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In AdS=CFT, the entanglement wedge EWðBÞ is the portion of the bulk geometry that can be
reconstructed from a boundary region B; in other words, EWðBÞ is the hologram of B. We extend this
notion to arbitrary spacetimes. Given any gravitating region a, we define a max- and a min-entanglement
wedge, emaxðaÞ and eminðaÞ, such that eminðaÞ ⊃ emaxðaÞ ⊃ a. Unlike their analogs in AdS=CFT, these two
spacetime regions can already differ at the classical level, when the generalized entropy is approximated by
the area. All information outside a in emaxðaÞ can flow inwards towards a, through quantum channels
whose capacity is controlled by the areas of intermediate homology surfaces. In contrast, all information
outside eminðaÞ can flow outwards. The generalized entropies of appropriate entanglement wedges obey
strong subadditivity, suggesting that they represent the von Neumann entropies of ordinary quantum
systems. The entanglement wedges of suitably independent regions satisfy a no-cloning relation. This
suggests that it may be possible for an observer in a to summon information from spacelike related points in
emaxðaÞ, using resources that transcend the semiclassical description of a.
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I. INTRODUCTION

A. Background

Entanglement wedges have been at the core ofmuch of the
recent progress in our understanding of quantum gravity. In
AdS=CFT, an entanglement wedge EWðBÞ is a gravitating
(or “bulk”) spacetime region that is holographically dual to a
given spatial region B (at some fixed time) on the boundary
[1–7]. More precisely, EWðBÞ, if it exists, satisfies the
following two properties:
(a) A sufficiently simple quasilocal bulk operator in

EWðBÞ can be implemented by a conformal field
theory (CFT) operator in the algebra associated to the
region B.

(b) No bulk operator outside EWðBÞ can be so
implemented.

In the language of the holographic principle [8–11], EWðBÞ
captures the depth of the hologram that pops out from B.1

Given the entire spacetimeM dual to a particular boundary
state, there is a standard prescription for finding the entan-
glement wedge EWðBÞ of a boundary subregion B, as
follows. The generalized entropy of a partial Cauchy slice
c in a gravitating spacetimeM with Newton’s constant G is

SgenðcÞ ¼
Areað∂cÞ
4Gℏ

þ SðcÞ; ð1:1Þ

where S denotes the von Neumann entropy of the bulk
quantum state reduced to c, and ∂c denotes the boundary of c
in a full Cauchy slice ofM. EWðBÞ is defined as the domain
of dependence of a spatial bulk region c whose only
asymptotic boundary is B, and which is quantum extremal,
meaning that the generalized entropy SgenðcÞ is stationary
under small deformations ∂c of the boundary of c insideM. If
there ismore than one such domain of dependence, EWðBÞ is
the one with smallest Sgen.
The entanglement wedge can be used to compute the

entropy SðρBÞ of the reduced boundary state ρB on the
region B as [12–15]

SðρBÞ ¼ Sgen½EWðBÞ�: ð1:2Þ

Notably, this formula can be justified (with some assump-
tions) by applying the gravitational path integral to the
computation of Renyi entropies [16], without appealing to
string theory or other microscopic details of the theory.
When external quantum systems are coupled to the

spacetime, the definition of an entanglement wedge needs

*bousso@berkeley.edu
†geoffp@berkeley.edu

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP3.

1In fact, one of the authors feels that entanglement wedges
should simply be renamed “holograms”—starting with this paper.
After many hours of heated debate, we decided to continue to use
“entanglement wedge” for now.
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to be generalized. Consider for example a black hole in
anti–de Sitter (AdS) space evaporating into a nongravita-
tional bath R, and let BðtÞ be the entire boundary at the time
t. Then EW½BðtÞ� has a phase transition at the Page time
[17,18]. After this time, most of the interior of the black
hole is not contained in the entanglement wedge of the
black hole’s asymptotic boundary.
If the information inside the black hole is not encoded in

B, then where did it go? One can formally define an
entanglement wedge EWðRÞ for the external bath, by
augmenting the standard prescription to specify that R
itself must always be included in EWðRÞ [17,19,20].2

Before the Page time, one finds EW½RðtÞ� ¼ RðtÞ. But
after the Page time, EW½RðtÞ� also contains a portion of the
black hole interior. This disconnected “island” is precisely
the spacetime region that was missing from EW½BðtÞ�. Its
inclusion yields the Page curve [23,24] for the entropy of
Hawking radiation, and it implies the Hayden-Preskill
criterion [25] for the information that can be recovered
from the radiation at the time t.
The fact that an external system R can acquire a nontrivial

entanglement wedge within a gravitating spacetime was a
radical new development. It means that the concept of an
entanglement wedge can be divorced from the conformal
boundary of an asymptotically AdS spacetime.
But if Hawking radiation can have an entanglement

wedge, then it should possess this property even before
being extracted from the spacetime. Our Universe, for
example, is gravitating, and it does not appear to have an
asymptotically AdS boundary. Yet one still obtains the Page
curve by associating an entanglement island to the
Hawking radiation of a black hole [26,27]. It is natural
then to ask for the most general class of objects to which
one can associate an entanglement wedge.
This motivated us to propose a significant generalization

of the notion of an entanglement wedge [28]; we conjectured
that any gravitating region a has an associated generalized
entanglement wedge. For example, a can be inside a black
hole, or part of a closed universe. We conjectured, moreover,
that no separate rule is needed to associate an entanglement
wedge to a portionB of the conformal boundary ofAdS, or to
an auxiliary nongravitational system R. The traditional
entanglement wedges EWðBÞ and EWðRÞ should arise as
limiting cases of the generalized entanglement wedge, when
the input bulk regiona is an asymptotic regionwith boundary
B, or when the gravitational coupling G is taken to zero,
respectively.
In time-reflection symmetric spacetimes, we found a

simple proposal that meets these criteria; the generalized
entanglement wedge of the region a has the smallest
generalized entropy among regions that contain a.

