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Group field theories are quantum field theories built on groups. They can be seen as a tool to generate
topological state-sums or quantum gravity models. For four dimensional manifolds, different arguments
have pointed toward 2-groups (such as crossed modules) as the relevant symmetry structure to probe four
dimensional topological features. Here, we introduce a group field theory built on crossed modules which
generate a four dimensional topological model, as we prove that the Feynman diagram amplitudes can be
related by Pachner moves. This model is presumably the dual version of the Yetter-Mackaay model.

DOI: 10.1103/PhysRevD.108.046009

I. INTRODUCTION

Lattice models have been useful tools to study many
theories. Well-known examples are the Yang-Mills type
lattice models which are key to understanding the strong
force. Other examples include the topological models gen-
erated by a BF-type [1,2] or Chern-Simons action [3-6]
which rely on such lattice techniques. In fact, since these
examples are topological, the discretization is merely a
regularization there is no proper loss of degrees of freedom.
Note however that topological models in different spacetime
dimensions might not be described by exactly the same type
of gauge symmetry structures. Indeed, it is expected that
with dimensions increasing we go up in the categorical
ladder [7-9]. If in 3d, (quantum) groups or Hopf algebras and
their category of representations are well adapted to probe the
topological excitations [1,7,9—11], in 4d one expects that
one could (should?) use instead (quantum) 2-groups and their
2-category of representations to properly describe the 4d
topological excitations [7,12-17].

2-groups or crossed modules can be seen as a catego-
rified version of the notion of group [18]. They have only
been recently studied and many of the things that are
known about groups are actually unknown for (quantum)
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2-groups. For example, the notion of harmonic analysis is
missing for 2-groups since their representations theory is
not under control, except for some specific classes of
2-groups (the skeletal ones [19], or also see [20]).
Following the categorical ladder, one can see that there
are different options one can choose to define what is a
quantum 2-groups [7], see [21] for one attempt.

While many pieces of the general theoretical under-
standing of (quantum) 2-groups are missing, a topological
model based on 2-groups exists and is called Yetter-
MacKaay model [22,23]. The model is based on lattice
2-gauge theories where the gauge symmetry is actually
specified by a (strict finite) 2-group or crossed module (one
can also be extend to the weak case instead of strict [23,24]).
There is a continuum picture given by an analog of the
BF theory framework, this time defined in terms of Lie
2-groups as gauge symmetries. These are called 2-BF
models (or BFCG action) [25,26]. In fact it can be shown
that the standard 4d BF theories are themselves theories
with Lie 2-group symmetries [27]. It can be shown that
discretization of 2-BF theories leads to the Yetter-Mackaay
model built on Lie 2-groups [25].

Gravity can also be treated with techniques inspired by
lattice gauge theory and topological models. 3d gravity is
topological and is very well described using lattice gauge
theory techniques [28]. On the other hand in 4d, using the
fact that 4d gravity can be recovered as constrained
topological theory, one essentially tweaks the structures
obtained from the 4d BF model to incorporate the gravi-
tational features [2,29-31]. While 4d gravity is usually
defined in terms of a standard lattice gauge picture, it was
suggested that better insights could be gained if one would
use 2-groups instead [14,32]. For example, one could have
the frame field degrees of freedom explicitly present in the
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discrete picture [12,14,32]. In this sense, one could expect
that the construction of a quantum gravity theory also
follows the categorical ladder.

Starting from a different perspective, Boulatov intro-
duced the notion of group field theory (GFT), which is
essentially, a quantum field theory over some abstract
space, a bunch of (quantum) groups [33], whose
Feynman diagrams are exactly the amplitudes of the
Ponzano-Regge/Turaev-Viro models. Said otherwise these
Feynman diagrams provide the natural amplitudes or
quantum dynamics for quantum states using lattice gauge
theory techniques. Note that the Feynman diagrams are
interpreted as the 1-complex dual to the spacetime triangu-
lation. By performing a Fourier transform, in terms of
representations for example, one recovers the Ponzano-
Regge/Turaev-Viro models. If instead one uses the Fourier
transform in terms of dual groups [34-36], we recover
typically a noncommutative field theory where the non-
commutative variables decorate the edges and can be
interpreted as the discretized frame field. Boulatov’s
GFT describes the quantization of 3d gravity.

GFT’s can also be defined in the 4d case, either to
provide the amplitude of the BF theory topological
model [37], or quantum gravity models [38—40]. They
have also been used to see how spacetime notions can
emerge using concepts of analog gravity [41]. Let us also
mention here that GFT’s can also be seen to be a particular
class of tensor models (see the review articles [42—44] or
the books [45,46]), which are a natural generalization in
dimension higher then two of the celebrated matrix models
(see, for example, the review articles [47,48]).

As discussed before, topological models in 4d can/
should be described in terms of (Lie) 2-groups. It is then
natural to ask as a first step whether one could construct a
field theory over 2-groups to recover the amplitudes
associated to a 2-BF amplitude, namely the Yetter-
Mackaay model. A second step would then consist in
trying to recover gravity, if gravity can be found to be
related to a Lie 2-group symmetries.

In the following, we focus on the first question and
construct a 2-GFT, ie a field theory built on strict (Lie) 2-
groups. We show that the associated Feynman diagram
amplitudes are topological invariants, that is are propor-
tional to other diagrams, related by Pachner moves. These
amplitudes are interpreted as the 2-complex dual to a 4d
triangulation.l We do not prove yet the equivalence with the
Yetter-Mackaay model as we would need for this the notion
of Fourier transform which is still lacking.

The paper is organized as follows. In Sec. II, we review
all the fundamental aspects of 2-category and 2-group
theory needed for the formulation of our model, with a

"The coefficient of proportionality might be infinite, as in the
Ponzano-Regge model or the Turaev-Viro model for g not root of
unity.

particular emphasis on the definition of lattice gauge
theories based on 2-groups. In Sec. III, we first provide
a brief review of 3d GFT, stressing the fundamental
ingredients of the model. Section IV contains the main
result of the paper, namely the definition of a field theory
over strict 2-groups. In Sec. V, we discuss how the
amplitudes are topological invariants. The proof that they
are invariants is given in the appendix as it relies on lengthy
calculations.

II. LATTICE 2-GAUGE THEORY

In this section we introduce the key tools from lattice
gauge theory that will be relevant to construct 2-group field
theory.

In this setting, holonomies generated by the gauge fields
decorate the edges of graph which we can take to be for
simplicity a 1-CW complex [49]. If G, is a group and if
uj; € G, is the holonomy on the oriented edge connecting
vertex i to vertex j it transforms under local gauge trans-
formations localized at the vertices according to

uj,»—>h]1uj,-h,», hi,hjEGl. (1)
We note that the holonomies u;; can be interpreted as the

transport of degrees of freedom y living at the vertices.

V= ”(”ji)lllif (2)

where 7: G| — GL, is arepresentation of G; under which
y transforms.

We can extend this construction to include decorations
on faces. Instead of considering 1-CW complex, we
therefore consider a 2-CW complex. To connect with the
GFT picture, we can restrict ourselves to the 2-CW
complex one would obtain by Poincaré duality from a
simplicial complex. In this context, the faces (which would
be dual to the n — 2-simplices in a n dimensional space) are
decorated by elements y in the group G, can be interpreted
as 2-holonomies which transport edge decorations.

To explain the consistent way of including face deco-
rations, consider a plaquette p and let u,, be the holonomy
associated to the boundary of the plaquette, starting and
ending at vertex i. We require that there is a group
homomorphism ¢: G, — G; and demand that if y € G,
decorates p, then it satisfies #(y) = u,,. In particular, if we
decompose the loop around p into two paths from vertex i
to a vertex j as shown in Fig. 1 with holonomies labeled by
u, and u,, we demand

Uz :[(y)MS' (3)

In analogy to (2), we can think of the face decoration y as
transporting the path labeled by u, to the path u,.

Just as the concatenation of edge holonomies is achieved
by group multiplication in lattice gauge theory, we must
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insist on having compatibility conditions between Gy, G»,
and ¢ in order to combine faces in a consistent way.
This leads us to the definition of a crossed module, aka
a strict 2-group [50-54].

A. Strict 2-groups

Definition 1. A strict 2-group or crossed module is
given by
(1) a pair of groups G; and G,;
(i1) a group homomorphism ¢: G, — Gy;
(iii) an action > :G| X G, = Gy;

horizontal composition: (y;,u;) o

vertical composition :

Several remarks can now be made. First, the vertical and
horizontal products are compatible in the following sense:
(@ -a)o (@-a) = (@ o) (@ om). (7)
Second, we note that the horizontal product is nothing more
than the group operation in the semi-direct product
Gl D< GQ.

Finally, one can now compose plaquettes as in Fig. 1 to
form a closed surface bounding a polyhedron decorated by
a G, element y,, using the vertical product (we would
obtain a surface looking like a melon). In this case, the
reader might convince themselves that due to the Bianchi
identity, we must have that

(Vo) = 1. (8)

Whiskering. Recall that in establishing the geometric
meaning of the face decorations and the # map, we divide
the holonomy of a plaquette into two paths, a source and a
target. The choice of how to divide the plaquette into a
source and a target should not impact the compatibility
conditions we have imposed. The source or root of the
bigon is changed using a process called whiskering.
Changing the root of the 2-holonomy from the source of

Uy

FIG. 1. Plaquette decorated in terms of a l-holonomy u, =

u,uy' and a 2-holonomy y.

isup) - (2, un) =

such that

tis Gi-equivariant : t(u > y) = ut(y)u~!,

Peiffer identity holds : #(y) > y' = yy'y~!. (4)
We can draw elements of a 2-group as a bigon. For
example, the 2-group element (u,, y) € G X G, is shown
in Fig. 1. A pair of 2-group elements (y;, u;) and (y,, u,)
are vertically composable only if the target of the
first 2-holonomy coincides with the source of the second
2-holonomy: #(y;)u; = u,. The compositions for the
2-group elements, represented in Figs. 2 and 3, are

(V2. tp) = (y1(uy B> y2), uyu5), (5)

Voyi up), t(y))uy = uy. (6)

the 1-holonomy to the target of it is an example of
whiskering: following an arbitrary path, we can always
move the root of a 2-holonomy by composing horizontally
with a 2-group element which has a trivial face decoration.
This is illustrated in Fig. 4.

As a particular case, let the source of y be a closed
holonomy with root and target c, see Fig. 5. If we want to
change this root to ¢, then we need to use an adjoint
whiskering, since we need to transport both the source of u
and its target to ¢’. Indeed, from the definition of the #-map,
we have

UU2

/ﬂ\

eC3 = Cle Y1 u1>y2

v

t(y1 (w1 > yo))usug

/D
\\/*

t(y1)ur t(y2)u2

FIG. 2. Horizontal composition of the 2-group elements
(h1.g1) and (hy, go).

/D

Cle >eCo — Cle Y291
ﬂyz
y2y1
t(y1)ua
FIG. 3. Vertical composition of the 2-group elements (y;, u;)

and (y,, uy), with u, = #(y)u;.
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u w'uu

FIG. 4. Consider the 2-group element (y, u); the wedge y is
rooted at the source of the link u, the node ¢. We can root this
2-group element at the node ¢/, using the holonomy u’. This is
equivalent to consider a new 1-holonomy rooted at ¢’. To change
the target of u, we multiply horizontally on the right by a 2-group
element with trivial face decoration.

1
u'

u
c c

FIG. 5. Example of an adjoint whiskering changing the root of
2-holonomy. Starting from Fig. 4, we identify ¢ and ¢”, as well as
" and ¢’

1 =t(y)u=dt(y)ud=" = t(u' > y)u'uu/'=" (9)

There are two families of 2-groups that stand out.

