we can start by focusing on the first
five coefficients dhighn , given by

dhigh0 ¼
�
2

μ3

	
> 0; dhigh1 ¼

�ð−3þ 4ν2Þ
μ4

	
;

dhigh2 ¼
�
2ν2ð−11þ 2ν2Þ

3μ5

	
;

dhigh3 ¼
�
2ν2ð151 − 65ν2 þ 4ν4Þ

45μ6

	
;

dhigh4 ¼
�
2ν2ð−2235þ 728ν2 − 70ν4 þ 2ν6Þ

315μ7

	
; ð5:34Þ

with the definition

½Xðμ; ν2Þ� ¼ M4
Pl

Z
Λ2
r

Λ2
c

dμ
X∞
ν¼0

μ3ρνðμÞXðμ; ν2Þ: ð5:35Þ

Defining the dimensionless ratios bn ¼ Λ2n
c

dhighn

dhigh
0

together

with the moments

hXðμ; ν2Þi ¼
RΛ2

r

Λ2
c
dμ

P∞
ν¼0 ρνðμÞXðμ; ν2ÞR Λ2

r

Λ2
c
dμ

P∞
ν¼0 ρνðμÞ

; ð5:36Þ

we have

b1 ¼ Λ2
c


ð−3þ 4ν2Þ
2μ

�
; b2 ¼ Λ4

c



ν2ð−11þ 2ν2Þ

3μ2

�
;

b3 ¼ Λ6
c



ν2ð151 − 65ν2 þ 4ν4Þ

45μ3

�
;

b4 ¼ Λ8
c



ν2ð−2235þ 728ν2 − 70ν4 þ 2ν6Þ

315μ4

�
: ð5:37Þ

As usual we can take linear combinations which are
manifestly positive

b1 þ
3

2
> 0; b2 þ

11

6
b1 þ

11

4
> 0;

b3 þ
13

6
b2 þ

102245

43488
b1 þ

102245

28992
> 0;

b4 þ
5

2
b3 þ

1625

768
b2 þ

104261

32256
b1 þ

3

2
> 0;…: ð5:38Þ

We may also use Cauchy-Schwarz to derive nonlinear
bounds of the form

0 <

�
b1 þ

3

2

�
2

< 6b2 þ 11b1 þ
33

2
; ð5:39Þ

0<

�
b1þ

3

2

�
3

< 90b3þ195b2þ
1403

4
b1þ

1059

2
; ð5:40Þ

0 <

�
b2 þ

11

6
b1 þ

11

4

�
2

< 70b4 þ 175b3 þ 359b2

þ 10757

12
b1 þ

10757

8
: ð5:41Þ

Unlike the low-energy positivity bounds, we can no longer
use crossing symmetry to obtain compact bounds since we
have already used all of the information from the null
constraints to obtain (5.16). We can rewrite (5.39) as

b2 >
1

6
ðb1 − 4Þ2 − 121

24
; ð5:42Þ

which tells us that b2 > − 121
24
. Similarly we can rewrite

(5.40) as

b3 þ
13

6
b2 >

1

90

�
b1 þ

3

2

�
3

−
1403

360
b1 −

353

60
: ð5:43Þ

By minimizing the RHS subject to the constraint that
b1 > −3=2 we infer

b3 þ
13

6
b2 > −28.1: ð5:44Þ
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G. Regge imprint

We are now in a position to see why the high-energy
(meaningΛ2

c < μ < Λ2
r) contribution to PðaÞ cannot cancel

the low energy (μ < Λ2
c). Even though the higher order

coefficients of P̂highðaÞ can in principle be negative, their
level of negativity is always limited from the above
positivity bounds,

dhigh0 > 0; dhigh1 > −
3

2

dhigh0

Λ2
c
; dhigh2 > −

121

24

dhigh0

Λ4
c
;…:

ð5:45Þ

Consider if from the outset we had dhigh0 ≳ Λ2
c=m2, then the

Regge behavior would clearly be dominated by the scale m
of the lightest IR loops, d0 > dhigh0 ≳ Λ2

c=m2. So to remain

conservative, it is safe to assume 0 < dhigh0 ≲ Λ2
c=m2 in

what follows. Then clearly, dhigh2 > −Oð1Þ=Λ2
cm2 and

d2 ¼ dlow2 þ dhigh2 > Oð1Þ=m4. Already at that level, we
see that the finite energy sum rule implies that the
coefficient d2 of the Regge expansion be dominated by
loops of IR fields.
At this order in the Regge expansion, this result is similar

to that obtained in [41] in the context of graviton-photon
scattering and in [58,65] in the context of photon-photon
scattering; however, the result here is shown to be generic
and can be carried out to all orders by virtue of the relation
(5.3). At cubic order in the small a expansion, our modest
linear positivity bounds are already sufficient to imply
b3 þ 13b2=6 > −28.1. There again, to remain conservative
it is safe to assume jb2j ≪ jb3j, in which case, the previous
bound imposes dhigh3 ≳ −Oð10Þdhigh0 =Λ6

c ≳ −Oð10Þ=
ðΛ4

cm2Þ ≳ −Oð10Þdlow3 m4=Λ4
c, so unless Λc ≲ 2m (in

which case the mass gap is nonexistent), the coefficient
d3 of the Regge behavior is also dominated by IR physics,
d3 ∼ dlow3 ∼m−6. If one were to relax the assumption jb2j ≪
jb3j one could in principle consider a situation where dhigh3 ∼
−dlow3 so that d3 is parametrically suppressed; however, this

comes at the cost of having b3 ¼ Λ6
cd

high
3 =dhigh0 ∼

−Λ6
cdlow3 =dhigh0 ∼ −Λ6

c=ðm6dhigh0 Þ and hence b2 ≳ jb3j ≳
Λ6
c=ðm6dhigh0 Þ leading to d2 ¼ dlow2 þ dhigh2 ≳ Λ2

c=m6, and
hence an even stronger dependence of the Regge coeffi-
cients on IR physics. As could already have been anticipated
from the universal rule (5.3), this implies that the scale of IR
physics has to be imprinted in the ultimate high-energy
completion in a nontrivial way. In other words, at each
(nonzero) order in the small a expansion, the coefficients
of the Regge behavior are dominated by loops of IR fields
and carry insight on the lightest massive modes, dn ∼m−2n

which dominate over the contribution from higher
spin trees.

H. Separating UV physics from IR physics

As we have seen, the low-energy contribution to the
Regge function P̂lowðaÞ is dominated by the lightest mass
states, which cannot be compensated by P̂highðaÞ by virtue
of positivity bounds. However, the situation is worse than
that: P̂highðaÞ is also sensitive to the light fields, because it
contains contributions from the discontinuities in a as is
apparent from the dispersion relation (5.18). The decom-
position in (5.27) does not cleanly separate low-energy and
high-energy contributions. What we need is a better way to
disentangle low-energy and high-energy physics, which
requires removing all low-energy contributions from both
single and double discontinuities.
As implied by the Mandelstam double spectral repre-

sentation, we start by considering that the single disconti-
nuity DiscsAðμ; τðμ; aÞÞ is itself an analytic function with
the prescribed double discontinuity and a fixed number Ns

of subtractions at least for μ < Λ2
c.