Moreover, this proposal satisfies nontrivial properties
expected of an entanglement wedge, such as nesting, no-
cloning, and strong subadditivity [28]. However, we did
not succeed in formulating a proposal for general, time-
dependent settings that satisfied all of these properties.

B. Max- vs min entanglement wedges and state merging

In order to overcome this difficulty, it will be vital to
absorb a seemingly unrelated development in our under-
standing of entanglement wedges; for generic bulk quan-
tum states, EWðBÞ may not exist, because no region
simultaneously satisfies both properties (a) and (b) above
[29]. However, it is possible to define two bulk regions,
maxEWðBÞ ⊂ minEWðBÞ, which are optimal with respect
to each criterion separately [29,30].
The max-entanglement wedge—so named because its

definition invokes the smooth conditional max-entropy
[31,32]—is the largest possible bulk region within which
any quasi-local bulk operator can be reconstructed from the
boundary region B. In contrast, the min-entanglement wedge
is the smallest bulk region outside which no operator is
reconstructible fromB. Its definition involves the smooth con-
ditional min-entropy. In general, minEWðBÞ may be strictly
larger than maxEWðBÞ, so that no single EWðBÞ exists.
The smooth conditional max- and min-entropies are

modifications of the usual conditional vonNeumannentropy,
developed in the study of one-shot quantum Shannon theory.
Consider the communication task of quantum state merging
[33]. The goal of this task is to obtain the state of a system c
with access only to a subsystem (or subregion) c̃ alongwith a
minimal number of additional qubits.
When merging a large number of copies of c, the

number of qubits required, per copy, is quantified by the
conditional von Neumann entropy SðcÞ − Sðc̃Þ. Note that
the conditional entropy need not be positive. For example,
Bell pairs shared by cnc̃ and c̃ give a negative contribu-
tion, because they can be used to teleport information into
c̃.3 This helps minimize the number of qubits that need to
be sent. Thus, state merging can be accomplished with no
additional qubits if SðcÞ − Sðc̃Þ ≤ 0. When the systems in
question are geometric, each region’s boundary contrib-
utes Area=ð4GℏÞ to the entropy, so this condition becomes
SgenðcÞ − Sgenðc̃Þ ≤ 0.
When only a single copy is present, the number required

is instead controlled by the conditional max-entropy Hϵ
max

[35]. (The conditional min-entropy appears in closely
related one-shot communication tasks.) Unlike von
Neumann entropies, conditional max- and min-entropies
cannot be written as a difference of entropies; consequently
they are somewhat harder to work with. Again adding the
area terms for geometric regions, one-shot quantum state

2This augmented prescription can be derived using the same
gravitational replica trick techniques as the standard prescription
[21,22].

3It is important here that, along with the minimum qubits,
one can also send unlimited free-classical bits [33] (or, more
generally, zero bits [19,29,34]).
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merging can be accomplished with no additional qubits
if AreaðcÞ=ð4GℏÞ − Areaðc̃Þ=ð4GℏÞ þHϵ

max ≤ 0.
For sufficiently nice bulk quantum states, conditional

min- and max-entropies are equal; in such situations they
can be replaced by the simpler conditional von Neumann
entropy. For convenience, we will assume that this is the
case throughout unless explicitly stated otherwise.
With this assumption, maxEWðBÞ can be (somewhat

informally) defined as the domain of dependence of the
largest quantum-antinormal partial Cauchy slice c with
asymptotic boundary B such that any partial Cauchy slice
c̃ ⊂ c has Sgenðc̃Þ ≥ SgenðcÞ [30]. Here quantum-antinormal
means that enlarging c slightly cannot increase SgenðcÞ at
linear order. The wedge minEWðBÞ is defined as the bulk
region that is spacelike separated from maxEWðB̄Þ, where
B̄ is the complement of B in the asymptotic boundary. Thus
minEWðBÞ is the smallest quantum-normal bulk region
such that all information outside it can flow through some
partial Cauchy slice to B̄.4 This gives an attractive and
intuitive physical picture in which the information flows
through the bulk towards the asymptotic boundary, with a
maximum information capacity through any given surface
controlled by its area.5

We now return to the problem of associating an entangle-
ment wedge to a gravitating bulk region a that need not be
static. A careful distinction between a min- and the max-
entanglement wedge, eminðaÞ and emaxðaÞ, turns out to be
critical to this task, even when von Neumann entropies are a
good approximation. Indeed, we will see that the two need
not agree even in the Gℏ → 0 limit, when the generalized
entropy SgenðcÞ can be approximated by Areað∂cÞ=4Gℏ.
Only in static settings (and with the simplifying assumption
that von Neumann entropies can be used) will we find that
emaxðaÞ and eminðaÞ both reduce to the single prescription
given in Ref. [28].

C. Outline

In Sec. II we define the max- and min-entanglement
wedges of bulk regions, emaxðaÞ and eminðaÞ, associated to
an arbitrary wedge6 a in any gravitating spacetime M that
satisfies the semiclassical Einstein equation.

Our definitions of emaxðaÞ and eminðaÞ build on those of
maxEWðBÞ and minEWðBÞ, the entanglement wedges of
a boundary region B. emaxðaÞ can be thought of as the
largest quantum-antinormal region containing a, subject
to certain modified flow conditions. We will require that
information outside of a in emaxðaÞ can flow through a
Cauchy slice to the edge of a, rather than to a boundary
region B. And we shall not impose the condition of
quantum-antinormality where the edge of emaxðaÞ coin-
cides with the edge of a, since no information flows from
there. Similarly, eminðaÞ is the smallest quantum-normal
region containing a such that information can flow
away from it, across a Cauchy slice of its spacelike
complement.
In Sec. III we prove that emax and emin satisfy the

following key properties characteristic of reconstructible
regions:

(i) Encoding: Information can flow from emaxðaÞ to-
ward a through quantum channels whose capacity is
controlled by the areas of intermediate homology
surfaces. Similarly, quantum information can flow
away from eminðaÞ.