Skeletal/trivial 2-groups. A skeletal/trivial 2-group G is a
2-group with a trivial ~-map, #(y) = 1 for all y € G,, which
implies that the group G, is Abelian. Typical examples are:
the Poincaré 2-group with G; = SO(3,1) and G, = R*, or
the adjoint 2-group with G, = g;, the Lie algebra of G,
which is viewed as an Abelian group.

Inner/identity 2-group. The identity 2-group G is a 2-
group with G, = Gy such that the -map is given by the
identity, t(y) = y forall y € G,. The action is then given by
the adjoint action.

B. Lattice 2-gauge transformations

The crossed module structure provides a natural frame-
work to decorate a 2-complex with group decorations.

As in the usual gauge theory framework, 1-gauge
transformations, parametrized by group elements
h; € G, act as in (1). Note that the gauge transformations
at both ends of a holonomy can be understood as stating
that the closed 1-holonomy in the loop generated by the
gauge fiber and the 1-holonomy is flat, see Fig. 6. One has:

M:_M2<=>M_M_ 1=
"= by & uhy u = 1 10

A 2-gauge transformation, parametrized by x € G», acts
on both 1- and 2-holonomies. Considering the 1-gauge
transformation of the 1-holonomy, we can generalize the
gauge transformation (10), by adding a face decoration in
the loop, as illustrated in Fig. 6. In this case, we have the
transformation

X
hy hy —> Iy x ho
-—)- -—)-
u u

FIG. 6. Generalizing the standard gauge transformation to
include a 2-gauge transformation.

u' = t(x)hy uh,, (11)

where x is rooted at the source of u'.

Similarly to the 1-gauge transformations, we can trans-
form both the source and the target of the 2-holonomy.
Using the product of the 2-holonomies, namely the vertical
product, we can obtain the 2-gauge transformation on the
2-holonomy by imposing that the closed 2-holonomy,
melon like, built from the face contribution in the fiber
and the lattice is flat, see Fig 7.

Y =xyx @Yoy =1 (12)

Simultaneous 2- and 1-gauge transformations give rise to
the so-called “tin can” [25,50], see Fig. 8. In particular, we
focus on the “half squashed” tin can where we only perform
a gauge transformation at the source of the 1-holonomy and
at the source of the 2-holonomy, see Fig 9. This will be the
relevant case to construct the 2-group field theory.

We note that the above pair of constraints (11), (12)
encoding the 2-gauge transformations can be written as an
horizontal composition in the following way,

(') = (x. )7V o (y.u) = (x7", 1(x)h) © (v, u)
= (7 H([1(x)h] > y). 1(x)hu)
= ((h > y)x' t(x)hu). (13)

where (y, u)™v = (y7', t(y)u).

Va y = zyzy !

FIG.7. 2-gauge transformations on the 2-holonomy. This is the
2-analog of the closed holonomy on the LHS of Fig. 6.
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FIG. 8. The tin can diagram.

’
o =

/) = (@01 o () = {u,

(z)hu

t
= (hoy)a?

FIG. 9. A combination of 1- and 2-gauge transformations. We
note that while we have a left (horizontal) transformation, the y is
transformed on the right, see (13). This is due to the presence of
the 7-map. When the r-map is trivial, y is Abelian so left or right
transformation does not matter for the y transformation.

III. REVIEW OF (1-)GROUP FIELD THEORY

We review in this section the construction of the
Boulatov group field theory (GFT) [33]. The aim is to
construct a field theory which allows to recover, through its
Feynman diagrams, the Ponzano-Regge (PR) model [55]
when dealing with the Lie group SU(2). Feynman dia-
grams themselves are dual to (possibly degenerate) trian-
gulations of a 3-manifold and the corresponding Feynman
amplitudes are the Ponzano-Regge state sum for that
triangulation.

The Ponzano-Regge model is often expressed in the
triangulation picture, in terms of representations of the
group SU(2), through the 6j symbol [55],

Z(8) =) T[H6s}.G (14)
Uy e

where j; are half integers encoding the representations of
SU(2), decorating the six edges of the tetrahedron 7 in the
triangulation A.

We can also express Ponzano partition function in terms
of the dual complex, decorated by SU(2) holonomies,

2(89) = [ ath) (15)

where e are the edges of the triangulation, while %, is the
SU(2) holonomy decorating the boundary of the face dual
to e.

There is yet a third formulation of the PR model which is
also defined on the triangulation, in terms of noncommu-
tative variables [34,35].

Z(A) = / ax|[o0x + 2 +2),  (16)

where x! € R? are vectors associated to the edges of the
triangle ¢ in the triangulation.

These three partition functions are related through
different types of Fourier transforms. One can go from
(15) to (14) through the standard Fourier transform on
groups in terms of representation theory, using the Peter-
Weyl theorem. Moreover, one can relate (15) to (16)
through a generalized Fourier transform, which is most
rigorously described in terms of dual Hopf algebras [56].

In this review section, we construct the GFT such that the
associated Feynman diagram amplitude are (15). We
emphasize the geometry behind the construction, as this
will provide useful hints on how to generalize this notion to
the 2-group case.

Field. Let us specify G = SU(2) for simplicity. In the
standard Boulatov GFT construction, the field ¢ is a real
function ¢:G x G x G — R. The field ¢(uy,uy,usz) is
invariant under the global gauge transformation
u;—>u' =hu;,  $(uy,uy,uz) = P(huy, huy,hus).  (17)
To implement this invariance, we use gauge averaging,
through the projector P,

(Pt u3) = / (dlgb(huy. s, huss). (18)

Moreover, the fields are the eigenvectors of the projector P:

Pyt uz) = / (abJgb(huty . huts. )
= (Pfﬁ)(uh U, u3)- (19)
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FIG. 10. From a 2d perspective, the three holonomies u; are
dual to three edges of a triangle.

The variables u#; can then be seen as group variables
assigned to three line segments (links) which share a
common point, that is they are rooted at the same node.
These variables u; play the role of the holonomies in the
dual complex. If these three holonomies are in a two-
dimensional surface, then the gauge transformation 4 can
be seen as decorating an edge with a component
perpendicular to the surface as illustrated in Fig. 10.
This holonomy becomes a component of the holonomy
appearing in (15).

On top of gauge invariance, we can also consider a
symmetry under permutation of the arguments u; in the
field ¢ [33,38,39]. If we note o the permutation in
permutation group Ss, the field would be then

Py uz,u3) = (=1)7p(up(1). g2 ty3)).  (20)

where |o| is the parity of the permutation. In the following,
we will not emphasize this symmetry and keep it unexplicit
to not burden the presentation.

The action for the scalar field is given in terms of a
propagator and an interaction term.

Propagator. If the group elements u; are interpreted
as momentum variables® the propagator implements a
conservation of momentum

/[duPd}(ul,uz,u3)¢(u1,u2,u3)
= /[du]f’lC(ui)(p(ul,uz,u3)¢(u4,u5,u6), (21)
with
K(uy,u,uszsug,us,ug) =8(uuz')s(uaus)o(usugt). (22)

Geometrically, this conservation of momenta can be seen as
a pairwise identification of holonomy variables u;, deco-
rating the 2d graph dual of the triangle.

The identification of the “boundary” triangle data leads
therefore to gluing the h’s associated to each field, see
Fig. 11.

2We then have a curved momentum space, unlike standard
QFT.

C1

FIG. 11. The propagator leads to the identification of the pair of
triangles. This means that the holonomies %, going from the
center c; to the triangle are fused.

Interaction term. The interaction term consists of build-
ing the wedges—the faces of the dual complex—in order to
recover the graph dual to a tetrahedron. This eventually
leads to constructing the %, appearing in (15) which form
the wedge’s boundary. This is illustrated in Fig. 12. In order
to recover the 6j symbol combinatorics, we consider a
quartic interaction. We have then four variables 4’s which
generate six wedges, which are dual to the edges of the
tetrahedron. One writes

/[du]G(Pff’)m (Ph)345(Ph)s61 (Peh)esa
= /[du]lz[dh]4v¢123¢456¢789¢101112v (23)
with

V=5(hjuyuy' h3")s(hyuyuiy hy")d(hyusuy' hy')
X 8(hyusuy) hy")8(hauguz"h3")o(hyuguighyl).  (24)

The propagator term fuses the i’s contribution by identi-
fying the momenta of the fields. The quartic interaction
makes sure we have the combinatorics of a tetrahedron. An
edge in the triangulation can be shared by several tetrahe-
dra. Dually, this amounts to gluing the internal wedges
together. Unlike the 2-group case, we only have data on the
boundary of the internal wedges (see Fig. 13). At the end of

hiuzuz'hy' =1

FIG. 12. The interaction term generates flat holonomies,
spanned by the wedge dual to an edge.
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C1

FIG. 13. We illustrate how the we can glue together the
boundary of three internal wedges to form the holonomy %, =
he e, leyeihic,e, dual to the (solid) edge e. A similar picture will
appear when discussing the 2-group case, where the half wedges
will themselves carry some decoration.

the day, we recover the topological invariant partition
function (15).

Topological invariance. The GFT model we introduced
defines a topological model. This is reflected by the fact the
partition function (15) is invariant under Pachner moves up
to some (potentially infinite) constant of proportionality.
We will note Vi the volume of the group G. In three
dimensions, there exist two Pachner moves:

P, 4: relates the amplitude of one 3-simplex V) to the

amplitude of the combination of four 3-simplices
Va

Ay, = VEA,. (25)

where we removed by hand some potential diver-
gences coming from some (1) contribution.

P, 5: relates the amplitude of the combination of two
3-simplices V, to the generating function of the
combination of three 3-simplices V;

Ay, = VEAy, (26)

where we again removed by hand some potential

divergences coming from some (1) contributions.

Note that the divergences we removed by hand coming

from &(1) contributions is a well-known issue and moving

to the quantum group case with ¢ the deformation param-

eter being of root of unity, allows to remove these
divergences in a more proper way.

IV. 2-GROUP FIELD THEORY: DEFINITION
AND ACTION

In this section we first introduce the different notations
and restrictions on the choice of 2-groups which will
simplify the construction. Then we will define the action
in terms of a kinetic term and an interaction term.

A. Conventions and assumptions

2-group choice. We work with the strict 2-group/crossed
module G = (G, G,,t,>). In this section, the crossed
module G can be a finite crossed module, i.e., G; are finite
groups, or a crossed module defined in terms of Lie groups.
In the latter case, we consider only the class of crossed
module where the G; are unimodular and such that the Haar
measure on G, is invariant under the action of G;. While
the construction can be probably extended to a more
general situation for Lie groups, it would complicate the
presentation to deal with the more general case.

Notations. In the following, 4-simplices o, will be
indexed by g =1..., the five boundary tetrahedra are
labeled 7,4 with A =1,....5, triangles 7,.4,; with i=
1,..4 and edges e,.4..,, wWith a =1, 2, 3. When there is
no ambiguity, we will suppress some indices.

In the dual 2-complex, links are labeled by their dual
counterparts. The duality can be in 3d or 4d according to
whether we are on the boundary or the bulk. A boundary
holonomy would be labeled u,.; as being dual to the
triangle i in the tetrahedron A. If we deal with the boundary
of different 4-simplices we would also include the Greek
index. A bulk holonomy, dual to a tetrahedron A of the 4-
simplex p, would be labeled £,,.4.

On the other hand, a boundary wedge dual to the edge
shared by triangles i and j of tetrahedron A would be
labeled by Y ,; ;. If we deal with the boundary of different
4-simplices we would also include the Greek index. A bulk
wedge, dual to a triangle i of tetrahedron A in the 4-simplex
p would be labeled by x,,.,.;. Later on we will also introduce
the (fused) wedge shared by tetrahedra A and B in the 4-
simplex ¢ which will be labeled by X),.4 p.