DiscsAðμ; τðμ; aÞÞ ¼
XNs−1

n¼0

κnðμÞðaþ a�Þn þ
ðaþ a�ÞNs

π

×
Z

∞

Λ2

dμ̃
ρðμ; μ̃Þ

ðbðμ; μ̃Þ þ a�ÞNs

×
ðμþ 2μ̃Þðμ − bðμ; μ̃ÞÞ

μμ̃ðμþ μ̃Þ − aðμ2 þ μμ̃þ μ̃2Þ ;

ð5:46Þ

where bðμ; μ̃Þ is the value of a when the denominator
vanishes,

bðμ; μ̃Þ ¼ μμ̃ðμþ μ̃Þ
μ2 þ μμ̃þ μ̃2

; ð5:47Þ

and with subtraction coefficients

κnðμÞ ¼
1

n!
∂
n
a DiscsAðμ; τðμ;−a�ÞÞ: ð5:48Þ

Here we have chosen an arbitrary subtraction point
a ¼ −a� with a� > 0 to be clear of the RH branch cut.
Furthermore, we can take a� ∼ εΛc with ε small enough to
trust the low-energy EFT calculations, but with εΛc ≫
Λ2 ¼ 4m2 to ensure that the κnðμÞ are not strongly sensitive
to some IR mass. Since the μ integral in the definition of
P̂ðaÞ is over a finite range we may safely write this as a
dispersion relation for P̂ðaÞ as
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P̂ðaÞ ¼
XNs−1

n¼0

Z
Λ2
r

Λ2

dμ

�
κnðμÞðaþa�Þn

�
2μ− 3a
πμ4

�	

þðaþa�ÞNs

π

Z
Λ2
r

Λ2

dμ
Z

∞

Λ2

dμ̃
ρðμ; μ̃Þ

ðbðμ; μ̃Þþa�ÞNs

×
ðμþ 2μ̃Þðμ−bðμ; μ̃ÞÞ

μμ̃ðμþ μ̃Þ−aðμ2þμμ̃þ μ̃2Þ
�
2μ− 3a
πμ4

�
; ð5:49Þ

where for the loop contributions we have in mind
Λ2 ¼ 4m2. Our goal is to remove the low-energy contri-
bution from both the single and double discontinuities. The
former is easy to do, but the latter is more subtle because
there are contributions in the double integral where μ is
small but μ̃ is large and vice versa.
The formation of double discontinuities in perturbation

theory is determined by the Landau curves [72]. For
instance, a double discontinuity from a massive loop is
summarized by writing the spectral density as a sum over
two “wings”

ρðμ; μ̃Þ ¼ θðμμ̃ − 4Λ2μ − Λ2μ̃Þρ1ðμ; μ̃Þ
þ θðμμ̃ − 4Λ2μ̃ − Λ2μÞρ1ðμ; μ̃Þ; ð5:50Þ

where Λ2 ¼ 4m2 and ρ1ðμ; μ̃Þ itself is not required to be
symmetric. When working in a low-energy effective theory
with cutoff Λc, we can calculate the double discontinuity
ρðs; tÞ; however, this calculation is clearly only valid in a

finite region. The precise shape of this region is difficult to
determine a priori and does not have to correspond to a
particular Landau curve. We shall be conservative and
suppose that we can meaningfully trust the calculation for
μþ μ̃ < Λ2

c, which, bearing in mind that both spectral
parameters are positive and have lower bound Λ2, defines a
triangular region bounded on one side by the lowest Landau
curve. We could equivalently choose a quarter-circular
region μ2 þ μ̃2 < Λ4

c.
With the former choice, the low-energy contribution to

the Regge function from the double discontinuity is then

ðaþ a�ÞNs

π

Z
Λ2
r

Λ2

dμ
Z

∞

Λ2

dμ̃θðΛ2
c − μ − μ̃Þ

�
ρðμ; μ̃Þ

ðbðμ; μ̃Þ þ a�ÞNs

×
ðμþ 2μ̃Þðμ − bðμ; μ̃ÞÞ

μμ̃ðμþ μ̃Þ − aðμ2 þ μμ̃þ μ̃2Þ
	�

2μ − 3a
πμ4

�
:

We can now split the Regge function cleanly into an IR
contribution (μ < Λ2

c) and a sub-Regge UV contribution
Λ2
c < μ < Λ2

r ,

P̂ðaÞ ¼ P̂ðIRÞðaÞ þ P̂ðUVÞðaÞ; ð5:51Þ

similar to our previous high- and low-energy split, but we
do so in such a way that P̂ðUVÞðaÞ contains no low-energy
contributions from either the double discontinuity or the
single discontinuity. The choice of IR contribution which
achieves this is

P̂ðIRÞðaÞ ¼
Z

Λ2
c

Λ2

dμ
XNs−1

n¼0

�
1

n!
∂
n
aDiscsAðμ; τðμ;−a�ÞÞðaþ a�Þn

�
2μ − 3a
πμ4

�	
þ ðaþ a�ÞNs

π

Z
Λ2
r

Λ2

dμ
Z

∞

Λ2

dμ̃θðΛ2
c − μ − μ̃Þ

×

�
ρðμ; μ̃Þ

ðbðμ; μ̃Þ þ a�ÞNs

ðμþ 2μ̃Þðμ − bðμ; μ̃ÞÞ
μμ̃ðμþ μ̃Þ − aðμ2 þ μμ̃þ μ̃2Þ

	�
2μ − 3a
πμ4

�
: ð5:52Þ

It is important to stress that P̂ðIRÞðaÞ contains only terms which are calculable within a given low-energy EFT which
describes the scattering below the cutoff scale Λc. The only in principle unknown is the number of subtractions Ns.
However, within a given low-energy EFT, there is a pragmatic choice which is to take Ns to be the value needed to write a
dispersion relation for the given low-energy amplitude computed to the desired order in loops, etc. In practice this means
taking Ns to be such that using the IR calculation of ρðμ; μ̃Þ the double integral in (5.52) converges if the theta function is
removed so that the upper limit is taken to ∞.
The sub-Regge UV contribution is similarly

P̂ðUVÞðaÞ ¼
Z

Λ2
r

Λ2
c

dμ
XNs−1

n¼0

�
1

n!
∂
n
aDiscsAðμ; τðμ;−a�ÞÞðaþ a�Þn

�
2μ − 3a
πμ4

�	
þ ðaþ a�ÞNs

π

Z
Λ2
r

Λ2

dμ
Z

∞

Λ2

dμ̃θðμþ μ̃ − Λ2
cÞ

×

�
ρðμ; μ̃Þ

ðbðμ; μ̃Þ þ a�ÞNs

ðμþ 2μ̃Þðμ − bðμ; μ̃ÞÞ
μμ̃ðμþ μ̃Þ − aðμ2 þ μμ̃þ μ̃2Þ

	�
2μ − 3a
πμ4

�
; ð5:53Þ

although it is of course undetermined unless at least a partial UV completion which describes the regionΛ2
c < μ < Λ2

r of the
EFT is already known. What is understood and relevant here is its analytic structure. Since the remaining double
discontinuity in P̂ðUVÞðaÞ has only support from μþ μ̃ > Λ2

c, then P̂ðUVÞðaÞ is an analytic function of a up to a right-hand
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branch cut which begins at a ¼ 2Λ2
c=3. Unlike our previous

definition P̂highðaÞ, P̂ðUVÞðaÞ is now devoid of any con-
tribution from low-energy physics, and so we have suc-
ceeded in disentangling the two contributions. The
historical application of finite sum rules [46,67–70] was
to assume that P̂ðaÞ can be well approximated entirely by
its IR contribution P̂ðIRÞðaÞ. This is equivalent to assuming
Λc ∼ Λr or that at least jP̂ðUVÞðaÞj ≪ jP̂ðIRÞðaÞj. This led to
the bootstrap hypothesis that the UV could be calculated
via the IR. A more conservative modern point of view
would be that the one taken here that we can meaningfully
compute the IR contribution μ < Λ2

c to UV quan-
tities μ > Λ2

r .