(ii) Inclusion: eminðaÞ ⊃ emaxðaÞ ⊃ a.
(iii) No cloning: emaxðaÞ is spacelike to eminðbÞ, if a

and b are suitably independent.
(iv) Nesting: eminðaÞ ⊂ eminðbÞ if a ⊂ b.
(v) Strong subadditivity of the generalized entropy:

Sgen½emaxða ∪ bÞ� þ Sgen½emaxðb ∪ cÞ�
≥ Sgen½emaxða ∪ b ∪ cÞ� þ Sgen½emaxðbÞ�;

if a, b, c are mutually spacelike and if emax ¼ emin
for each of the four sets appearing in the arguments.

These properties mirror those of entanglement wedges
of boundary regions in AdS=CFT, maxEWðBÞ, and
minEWðBÞ. They support the interpretation of emaxðaÞ
as the largest wedge whose semiclassical description can be
fully reconstructed from a, and of eminðaÞ as the comple-
ment of the largest wedge about which nothing can be
learned from a.
In Sec. IV, we consider special cases and examples. In

Sec. IVA, we show that emaxðaÞ ¼ eminðaÞ if a lies on a
time-reflection symmetric Cauchy slice. In this case our
proposal reduces to the much simpler prescription that we
had previously formulated for this special case [28]. In
Sec. IV B, we show that emaxðaÞ and eminðaÞ reduce to
maxEWðBÞ and minEWðBÞ, the max- and min-entangle-
ment wedges of boundary subregions in AdS=CFT, if a is
an appropriate asymptotically AdS region with conformal
boundary B.
In Sec. IV C we construct emax and emin explicitly for

some examples. Perhaps surprisingly, in some cases
emaxðaÞ will be a proper subset of eminðaÞ, even though
the min- and max-entropies agree with the von Neumann

4With some work, one can show that our simplified definitions
of maxEWðBÞ and minEWðBÞ in terms of von Neumann
entropies both reduce to the standard prescription for the
entanglement wedge: maxEWðBÞ ¼ minEWðBÞ ¼ EWðBÞ.
However, in the general case where the max- and min-entropies
differ, maxEWðBÞ and minEWðBÞ may differ as well.

5Notably, the state is received by an asymptotic bulk region c̃,
not by the conformal boundary. This fact aligns well with our
proposal that entanglement wedges should be associated to bulk
regions, not boundary regions.

6We now switch to a more precise formulation, in which the
input a ⊂ M is a wedge, i.e., the maximal causal development of
a partial Cauchy slice in M.
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entropies.7 They need not coincide even in the classical limit,
when the generalized entropy (1.1) is approximated by the
area. Two examples where this happens are shown in Fig. 1.
In Sec. V, we discuss some of the implications and

challenges that arise from our results.

II. MAX- AND MIN-ENTANGLEMENT WEDGES
OF GRAVITATING REGIONS

Let M be a globally hyperbolic Lorentzian spacetime
with metric g. The chronological and causal future and past,
I� and J�, and the future and past domains of dependence
and Cauchy horizons, D� and H�, are defined as in Wald
[36]. In particular, the definitions are such that p ∉
IþðfpgÞ and p ∈ JþðfpgÞ. Given any set s ⊂ M, ∂s
denotes the boundary of s in M, and cl s≡ s ∪ ∂s denotes
the closure.
Definition 1.—The spacelike complement of a set s ⊂ M

is defined by

s0 ¼ Mncl½JþðsÞ�ncl½J−ðsÞ�: ð2:1Þ

Definition 2.—A wedge is a set a ⊂ M that satisfies
a ¼ a00 (see Fig. 2, left).
Remark 3.—The intersection of twowedges a, b is easily

shown to be a wedge (see Fig. 2, right); similarly, the
complement wedge a0 is a wedge;

ða ∩ bÞ00 ¼ a ∩ b; a000 ¼ a0: ð2:2Þ

Definition 4.—Given two wedges a and b, we define the
wedge union as a ⋓ b≡ ða0 ∩ b0Þ0 (see Fig. 3). By the
above remark, a ⋓ b is always a wedge.
Definition 5.—For notational simplicity, it will be

convenient to extend this definition to sets s, t that need
not be wedges; s ⋓ t≡ s00 ⋓ t00.
Remark 6.—The wedge union satisfies a ⋓ b ⊃ a ∪ b. It

is the smallest such wedge: any wedge that contains a ∪ b
will contain a ⋓ b.
Definition 7.—The edge ða of a wedge a is defined by

ða≡ ∂a ∩ ∂a0. Conversely, a wedge a can be fully char-
acterized by specifying its edge ða and one spatial side
of ða.
Definition 8.—The generalized entropy [37] of a wedge

a is defined as

SgenðaÞ≡ AreaððaÞ
4Gℏ

þ SðaÞ þ…; ð2:3Þ

where S is the von Neumann entropy of the reduced
quantum state of the matter fields on any Cauchy slice
of a. The ellipsis stands for additional gravitational
counterterms [38] that cancel subleading divergences in

II ‾II (ð(ð‾ a))

a
a'

ða

I+II (ða)

ð(a ∩ b)
b

a

FIG. 2. Left: A wedge a and its complement wedge a0 in
Minkowski space. Their shared edge ða is a sphere. A Cauchy
slice of a is shown in dark green. This wedge is “normal,” that is,
past- and future-directed outward lightrays orthogonal to ða
expand. Right: The intersection of two wedges is again a wedge.
Its edge decomposes as ðða ∩ bÞ ¼ cl½ðða ∩ bÞ⊔ðHþðaÞ ∩
H−ðbÞÞ⊔fa ↔ bg�.

F (a)e
Time

Space

a

min

a
e (a)min

FIG. 1. The covariant definition of generalized entanglement
wedges requires a distinction between max- and min-entangle-
ment wedges. Unlike [29], these can differ even at the classical
level. Two examples are shown; they are chosen asymptotically
AdS for ease of drawing, but this is not essential. In both, our
definition yields emaxðaÞ ¼ a, while eminðaÞ includes emaxðaÞ as a
proper subset. Left: spatial slice of vacuum AdS. The bulk region
a has an inner boundary that wiggles up and down in time and so
has small area. Right: spacetime diagram of a two-sided black
hole. The input region a extends into the black hole interior.