Let us fix a 4-simplex. Let ¢ be a node which is the center
of a 4-simplex, c4 be the center of a tetrahedron 7,4 and ¢,
the center of the i’ triangle of the boundary of 7,. The
holonomy u,,; has for source c, and target c,,;, for
i=1,...,4. Once again, we will add the index yu if we
consider different 4-simplices.

B. Action for a group field theory on 2-groups

In this subsection, we introduce the field and its geo-
metric interpretation and we build an action which will
generate topological invariant amplitudes. In the 3 + 1
case, in the standard GFT context the field is interpreted as
the 1-complex dual to a tetrahedron. In the 2-group case,
the field will be interpreted as the 2-complex dual to a
tetrahedron. It encodes the kinematical picture. The dynam-
ics will be given in terms of the interaction term which will
provide the rules of how to construct the 2-complex dual to
a 4d triangulation.

1. Field

Since we focus on the 2-complex, in addition to the 4
variables associated to the 1-simplices or links, we also
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wy = t(z;)hu; , i=1,2
Y/12 = (hDYm)l‘;lzl

FIG. 14. The top node (source of &) is the center of the would be
4-simplex, while the bottom one (target of /) is the center of the
tetrahedron. The internal wedge Y, is transforming under xi, x,,
and h.

include six (internal) wedges which are subtended by pairs
of links.

We introduce the variables Y;; with j > i, i,j = 1.4,
associated to the wedges which are subtended by the
holonomies u; and u;. These wedges variables are rooted
at the center of the tetrahedron. The set of variables Y; ; and
u; undergo 2-gauge transformations as illustrated in Fig. 14
which is a generalization of Fig. 9.
uh=t(x)hu;, i=1,2 Y,=(h>Yp)xs'y  (27)
Definition 2. The geometric (real scalar) field is a

function of four copies of the group G, and six copies
of the group G,

(I)(Yl,2v Y13, Y4, Y3, Yo 4 Y350y, un, u3, ”4)~ (28)

Given the 2-gauge transformation (27) the projected geo-
metric field (P®) is the 2-gauge averaged field

(PO (Y, j:u;) = / (dh][dx}*((h > Y, )x7 s 1) ).

(29)

If we were using a finite crossed modules, we would
replace all the integrals by sums. We note that P is clearly a
projector due to the invariance of the different Haar
measures, up to possible diverging contribution coming
from the infinite volume® of G.

*This is similar to the construction of the 1-GFT with a
noncompact group.

From a 4d perspective, the (x,h)’s variables are bulk
variables, whereas the (Y, u)’s variables are the boundary
variables.

Finally, just like for the 1-GFT, we can also demand the
field to be invariant under permutations ¢ € Sy, up to the
parity of the permutation. Since the Y are bounded by a pair
of u;’s, permuting the u’s changes accordingly the indices
for the Y.

DY, ;1) = (=)D 1) 002): Yoi1)03) Yo(1)o4)-
Y5(2).003)> Yo(2).0(4) Yo(3).0(4)
Us(1)s Ug(2)s Us(3)u,(4)) (30)

where |o| is the parity of the permutation. In the following,
we will typically assume this symmetry without making it
explicit in order to not burden the notations.

The action of 2-GFT is given by the contribution of a
kinematic and an interaction term

S=35c+3Sy. (31)

2. Propagator

The kinetic term is given by the product of a pair of
fields.

Sk = /[du]4[dY]6q)(Yi.j7”i)(D(Yi.p”i)' (32)
It can be written as an integral operator

Sk = /[du]g[dY]12K¢(YA;i.j’uA;i>¢<YB;i.j’uB;i)’
A # B. (33)

The integration kernel

4
K= 1] 8. (Yah,Y5:i)0, (uzfus:),  A#B (34)

i=lj>i

is called integration kernel of the propagator amplitude. 1t
can also be seen as a conservation of momenta as in the
1-GFT case.

3. Interaction

The interaction term is given by the proper identification
of five fields, such that they respect the combinatorics of a
4-simplex.

Sy = / [AY]P[du]?[dX]"[dh] Vg=S.  (35)

We call the integration kernel V of the vertex amplitude.
As in the 1-GFT, the vertex amplitude is the most
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geometrically meaningful object. We expect this interaction
term to encode two types of flat holonomies.

(1) A generalization of the flat 1-holonomies encoun-
tered in the 1-GFT. The generalization is due to the
fact that we might have some nontrivial contribution
coming from the t-map. These 1-holonomies are
generated by the bulk gauge variables /’s and the
boundary data u’s. This is illustrated in Fig. 15.

|

V =8¢, (1(Xa,1) hyuy, 1”24

X 86, (1(X3 2)hattz u3 313" ) S, (1(Xa2) btz gy

(
(Xs3)h3uzpusihs')dg, (1(Xs4) hatts M;!;

] h
X5Gl t h

X 6G2

(
(
(
(
X 86, (
X 86, (
(

(

X 5G2

( )

( ) )X3.4( )
(h1 > Y134)X14(hs > Ya1)Xy5(hs > Ysa1)
( ) )X35( )
(hs ) )X45(hs )

X 8¢, D> Y3:0,1)X34(hs > Yau1) X4 s

The first ten deltas (on the group G,) enforce the closure of
the links dual to the ten identified faces while the other ten
delta functions (on the group G,) instead enforce the
closure of the combination of the (boundary and bulk)
wedges around the ten edges of the 4-simplex.

In order to express such closures in a compact way, we
introduced the decorations of the fused external gauge
wedges X, p between tetrahedra A, B:

Cc

FIG. 15. A portion of the vertex term. The dotted lines are the
combination of three faces shared by three tetrahedra and sharing
a common edge. The solid blue lines are three of the five links #;
that have their source at ¢, the center of the 4-simplex and their
target at ¢4, the center of the tetrahedron A. In different colors the
six half wedges, that combine pairwise to give the fused internal
wedges Y. The combination of the six half wedges is the total
wedge dual to the central edge.

> Ys5.43)Xs53).

(i) A flat 2-holonomy generated by the bulk 2-gauge
transformations x and the boundary data y.

These flat 1- and 2-holonomies are glued together through
the propagator that identifies the boundary data (Y, u)’s. As
a result of the gluing, we will obtain flat 1- and
2-holonomies which live in a 2-complex, dual to a 4d
triangulation. To keep track of the combinatorics of the
4-simplex we are using, we take Fig. 16 as a reference.

)501([()(3 1)hyuy, 2U3, Lhy )5GI(Z(X41)h1”1 3”42h )50 (¢ (XS.l)hlul;4u5_;llh5_1)
21ég, (1 (X5_2)h2u2;3u5;2h5 )6
5186, ((h1 > Yi0,1)X2(hy > Yau 1) X0 3(h3 > Y343)X5,)
hy > Yi30) X 2(ho B> You0)Xo4(hy B> Yy32) X4 5G2<(h1 D> Yia)Xi12(hy > Y2u3)Xo5(hs B> Yso
hy > Y1532)X15(h3 &> Ya3.1)X54(hs > Ya42)X41)66
Xs.1
hy > Y531)X03(h3 B> Y3.42)X35(hs > Ys532)X52)86

6, (1(Xy3) hsus  uzyhy?')

) )

)06, (A1 > Yi.42)Xy 5(h3 > Y332)X55(hs > Ys31)
)06, ((hy D> You 1) X5 3(h3 B> Y34 1) X34 (hy > Y44%)X42
)36, (( )Xa.4( )X45(hs )

)

hy > Yo32)X54(hy > Ya31)Xa5(hs > Ys42

2

FIG. 16. 4-simplex boundary construction: five tetrahedra share
five vertices. Each of the four faces of each tetrahedron is identified
with one of the faces of the other four tetrahedra. We use the same
color and a double dotted line for the identified faces.
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_ -1 _ -1
Xl,z = Xp.1%2:4, Xo4 = X2.2X4:3,

| _ -1
X13 = X12X33, X255 = X33%52,
_ 1 _ -1
X4 = X\ 3X4, X34 = X3, X440,
_ -1
X35 = X3,X53,

X4’5 = 'XZ;IIXS;4’ (37)

|
X5 = X1.4%5:15

— -1
X235 = X3,1X345

with inverses X3 = Xp 4.

V. A TOPOLOGICAL MODEL

The general shape of the amplitude of the 2-GFT which
can be seen as the dual of a 4d triangulation 7 (with no
boundary) is given by

2= / 4] (dn] [T, (et (X)) [0, (%)~ (38)

where X, € G, decorates the face dual to the triangle
t € T, while h, € G, decorates the boundary of this face.
X, € G, decorates the closed surface dual to an edge
e € T. We see that this is a natural generalization of the
amplitude obtained through a 1-GFT with a new contri-
bution implementing the flatness of the 2-holonomy
X, € G,. With respect to the flatness of the 1-holonomy
h, € G, that would appear in a regular 1-GFT, we have a
possible contribution from the f-map, of the (open)
2-holonomy X, dual to a triangle 7 in 7.

Theorem 1. Consider the GFT action given by the
action (31) with kinetic term (34) and interaction term
(36), then the associated Feynman diagrams are topological
invariants.

The proof of this theorem is given in Appendix as it is
lengthy.

To show that the constructed model is topological, one
needs to check that the amplitudes are invariant under the
following Pachner moves.

P, s: relates the amplitude of one 4-simplex V to the
amplitude of the combination of five 4-simpli-
ces Vs;

P, 4: relates the amplitude of the combination of two
4-simplices V, to the amplitude of the combination
of four 4-simplices Vy;

P; 5: relates the amplitude of the combination of three
4-simplices V5 to the amplitude of the combination
of three 4-simplices V5.

P, 5 Pachner move: First we show that the amplitudes of
the two Feynman diagrams in Fig. 17 are related to one
another by an overall constant. These diagrams correspond
to a 4-simplex (on the right) and a graph obtained by adding
an additional node (on the left). The diagram on the left is
comprised of five nodes and ten bulk links, while the
diagram on the right is a single node and no bulk links.
The amplitude of these diagrams are

1

g TN
/N

FIG. 17.  Pachner move P s).

-/‘lv5 = /[dX]SO[thS[du}IOO[dY}150(K1.2K1,3’C1.4’C1,5}C2,3
X Iy K5 5K54K5 5K 5) (Vi1 V2 V3 V4 Vs) (39)

and
Ay = / [dX]'°[dh]>[du]?°[dY]**V. (40)

The subscripts refer to the labels on the diagram: for
example, K;, is the propagator between the first and
second labeled vertex. The expressions are given explicitly
in (Al) and (A13) in the appendix.

Integrating out the bulk variables and using the invari-
ance of the measures to define new variables, one can show
that Ay, can be simplified and compared to Ay. The
relevant change of variables are given in (A16) in the
appendix. In the end, one finds that

AVS = Vél ngAy (41)

The V. stand for volumes of the group G; which may be
infinite if the group is not compact.

P35 Pachner move: We now investigate the diagrams in
Fig. 18. The amplitudes of these diagrams are

Ay, = [ 10X S Y0, 25KV ViV
@)

as well as the appropriate permutation of indices (see
Eq. (A7) in the appendix for details). The two amplitudes
are related to one another by the change of variables
detailed in (A23).

P, 4 Pachner move: Next, we consider the relation
between the two amplitudes corresponding to the diagrams
in Fig. 19. The amplitudes for these diagrams are

Ay, = / [dX]?°[dh]"[du]*[dY]LC, , V1 Vs, (43)
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FIG. 18.
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&.1—2.}

|4 3 T

8 4

e
<

1 2

®* — o% *o S o%
X,% x./

Pachner move P3 3).