I. Continuous moment sum rules

The finite energy sum rule we have derived so far (5.16)
determines the Regge function P̂ðaÞ ≈ PðaÞ which is a
particular function of the Regge residue rðaÞ and the Regge
slope αðaÞ (5.10). However, ideally we would like to
disentangle this information so as to better understand
each function separately. One approach following [46]
would be to derive higher order sum rules from the
analyticity of xnAðx; aÞ for integer n > 0. While in
principle possible, in practice increasing powers of n
requires increasing knowledge about the UV properties
of the amplitude for which we can no longer trust the
simple ansatz (5.5). One solution is to improve the ansatz to
assume the asymptotics are given by a sum over Regge
poles so that there are subleading contributions each with
their own trajectory

lim
μ→∞

DiscsAðμ; τðμ; aÞÞ ¼
X
I

rIðaÞΛ4
r

�
μ

Λ2
r

�
αIðaÞ

: ð5:54Þ

As well as being a rather strong assumption, for instance it
neglects the possibility of Regge cuts, it introduces a
significant number of free functions. A better approach
would be to allow n to be small and noninteger to avoid
increasing dependence on subleading Regge trajectories.
Fortunately this can be achieved. To see how this works,

let us first define an exact function which has the correct
Regge asymptotics (5.5) and prescribed analytic structure

AReggeðx; aÞ ¼ −
rðaÞ

sinðπ
2
αðaÞÞ

��
xþ Λ6

Λ2 − a

�
αðaÞ=2

−
�

Λ6

Λ2 − a

�
αðaÞ=2	

: ð5:55Þ

Consider now the combination [73,74]

Bðx;aÞ ¼
�

Λ6

Λ2−a
þ x

�
σ

ðAðx;aÞ−AReggeðx;aÞÞ: ð5:56Þ

The assumption that ARegge correctly captures the asymp-
totic form of A can be written as that

lim
jxj→∞

jAðx; aÞ −AReggeðx; aÞj
jxj ¼ 0; ð5:57Þ

at least in the vicinity of a ¼ 0. We can now consider small
enough moment σ so that the following relation remains
satisfied:

lim
jxj→∞

jBðx; aÞj
jxj ¼ 0: ð5:58Þ

It then follows that we can write a dispersion relation with a
single subtraction similar to (3.7)

Bðx;aÞ ¼Bð0;aÞ− x
π

Z
∞

ω0ðaÞ
dω DiscsBðμ;τðμ;aÞÞ

1

ωðωþ xÞ ;

ð5:59Þ

and in the integrand ω is related to μ by ω ¼ μ3

μ−a and we

have defined ω0ðaÞ ¼ Λ6

ðΛ2−aÞ. For the graviton scattering

amplitudes (4.5) we always haveAð0; aÞ ¼ 0, and we have
conveniently chosenAReggeð0; aÞ ¼ 0whence Bð0; aÞ ¼ 0.
Differentiating and evaluating at x ¼ 0 gives

ω0ðaÞσ∂xAðx; aÞjx¼0 ¼ ω0ðaÞσ∂xAReggeðx; aÞjx¼0

−
1

π

Z
∞

ω0ðaÞ
dω DiscsBðμ; τðμ; aÞÞ

1

ω2
:

ð5:60Þ

Remembering that a1;0 ¼ 0 for graviton scattering ampli-
tudes this gives

1

MD−2
Pl a

þa0;1a¼−
αðaÞrðaÞωðaÞαðaÞ=2−1

sinðπ
2
αðaÞÞ −

1

ω0ðaÞσ
1

π

×
Z

Λ4
r

ω0ðaÞ
dωDiscsBðμ;τðμ;aÞÞ

1

ω2
; ð5:61Þ

where we have assumed that AReggeðx; aÞ is a sufficiently
good approximation to the form of the amplitude for
ω > Λ4

r that we may neglect the second integral for
ω > Λ4

r . The x=a pole in the amplitude A propagates
along the branch cut in B, and so it is helpful to separate it
out and focus on the discontinuity that comes from Â. This
results in the continuous moment sum rule [73,74] which
relates the Regge behavior with the IR or more precisely
sub-Regge physics14

14See [75] for a review of this approach.
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PσðaÞ ¼ a0;1aþ 1

πω0ðaÞσ
Z

Λ4
r

ω0ðaÞ
dω

ðω − ω0ðaÞÞσ
ω2

ðcosðπσÞDiscsÂðμ; τðμ; aÞÞ − sinðπσÞReÂðμ; τðμ; aÞÞÞ: ð5:62Þ

Here we have defined the new Regge function PσðaÞ as

PσðaÞ ¼ −
1

MD−2
Pl a

−
1

πωσ
0

Z
Λ4
r

ω0ðaÞ
dω

sinðπσÞðω − ω0ðaÞÞσ
MD−2

Pl aω
þ rðaÞ KσðaÞ

sinðπ
2
αðaÞÞ ; ð5:63Þ

with

KσðaÞ ¼ −
αðaÞω0ðaÞαðaÞ=2−1

2
þ 1

πωσ
0

Z
Λ4
r

ω0ðaÞ
dω

ðω − ω0ðaÞÞσ
ω2

�
sin

�
π

2
αðaÞ þ πσ

�
ðω − ω0ðaÞÞαðaÞ=2 − sin ðπσÞω0ðaÞαðaÞ=2

	
:

ð5:64Þ

Although not immediately apparent PσðaÞ has no pole at
a ¼ 0 given (5.8) and a similar cancellation among the
integrals. Furthermore, it is an analytic function of a with a
branch cut beginning at a ¼ 2Λ2=3. For the specific choice
σ ¼ 0 we have

P0ðaÞ ¼ −
1

MD−2
Pl a

−
1

π

Z
∞

Λ4
r

dω
rðaÞðω − ω0ðaÞÞαðaÞ=2

ω2
;

ð5:65Þ

which for Λ4
r ≫ ω0ðaÞ gives (5.10) so that (5.62) reduces

to our previous sum rule (5.16). The virtue of the
continuous moment sum rules is that we can now separate
the information on the Regge residue and the Regge slope.
For instance we can solve (5.62) for the residue

rðaÞ ¼ sinðπ
2
αðaÞÞ

KσðaÞ
�
PσðaÞ þ

1

MD−2
Pl a

þ 1

πωσ
0

×
Z

Λ4
r

ω0ðaÞ
dω

sinðπσÞðω − ω0ðaÞÞσ
MD−2

Pl aω

�
; ð5:66Þ

and since the equation must be true for any value of σ, we
can identify it at two different values