FIG. 3. The wedge union (purple) of two wedges (turquoise,
blue) is the smallest wedge that contains both. Two examples
are shown.

7In fact, for brevity and readability, we do not give a fully
general definition of emax and emin in terms of smooth max- and
min-entropies in this paper. This allows us to focus on the
challenge of allowing for bulk input regions. It is straightforward
to refine our definitions to handle incompressible quantum states,
by replacing the von Neumann entropy with max- and min-
entropies like in the definitions of maxEW and minEW [29,30].
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SðaÞ. For a set s ⊂ M that is not a wedge, we will
sometimes write SgenðsÞ ¼ Sgenðs00Þ to simplify notation.
Convention 9.—We assume throughout that the global

state is pure, and hence that

SgenðaÞ ¼ Sgenða0Þ ð2:4Þ

for all wedges a. If necessary, this can be achieved by
purifying the state using an external system R, and
including R ⊂ a0 whenever R⊄a.
Definition 10.—Given a wedge a, we distinguish

between its edge ða in M and its edge �δa as a subset of
the conformal completion (also called Penrose diagram or
unphysical spacetime) M̃ [36]. If a is asymptotic, the latter
set may contain an additional piece, the conformal edge

ð̃a≡�δa ∩ ∂M̃: ð2:5Þ

Definition 11.—Let a be a wedge, and let p ∈ ða. The
future (past) expansion, Θþða; pÞ [Θ−ða; pÞ], is the shape
derivative of the generalized entropy under outward defor-
mations of a along the future (past) null vector field
orthogonal to ða at p,8

Θ�ða; pÞ≡ 4Gℏ
δSgen½aðX�ðpÞÞ�

δX�ðpÞ : ð2:6Þ

Here Xþ (X−) is an affine parameter for the future (past)
null congruence orthogonal to ða; and aðX�ðpÞÞ are
wedges obtained by deforming ða along these congruen-
ces. See Refs. [38,39] for further details.
Remark 12.—By Eq. (2.3), the expansion can be

decomposed as

Θ�ða; pÞ ¼ θ�ðpÞ þ 4Gℏ
δS½aðX�ðpÞÞ�

δX�ðpÞ : ð2:7Þ

The first term is the classical expansion [36], which
depends only on the shape of ða near p. The second term
in Eq. (2.7) is nonlocal.
Definition 13.—The wedge a is called normal9 at p ∈ ða

if Θþða; pÞ ≥ 0 and Θ−ða; pÞ ≥ 0. For other sign combi-
nations, a is called antinormal (≤;≤), trapped (≤;≥),
antitrapped (≥;≤), and extremal (¼;¼) at p. Marginal
cases arise if one expansion vanishes at p. In relations that
hold for all p ∈ ða, we omit the argument p; if ΘþðaÞ ≥ 0
and Θ−ðaÞ ≥ 0, we simply call a normal, and similarly for
the other cases.

Conjecture 14 (Quantum focusing conjecture).—The
quantum expansion is nonincreasing along a null
congruence [38],

δΘ�ða; pÞ
δX�ðp̄Þ ≤ 0: ð2:8Þ

Remark 15.—When the functional derivatives are taken
at different points, p ≠ p̄, the quantum focusing conjecture
(QFC) follows from strong subadditivity [38]. The QFC
implies the quantum null energy condition [38] in a certain
nongravitational limit; the latter statement can be proven
within quantum field theory for both free and interacting
theories [40,41]; see also Refs. [42–45]. The “diagonal”
case of the QFC, p ¼ p̄, remains a conjecture. A weaker
version [46] suffices for all proofs in the present paper and
has been proven holographically for brane-worlds in AdS.
Convention 16 (Genericity condition).—The inequality

Eq. (2.8) is generically strict. We will assume this stronger
condition whenever necessary.
Definition 17 (Max-entanglement wedge of a gravitating

region).—Given a wedge a, let FðaÞ≡ ff∶I ∧ II ∧ IIIg be
the set of all wedges that satisfy the following properties:

(I) f ⊃ a and ð̃f ¼ ð̃a;
(II) f is antinormal at points p ∈ ðfnða; and
(III) f admits a Cauchy slice Σ such that

(a) Σ ⊃ ða; and
(b) SgenðhÞ > SgenðfÞ for any wedge h ≠ f such that

a ⊂ h, ðh ⊂ Σ, and ðhnðf is compact in M.
The max-entanglement wedge of a, emaxðaÞ, is their wedge
union,

emaxðaÞ≡ ⋓f∈FðaÞ f: ð2:9Þ

Definition 18 (Min-entanglement wedge of a gravitating
region).—Given a wedge a, let GðaÞ≡ fg∶i ∧ ii ∧ iiig be
the set of all wedges that satisfy the following properties:

(i) g ⊃ a and ð̃g ¼ ð̃a;
(ii) g is normal; and
(iii) g0 admits a Cauchy slice Σ0 such that SgenðhÞ >

SgenðgÞ for any wedge h ≠ g such that g ⊂ h,
ðh ⊂ Σ0, and ðhnðg is compact.

The min-entanglement wedge of a, eminðaÞ, is their
intersection,

eminðaÞ≡ ∩g∈GðaÞ g: ð2:10Þ

III. PROPERTIES

Theorem 19: emaxðaÞ ∈ FðaÞ.
Proof.—We must show that emaxðaÞ satisfies properties

I–III listed in Definition 17.

8More commonly,Θ� is referred to as a quantum expansion, in
order to distinguish it from the classical expansion θ. We omit the
modifier for brevity.