1 2

=

TN

FIG. 19. Pachner move P 4).

and

Ay, = / (AXJ [ [dul 0 [dY] 2K, 1K Ky oK

X Ko aKC3 4V Vo V3 Vs, (44)

Once again the explicit expressions are in the appendix, see
(A4) and (A10). The two amplitudes can once again be
related to one another by integration and by renaming
variables as shown in (A20). The result is that

Ay, = (VG VG, Ay, (45)

VI. OUTLOOK

(Quantum) 2-groups are supposed to be the relevant
structure to define quantum field theories for 4d manifolds
and generate state-sums to encode the topological features
of a 4d manifold. The Yetter-Mackaay model provides a
generalization of the Ponzano-Regge/Turaev-Viro state
sum, where 2-group structures are the basic symmetry

structure. This model is built in the triangulation picture,
just like the Ponzano-Regge/Turaev-Viro models.

Group field theories can be seen as a tool to generate
state sum models as Feynman diagrams, on the dual
complex of the triangulation. Since the initial work of
Boulatov, GFTs have been extensively studied and used in
the quantum gravity setting, both in 3d and in 4d.

We have presented here a generalization of this construc-
tion using strict 2-groups, or crossed modules. We have
shown how the amplitude of different Feynman diagrams are
related by Pachner moves so that the action proposed is
indeed that of a topological model. We note that due to the 1-
Bianchi and 2-Bianchi identities, some of the delta functions
in (38) can be redundant. If one of the groups G, or G, is
noncompact, this would generate some divergences.

Ultimately, we expect that the model we built is the dual
version of the Yetter-Mackaay model. To prove this we
would need to define a notion of Fourier transform, which
is not yet available to the best of our knowledge.

We highlight a number of directions which we find
interesting to develop in the future.

Fourier transform for 2-groups. The first question
we intend to explore is indeed the relation with the
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Yetter-Mackaay model. To relate our model to this model,
we would need a generalization of the notion Fourier
between the functions over a group and the noncommu-
tative functions over the cotangent plane [36] to the 2-group
case. This is currently under investigation. An potential
interesting direction to explore is the notion of co-
commutative trialgebras and their dual analog the cocom-
mutative ones as discussed by Pfeiffer in [57]. This is
currently under investigation.

Hidden 2-GFT’s? Some models of GFT’s have already
been introduced which potentially could be reinterpreted as
2-GFT’s. For example in 3d the notion of particle in the
GFT has been discussed in [58]. It involved the presence of
extra decorations in the field which can be naturally
interpreted as decorating the faces of the dual 2-complex,
and be associated with the particle degrees of freedom. In a
different direction, 1-GFT’s have been modified in order to
account for a better probing of the “bubbles” [59] which
could also be interpreted as closed 2-holonomies. It would
be interesting to see whether these two different models
could be reinterpreted as a 2-GFT’s with a specific choice
of 2-group in each case.

Divergences? A key-issue in any field theory deals with
the divergences and their taming through renormalization.
Heavy work was dedicated to 1-GFT’s to assess their
divergence structure according to different choices of
groups or interactions see for example [60,61]. In the
present work, we have not focused on this issue, but it
should be explored accordingly.

Large N expansion. In [62], a large N expansion of
topological GFTs such as the Boulatov and Ooguri models,
have been implemented (see also Chapter 4 of S. Carrozza’s
PhD thesis [63]). It was show that the geometric data
encoded in the group variables can be exploited to prove
that the first term in the large N expansion is given by the
celebrated melonic graphs, which are the dominant graphs
in the large N expansion of tensor models [64—67] or of the
SYK model [68].

It would thus appear interesting to us to investigate
whether or not the doubling of the group data represented
by the 2-group structure studied in our paper could lead, in
this GFT context, to a different type of large N limit, where
other type of graphs that the melonic ones would be
dominating.

Application to quantum gravity? 2-group structures
seem relevant to the construction of a quantum gravity
theory. For example, one could demand to have information
about the frame field and not only about the flux. Not only
could this give a “nicer” notion of operator for the notion of
length [69], it could help to discriminate between degen-
erate nondegenerate manifolds in the semiclassical
limit [32]. The flux is associated to faces and is therefore

a natural candidate as a 2-connection. When there is no
cosmological constant, the discrete (classical) flux is
valued in an Abelian group, but switching to a nonzero
cosmological constant would typically lead to a non-
Abelian deformation and the appearance of a quantum
group. Following the Eckmann-Hilton argument, one can
only have a non-Abelian group decoration on faces if, on
top of that, edges are also decorated. 2-groups provide then
a way to have consistent non-Abelian decorations on faces
and edges. These three arguments point to the relevance of
2-group to construct a more refined quantum gravity
model. Once the relation between 2-groups and gravity
has been identified, one could use then the GFT we
proposed to constrain it to construct the quantum gravity
amplitude, just like it was done for the Barrett-Crane model
or the EPRL-FK model [70-72].
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APPENDIX: FEYNMAN DIAGRAMS
AND AMPLITUDES

We evaluate the relevant diagrams and then show
explicitly how they are related through the Pachner moves.

Key Feynman diagrams We organize the amplitudes by
factoring the delta functions according to the group. For
each amplitude, denote by 5{011}“ and 6%”“} the set of deltas
on links (group G;) and wedges (group G,) in the
amplitude. The superscript Vy specifies the number (N)
of vertices in the diagram.

We consider the specific Feynman diagrams which will
be dual respectively to a single 4-simplex, two, three, four,
and five 4-simplices.They can be derived by properly
gluing a number of independent vertex amplitudes using
the propagator.

(i) The vertex term, a five-point Feynman diagram,

which is illustrated in Fig. 20(a) has amplitude

Ay = [ 18] 0]V e
- / [dX]'°[dn] [du][dY] 657, 55 (A1)

where
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3 INTN

(a) Simplest graph dual to a 4-simplex. ) Graph dual to two 4-simplices sharing one
tetrahedron the one labelled 2 in the 4-simplex 1
and the one labelled 5 in the 4-simplex 2.

FIG. 20. The tetrahedron labeling is done in red, while in blue we noted the 4-simplex labeling.

5{V} = 8¢, (1(Xa 1) yuyuzyhy "), (1(X51 ) g puz 3hs )86, (1(Xy 1 ) hyugsuzhhy ) dg, (1(Xs ) hyuy4usi b3t
X 50,( (X3,2)h2”2;1”3;4h3_ )5G1(t(X4$2)h2u2;2u4;3h;')501(t(X5‘2)h2u2;3ug;‘2h5")601(t(X4‘3)h3u3;1u;;LhZ')
x 86, (1(Xs 3)hauzpusshs')8g, (1(Xs 4) hattg usyhst), (A2)

and

v
5E;Z} = 06,((" > Y12.1)Xi2(hy B> You1)Xo3(h3 > Y343)X534)

X 86, ((hy > Yi31)X12(hy B> Youu2) X5 4(hy > Yai32)X4 1)
X 86, ((hy > Yi.41)X2(hy > You3)X55(hs D> Ys521)Xs 1)
X 86, ((h > Yi32)X15(hs & Y331)X54(ha > Y402) X4 1)
X 86, ((h > Yi42)X15(hs & Y332)X55(hs > Ys5531)Xs1)
X 86, ((h1 > Y1:34)X14(hy > Ya01)Xy5(hs > Ys541)Xs1)
X 86, ((hy > Yo2.1)Xa3(h3 > Y3.41)X34(hs > Y443)X42)
% 86, ((ha > Yo31)Xa5(hs > Y3.42)Xs5(hs > Ys532)X5,)
x 8¢, ((hy > Y2:32)Xa.4(hy > Ya31)Xa5(hs > Ys.42)Xs2)
x 8¢, ((hy > Y3.2.1)X3.4(hg > Y1) Xa5(hs > Ys5.43)Xs3) (A3)
(ii) The eight-point Feynman diagram, illustrated in Fig. 20b has amplitude,
Ay, = / [dX]%°[dh] " [du]©[dY]KC, 5 (V,V,) = / [dX]2°[dh)° [du][dY]*$65 > 557, (A4)
where
{vz = (dg, (t (X1;3,2)h1,2f(X2;5,2)h2;2”2;2;3”1_;l3;4h1_;13)501(I(X1;4.2)hl,zf(X2;5.3)h2;3u2;3;2”f;}1;3h1_;!1)

X 8, (1(X1;52) P 2t (Xois.4) hoattn g ul‘15 zhl_ls)5G (1K) g urpe 14511‘4’15111()(2-1 s5)hay))

S (56 ( (X1 3, 1)h1 141, 12”1133h1 3)561(I(X14 1)h1 1U 13U }12h14)5G (t(Xl 5, 1)h1 LUl % 1h1 g)

X 86, (1(Xpa3)higur i hih) 0, (1(Xis3) hisuapurahis)dc, (((Xos a)hiatga  ups 4 hil)

X 501(f(Xz;z,l)hz;lM2;1;1”212;4h5;12)5(;1(t(X2;3,1)h2;1M2;1;2“5;§;3h5;13)5c (1(Xa:41) hos1 Uny. %”24 hzlx)

X g, (I(X2;3.2)h2;2u2;2;1u5;13;4h5;]3)5(;1 (Z(X2;4,2)h2;2u2;2;2u5;11;3h5;£1>601( (X243) ho3t 3 1“24 hzi)) (AS)

and
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5&52} =06, (12> (Xo:53(h23™> Y2304)X032(ha2™> Y22.3)X20.5) X125 (13> Y1340 X134 (14> Yi443)X142)

X8, (h12™> (Xa5.4(hoa ™ Y41 3) X042 (Moo > Y2.203) X0 5) X123 (h13 > Yi3:42) X135 (his > Yiis3.2) Xi:5.2)
Xécz(hmD(Xzs 1(ha > Y.14.1) X0 2(R 2'>Y2~z‘43)X225)X1 23( 3> Y13.43) X051 (Mg > Yi01)X1002)
X086, (M 2> (Xa5 4(hoa > You1 4) X043 (M3 D> Yo3:1 2) X3 5) X124 (B1a D> Yi31) X4 5 (M5 > Yi:542) X:52)
X 86, (12> (Xa:5.1 (M2 > Ya1:2) X003 (h23 > Y2.3:32)X03.5) Xi2a(hia ™ Y1z 2) Xian (i > Yia0) X0 2)
X 86, (12> (Xa:5.1 (o > Ya:3.4) X0 4(h2a > You.1)X0:4.5) Xi2s (his ™ Yiiso) Xisa (i ™Yo)X 2)
h11>Y1 1:4,2 X113
hiat>Yiiza)Xiia

ho > Yo131) X002

2) 1) 2)Xi41)

( ) ( ) ( )Xi:5.1)

( X4 )Xo )Xi:5.1)

(hy; RD2SEPICUE )Xo )Xi:5.3)

x 3¢, ((hy; 1>Y2 122, 1)X2 12(M22 > Y20.41) X003 (M3 > Y2.3.43) X03.1)
( )Xo (h; )Xa04( )X24.1)

(ha 2)Xo13(ho, )Xa534( )X24.1)

(hy 1)Xo03(ho, )Xo3.4( )X24.)

X223 43)X2:42)5 (A6)

We defined the composed link /2; , = hyyhy} with inverse hTh = hy .

The first four deltas in (A5) involve a combination of bulk and boundary links of the two 4-simplices, while the
remaining twelve deltas involve bulk and boundary links of the first or second 4-simplices separately. Similarly,
the first six deltas in (A6) involve a combination of bulk and boundary wedges of both the 4-simplices, while the
remaining eight deltas involve bulk and boundary wedges of the first or the second 4-simplices separately.

(iii) The nine-point Feynman diagram, illustrated in Fig. 21a has amplitude,

Ay, = / [AX]*[dh] 'S [du]O[dY % (K 1K1 3K05) ViV, V) = / [dX][dh) 2 [du]o[dY]*55 65, (A7)

with
1 1
1 1
.5
°
2
4 4
A
&
L5
1 1 1
(a) Graph dual to three 4-simplices. (b) Graph dual to four 4-simplices.