Kσ̃ðaÞ
KσðaÞ

¼

�
Pσ̃ðaÞ þ 1

MD−2
Pl a þ 1

πωσ̃
0

RΛ4
r

ω0ðaÞ dω
sinðπσ̃Þðω−ω0ðaÞÞσ̃

MD−2
Pl aω

�
�
PσðaÞ þ 1

MD−2
Pl a þ 1

πωσ
0

RΛ4
r

ω0ðaÞ dω
sinðπσÞðω−ω0ðaÞÞσ

MD−2
Pl aω

� ;

ð5:67Þ

which gives us an equation for the Regge trajectory αðaÞ in
terms of the integrals over the discontinuities in (5.62).
An alternative way to write this that removes explicit

mention of the Planck scale is from (5.63)

rðaÞ ¼ sin

�
π

2
αðaÞ

�
∂σðPσΣσÞ
∂σðKσΣσÞ

; ð5:68Þ

where

Σ−1
σ ¼ 1þ 1

πωσ
0

Z
Λ4
r

ω0ðaÞ
dω

sinðπσÞðω − ω0ðaÞÞσ
ω

; ð5:69Þ

from which we obtain

∂σ

�
∂σðKσΣσÞ
∂σðPσΣσÞ

	
¼ 0; ð5:70Þ

or equivalently

∂
2
σðKσΣσÞ
∂σðKσΣσÞ

¼ ∂
2
σðPσΣσÞ
∂σðPσΣσÞ

: ð5:71Þ

It is sufficient to evaluate this at any 0 ≤ σ < 1 to obtain an
implicit equation for the Regge trajectory.

J. Approximate expression for Regge trajectory

To illustrate this, consider the limit where there is a large
hierarchy between the beginning of the branch cut Λ and
the Regge scale Λr so that Λ4

r ≫ ω0. In this limit we have

Σ−1
σ ≈

sinðπσÞ
πσ

�
Λ4
r

ω0

�
σ

; ð5:72Þ

and so

KσΣσ ≈
πσ

sinðπσÞ
sinðπα=2þ πσÞ
πðσ þ α=2 − 1ÞΛ

2α−4
r : ð5:73Þ

Evaluating the left-hand side (LHS) of (5.71) at σ ¼ 1=2
gives a monotonically decreasing function of α over the
relevant range 0 < α < 4,
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∂
2
σðKσΣσÞ
∂σðKσΣσÞ






σ¼1=2

¼ −
4
�
αðaÞ − 2ÞðπðαðaÞ − 1Þ sin

�
παðaÞ
2

�
þ 2 cos

�
παðaÞ
2

��
�
αðaÞ − 1Þð2ðαðaÞ − 2Þ cos

�
παðaÞ
2

�
− πðαðaÞ − 1Þ sin

�
παðaÞ
2

�� : ð5:74Þ

Choosing for simplicity the special polarization ϕ ¼ ϕ0 for which a0;1 vanishes, then in the same limit we have

PσΣσ ≈
σ

sinðπσÞΛσ
r

Z
Λ4
r

0

dωωσ−2ðcosðπσÞ DiscsÂðμ; τðμ; aÞÞ − sinðπσÞReÂðμ; τðμ; aÞÞÞ; ð5:75Þ

which on evaluating the RHS of (5.71) at σ ¼ 1=2 gives

∂
2
σðPσΣσÞ
∂σðPσΣσÞ






σ¼1=2

¼
R Λ4

r
0 dωω−3=2

h
2πDiscsÂðμ; τðμ; aÞÞð2 − yÞ − ReÂðμ; τðμ; aÞÞyð4 − yÞ

i
RΛ4

r
0 dωω−3=2

h
πDiscsÂðμ; τðμ; aÞÞ þ ReÂðμ; τðμ; aÞÞð2 − yÞ

i ; ð5:76Þ

with y ¼ lnðΛ4
r=ωÞ. For instance one may check that with the Regge ansatz DiscsÂðμ; τðμ; aÞÞ ¼ rðaÞωαðaÞ=2,

ReÂðμ; τðμ; aÞÞ ¼ −rðaÞ cotðπα=2ÞωαðaÞ=2 þ ω=MD−2
Pl a taken to be valid at all scales, then (5.74) equals (5.76) where

the (crossing symmetric) t-channel pole cancels because of the integral identities

Z
Λ4
r

0

dωω−1=2ð2 − yÞ ¼
Z

Λ4
r

0

dωω−1=2yð4 − yÞ ¼ 0; ð5:77Þ

which means the hat may be dropped from the amplitude in (5.76). Thus Eq. (5.71) serves to uniquely determine the Regge
trajectory in terms of sub-Regge physics.
Using the knowledge that at a ¼ 0 the Regge trajectory satisfies αð0Þ ¼ 2 in order to reproduce the t-channel pole we

infer a nontrivial constraint

16

π2 − 4
¼

RΛ4
r

0 dωω−3=2½2π DiscsAðμ; τðμ; 0ÞÞð2 − yÞ − ReAðμ; τðμ; 0ÞÞyð4 − yÞ�R Λ4
r

0 dωω−3=2½π DiscsAðμ; τðμ; 0ÞÞ þ ReAðμ; τðμ; 0ÞÞð2 − yÞ�
: ð5:78Þ

In practice if Λr is taken too large, well into the Regge
region, then the integrals in (5.76) will be dominated by the
contribution from the Regge region in which case we do not
learn anything new. Thus the optimal situation is where Λr
is taken to be the smallest value at which the transition to
Regge behavior kicks in and ideally for which Λr ∼ Λc so
that data from the EFT region can be used to anticipate the
Regge trajectory. The historical use of such sum rules was
to precisely predict the Regge parameters from known low-
energy phenomenology.

K. Physical implications

The above sum rules show that there is a nontrivial
IR-UV mixing whereby the high-energy μ > Λ2

r Regge
behavior is determined by the sub-Regge physics μ < Λ2

r .
Furthermore, positivity bounds constrain the high-energy
sub-Regge contributions Λ2

c < μ < Λ2
r . The coefficients

in the low-energy expansion of the Regge functions are
potentially dominated by contributions from light loops
in a way which cannot be compensated by high-energy

sub-Regge physics. The dependence of the Regge func-
tions on light loops is arguably not surprising since the
traditional Regge limit is stated as large s and small t, and
small t physics is expected to be sensitive to the IR
through light t-channel exchanges. In our crossing sym-
metric dispersion relation a plays the role of t in the
traditional fixed t dispersion relation and so a similar
feature holds. What is remarkable though is that this is
determined in a calculable way via the nontrivial finite
energy sum rule (5.16). This very much differs from the
traditional approach where ad hoc Feynman diagram
resummation methods are used to anticipate Regge
behavior from the bottom up, in particular theories with
questionable success.15 Rather our approach follows
closely the duality bootstrap approach via finite and
continuous energy sum rules which were the origin for
the Dolen-Horn-Schmid duality [46], which started with