9Again we drop the common modifier “quantum-” (quantum-
normal etc.) because it would become too cumbersome; see
footnote 8.
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Property I: f ¼ a satisfies properties I–III with any
choice of Cauchy slice. Hence FðaÞ is nonempty, and
Eq. (2.9) implies that f ¼ emaxðaÞ satisfies Property I.
Property II: For anyp ∈ ðf3nða, either (a)p∈ ðf1 ∪ ðf2

or (b) p ∈ Hþðf01Þ ∩ H−ðf02Þ ∪ H−ðf01Þ ∩ Hþðf02Þ. Since
f1 and f2 themselves satisfy Property II, and Property II for
f3 follows by either (a) strong subadditivity, or (b) the
quantum focusing conjecture 14 followed by strong sub-
additivity. By induction, emaxðaÞ is antinormal at points
p ∈ ðemaxðaÞnða.
Property III: Again proceeding inductively, let

f1; f2 ∈ FðaÞ, with Property III satisfied by Cauchy slices
Σ1 and Σ2, respectively. Then f3 ¼ f1 ⋓ f2 admits the
Cauchy slice

Σ3 ¼ Σ1 ∪ ½Hþðf01Þ ∩ J−ðΣ2Þ�
∪ ½H−ðf01Þ ∩ JþðΣ2Þ� ∪ ½Σ2 ∩ f01�: ð3:1Þ

Σ3 trivially satisfies Property III(a). To prove Property III
(b), let h ⊃ a, ðh ⊂ Σ3. By Property III(b) of Σ1, the QFC,
and Property III(b) of Σ2, respectively,

10

SgenðhÞ ≥ Sgenðh ⋓ Σ1Þ ≥ Sgen½h ⋓ ðΣ3nΣ2Þ� ≥ Sgen½Σ3�:
ð3:2Þ

Strong subadditivity was used in every step.11 At least one
of these inequalities is strict whenever h ≠ f3. ▪
Convention 20.—Let

ΣmaxðaÞ

denote a Cauchy slice of emaxðaÞ that satisfies Property III,
and which exists by the preceding Lemma.
Theorem 21: All antinormal portions of ðemaxðaÞ are

extremal. In particular, emaxðaÞ is extremal at points
p ∈ ðemaxðaÞnða.
Proof.—Suppose that emaxðaÞ is antinormal at p; that is

Θ�½emaxðaÞ; p� ≤ 0. Suppose for contradiction (and with-
out loss of generality) that Θ−½emaxðaÞ; p� < 0. Continuity
of Θ− and the QFC for Θþ imply that ðemaxðaÞ can be
deformed along the outward future-directed null congru-
ence at p to generate a wedge f1 that still satisfies
Properties I–III of Definition 17. Since f1⊄emaxðaÞ, this
contradicts the definition of emaxðaÞ.
The second part of the theorem follows since emaxðaÞ is

antinormal at p ∈ ðemaxðaÞnða, by Theorem 19. ▪

Corollary 22: No point on ðemaxðaÞ can be properly
null separated from ða; that is,

ðemaxðaÞ ∩ Hða0Þ ⊂ ða: ð3:3Þ

Proof.—If such a point p existed, any Cauchy slice of
emaxðaÞ that contains ða would contain a null geodesic
orthogonal to ðemaxðaÞ at p. Local inward deformations at
p along this geodesic decrease the generalized entropy, by
the preceding theorem and the QFC, in contradiction with
Property III of emax established in Theorem 19. ▪
Theorem 23: eminðaÞ ∈ GðaÞ.
Proof.—We must show that eminðaÞ satisfies properties

i–iii listed in Definition 18.
Property i: g ¼ M trivially satisfies properties i–iii, so

GðaÞ is nonempty. Property i then implies eminðaÞ ⊃ a.
Property ii: The intersection of two normal wedges is

normal by Lemma 4.14 of Ref. [28]. Hence eminðaÞ is
normal by Definition 18.
Property iii: Let g1; g2 ∈ GðaÞ with Property iii satisfied

by Cauchy slices Σ0
1 and Σ0

2, respectively; and let
g3 ¼ g1 ∩ g2. Then g03 admits the Cauchy slice

Σ0
3 ¼ Σ0

1 ∪ ½Hþðg1Þ ∩ J−ðΣ0
2Þ�

∪ ½H−ðg1Þ ∩ JþðΣ0
2Þ� ∪ ½Σ0

2 ∩ g1�: ð3:4Þ

Let h ⊃ g3, ðh ⊂ Σ0
3. By Property iii of Σ0

1, the QFC, and
Property iii of Σ0

2, respectively,

Sgenðh0Þ ≥ Sgenðh0 ⋓ Σ0
1Þ ≥ Sgen½h0 ⋓ ðΣ0

3nΣ0
2Þ� ≥ Sgen½Σ0

3�:
ð3:5Þ

Strong subadditivity was used for each inequality. At least
one of these inequalities is strict whenever h ≠ g3. Hence,
using Convention 9, we have SgenðhÞ > Sgenðg3Þ. Property
iii follows by induction. ▪
Convention 24.—Let

Σ0
minðaÞ

denote a Cauchy slice of e0minðaÞ that satisfies Property iii,
and which exists by the preceding Lemma.
Theorem 25: eminðaÞ is marginal or extremal at points

p ∈ ðeminðaÞnða. Specifically,
(i) eminðaÞ is marginally antitrapped,Θ−½eminðaÞ;p� ¼ 0,

at p ∈ ðeminðaÞ ∩ Hþða0Þ;
(ii) eminðaÞ is marginally trapped, Θþ½eminðaÞ; p� ¼ 0,

at p ∈ ðeminðaÞ ∩ H−ða0Þ; and
(iii) eminðaÞ is extremal, Θþ½eminðaÞ; p� ¼ Θ−½eminðaÞ;

p� ¼ 0, at p ∈ ðeminðaÞ ∩ a0.
Proof.—Suppose that p ∈ Hþða0Þ, and let ξ be the open

geodesic segment connecting ða to p. For q ∈ ξ let
ẽminðaÞ be defined by locally deforming ðeminðaÞ
along H−½eminðaÞ� near p such that q ∈ ẽminðaÞ. By

10Here we are using the notation from Definition 5 for the
wedge union s ⋓ t ¼ ðs00Þ ⋓ ðt00Þ of arbitrary sets s, t that are not
necessarily wedges.