FIG. 21. We labeled the tetrahedra in red, and in blue the 4-simplices.
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58}3} = 36, (1(Xy32) 1 2t(Xo;5.2) 2 38(X3:5.4) Pz 1)
X (8¢, (t(X1a2)hi 2t(Xa:53)ha3 ”2;3;2”1_;!1;3}11_;!1)50 (t(Xi52)h1 21X, 4)h2~4”2‘4~1”1_15 2h1_15>
X &g, (t(Xy2, 1)h1;1ul;1;1”£;11;4h5;11I<X2;1,5)h2.1)561 (t(Xy3,1) Py uy, 12Uz 3h3 11(X5,1.4)h31)
x 8¢, (¢(X;, 43)h1,3t<X3;4,2)h3;2“3;2;2”1_;}1;4h1_;11)561 (t(Xyss, )h1,3f(X3;4.3>h3;3“3;3;1”1%;3}11%)
X 86, (t(Xa.1 ) ho .11 545,11 (X3,1.5) 3 2) 86, (1(Xa32) ho3t(Xais 2) haottzo Uz 5.4h55)
X 86, (1(Xa:42) 2 31(Xa5.3) hasttzzotiy g 3hoy))
X (8, (1(Xi5.4) hia 13Uty )86, (((Xys 1 )by, his)dc, (1(X ) hyattyag uy s his)
(Xo3,1) hoyt 210553158 )86, (1( X 1) ot a1 3U5 40 h3 )86, (1Ko 3) hosttnz s 4 b3 k)
(Xaa.1) otz 435.4155) 86, (((Xa30) haa uza0u35.5h55) 86, ((Xaa ) haouzonus5ah55)),  (A8)

X 8¢ (t
X5G(

and

5{G53} =06, (2> (Xo53(h23™> Y2:304)X032X00.5) X130 5> (X5:45X352 (132> Y3:232)X304)

X Xi34(h1a™> Yi443)X1:42)
X 66, (M2 D> (Xa54(hoa > Y241 3)X0:4 2 X020 5) X123 3> (X34 5X5:5 3 (A33 D> Y33.0.1) X33.4)
X Xi135(h15> Yi:532)X1:52)
X8, (125> (Xa:5,1 (Mo B> You1:4.1) X012 X20.5) Xi:2.3/1 3B (X345 X351 (73,1 B> Y3:134) X3:1.4)
X Xi3,1 (ha > Y1) Xi.2)
%86, (12> (Xa:5.4(M2:a > You1.4) X043 (h23 > Y2.3:12) X035
X6, (R > Yi3.10) X001 2 B> (Xoss 1 (Ao B> Yo.142) X013
X8, (P11 B> Y1) Xis 001 2 B> (Xoss 1 (Ao B> Ya134) Xoi 4 (Boa B> You0 1) Xo:4.5) X105 (1.5 > Yiis.0.1) X510
X8, (13> (X3.43(h330> Y33:14) X332 (A3 > Y301 2) X30.4) X134 (1124 > Y1) X a5 (15> Yis:43) X053

)

)

)

)

( ) Xi24(hra > Yia3.1) Xias (hs > Yisa2)Xi:s2)
( ( ) )Xi41)
( ( ) )Xi35.1)
( ) ) )Xi53)
X686, ((h11 > Y1032)X 0113003 (X510 (A3 > Y303.1) X500 2 (B30 D> Y30, 2) X50.4) X134 (M1 D> Yi0442) X 1)
( ( ) )Xis5.1)
( ( ) )X23.1)
( ( ) )X24.1)
( ) ) )X24.)

hy3 > Y0.3:32)X035) X104 (14> Yi.432) X4

X 562(<h1;1 D> Y1.040)X01301 3D (X541 (M3 > Y3.0:52) X500 3 (B33 > Y333.1)X53.4) X35 (h1s > Yis5.1) X150
X dg, ((hay1 > Ya10.1) X0 203> (Xsi5.1 (30 D> Ya.04.1) X502 (M3 D> Y3:0.43)X50.5) X003 (23 > Yo3.43) X031
X3¢, ((hay1 > Ya1:31) X0 203> (X501 (30 D> Y3.042) X501 3 (M3 > Y3:3.52) X535) X004 (24 D> Y0.030) X041
X086, (M 30> (X3.53(h33 > Y3304) X332 (M30 D> Y301 3)X3:2.5) X003 (ho3 > Yo.341) X034 (hoia > Y244 3) X0
%8, ((h1:1 > Yia34)X1a(hia™> Y1) X5 (A5 > Yisa ) Xis)

X3¢, ((hay1 > Ya1:32) X013 (M23 > Y2331 ) X03.4(hoa > Yo.042) X0:41)

%86, ((h3.1 > Y312.1)X3:1.2(h32 5> Y324.1) X305 (h33 > Y3343)X33.1), (A9)

We defined the composed links /; 3 = hy3h3} and hy 3 = hyph3} with inverses ik = hyy and h3% = hy,.

The first delta in (A8) enforces a closed path of only bulk links of the three 4-simplices; this is the loop of links
dual to the single face shared by the three 4-simplices. The following nine delta functions involve a combination of
bulk and boundary links of the 4-simplices {1,2}, {1,3} and {2, 3}, while the remaining nine deltas involve bulk
and boundary links of the first, the second or the third 4-simplices separately. Similarly, the first three deltas in (A9)
involve a combination of bulk and boundary wedges of the three 4-simplices. The following nine deltas involve a
combination of bulk and boundary wedges of the three 4-simplices pairwise, {1,2}, {1,3} and {2,3}. The
remaining three deltas involve bulk and boundary wedges of the first, second, or third 4-simplices separately.
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(iv) The eight-point Feynman diagram, illustrated in Fig. 21(b),
Ay, = / [dX]*[dh]2*[du]*[dY]' 20 (K 21 5K 4Ko 3K5 K5 4) (Vi V2 V3 Vs)
_ / [AX][dh] 4 [du] 2 dY] #5060 (A10)
We denoted

52124} = 06, (1(X132) h1 21(Xp;5.2) h231(X3:5.4) h3.1)06, (1(X1:a2) hi 2t(Xais5.3) ho at(Xaa3) hat)
x 86, (1(X1:43) M 31(X3:42) 3 41(Xa53)ha 1))06, (1(Xa32) ho 31 (X5 2) 13 41(Xgi5 4) ha 2))
x (8¢, (f(Xl;s,z)hl,zf(X2;5.4)h2;4M2;4;1Mﬁ%;zhf;g)‘sc Xy iy ug g by (X 5) oy )
t(Xiza) b traous) 3 h511(Xs 4)h31)86, (1(Xis3) 1 31 (Xaa ) haauzza uy 55075
1(Xon.1)ho 151 4131 1(X301.5) 13.2) 86, (1(Xaa2) ho 31(Xais 3) stz oty g 3 ho )
1(X413)ha1)86, (1(X a0y at(Xaz2) hap g, U754 hi s
t X414)h42)5G1(t(X2 )h24f(X442>h42M422”24 gﬁ
) (X452)h
(

5)
( )
( )
( )
(Xa15)ha3)06,(1(X532)h341(Xa5 )
)

)

h
2”423”334h
x (8¢ ([(Xlsl)hllull4”15 hlls 501(I(X241)h21u213”242 2!1)5(;1 Z(X331)h31”312”3%3h32)

X 86, (t(Xaz1 ) hac a1 U hahish)), (All)

the set of delta functions on the group G; (on the links) and

5{01;4} =06, Xyaph12 > (X053X5:32X00.5) X 123013 B> (X3:45X3:50X304) X351 4 D> (Xa35Xa54X4:43))
X 8¢, (h12 > (Xos4(hoa > Y413)X0.42X005)Xi123h15 > (X345X353(h35 B> Ya301)X334)
X Xi35(h1s > Yi532)X1:52)

X 8¢, (h12 B> (Xas1(ho > Yaua.1)X0:12X005)X123015 > (X345X3:5.1 (730 > Ya:34)X5:04)
x Xia1 (A B> Yi21)X1:12)

% 86, (h12 > (Xo5.4(hoa > You1.4)X043X0535) X240 4 B> (XazaXaaa(han > Ya01)Xa23)
X Xias(his > Yisa2)Xis2)

X 66, (Mo B> (K51 (Mo B> You1:42) %01 3X0:3.5) X241 4 > (X334%Kau1 (R D> Ya1:32)X413)
X Xya1 (b > Yi31)X102)

X 86, (h13 > (X3.45(h35 > Y331.4)X352X304)X134014 B> (XassXasa(han > Yao31)Xa23)
X Xias(his > Yisa3)Xi:53)

X 8¢, (h13 > (X3 (h3 > Y303.1)X300X324) Xi3ah14 > (Xas5Xas (e D> Yaa2)Xa003)
X Xy 1 (b > Yi32)X1003)

X 86, (ha3 > (X351 (h3 > Y30:4.1)X302X525)X003004 > (XaasXasi (e B> Ya34)Xa04)
x Xo3.1 (ot > Yo10.1)X2:12)

X 86, (ha3 B> (X355(h33 > Y3324)X332X305)X003h04 B (X 5Xs52(han > Ya32)Xa04)
% Xo34(hoa > Yo443) X2:42)

X 562(h1.2 D> (Xos51(hayy D> You34)X0:14(hoa D> Yo 1)X0.45)Xi05(hys > Yis01)

x Xi:s.1 (B > Y1) X112)
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X 86, (h13 > (Xaa1(ha > Y3132)X303(h35 B Y3331)X534)X135(h15 > Yisa1)
X Xisa(ha > Yi42)Xi0)
X 86, (ha3 > (X351 (han B> Ya142)X303(h33 > Y3332)X5535) X004 (hoa &> Yaus))
X X1 (B B> Y131)X212)
X 86, (h1a > (Xaz.1(hay > Yau2.0)Xan2(hao > Yana1)Xa23)Xias(his > Yisan)
X Xys.1 (b > Yi034)Xi1004)
X 86, (haa &> (Xga1 (hay ™ Yau3.0)Xan2(hao > Ya242)Xa04)Xo34(hoa > Youa2)
X Xog1(hot > Y2.1:32)X0.13)

X 86,(h3a > (Xas,1 (hast > Yara1) X 2(hap; B Ya3)Xa05)X30,3(ha3 > Ya3u53)
X X331 (31 B> Ya00.1)X5012), (A12)

the set of delta functions on the group G, (on the wedges). We defined the composed links A 4 = h1;4h;g,
hy 4 = hoshyy, and hy g = hyohil, with inverses hyy = hyy, hyy = hyp, and h3y = hy 5. The first four delta
functions in (A11) enforces a closed path of only bulk links of the three 4-simplices pairwise. These are the loops of
links dual to the four faces shared by triplets of the four 4-simplices, {1,2,3}, {1,2,4}, {1,3,4}, and {2, 3,4}. The
following twelve delta functions involve a combination of bulk and boundary links of the 4-simplices pairwise,
{A,B},withA,B = 1,2,3,4 and B > A; while the remaining four deltas involve bulk and boundary links of the four
4-simplices separately. Similarly, the first delta functions in (A12) is a closed 2-path of only bulk wedges shared by
the four 4-simplices; this is the closed surface in the dual complex dual to the single edge shared by the four
4-simplices. The following eight delta functions involve a combination of bulk and boundary wedges of triplets of
4-simplices, {A, B, C} for A, B, C =1, 2,3,4 and C > B > A; the last six delta functions involve a combination of
bulk and boundary wedges of the 4-simplices pairwise.