15See for example the beautiful textbook [76] for a review of
this approach.
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the foundational work of Ademollo, Rubinstein, Veneziano,
and Virasoro [77–79] pioneering the first bootstrap con-
straints. In this case, the need for a Regge trajectory16 with
αð0Þ ¼ 2 given the exchange of a massless spin-2 field is a
direct consequence of this duality mindset. This duality
historically gave rise to string theory by means of
Veneziano’s explicit amplitude [80]. The motivation of
Ademollo, Dolen, Horn, Rubinstein, Schmid, Veneziano,
Virasoro, and others17 was to use the equivalent of (5.16) as
a bootstrap from which Regge parameters could be pre-
dicted from low-energy data alone.
Our modern perspective is arguably slightly more

conservative. From a bottom approach we typically
assume we are working with a given EFT with cutoff
Λc for which the first nonanalyticity arises at Λ ≤ Λc. Our
sum rules (5.16) and (5.62) can be used to unambiguously
determine the IR contribution to the Regge functions. In
order to realize the historical bootstrap idea we also have to
include some notion of the sub-Regge UV contribution.
The question is to what extent can we anticipate this from
the low-energy EFT alone? A plausible approach is to
follow the spirit of the modern S-matrix bootstrap methods
[81–85]. We can make an ansatz for the discontinuity for
μ < Λ2

r by considering a large but finite number of
multipoles and number of mass states, similar to what is
assumed in numerical optimization procedures for low-
energy positivity bounds. Rather than using this to put
bounds on low-energy coefficients we can rather fix a
subset of the free parameters in this ansatz by known low-
energy expansion coefficients. Further coefficients can be
constrained by means of the null constraints which have
already been shown to be powerful at restricting the range
of the low-energy coefficients. Then the continuous
moment sum rules can be used to fix the leading Regge
trajectory and residue. It should then be possible at least in
principle to perform an optimization procedure to find the
possible range of the Regge functions.
This statement that the Regge behavior can be strongly

dependent on IR physics has important consequences for
potential proofs of the weak gravity conjecture [47,86]
which have attempted to bypass the difficulties of gravi-
tational positivity bounds by making specific assumptions
about UV completions. For example, one could in principle
have imagined that all of the scales in the Regge physics
encoded in PðaÞ are set by the string or Regge scale which
is essentially the scale of the massive higher spin statesM�.
This is the effect that is implied by assuming (5.21) alone.
If this were true, then one can derive positivity bounds
on low-energy effective fields theories which allow a mild

negativity set only by 1=ðMD−2
Pl M2�Þ. Assume the string

scale is much larger than the scale of the low-energy EFT
and then it would appear that traditional nongravitational
positivity bounds would continue to hold (approximately)
even with gravity despite the t-channel pole. The finite
energy sum rule (5.16) shows that the assumption is
incorrect, by crossing symmetry, whatever happens in
the IR is embedded in the UV Regge behavior.
Beyond applications to the weak gravity conjecture, we

note that already within known physics of the Standard
Model, this behavior could have far-reaching consequences.
Considering the contribution from Standard Model loops,
starting from neutrino loops at a scale mν ∼ 10−3 eV, and
involving contributions from all known standard matter
loops (including notably electrons and W and Z bosons as
was performed in [41,56] in the context of graviton-photon
amplitude), all the way up to the Λc which may be taken as
the TeV scale. The calculable effects contribute to the
various moment sum rules Plow

σ . By contrast the energy
scale which determines the sub-Regge high-energy contri-
bution Phigh or more precisely PUV comes in at least 15
orders of magnitude higher than the neutrino scale. Thus
(ignoring massless loops) we expect neutrino loops to
significantly dominate the expansion coefficients of the
Regge functions at small nonzero a. Similarly, contemplat-
ing (string-inspired) axion models with masses potentially
as low as maxion ∼ 10−20 eV − 10−47MPl would directly
imply that the Regge functions must carry a scale some
47 orders of magnitude below the Planck scale and
contributions from these axion loops would entirely domi-
nate the Regge behavior of any gravitational amplitude.
These results are consistent with what was already argued
in [41] and also observed in [58]; however, we note that our
results rely on no charged particles under any gauge
symmetry (other than gravity itself), making this IR/UV
mixing entirely generic to any gravitational theory and
involving a mixing scale carried by the lightest massive
particle (rather than the lightest charged particle). It is
important to both include and consistently remove along the
lines outline in Sec. V H these light loop contributions to get
meaningful constraints on the UV behavior.

VI. CONCLUSIONS

It is well known that the standard Einstein-Hilbert term of
general relativity should be considered as the leading
operator in an infinite EFT expansion that may resum to
string theory or other quantum gravity completion at high
energy. In any concrete realization, the next order operators
are always expected to be highly suppressed so as to remain
virtually unobservable in any concrete realization.
Nevertheless, with the tremendous leap forward brought
to us by the direct detection of gravitational waves and ever
more precise cosmological observations, the possibility of
constraining higher operators in the EFT of gravity has

16When considering the tree-level MPl → ∞ decoupling limit.
In full quantum gravity, graviton loops can soften that behavior
and ensure αð0Þ < 2 [6].

17We thank Gabriele Veneziano for inspirational discussions
on these points.
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gained traction. Furthermore, it is important to what types of
EFTs can be consistently UV completed. With this in mind,
folding in information from their potential high-energy
completion provides powerful theoretical constraints on
the higher order operators, carving out the appropriate
region of parameter space, while potentially allowing us
to establish contact between gravitational observables at low
energy (even if in the strong gravitational field regime) and
the UV.
This work complements and pushes further the previous

results obtained in that direction by providing an explicitly
triple crossing symmetric gravitational amplitude on which
nonlinear compact bounds following from unitarity, local-
ity, causality, and Lorentz invariance may be implemented
fully analytically. Up to dimension-10 operators, our results
agree with previously derived bounds, although smeared
bounds optimized numerically allow for better constraints
in some cases. The analytical bounds obtained here have,
however, the advantage of being directly generalizable to
arbitrary orders, and are easily implemented in any dimen-
sion, with new bounds on dimension-12 operators being
derived and highlighting features at higher order.
Besides the derivation of positivity bounds on low-energy

physics, our framework highlights the existence of exact
finite energy sum rules and continuous moment sum rules
whereby the characteristics of the UV Regge behavior is
directly related to the low-energy dispersion relation imply-
ing an IR/UV mixing or equivalently a bootstrap relation
which may be read either way. The existence of these
nontrivial sum rules is connected with the presence of the
spin-2 t-channel pole. Higher order subtracted dispersion
relations for which this pole drops out are largely insensitive
to the Regge behavior as the denominator in the integrand
will contain increasing powers of energy (squared). It is the
usual twice subtracted (in s, once in x) relation which is
strongly sensitive to the Regge trajectory and residue. The
continuous moment sum rules we have defined are similarly
sensitive provided the moment σ is kept close to zero. Using
the continuous moment sum rules we can in principle
determine the scattering amplitude for energies above Λr
when the leading Regge trajectory is assumed to dominate,
in terms of a dispersive integral of the amplitude at low
energies, potentially fulfilling the spirit of the bootstrap
program.
This framework confirms that the perturbative expansion

of the Regge functions away from the forward limit, loop
corrections of the lightest massive particles are shown to
always dominate over tree-level contributions. This is
expected from their relative contributions to the dispersion
relation. While such conclusions could have been expected
by a resummation of a perturbative low-energy expansion,
the validity of such an expansion is not always well-
justified, and it is only by developing a dispersion relation
valid at all scales that we can correctly identify how low-
energy physics shows up in the Regge behavior. The

relations obtained here do not rely on any assumptions
related to the validity of a perturbative resummation of
subsets of Feynman diagrams which are likely insufficient
to see the emergence of Regge behavior. The IR/UVmixing
presented in the context of the pure gravitational amplitude
resembles that already derived in scattering involving the
photon [41,58,65,66]; however, unlike these previous cases
our result is generic to any gravitational theory. As an
illustrative example, our dispersion relation/sum rules can
determine how loops of standard model fields such as the
neutrino, ultralight axions, or other dark matter particles
considered directly contribute to the Regge trajectory and
residue, mixing with the UV physics.