11The QFC does not imply that Sgen decreases along portions
of Hðf01Þ that originate at a. Accordingly, these are added only in
the last step. Separately, we note that our construction would
establish f3 ∈ FðaÞ even if f2 did not satisfy the requirement that
Σ2 ⊃ ða; this fact will be important in the proof of Theorem 35.
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Theorem 23, Θþ½eminðaÞ; p� ≥ 0 and hence, by the QFC,
Θþ½ẽminðaÞ; q� ≥ 0 and Sgen½ẽminðaÞ� ≤ SgenðeminðaÞÞ. This
conflicts with the definition of eminðaÞ unless Θ− immedi-
ately becomes negative under this deformation. By con-
tinuity, Θ−½eminðaÞ; p� ¼ 0. The time-reversed argument
applies to p ∈ H−ða0Þ.
For p ∈ a0, we similarly deform ðeminðaÞ inward (i.e.,

towards a) at p along a past null geodesic to show that
Θ−½eminðaÞ; p� ¼ 0, and inward along a future null geo-
desic to show that Θþ½eminðaÞ; p� ¼ 0. ▪
Theorem 26: emaxðaÞ ⊂ eminðaÞ.
Proof.—Two special cases of this proof are illustrated in

Fig. 4. Since only one input wedge a is involved, we
suppress the argument of emax and emin normality of emin
and e0max (outside of emin) implies

SgenðeminÞ þ SgenðemaxÞ ≥ Sgen½ðemin ∩ ΣmaxÞ
⋓ ðemin ∩ e0maxÞ� þ Sgen½ðe0max ∩ Σ0

minÞ
⋓ ðemin ∩ e0maxÞ� ð3:6Þ

≥ Sgenðemin ∩ ΣmaxÞ þ Sgenðe0max ∩ Σ0
minÞ: ð3:7Þ

To obtain the second inequality, note that the area of the
relevant edge portions decreases or remains constant, and
the von Neumann entropy obeys strong subadditivity.
But emin ∩ Σmax satisfies the conditions demanded of h

in Property III(b), Definition 17. And e0max ∩ Σ0
min satisfies

the conditions demanded of h in Property iii, Definition 18.
The definitions imply

Sgenðemin ∩ ΣmaxÞ þ Sgenðe0max ∩ Σ0
minÞ

≥ SgenðeminÞ þ SgenðemaxÞ: ð3:8Þ

This inequality is strict and we have a contradiction unless
emin ∩ Σmax ¼ Σmax (and hence, e0max ∩ Σ0

min ¼ Σ0
min). ▪

Theorem 27 (Nesting of emin): For wedges a and b,

a ⊂ b ⇒ eminðaÞ ⊂ eminðbÞ: ð3:9Þ

Moreover, Σ0
minðaÞ can be chosen so that

Σ0
minðaÞ ⊃ Σ0

minðbÞ: ð3:10Þ

Proof.—By Theorem 23, eminðbÞ satisfies Properties i–iii
of fαðaÞ enumerated in Definition 18. By Eq. (2.10),
eminðaÞ ⊂ eminðbÞ.
Suppose now that Σ0

minðaÞ⊅Σ0
minðbÞ. Then set Σ̃ ¼

Σ0
minðaÞ and redefine

Σ0
minðaÞ≡ Σ0

minðbÞ ∪ ðHþ½eminðbÞ� ∩ J−ðΣ̃ÞÞ
∪ ðH−½eminðbÞ� ∩ JþðΣ̃ÞÞ ∪ ½Σ̃ ∩ eminðbÞ�:

ð3:11Þ

This satisfies Property iii for eminðaÞ, by arguments that
parallel those given in support of Eq. (3.5). ▪
Corollary 28: If a ⊂ b and ðeminðbÞnðeminðaÞ is

compact, then

Sgen½eminðaÞ� ≤ Sgen½eminðbÞ�: ð3:12Þ

Proof.—By the previous theorem, we can take
Σ0
minðaÞ ⊃ Σ0

minðbÞ. By compactness of ðeminðbÞnðeminðaÞ,
we may now invoke Property iii for Σ0

minðaÞ, with the choice
h ¼ eminðbÞ. ▪
Theorem 29 (No Cloning):

a ⊂ e0minðbÞ and b ⊂ e0maxðaÞ ⇒ emaxðaÞ ⊂ e0minðbÞ:
ð3:13Þ

Proof.—Let

g ¼ eminðbÞ ∩ e0maxðaÞ: ð3:14Þ

We will show that g satisfies Properties i–iii listed in
Definition 18. This contradicts the definition of eminðbÞ
unless g ¼ eminðbÞ, which is equivalent to the conclusion.
Property i: By assumption, b ⊂ e0maxðaÞ. By

Theorem 23, b ⊂ eminðbÞ. Hence b ⊂ g.

FIG. 4. Two special cases of the proof of Theorem 26, that
emax ⊂ emin. In both, we assume that emax (blue) is not contained
in emin (green) and derive a contradiction. Left: In two spacetime
dimensions, we have Sgen½emin� ≥ Sgen½ðemin ∩ ΣmaxÞ and
Sgen½emax� ≥ Sgen½ðe0max ∩ Σ0

minÞ by quantum focusing. But
Sgen½ðemin ∩ ΣmaxÞ ≥ Sgen½emax� and Sgen½ðe0max ∩ Σ0

minÞ ≥
Sgen½emin� by Properties III(b) and iii respectively. The inequalities
are strict, and hence we have a contradiction, unless emax ⊂ emin.
Right: If there exists a Cauchy slice Σ (shown in figure) such that
Σmax;Σ0

min ∈ Σ, then Properties IIIb and iii imply Sgen½emax ∩
emin� ≥ Sgen½emax� and Sgen½e0max ∩ e0min� ≥ Sgen½emin� with strict
inequalities unless emax ⊂ emin. But Sgen½emax� þ Sgen½emin� ≥
Sgen½emax ∩ emin� þ Sgen½e0max ∩ e0min� by strong subadditivity.
The general proof involves combining the techniques used for
these two special cases.
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Property ii: By Theorem 23, eminðbÞ is normal. By
assumption, eminðbÞ ∩ a ¼ ∅, so by Theorem 21, the null
geodesics connecting ðemaxðaÞ to ðg ∩ H½e0maxðaÞ� origi-
nate from points where emaxðaÞ is extremal and thus
normal. By the arguments in the proof of Lemma 4.14
of Ref. [28], g is normal.
Property iii: Let