FIG. 22. Graphs dual to five 4-simplices. We labeled the tetrahedra in red, and in blue the 4-simplices.
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(v) The 5-point Feynman diagram, illustrated in Fig. 22,

‘AV5 - /[dX]SO[dh]zs[du]loo[dY]150(’Cl,2’61,3ICI~4’C1,5IC2V3IC2,4IC2,5K3,4’C3,5}C4,5) (V1V2V3V4V5)

‘We denoted

Vs
55

v v
_ /[dX]SO[dh]ls[du]20[dY]305é]5}5£;25}

= (501 (t(Xy32) 71 2t(Xs:52) ha 31 (Xs.5.4) 13, 1)50 (t(Xya2)hy 2t(Xo53) o at(Xaa3)ha )

X 86, (1(Xy.43) 11 31 (X3.42) 13 41 (X5 3) a1 )0, (1(Xoi32) 1o 38 (X352) 3 at(Xais 4)
(t(Xii52) 712t (Xos 4) o 58(Xs32) s 1)06, (1 X5 3) M 31(Xs.43) B3 51(Xs.40) s 4
¢,

(¢( )
X 86, (¢( )y st( ) ( ( )
X 86, (1(Xn42) Mo 31 (Xs.5.3) 13 51 (Xs:43) hs 2) (Xi:5.4) 1 4t(Xa32) ha 51(Xs.52) hs 1)

(( )y st( ) ( ( )
)

(t
(t
(t
1(Xo43) M at(Xaea2) ha 51 (Xs.s5.3) s 2) 0, (1(Xa32) 13 41 (Xas2) s 51 (X5 4) hs 3
X (86, (1(X i) i ura itz 4ho ) 1(Xou 5)ha )6, (1K) Br o) s ha 1 (Xa,,

1 1 a)hs
x 8, (1(Xpa) hiatraaui) o g 1(Xa 3)ha 1) 86, (1(Xon.1) ot 45 4051 1(X5:1.5)h3 2)
X5(:,(f(Xz%1)}121”212”413h41t(X414)h42)50I (I(Xzzl)hzlum1”414h411t(X415)h4,3)
X 86, (t(X s hratrauzh 51 (Xs, 2)hs 186, (1(Xaan) o o315 2151 1(Xs1 3) s 2)
x &g, (1(X33,1)h3 1“312“51 h511t<X514)h53)5GI(f(X42 )h41”411”51 hs; 11t(X515)hs,4)>

the set of delta functions on the group G; (on the links) and

52;5} = 06, (Xiaahi2 > (X253X232X005)X103015 > (X3.45X352X304)X134014 B> (Xa35X454X443))
X 86, (Xis2hi2 B (X254X0:420X005) X123 5 B> (X345X353X334)X135h15 B> (X524X543X532
Xisahia B> (X254X0:43X0:35)X124h14 > (X4 3X432X404) Xiashis > (Xs25Xs:53X532
Xis3hi3 B> (X345X332X504)X134014 B (Xi35X452X403) Xiashis > (Xs25Xs:54X542
X 86, (Xaaoha3 > (X353X332X505)X003h04 B> (X sXa50Xa04) Xz ah25 B> (Xs35Xs:54X543
X 86, (h12 B> (X1 (hoy > Youa)X012X005)X123h13 B (X345X3:5.1 (ha1 > Y334)X5004)
x Xia (A > Yi21)X112)
X 86, (h12 > (X1 (hoy > Ya1:42)X013X055) X240 4 B> (X354Xa1 (hay > Ya32)Xa013)
X Xig (A > Y30 X102)
X 86, (h13 > (X341 (hay > Y305.1)X302X324)X154014 B> (Xas sXasa (hay > Yaia2)Xa3)
X Xiga (b > Yi32)X1:03)
X 86, (a3 > (X351 (M3 B> Y31:4.0)X3:00X30.5) Xo03h04 B> (XaasXasi (b > Ya134)Xa14)
x Xa3.1(ho B> Yo10.1)X2:12)
X 8¢, (h1o > (Xos1(hoy B> You34)X0,1.4X0.45) X051 5 D> (Xs503Xs31 (s > Ys.00.1)Xs.12)
X Xis1(hin > Yia)Xi2)
X 86, (h13 > (X341 (ha > Y31:32)X503X55.4) X013 5h15 B> (Xs543Xs5.1 (st > Ysi103)Xs:14)
X Xisi(hin > Yi42)X113)
X 86, (hy3 B> (X351 (M > Y3:0:42)X313X355)X004h05 B> (Xs53Xs5.1 (s, > Ys104)Xs:15)
X X1 (Bt B> Yo13.1)X0:12)

(
A
A
(
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X 86, (hya > (Xaz1 (ha > Yau01) X1 2Xa03) X1 shi s D> (Xs:5Xs:5.1 (s B> Ysii:41)X512)

X Xis1 (A D> Yi3.4)X1014)

X 5G2 (h2,4 > (X4;4,1(h4;1 > Y4;1;3.1)X4;1,2X4;2,4)X2;3,4h2,5 > (X5;3;5x5;5,1<h5;1 > Y5;1;4,2)X5;1.3)

X Xou 1 (hoyy &> Ya.132)X5:13)

X 86, (hs 4 > (Xa5.1(hay > Yana1)Xa12Xa025)X303h35 B> (Xsu:5Xsis0 (s > Ysi34)Xs00.4)

X X331 (h31 > Y3.001)X512),

the set of delta functions on the group G, (on
the wedges). We defined the composed links
his = hishsh, hos = hyuhsy, hss = hyghsy, and
hys = hyoh3s, with inverses hyy = hsy, hy5=hs,,
h3§ = hss, and h;% = hs 4. The first six delta func-
tions in (A14) enforces a closed path of only bulk links
of the 4-simplices pairwise; these are the loops of links
dual to the six faces shared by triplets of four
4-simplices. The remaining ten delta functions involve
a combination of bulk and boundary links of the
4-simplices pairwise. Similarly, the first five delta

functions in (A 15) enforce the closure of five 2-path of

only bulk wedges shared by the 4-simplices four by
four; these are closed surfaces in the dual complex
dual to the edges shared by the four 4-simplices.
The remaining ten delta functions involve a

(A15)

combination of bulk and boundary wedges of triplets
of 4-simplices.

* Pachner move P, s, illustrated in Fig. 17. We consider the
amplitude of five 4-simplices (A13). We integrate over
six bulk links (l’l]yz, h|.3, ]’l].4, h2’3, h2.4, h3.4) and over
three bulk wedges (X434, X435, X4:45). Upon integra-
tion, four delta functions on the group G; and one on the
group G, are automatically satisfied and give the factors
86, (1)** and 8, (1). In the Lie group case these factors
are divergent, but can be removed by properly normal-
izing the amplitudes, just as in the ordinary GFT case; for
finite groups, these factors are equal to 1 and thus
automatically regularized.

Consider the map from the variables that decorate the
dual of the combination of five 4-simplices to the
variables that decorate the dual of a single 4-simplex.

Boundary links Bulk wedges
A=1,273,4,5 hsy > (Xo:15X0:5.4) Xs3205,1 B> (Xi:50X10,1) = Xa,
Uit = Wi for i=1,2,3,4 hs3 > (X3:1.4X343) Xsu2hs1 > (Xi:53X13.1) = X3
Boundary wedges sy > (X413Xa32)Xs:50051 B> (Xi54Xi41) = Xa
hs 3 > (X3,15X353) Xs543052 D> (X040X001) = X302
Yari; = Yag; for A : L2345 hsy > (Xa1aXau2)Xssahso > (Xo43Xa31) = Xan (A16)
Lj=123.4  hsy > (X 5Xus52)Xsisahs 3 > (X332X30.1) = Xa3
Bulk links Xsiahsy > (Xisa) = Xs,
hsahay — hy for A=1,2,3,4 Xsi13hsy > (Xau1) = Xso
hs = hs Xs.iahss > (X331) = Xs3
Xsishsa > (Xa01) = Xs4

Under such change of variables, the five point Feynman
diagram (A13) turns out to be proportional to that of a
vertex diagram (Al):

Ay, = (VE V) Ay, (A17)
* Pachner move Pjs, illustrated in Fig. 19. Consider the

amplitude of four 4-simplices (A10). We integrate over
three bulk links (%, hy 3, hy3). Upon integration, the

last delta function on the bulk links and the only delta
function on the bulk wedges have the shape

8, (1(X))dg, (X), (A18)
with X being a combination of twelve wedge decorations
in G,. We introduce then the map from the variables that

decorate the combination of four 4-simplices to the
variables that decorate two 4-simplices.
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Boundary links

Uy
Uy
Upns
U4
Uypsa
Uysn
Uys3

Up5:4

—

N

Ui U1 = Uz Uz —
U3 Up1p = Uz Uz =
Ul:1:4 Up13 = U4 U313 =
Uy Uppg = U133 Uze =
Up:1:4 U4l = Uy U331 —
Up.1:1 Upgp = Upn3  U33n =
Ui Up43 = Upp U333 =
U133 Up4:4 = Upnn U334 =

Boundary wedges

;3 > Y3;3;1 4

3> Y333,

> Y1) = b B> Yiso
> Yii31) = b B> Yoo
> Yii32) = b B> Yisg

> Yisa2 (h12ho1) B> Yo,
> Y5142 (h12ha1) &> Yo
> Yisa3) = (hiohan) > Y32
> Yia0) = g > Yo

> Y50 (h12ho1) B> You114
> Yis3.1 (h12ho1) > Y04

)
)
)
) -
)~
) -
)
) -
) -
> Yia2) = hia > Yo
> Yiisa) = hia B> Ying
> Yisai) = (hioha) > Y43
D> Yi34) = hia > Yigan
> Y313.1) = hia > Yiaog
> Yi141) = hia > Yiaan
> Y3301) = (h12h23) B> Yaz43
) = (hi2hys) B> Y33,
D> Y3304) = (h12/3) B> Yazu,
> Y31:32) = hia > Yiaos
) = (hi2ha3) > Ya303
> Y3142) = hia B> Yigas
> Y33:32) = (hi2ho3) B> Yaso4
> Yai01) = hia B> Yiaan
) -

> Y3343 (hi2ho3) > Yoz:10

Bulk links
Upa;r  Ugg = Upsp hy1hyy = hyy
Upg3 U = Ups; hyshyy = hys
Upan  Ugnz = Upss hyzhsy = hig
Uigs  Ugis = Upsg g = hys
Up3z Uyl = Unyp hy1hys = hyohyy
U3 Ugppp = Upgs hyshoy — hishy
Upzp Uz = Upgy hyshsz = hyahys
U3l Ugpia = Upys hyp = hyohyy

hyp B> (hoy > Youa1) = hiz B> Yias,

hyp B> (hoy > Yaa2) = hiz B> Yias2

(hy > You01) = Mz > Yiaog

(hoa &> Yauu3) = (hioha) > Yoo
(Mo > Youa4) = (hi2hon) > Yonuo
(hpa > You43) = (hi2ha2) > Y02,
(ho1 > Yau34) = hiz > Yiazg

(Mo > Youan) = (hi2hon) > Yoo34
(hyy > Youu31) = iz > Yigag

> (hya & Youz2) = (highao) > Yoo
> Yioan = (hi2hoa) > Youo

> (B > You32) = iz B> Yigao

> (hya & Youuo) = (hiohao) > Yan03
> Yaia2 = his > Yisan

> Y134
> Y132

= his > Yis43
= his > Yis3,
D> Yyoo1 = (hi2hos) D> Yous,
D> Yyo31 = (hi2hos) D> Youas
D> Yy40:32) = (h12ho4) B> Youus
> Yaio0 = his > Yisgo
> Y0 = his > Yisso
> Yioao = (hiohoa) > Youas
> Yai41 = his > Yisao
D> Yinus = (hi2hoa) > Youa
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Bulk wedges

hyy B> X5 = Xiphio > Xosg hyp > X4 = Xiz2hio > Xos2

hys B> X313 = Xigohio > Xos3 Xano = Xisohio > Xos4

hyy B> (Xi50X104)Xaz4h40 > (Xo35Xa54) = hio D> Xogo Xapzhay B> Xjag = Xisy

hyy B> (X 2X12.4) X404 > (Xo35X0:51) = Xia13 X4o3hay > Xigs = hip > Xy, (A20)
hyy > (X113X134)Xa3.5043 B> (X324X341) = X4 Xgnahap > Xoz1 = Xis3

= hia>Xous Xapahao > Xoza = hip > Xouo
hyp > (X242X0:03)Xaa 5043 D> (X305X353) = hip B> Xons  Xashasz > Xz = Xisa

hyn B> (Xo12X003) Xaashaz D> (X305X3:51

—_— — — — ~— —

(
( (
( (
hyy > (Xi53X134)Xa35M43 B> (X304X343
( (
( (

- X34 Xyas5has > Xaps = hip B> Xous

Under such change of variables, the four point Feynman diagram (A10) turns out to be proportional to that of two point
Feynman diagram (A4):

Ay, = (Vg Vi) Ay, (A21)
* Pachner move P; 5: consider the amplitude of three point Feynman diagram (A7). We consider the map from the variables
that decorate the combination of three point Feynman diagram to the variables that decorate the different three point

Feynman diagram.