ACKNOWLEDGMENTS

We thank Arshia Momeni, Ira Rothstein, Aninda Sinha,
Piotr Tourkine, Gabriele Veneziano, Daniel Waldram, and
Alexander Zhiboedov for useful discussions. We also thank
the organizers and attendees of the IAS workshop “Possible
and Impossible in Effective Field Theory: From the
S-Matrix to the Swampland” for useful discussions. The
work of A. J. T. and C. d. R. is supported by STFC Grant
No. ST/T000791/1. C. d. R. is supported by Simons
Investigator Award No. 690508. S. J. is supported by an
STFC studentship.

APPENDIX A: MANDELSTAM’S DOUBLE
SPECTRAL REPRESENTATION

In order to get a better understanding of the crossing
symmetric dispersion relation considered in the text it is
helpful to compare it with the more familiar Mandelstam
double spectral representation for a manifestly crossing
symmetric amplitude [61]. Ignoring the issue of subtrac-
tions [52] this is given by

Aðs; t; uÞ ¼ 1

π2

Z
∞

Λ2

dμ
Z

∞

Λ2

dμ̃

�
ρðμ; μ̃Þ

ðμ − sÞðμ̃ − tÞ

þ ρðμ; μ̃Þ
ðμ − sÞðμ̃ − uÞ þ

ρðμ; μ̃Þ
ðμ − tÞðμ̃ − uÞ

	
; ðA1Þ

where the spectral density itself is required to be symmetric
by crossing symmetry ρðμ; μ̃Þ ¼ ρðμ̃; μÞ. Writing this in
terms of x and a variables, we have

Aðs; t;uÞ ¼ 1

π2

Z
∞

Λ2

dμ
Z

∞

Λ2

dμ̃ρðμ; μ̃Þ

×
ð2μ− 3aÞμ2ðμþ 2μ̃Þ

ðμ3 −axþμxÞðμμ̃ðμþ μ̃Þ−aðμ2þ μμ̃þ μ̃2ÞÞ :

ðA2Þ

As expected, for fixed a this gives a dispersion relation in x
of the form (3.2) modulo the precise number of subtractions.
By comparing the discontinuities in x for fixed a we infer
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DiscsAðμ;τðμ;aÞÞ¼ 1

π

Z
∞

Λ2

dμ̃ρðμ; μ̃Þ

×
ðμþ2μ̃Þðμ−aÞ

μμ̃ðμþ μ̃Þ−aðμ2þμμ̃þ μ̃2Þ ; ðA3Þ

modulo a subtraction polynomial in a. This is in turn a
dispersion relation in ameaning that the single discontinuity
is an analytic function of a for fixed μ with a right-hand
branch cut on the real axis beginning at the minimum value
of μμ̃ðμþ μ̃Þ=ðμ2 þ μμ̃þ μ̃2Þ which is in general μ depen-
dent but is at least 2Λ2=3. This justifies our use of the
dispersion relation (3.2) up to a ¼ 2Λ2=3. Furthermore, for
fixed μ there is a maximum value of the branch cut which is
given by a ¼ μ2. The double discontinuity is related to
Mandelstam’s double discontinuity by

Disca DiscsAðμ; τðμ; aÞÞja¼μμ̃ðμþμ̃Þ=ðμ2þμμ̃þμ̃2Þ

¼ ρðμ; μ̃Þμ3ðμþ 2μ̃Þ
ðμ2 þ μμ̃þ μ̃2Þ2 : ðA4Þ

APPENDIX B: (PARTIAL) UV COMPLETIONS

1. One-loop four graviton scattering discontinuity

Consider the theory of a minimally coupled massive
scalar field in D ¼ 4,

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
M2

Pl

2
R −

1

2
ð∂ϕÞ2 − 1

2
m2ϕ2

�
: ðB1Þ

Our goal is to compute the discontinuity across the branch
cut for the crossing symmetric combination of helicity
amplitudes, and use this to compute the low-energy portion
of the branch cut integral appearing in Eq. (5.27). Even
though this discontinuity is for illustration purposes
uniquely, it will give insight into a concrete realization
of how massive loops can appear in the Regge-subtracted
dispersion relation.
In the four graviton amplitude there is a subset of

diagrams that can produce discontinuities in the s-channel
as depicted in Fig. 3. Since we are concerned with triple
crossing symmetric amplitudes, we need only compute the
discontinuity across one of the three energy channels, e.g.
the s-channel. For illustration we take a ¼ 0 in order to
compute the coefficient dlow0 ,

DiscsAðs; 0;ϕÞ ¼ 1

1920πs2M4
Pl

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sðs − 4m2Þ

q
ð60m6 cosð2ϕÞ þ 120m6 þ 146m4s − 18m2s2 þ s3Þ

− 120m6 log

�
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sðs − 4m2Þ

p
− 2m2 þ s

2m2

�
ðm2 cosð2ϕÞ þ 2m2 − 2sÞ

�
: ðB2Þ

Inserting into the forward limit sum rule above gives

P̂ð0Þ ¼
Z

Λ2
r

Λ2
c

dμ DiscsAðμ;0;ϕ0Þ
�

2

πμ3

�
þ 1

960π2M4
Pl

�
log

�
Λ2
c

2m2
þ Λc

2m

ffiffiffiffiffiffiffiffiffiffiffiffiffi
Λ2
c

m2
− 4

r
− 1

��
1− 80

m6

Λ6
c
þ 30

m8

Λ8
c
ð2þ cosϕ0Þ

�

−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Λ2
c − 4m2

p
20Λc

�
ð68− 5 cosϕ0Þ−

2m2

Λ2
c
ð5 cosϕ0 þ 152Þ þ 2m4

Λ4
c
ð634− 15cosϕ0Þ þ 300

m6

Λ6
c
ðcosϕ0 þ 2Þ

��
; ðB3Þ

which can be expanded in powers of m=Λc ≪ 1,

P̂ð0Þ ¼
Z

Λ2
r

Λ2
c

dμDiscsAðμ; 0;ϕ0Þ
�

2

πμ3

�
þ 20 log Λ2

c
m2 þ 5 cosð2ϕ0Þ − 68

19200π2M4
Pl

þ m2

48π2Λ2
cM4

Pl

−
3m4

32π2Λ4
cM4

Pl

þO
�
m6

Λ6
c

�
: ðB4Þ

The higher order coefficients for P̂ðaÞlow can be obtained similarly by computing the higher derivatives of the discontinuity.