Σ0 ¼ Σ0
minðbÞ ∪ ðHþ½eminðbÞ� ∩ J−½ΣmaxðaÞ�Þ

∪ ðH−½eminðbÞ� ∩ Jþ½ΣmaxðaÞ�Þ ∪ ½ΣmaxðaÞ ∩ eminðbÞ�:
ð3:15Þ

This is a Cauchy slice of g0. Let h ⊃ g with ðh ⊂ Σ0. By
Property iii of Σ0

minðbÞ, the QFC, and Property III of
ΣmaxðaÞ, respectively,

Sgenðh0Þ ≥ Sgen½h0 ⋓ Σ0
minðbÞ�

≥ Sgen½h0 ⋓ ðΣ0nΣmaxðaÞÞ� ≥ Sgen½Σ0�: ð3:16Þ

Strong subadditivity was used for each inequality. At least
one of these inequalities is strict whenever h ≠ g. Hence, by
Convention 9, we have SgenðhÞ > SgenðgÞ. ▪
Remark 30.—The following theorem suggests that when

eminðaÞ ¼ emaxðaÞ, the generalized entropy of the entan-
glement wedge is the von Neumann entropy of the quantum
state corresponding to the fundamental description of the
entanglement wedge.
Theorem 31 (Strong subadditivity of the generalized

entropy): Suppressing ⋓ symbols where they are obvious,
let a, b, and c be mutually spacelike wedges, such that

eminðabÞ ¼ emaxðabÞ; eminðbcÞ ¼ emaxðbcÞ;
eminðbÞ ¼ emaxðbÞ; and eminðabcÞ ¼ emaxðabcÞ:

Then (writing e for emin ¼ emax)

Sgen½eðabÞ� þ Sgen½eðbcÞ� ≥ Sgen½eðabcÞ� þ Sgen½eðbÞ�:
ð3:17Þ

Proof.—We define the wedge x by the Cauchy slice of its
complement:

Σ0ðxÞ ¼ Σ0ðabÞ ∪ ðHþ½eðabÞ� ∩ J−½ðeðbcÞ�Þ
∪ ðH−½eðabÞ� ∩ Jþ½ðeðbcÞ�Þ: ð3:18Þ

normality of eðabÞ and the QFC imply

Sgen½eðabÞ� ≥ SgenðxÞ: ð3:19Þ

Note that ðx is nowhere to the past or future of ðeðbcÞ.
Therefore, there exists a single Cauchy slice that contains
the edges of x, eðbcÞ, x ∩ eðbcÞ, and x ⋓ eðbcÞ. Strong
subadditivity of the von Neumann entropy implies

SðxÞ þ S½eðbcÞ� ≥ S½x ∩ eðbcÞ� þ S½x ⋓ eðbcÞ�: ð3:20Þ

The areas of edges obey the analogous inequality, so

SgenðxÞ þ Sgen½eðbcÞ� ≥ Sgen½x ∩ eðbcÞ� þ Sgen½x ⋓ eðbcÞ�:
ð3:21Þ

Note also that x ∩ eðbcÞ ¼ eðabÞ ∩ eðbcÞ and
x ⋓ eðbcÞ ⊂ eðabÞ ⋓ eðbcÞ. By Theorem 27,

x ⋓ eðbcÞ ⊂ eðabcÞ and x ∩ eðbcÞ ⊃ eðbÞ: ð3:22Þ

By Lemma 4.14 of Ref. [28], x ∩ eðbcÞ is normal, and
x ⋓ eðbcÞ is antinormal except at points where its edge
coincides with ððabcÞ and hence with ΣðabcÞ. Hence

Sgenðx ⋓ eðbcÞÞ ≥ Sgen½ΣðabcÞnðx0 ∩ eðbcÞ0Þ�
≥ Sgen½eðabcÞ�; ð3:23Þ

Sgenðx ∩ eðbcÞÞ ≥ Sgen½eðbÞ ⋓ ðΣ0ðbÞ ∩ x ∩ eðbcÞÞ�
≥ Sgen½eðbÞ�: ð3:24Þ

The last inequality in each line follows from Properties III
and iii of eðabcÞ and eðbÞ, respectively, as established by
Theorems 19 and 23. ▪

IV. SPECIAL CASES AND EXAMPLES

A. Time-reversal invariant case

Definition 32.—Let M be a time-reflection symmetric
spacetime. That is, M admits a Z2 symmetry generated by
an operator T that exchanges past and future. Let Σ0 be the
Cauchy slice ofM consisting of the fixed points of T. Let a
be a T-invariant wedge, i.e., a ¼ Ta, or equivalently,
ða ⊂ ΣT . We define eTðaÞ as the wedge that satisfies

a ⊂ eTðaÞ; ðeTðaÞ ⊂ ΣT and e∂a ¼ e∂eTðaÞ ð4:1Þ

and which has the smallest generalized entropy among all
such wedges [28].12

Theorem 33: With a and ΣT as above,

eTðaÞ ¼ eminðaÞ ¼ emaxðaÞ: ð4:2Þ

Proof.—We first show that eTðaÞ ∈ FðaÞ ∩ GðaÞ.
Property I and i listed in Definitions 17 and 18 are trivially
satisfied. Since eTðaÞ ¼ TeTðaÞ, eTðaÞ must be normal or
antinormal at every point p ∈ ðeTðaÞ. By arguments
analogous to the proof of Lemma 21, eTðaÞ is normal
at ða and extremal elsewhere. Hence eTðaÞ satisfies