Boundary links

Upr = Upsy U1 = Upap Uz = Upg Bulk links

Ui = Ups; Uy = Upaz  Uszp = Upp By — hs

Uz = Upsp Uz = Upga Uz 3 = Upgg h1j4 . h1’2h2.4
Upg = Ups3 Uopg = Upgr Uz = Upp3 h1j5 . h1,3h3j3
Upg = Upgz U = Upzy  Usog = Uy h1,2h2-1 _) h1j4
Up4p = U Up3p = Up3l  Uzpp = U3 B hoe — e oo
Upg3 = Upgq  Unz3 = Upzn U3z = U h1.2h2,3 N h1,2h2,3
Upgq = Upgn  Ungy — Up33  Usdg = Upd hizhzj N hi? 2
Upsp = U3z Upg:p = Uzl U3z = U3 W hs — e B
Upsp = U334 Uogn = Uzpo U3 = Uz h1,3h3,2 N h1$2h2,1
Ups3 = U3z U = Uspg  U33s = Uss b b
Ups:4 = U332 Upga = U3z U334 = U314

Bulk wedges

Xinohio > Xos1 = X5
Xiizhiz > Xaa1 = Xisa

Xia = Xisohio > Xois4

Xis = Xisahiz > X343
Xiaohio > Xos3 = hip > Xous
Xiashiz > Xz = hip > X
Xius = hio > (X042X005) X031 3 B> (X345X3:53)
Xisphio > Xosa = bz > Xia
Xisahiz > X343 = hio D> X33,
hip B> Xos = Xigohio > Xoss
hia > Xon4 = Xiaszhiz > Xz
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hip > X34 = Mo B (X232X005) X233 B> (X3.45X352)

hiz > X300 = Xpohio > Xos,

hiz > X303 = Xpishiz > Xz

hiz B> Xans = hip > (Xp12X005) Xi23013 B> (X3.45X3:5.1) (A22)
hip > (X012X005) X230 B> (Xa45X351) = Xiad

hio > (X2:32X00.5)X123015 B> (X345X352) = hio > Xoa

hip > (X040X02.5)X123015 B> (X345X353) = hiz > Xaon

Boundary wedges

hig > Yipag) = (s > Yisan) hyo > (hyy > Yoo (P14 > Yians)
hig > Yigas) = (his > Yisao) hip > (hyy B> Y3 (M4 > Yia24)
hig B Yipia) = (s > Yisas) hip > (hyy > Y4 (M4 > Yia2.1)
hig B> Yia3) = (his B> Yisgo) his > (hyy > Y04 (R4 > Yia3.1)
hig B Yio4) = (his > Yis3) his > (hyy B> Y03 (M4 > Yi434)
hig > Y43 (A5 > Yis23) hia > (hyy > Yous (P14 > Yiga1)

(

(

(

(

(

(

(hy. haa > Yaus
(hy, . —’h12'> hyy > Y434
(h14>Y141.4 = hyo > (hyy > Yousn
(

(hy;

(hy

(

(

(

(

(

(

)

)

)

)

) =

) hio > (hys > Yos01) = hio > (has B> Yaz4
)

)

P > Yians) = hio B> (hoa > You 4

)

)

)

)

)

)

)

)

( ) -
( ) -
( ) =
( ) =
( ) =
( ) —
( )
hip > (hy3 & Yaz3) = hip B> (ha3 B> Yasao
hip B> (has B Yazia) = hio B> (hos > Yaus
( )
( )
( )
( )
( )
( )
( )
( )
( )

hio > (haz B> Yo303) = hio B> (hos > Yoz

C
S
\Y
:<
iy
)
~

( ) ( )
( ) ( )
( ) ( )
( ) ( )
= hio > (hya > You2) hio B> (hoz > Ya334) = hip B> (hos B> Ya323)
= hiy B> (Mo B> You442) hip B (hys > Ya342) = hio B (hys > Ya33.)
= hi3 > (h33 > Y33.4) hio B (hy > Yaun2) = hiz B (hap > Yin0)
= hi3 > (h33 > Y33.3) hio B (hya > Yauz1) = hiz B (han > Yana) (A23)
( ) ( )
( ) ( )
( ) ( )
( ) ( )

= hy3 > (h33 > Y3300 hio B> (hou > Youns) = hiz > (h3p > Yso04

=
v
:<
2

= hy3 > (33 D> Y3343 hio B> (hpu B> Youna) = hiz > (h3o > Y3003
hip &> (hog &> Youa,

hip > (hyy &> You34) = hiz > (h3o > Y3043

h15>Y1524
his > Yis34

= hy3 > (33 > Yi3u0 = hi3 > (h3o D> Y303,

hs3 > Y3335

hys D> (hsy > Yspa2) = (g > Yigo) hiz > (h3o B Y3004) = hio B> (hay B Ya43)
hys D> (h3y > Yspa3) = (g > Yiga) hiz > (h3o & Yspa.1) = hip B> (hoy &Yoo)
hys D> (h3y > Ysga4) = (g D> Yiggs) hiz B> (h3o & Ysp34) = hio B (hoy B Yai04)
his &> (hay > Ys03) = (A > Yiiog) hys D> (h3s > Ys300) = hiz > (hag > Yai0.)
hys D> (h3y > Ysi04) = (g > Yiios) hys D> (h3s > Ys303) = hiz > (hag > Ya03)
hys D> (h3y > Ysa3) = (g > Yigsa) hyis D> (h3s > Ysza1) = hiz > (hag > Ya40)
his B> (h3p > Ysoi00) = hio B (ho > Youu3) s B> (has > Yazos) = s > (g > Yaps)
his > (h3o > Yaona) = hio D> (hoy D> You0a) iz D> (has D> Yaauo) = by D> (hyy D> Y34)
his D> (h3p > Ys003) = hio B (hyy > Youz2) s D> (has > Yazaa) = iz > (3 > Yaa3)

Under such change of variables the generating function of the three point Feynman diagram (A7) turns out to be equal
to that of the three point Feynman diagram (A7) with a different combinatorics:

Ay, = A, (A24)

046009-22



GROUP FIELD THEORY ON 2-GROUPS

PHYS. REV. D 108, 046009 (2023)

[1] M. Dupuis, L. Freidel, F. Girelli, A. Osumanu, and J.
Rennert, On the origin of the quantum group symmetry in
3d quantum gravity, arXiv:2006.10105.

[2] J.C. Baez, An introduction to spin foam models of BF
theory and quantum gravity, Lect. Notes Phys. 543, 25
(2000).

[3] V. V. Fock and A. A. Roslyi, Poisson structure on moduli of
flat connections on Riemann surfaces and r matrix, Transl.-
Am. Math. Soc. 191, 67 (1999).

[4] V. V. Fock and A. A. Rosly, Poisson structure on moduli
of flat connections on Riemann surfaces and r matrix,
Transl.-Am. Math. Soc. 191, 67 (1999).

[5] A. Yu. Alekseev, H. Grosse, and V. Schomerus, Combina-
torial quantization of the Hamiltonian Chern-Simons theory,
Commun. Math. Phys. 172, 317 (1995).

[6] A. Yu. Alekseev, H. Grosse, and V. Schomerus, Combina-
torial quantization of the Hamiltonian Chern-Simons theory.
2., Commun. Math. Phys. 174, 561 (1995).

[7] L. Crane and I. Frenkel, Four-dimensional topological field
theory, Hopf categories, and the canonical bases, J. Math.
Phys. (N.Y.) 35, 5136 (1994).

[8] J.C. Baez and J. Dolan, Higher dimensional algebra and
topological quantum field theory, J. Math. Phys. (N.Y.) 36,
6073 (1995).

[9] J.C. Baez and A. Lauda, A prehistory of n-categorical
physics, in Deep Beauty (Cambridge University Press,
Cambridge, England, 2009), 10.1017/CB0O9780511976971
.003.

[10] E. Witten, (2 4 1)-dimensional gravity as an exactly soluble
system, Nucl. Phys. B311, 46 (1988).

[11] V. Turaev and A. Virelizier, Monoidal Categories and
Topological Field Theory, Vol. 322 of Progress in
Mathematics (Birkhauser, Cham, 2017), 10.1007/978-3-
319-49834-8.

[12] S. K. Asante, B. Dittrich, FE. Girelli, A. Riello, and P.
Tsimiklis, Quantum geometry from higher gauge theory,
Classical Quantum Gravity 37, 205001 (2020).

[13] F. Girelli and P. Tsimiklis, Discretization of 4d Poincaré BF
theory: From groups to 2-groups, Phys. Rev. D 106, 046003
(2022).

[14] F. Girelli, M. Laudonio, and P. Tsimiklis, Polyhedron phase
space using 2-groups: k-Poincaré as a Poisson 2-group,
arXiv:2105.10616.

[15] A. Bullivant, M. Calcada, Z. Kadar, P. Martin, and J.
Martins, Topological phases from higher gauge symmetry
in 3 4+ 1 dimensions, Phys. Rev. B 95, 155118 (2017).

[16] A. Bullivant, Y. Hu, and Y. Wan, Twisted quantum double
model of topological orders with boundaries, Phys. Rev. B
96, 165138 (2017).

[17] A. Bullivant and C. Delcamp, Excitations in strict 2-group
higher gauge models of topological phases, J. High Energy
Phys. 01 (2020) 107.

[18] J. C. Baez and A. D. Lauda, Higher-dimensional algebra v:
2-groups, arXiv:math/0307200.

[19] J.C. Baez, A. Baratin, L. Freidel, and D. K. Wise, Infinite-
Dimensional Representations of 2-Groups (American Math-
ematical Society, Providence, 2012), Vol. 1032, 10.1090/
S0065-9266-2012-00652-6.

[20] J. W. Barrett and M. Mackaay, Categorical representations
of categorical groups, arXiv:math/0407463.

[21] S. Majid, Strict quantum 2-groups, arXiv:1208.6265.

[22] D.N. Yetter, TQFT’s from homotopy 2 types, J. Knot Theor.
Ramifications 2, 113 (1993).

[23] M. Mackaay, Finite groups, spherical 2-categories, and
4-manifold invariants, Adv. Math. 153, 353 (2000).

[24] M. Mackaay, Spherical 2-categories and 4-manifold invar-
iants, Adv. Math. 143, 288 (1999).

[25] F. Girelli, H. Pfeiffer, and E. M. Popescu, Topological
higher gauge theory—from BF to BFCG theory, J. Math.
Phys. (N.Y.) 49, 032503 (2008).

[26] J.F. Martins and A. Mikovic, Lie crossed modules and
gauge-invariant actions for 2-BF theories, Adv. Theor.
Math. Phys. 15, 1059 (2011).

[27] H. Chen and F. Girelli, Categorified Drinfel’d double and
BF theory: 2-groups in 4D, Phys. Rev. D 106, 105017
(2022).