FIG. 3. Feynman graphs that produce a discontinuity in one of
the three or four graviton scattering channels. The number in
brackets indicates how many additional diagrams of that topology
there are (including crossed versions, etc.).
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2. Coefficients from loops of lower-spin fields

Assuming the Wilsonian coefficients entering our low-
energy EFT are dominated by contributions from loops
of (heavier) massive lower spin-S ≤ 2 particles, we can
provide explicit examples of (partial) UV completions
and the resulting amplitude coefficients. In the cases of the
single-helicity-flip amplitudes (e.g. þþ → þ−) and the
“all-plus” amplitude (þþ → þþ) this leads to a simple
relation between certain operator coefficients as detailed
below. Note that in the main text we identify the scale Λ2

(appearing in the EFT action) as the start of the branch cut,
and so in this section one should take Λ2 ¼ 4m2 to
maintain consistency with what is written above. We have
kept the two scales separate for illustrative purposes.
Defining

n ≔
1

ð4πÞ2
1

30240

Λ4

M2
Plm

2
ðB5Þ

and using the explicit one-loop amplitudes gives

S c3 cþ c− eþ e− fþ gþ f− g− j1

0 n 3
5
Λ2

m2 n 1
2
Λ2

m2 n 2
11

Λ4

m4 n 21
110

Λ4

m4 n 155
2002

Λ6

m6 n 1
143

Λ6

m6 n 3037Λ6

40040m6 n 113Λ6

20020m6 n − 128Λ6

5005m6 n

1
2

−2n 87
40

Λ2

m2 n −− 59
110

Λ4

m4 n −− 1136Λ6

5005m6 n 29Λ6

715m6 n −− −− −−

1 3n 93
10

Λ2

m2 n −− 159
110

Λ4

m4 n −− 13113Λ6

20020m6 n 433Λ6

1430m6 n −− −− −−
3
2

−4n 1257
20

Λ2

m2 n −− 25
11

Λ4

m4 n −− 11554Λ6

5005m6 n 503Λ6

143m6 n −− −− −−

2 5n 2013
2

Λ2

m2 n −− − 1993
22

Λ4

m4 n −− 254269Λ6

20020m6 n 25009Λ6

286m6 n −− −− − − :

To obtain the blank entries (“−−”) for spin S simply multiply the spin-0 result by ð−1Þ2Sð2Sþ 1Þ. We note that
c3 ¼ ð2Sþ 1Þð−1Þ2Sn, and so unbroken massive supermultiplets make no contribution to c3.

3. String theory completions

Following [26], the independent four-graviton tree-level amplitudes for different string theories are given by [87] (with α0
dependence made explicit)

MD−2
Pl Ass

22 ¼ −
u4ðα0Þ3Γ

�
− 1

4
ðsα0Þ

�
Γ
�
− 1

4
ðtα0Þ

�
Γ
�
− 1

4
ðuα0Þ

�
64Γ

�
sα0
4
þ 1

�
Γ
�
tα0
4
þ 1

�
Γ
�
uα0
4
þ 1

� ;

MD−2
Pl Ahs

22 ¼ −
u4ðα0Þ3Γ

�
− 1

4
ðsα0Þ

�
Γ
�
− 1

4
ðtα0Þ

�
Γ
�
− 1

4
ðuα0Þ

��
1 − stðα0Þ2

4uα0þ16

�
64Γ

�
sα0
4
þ 1

�
Γ
�
tα0
4
þ 1

�
Γ
�
uα0
4
þ 1

� ;

MD−2
Pl Abs

22 ¼ −
u4ðα0Þ3Γ

�
− 1

4
ðsα0Þ

�
Γ
�
− 1

4
ðtα0Þ

�
Γ
�
− 1

4
ðuα0Þ

��
stðα0Þ2
4uα0þ16

− 1
�
2

64Γ
�
sα0
4
þ 1

�
Γ
�
tα0
4
þ 1

�
Γ
�
uα0
4
þ 1

� ;

MD−2
Pl Abs

12 ¼ −
s2t2u2ðα0Þ5Γ

�
− 1

4
ðsα0Þ

�
Γ
�
− 1

4
ðtα0Þ

�
Γ
�
− 1

4
ðuα0Þ

�
1024Γ

�
sα0
4
þ 1

�
Γ
�
tα0
4
þ 1

�
Γ
�
uα0
4
þ 1

� ;

MD−2
Pl Abs

14 ¼ −
s2t2u2ðα0Þ5Γ

�
− 1

4
ðsα0Þ

�
Γ
�
− 1

4
ðtα0Þ

�
Γ
�
− 1

4
ðuα0Þ

�
ðstuðα0Þ3 − 128Þ2

1024ðsα0 þ 4Þ2ðtα0 þ 4Þ2ðuα0 þ 4Þ2Γ
�
sα0
4
þ 1

�
Γ
�
tα0
4
þ 1

�
Γ
�
uα0
4
þ 1

� : ðB6Þ

The mass M of the first spin-4 field exchanged between
gravitons for these string theory completions isM2 ¼ 4=α0.
To match the string amplitudes with the EFT, we should

first bear in mind that in both bosonic and heterotic string
theory, the presence of the Gauss-Bonnet term in higher

dimensions and the massless dilaton φ affects the low-
energy amplitude. In any viable vacuum, the massless
dilaton should be stabilized, and working below its mass
would lead to the same EFT as that considered in (4.2);
however, for completeness, we provide here the matching

CONSTRAINTS ON REGGE BEHAVIOR FROM IR PHYSICS PHYS. REV. D 108, 046011 (2023)

046011-31



with a nonstabilized massless dilaton, where the following
operator is included (along with a kinetic term for the
massless scalar Ψ):

ΔS ¼ MðD−2Þ=2
Pl

Z
dDx

ffiffiffiffiffiffi
−g

p �
c
Λ2

φGþ c̃
Λ2

ΨC̃
�
; ðB7Þ

with G being the Gauss-Bonnet term. The second operator
added here is parity violating and is needed specifically to
match to the heterotic string amplitude. Its origin can be
understood as the cross term between the field strength
3-form of the 2-form B field, and the Lorentz Chern-
Simons term (see e.g. [36]) which gives an interaction of
the schematic form ð∂BÞωRiem with ω the spin connection.
In four dimensions, the 3-form field strength is dual to a
1-form field strength for a massless shift symmetric scalar
gauge field (Ψ); writing the interaction in terms of Ψ and

integrating by parts leads to an interaction as above. This
leads to the following contributions to the amplitude:

MD−2
Pl ΔA11 ¼ −

4s3

Λ4

�
2ðD − 4Þ
D − 2

c2GB þ c2 − c̃2
�
;

MD−2
Pl ΔA14 ¼

12

Λ4

�
5c3 −

2ðD − 4Þ
ðD − 2Þ c2GB − c2 − c̃2

�
y;

MD−2
Pl ΔA13 ¼ MD−2

Pl ΔA12 ¼ MD−2
Pl ΔA24

¼ MD−2
Pl ΔA21 ¼ 0: ðB8Þ

Including the contributions from the massless dilaton and
working inD ¼ 4 dimensions, we can nowmatch the string
amplitudes to the EFT coefficients. The string amplitudes
expanded in powers of the Mandelstam invariants are