[28] S. Carlip, Quantum Gravity in 2+1 Dimensions (Cambridge
University Press, Cambridge, England, 2003).

[29] J.W. Barrett and L. Crane, Relativistic spin networks
and quantum gravity, J. Math. Phys. (N.Y.) 39, 3296
(1998).

[30] J.C. Baez, Higher dimensional algebra and Planck scale
physics, arXiv:gr-qc/9902017.

[31] C. Rovelli, Quantum Gravity, Cambridge Monographs
on Mathematical Physics (Cambridge University Press,
Cambridge, England, 2004).

[32] L. Crane and D. Yetter, A more sensitive Lorentzian state
sum, arXiv:gr-qc/0301017.

[33] D. V. Boulatov, A model of three-dimensional lattice grav-
ity, Mod. Phys. Lett. A 07, 1629 (1992).

[34] A. Baratin, B. Dittrich, D. Oriti, and J. Tambornino,
Non-commutative flux representation for loop quantum
gravity, Classical Quantum Gravity 28, 175011
(2011).

[35] A. Baratin and D. Oriti, Group Field Theory with Non-
Commutative Metric Variables, Phys. Rev. Lett. 1085,
221302 (2010).

[36] C. Guedes, D. Oriti, and M. Raasakka, Quantization maps,
algebra representation and non-commutative Fourier trans-
form for Lie groups, J. Math. Phys. (N.Y.) 54, 083508
(2013).

[37] H. Ooguri, Topological lattice models in four-dimensions,
Mod. Phys. Lett. A 07, 2799 (1992).

[38] L. Freidel, Group field theory: An overview, Int. J. Theor.
Phys. 44, 1769 (2005).

[39] T. Krajewski, Group field theories, Proc. Sci. QGQGS2011
(2011) 005.

[40] D. Oriti, Group Field Theory and Loop Quantum
Gravity (World Scientific Publishing, Singapore, 2017),
pp. 125-151, 10.1142/9789813220003-0005.

[41] D. Oriti, The universe as a quantum gravity condensate,
C.R. Phys. 18, 235 (2017).

[42] A. Tanasa, Tensor models, a quantum field theoretical
particularization, Proc. Rom. Acad. A 13, 225 (2012).

[43] A. Tanasa, The multi-orientable random tensor model, a
review, SIGMA 12, 056 (2016).

[44] R. Gurau and J. P. Ryan, Colored tensor models—a review,
SIGMA 8, 020 (2012).

[45] R. Gurau, Random Tensors (Oxford University Press,
New York, 2016).

046009-23


https://arXiv.org/abs/2006.10105
https://doi.org/10.1007/3-540-46552-9
https://doi.org/10.1007/3-540-46552-9
https://doi.org/10.1090/trans2/191
https://doi.org/10.1090/trans2/191
https://doi.org/10.1090/trans2/191
https://doi.org/10.1007/BF02099431
https://doi.org/10.1007/BF02101528
https://doi.org/10.1063/1.530746
https://doi.org/10.1063/1.530746
https://doi.org/10.1063/1.531236
https://doi.org/10.1063/1.531236
https://doi.org/10.1017/CBO9780511976971
https://doi.org/10.1017/CBO9780511976971
https://doi.org/10.1016/0550-3213(88)90143-5
https://doi.org/10.1007/978-3-319-49834-8
https://doi.org/10.1007/978-3-319-49834-8
https://doi.org/10.1088/1361-6382/aba589
https://doi.org/10.1103/PhysRevD.106.046003
https://doi.org/10.1103/PhysRevD.106.046003
https://arXiv.org/abs/2105.10616
https://doi.org/10.1103/PhysRevB.95.155118
https://doi.org/10.1103/PhysRevB.96.165138
https://doi.org/10.1103/PhysRevB.96.165138
https://doi.org/10.1007/JHEP01(2020)107
https://doi.org/10.1007/JHEP01(2020)107
https://arXiv.org/abs/math/0307200
https://arXiv.org/abs/math/0407463
https://arXiv.org/abs/1208.6265
https://doi.org/10.1142/S0218216593000076
https://doi.org/10.1142/S0218216593000076
https://doi.org/10.1006/aima.1999.1909
https://doi.org/10.1006/aima.1998.1798
https://doi.org/10.1063/1.2888764
https://doi.org/10.1063/1.2888764
https://doi.org/10.4310/ATMP.2011.v15.n4.a4
https://doi.org/10.4310/ATMP.2011.v15.n4.a4
https://doi.org/10.1103/PhysRevD.106.105017
https://doi.org/10.1103/PhysRevD.106.105017
https://doi.org/10.1063/1.532254
https://doi.org/10.1063/1.532254
https://arXiv.org/abs/gr-qc/9902017
https://arXiv.org/abs/gr-qc/0301017
https://doi.org/10.1142/S0217732392001324
https://doi.org/10.1088/0264-9381/28/17/175011
https://doi.org/10.1088/0264-9381/28/17/175011
https://doi.org/10.1103/PhysRevLett.105.221302
https://doi.org/10.1103/PhysRevLett.105.221302
https://doi.org/10.1063/1.4818638
https://doi.org/10.1063/1.4818638
https://doi.org/10.1142/S0217732392004171
https://doi.org/10.1007/s10773-005-8894-1
https://doi.org/10.1007/s10773-005-8894-1
https://doi.org/10.22323/1.140.0005
https://doi.org/10.22323/1.140.0005
https://doi.org/10.1142/9789813220003-0005
https://doi.org/10.1016/j.crhy.2017.02.003
https://doi.org/10.3842/SIGMA.2016.056
https://doi.org/10.3842/SIGMA.2012.020

GIRELLI, LAUDONIO, TANASA, and TSIMIKLIS

PHYS. REV. D 108, 046009 (2023)

[46] A. Tanasa, Combinatorial Physics (Oxford University
Press, New York, 2021).

[47] P. Di Francesco, P. H. Ginsparg, and J. Zinn-Justin, 2-d
gravity and random matrices, Phys. Rep. 254, 1 (1995).

[48] P. Di Francesco, 2d quantum gravity, matrix models and
graph combinatorics, in Applications of Random Matrices in
Physics, edited by E. Brézin, V. Kazakov, D. Serban, P.
Wiegmann, and A. Zabrodin, NATO Science Series II:
Mathematics, Physics and Chemistry Vol. 221 (Springer,
Dordrecht, 2006).

[49] A. Hatcher, Algebraic Topology (Cambridge University
Press, Cambridge, England, 2002).

[50] J.C. Baez, Higher Yang-Mills
0206130.

[51] J. Baez and U. Schreiber, Higher gauge theory: 2-connections
on 2-bundles, arXiv:hep-th/0412325.

[52] J. C. Baez and U. Schreiber, Higher gauge theory, arXiv:
math/0511710.

[53] F. Girelli and H. Pfeiffer, Higher gauge theory: Differential
versus integral formulation, J. Math. Phys. (N.Y.) 45, 3949
(2004).

[54] J.C. Baez and J. Huerta, An invitation to higher gauge
theory, Gen. Relativ. Gravit. 43, 2335 (2011).

[55] G. Ponzano and T. Regge, Semi-classical limit of racah
coefficients, pp. 1-58 of Spectroscopic and Group Theo-
retical Methods in Physics, edited by F. Block (John Wiley
and Sons, Inc., New York, 1968).

[56] S. Majid, Foundations of Quantum Group Theory
(Cambridge University Press, Cambridge, England, 2011).

[57] H. Pfeiffer, 2-groups, trialgebras and their hopf categories of
representations, Adv. Math. 212, 62 (2007).

[58] L. Freidel, D. Oriti, and J. Ryan, A group field theory for
3-D quantum gravity coupled to a scalar field, arXiv:gr-qc/
0506067.

[59] A. Baratin, L. Freidel, and R. Gurau, Weighting bubbles in
group field theory, Phys. Rev. D 90, 024069 (2014).

theory, arXiv:hep-th/

[60] L. Freidel, R. Gurau, and D. Oriti, Group field theory
renormalization—the 3d case: Power counting of divergen-
ces, Phys. Rev. D 80, 044007 (2009).

[61] V. Rivasseau, Towards renormalizing group field theory,
Proc. Sci. CNCFG2010 (2010) 004.

[62] S. Carrozza and D. Oriti, Bubbles and jackets: New scaling
bounds in topological group field theories, J. High Energy
Phys. 06 (2012) 092.

[63] S. Carrozza, Tensorial methods and renormalization in
group field theories, Ph.D. thesis, Orsay, LPT, 2013,
10.1007/978-3-319-05867-2.

[64] S. Dartois, V. Rivasseau, and A. Tanasa, The 1/N expansion
of multi-orientable random tensor models, Ann. Inst. Henri
Poincaré 15, 965 (2014).

[65] R. Gurau, A. Tanasa, and D.R. Youmans, The double
scaling limit of the multi-orientable tensor model, Europhys.
Lett. 111, 21002 (2015).

[66] V. Bonzom, V. Nador, and A. Tanasa, Double scaling limit
for the O(N)3-invariant tensor model, J. Phys. A 55, 135201
(2022).

[67] S. Dartois, R. Gurau, and V. Rivasseau, Double scaling in
tensor models with a quartic interaction, J. High Energy
Phys. 09 (2013) 088.

[68] E. Witten, An SYK-like model without disorder, J. Phys. A
52, 474002 (2019).

[69] E. Bianchi, The length operator in loop quantum gravity,
Nucl. Phys. B807, 591 (2009).

[70] R. De Pietri, L. Freidel, K. Krasnov, and C. Rovelli, Barrett-
Crane model from a Boulatov-Ooguri field theory over a
homogeneous space, Nucl. Phys. B574, 785 (2000).

[71] A. Baratin and D. Oriti, Quantum simplicial geometry in the
group field theory formalism: Reconsidering the Barrett-
Crane model, New J. Phys. 13, 125011 (2011).

[72] A. Baratin and D. Oriti, Group field theory and simplicial
gravity path integrals: A model for Holst-Plebanski gravity,
Phys. Rev. D 85, 044003 (2012).

046009-24


https://doi.org/10.1016/0370-1573(94)00084-G
https://arXiv.org/abs/hep-th/0206130
https://arXiv.org/abs/hep-th/0206130
https://arXiv.org/abs/hep-th/0412325
https://arXiv.org/abs/math/0511710
https://arXiv.org/abs/math/0511710
https://doi.org/10.1063/1.1790048
https://doi.org/10.1063/1.1790048
https://doi.org/10.1007/s10714-010-1070-9
https://doi.org/10.1016/j.aim.2006.09.014
https://arXiv.org/abs/gr-qc/0506067
https://arXiv.org/abs/gr-qc/0506067
https://doi.org/10.1103/PhysRevD.90.024069
https://doi.org/10.1103/PhysRevD.80.044007
https://doi.org/10.22323/1.127.0004
https://doi.org/10.1007/JHEP06(2012)092
https://doi.org/10.1007/JHEP06(2012)092
https://doi.org/10.1007/978-3-319-05867-2
https://doi.org/10.1007/s00023-013-0262-8
https://doi.org/10.1007/s00023-013-0262-8
https://doi.org/10.1007/s00023-013-0262-8
https://doi.org/10.1209/0295-5075/111/21002
https://doi.org/10.1209/0295-5075/111/21002
https://doi.org/10.1088/1751-8121/ac4898
https://doi.org/10.1088/1751-8121/ac4898
https://doi.org/10.1007/JHEP09(2013)088
https://doi.org/10.1007/JHEP09(2013)088
https://doi.org/10.1088/1751-8121/ab3752
https://doi.org/10.1088/1751-8121/ab3752
https://doi.org/10.1016/j.nuclphysb.2008.08.013
https://doi.org/10.1016/S0550-3213(00)00005-5
https://doi.org/10.1088/1367-2630/13/12/125011
https://doi.org/10.1103/PhysRevD.85.044003