M2
PlA11ðssÞ ¼

s3

tu
−
s4ψ ð2Þ

M6
þ s4xψ ð4Þ

12M10
þ � � � ; ðB9Þ

M2
PlA11ðhsÞ ¼

s3

tu
−

s3

M4
−
s4ðψ ð2Þ − 1Þ

M6
−

s5

M8
−
s4xð12ψ ð2Þ þ ψ ð4ÞÞ

12M10
ðB10Þ

−
s6ð1þ ψ ð2ÞÞ

M10
þ � � � ;

M2
PlA11ðbsÞ ¼

s3

tu
−
2s3

M4
−
s4ðψ ð2Þ − 2Þ

M6
þ s3x
M8

−
s5

M8
þ 2s6ψ ð2Þ

M10

þ s4ð−24þ 24ψ ð2Þ þ ψ ð4ÞÞx
12M10

þ � � � ; ðB11Þ

M2
PlA14ðbsÞ ¼

4y
M4

−
8yx
M8

−
4y2ð3þ ψ ð2ÞÞ

M10
þ � � � ; ðB12Þ

M2
PlA13ðbsÞ ¼

y
M4

−
y2ψ ð2Þ

M10
þ � � � ; ðB13Þ

where M2 ≡ 4=α0 and ψ denotes the polygamma function evaluated at 1, ψ ðnÞ ≡ ψ ðnÞð1Þ.
Given that the 1 → 2 and 1 → 4 configurations are zero for the heterotic and superstring theories, this implies that the

coefficients c3 ¼ c− ¼ e− ¼ f− ¼ g− ¼ j1 ¼ c2 þ c̃2 ¼ 0 for these theories. The nonzero EFT coefficients are

Superstring :
cþ
Λ6

¼ −
ψ ð2Þ

8M6
;

fþ
Λ10

¼ −
ψ ð4Þ

48M10
;

gþ
Λ10

¼ −
ψ ð4Þ

24M10
: ðB14Þ

Heterotic string :
c2 − c̃2

Λ4
¼ 1

4M4
;

cþ
Λ6

¼ −
ψ ð2Þ − 1

8M6
;

eþ
Λ8

¼ −
1

4M8
;

fþ
Λ10

¼ 24þ 12ψ ð2Þ − ψ ð4Þ

48M10
;

gþ
Λ10

¼ −
12ψ ð2Þ þ ψ ð4Þ

24M10
: ðB15Þ
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Bosonic string :
c3
Λ4

¼ 1

6M4
;

c2 − c̃2

Λ4
¼ 1

2M4
;

c2 þ c̃2

Λ4
¼ 1

2M4
;

cþ
Λ6

¼ −
ψ ð2Þ − 2

8M6
;

e−
Λ8

¼ 2

5M8
;

eþ
Λ8

¼ −
1

2M8
;

fþ
Λ10

¼ 24þ 24ψ ð2Þ − ψ ð4Þ

48M10
;

g−
Λ10

¼ 2

M10
;

gþ
Λ10

¼ 24 − 24ψ ð2Þ − ψ ð4Þ

24M10
;

j1
Λ10

¼ 16ψ ð2Þ

3M10
;

f−
Λ10

¼ −
1

M10
: ðB16Þ

If the lowest lying state outside of the regime of validity of
the EFT is the spin-4 state exchanged by the two gravitons,
we identify the scale appearing in the Lagrangian Λ with
the mass Λ ¼ M.

APPENDIX C: HILBERT SERIES AT MASS
DIMENSION-12 FOR D= 4

Naturally from the EFT perspective, effective actions
may include any operators that are consistent with the
crucial symmetries of the physical system. Without further
restriction, this principle can allow an unwieldy over-
abundance of redundant operators. The effective field
theory of gravity is no stranger to this issue, where we
encounter thousands of possible operators arising from the
various index contractions between curvature tensors as
we move to higher mass dimensions. Reducing these
massive sets of operators to their minimal “nonredundant
operator basis,” i.e. the smallest set of operators where no
two are related via field redefinition, algebraic/tensor
identity or integration by parts, is a complicated task.
Fortunately in recent years much work has been under-
taken to simplify this process via the underlying group
theoretic structure of the desired symmetries, and in
the particular context of constructing EFT Lagrangians
[88–91]. Here we utilize the developments made by [64] to
verify that we have included all mass dimension-12
operators that may contribute to the four graviton ampli-
tude at tree level.
The most general action built out of the curvature tensors

involves parity-odd terms, containing an odd number of
factors of the Levi-Civita symbol. A nonredundant operator
basis for gravity in D ¼ 4 was provided in [64] up to and
including operators of mass dimension-10. In our analysis
we have gone to the next order, requiring operators of mass
dimension-12 to apply our crossing symmetric bounds. At
this order one may have operators built out of six factors of
the Riemann tensor, five factors of the Riemann tensor, and
two covariant derivatives, and so on.
The Hilbert series computed in an expansion that

arranges operators by mass dimension (indicated by ϵ)
gives

HðD; CL; CR; ϵÞ ¼ � � � þ ð2C6
L þ C4

LC
2
R þ C3

LC
3
R þ C2

LC
4
R

þD2ðC5
L þ C3

LC
2
R þ C2

LC
3
R þ C5

RÞ
þD4ð2C4

L þ C3
LCR þ 2C2

LC
2
R

þ CLC3
R þ 2C4

RÞ þ 2C6
RÞϵ12 þOðϵ14Þ:

ðC1Þ

Here the factors ofCL=R represent the left- and right-handed
parts of the Weyl tensor and D represents a covariant
derivative. Each term corresponds to a different class of
operator, built out of the above objects, but does not
describe the precise structure of index contractions between
them. The coefficient in front of the term is equal to the
number of operators that are truly independent and cannot
be related to others via tensor identities, equations of
motion, or integration by parts, etc. The series tells us
that at this mass dimension there are eight independent
operators involving four factors of the Riemann tensor and/
or its dual, of either odd or even parity.
As detailed above, in order to match the EFTof gravity to

the one-loop or string theory amplitudes provided in
Appendix B, we required five independent parity even
operators at dimension-12. In addition to this we present
the following parity-odd operators and their contribution to
the amplitude:

ΔS ¼ M2
Pl

Z
d4x

ffiffiffiffiffiffi
−g

p �
n1
Λ10

½F �½F̃ � þ n2
Λ10

F αβF̃
αβ

þ n3
Λ10

∇μ∇νRαβγδ∇εRχ
ζδγ∇ζRεαιβR̃ι

νμχ

�
; ðC2Þ

with

M2
PlΔA11 ¼ 0;

M2
PlΔA14 ¼ −

2i
Λ10

n1ð2x3 − 3y2Þ − i
Λ10

n2ð2x3 þ 3y2Þ

−
3i
4
n3y2;

M2
PlΔA13 ¼

3i
16

n3y2; ðC3Þ

CONSTRAINTS ON REGGE BEHAVIOR FROM IR PHYSICS PHYS. REV. D 108, 046011 (2023)

046011-33



the usual crossing symmetry is obeyed, and in addition
these amplitude contributions satisfy APðiÞPðjÞ þAij ¼ 0,
where P is the parity operator.
These three CP violating operators give independent

contributions to the amplitude, meaning we have found
eight independent operators involving four Riemann

tensors at dimension-12, which matches the number pre-
dicted by the Hilbert series method. For the purposes of
computing four-point amplitudes between gravitons at tree
level in the EFT, we have identified all the operators at
dimension-12 that could possibly contribute.
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