12Note that eTðaÞ defined here is the domain of dependence of
the spatial region EðaÞ ¼ eTðaÞ ∩ ΣT defined in [28].
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Properties II and ii. Finally, it is easy to see that Σ ¼
eTðaÞ ∩ ΣT and Σ0 ¼ e0TðaÞ ∩ ΣT satisfy Properties III and
iii, respectively.
Since eTðaÞ ∈ F, we have eTðaÞ ⊂ emaxðaÞ. Similarly,

since eTðaÞ ∈ G, we have eminðaÞ ⊂ eTðaÞ. Hence
eminðaÞ ⊂ eTðaÞ ⊂ emaxðaÞ. But Theorem26 established that
emaxðaÞ ⊂ eminðaÞ. Hence all three sets must be equal. ▪

B. Asymptotic bulk regions

Definition 34.—The max- and min-entanglement
wedges of a conformal AdS boundary region have been
defined as follows13: Let M be asymptotically anti–de
Sitter, and let B be a partial Cauchy surface (a “spatial
region”) of the conformal boundary δM. Let B0 be the
complement of B on a (full) Cauchy surface of δM. Let
FðBÞ≡ ff∶I ∧ II ∧ IIIg be the set of all wedges that
satisfy the following properties:
(1) ð̃f ¼ B;
(2) f is antinormal; and
(3) f admits a Cauchy slice ΣmaxEW such that for any

wedge h ≠ f with ð̃h ¼ B and ðh ⊂ Σ, SgenðhÞ >
SgenðfÞ.

The max-entanglement wedge maxEWðBÞ is their wedge
union,

maxEWðBÞ≡ ⋓f∈FðBÞ f: ð4:3Þ

Let GðBÞ≡ fg∶i ∧ ii ∧ iiig be the set of all wedges that
satisfy the following properties:

(i) ð̃g ¼ B;
(ii) g is normal; and
(iii) g0 admits a Cauchy slice Σ0

minEW such that for any
wedge h ≠ g with ð̃h ¼ B and ðh ⊂ Σ0, SgenðhÞ >
SgenðgÞ.

Themin-entanglement wedgeminEWðBÞ is their intersection,

minEWðBÞ≡ ∩g∈GðBÞ g: ð4:4Þ

Theorem 35: Suppose that the wedge a satisfies
a ⊂ maxEWðð̃aÞ, and that emaxðaÞ is antinormal (and hence
extremal by Theorem 21).Then emaxðaÞ ¼ maxEWðð̃aÞ.
Proof.—Any wedge f ∈ Fðð̃aÞ satisfies all the properties

required of sets in FðaÞ except that ΣmaxEW need not satisfy
Property III(a). By footnote 11, this suffices to apply the
construction in the proof of Theorem 19, with Σ1 ¼
ΣmaxðaÞ and Σ2 ¼ ΣmaxEW, to establish that emaxðaÞ ⋓

f ∈ FðaÞ. This result is consistent with the definition of
emaxðaÞ only if f ⊂ emaxðaÞ. Hence maxEWðð̃aÞ⊂emaxðaÞ.
Conversely, with Σ1 ¼ ΣmaxEW and Σ2 ¼ ΣmaxðaÞ, the

same construction establishes that emaxðaÞ ∈ Fðð̃aÞ. Hence
emaxðaÞ ⊂ maxEWðð̃aÞ. ▪
Corollary 36: The requirement that emaxðaÞ is anti-

normal in Theorem 35 can be replaced by a requirement
that a is antinormal.
Proof.—If a is antinormal, it follows immediately

that emaxðaÞ is antinormal by Property II and strong
subadditivity. ▪
Theorem 37: Suppose that the wedge a satisfies

a ⊂ minEWðð̃aÞ. Then eminðaÞ ¼ minEWðð̃aÞ.
Proof.—The definitions of GðaÞ and Gðð̃aÞ are identical

except for the requirement that a ⊂ g for all g ∈ GðaÞ. But,
since we are told a ⊂ minEWðð̃aÞ, this additional condition
is already satisfied by all g ∈ minEWðð̃aÞ, and so the two
sets agree. ▪

C. Examples

We will now analyze the examples shown in Fig. 1. In
the first example, the bulk input region a is an asymptotic
region in AdS whose outer boundary is the conformal
boundary portion A, and whose inner boundary has
negligible area because it is everywhere nearly null.
(This can easily be arranged by “wiggling” the boundary
of a static region up and down in time.) One finds that
eminðaÞ ¼ EWðAÞ and emaxðaÞ ¼ a.
The second example is spherically symmetric. The bulk

input region extends into the interior of a two-sided black
hole. In this case, one finds again that emaxðaÞ ¼ a. But
eminðaÞ extends further, to the horizon of the black hole.
The edges of eminðaÞ and emaxðaÞ are null separated; they
are the boundaries of a light sheet L [47]. We do not
currently have an intuitive interpretation of this result.

V. DISCUSSION

A. Physical interpretation

The entanglement wedges emaxðaÞ and eminðaÞ obey
certain nontrivial properties. If the number of qubits that
can flow through a surface γ is given by AreaðγÞ=ð4G log 2Þ,
all the information from emaxðaÞ can flow into a, while all the
information outside eminðaÞ can flow away from a. (More
precisely, Theorems 19 and 23 establish that this quantum
capacity is sufficient to achieve one-shot state merging
respectively into and away from a.) Moreover, emin obeys
nesting (Theorem 27); emax and emin obey a no-cloning
relation (Theorem 29); and when they concide, their gener-
alized entropy obeys strong subadditivity (Theorem 31).
We now discuss the physical interpretation of emaxðaÞ

and eminðaÞ suggested by these properties. It will be
important to compare and contrast this with the conven-
tional interpretation of the entanglement wedges of a

13This covariant definition is due to Akers et al. [30]. It builds
on an earlier formulation applicable in the static case [29]. As
usual, we replace min- and max-entropies by von Neumann
entropies here even though for boundary regions B this dis-
tinction is necessary to have maxEWðBÞ ≠ minEWðBÞ.
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boundary region B, maxEWðBÞ, and minEWðBÞ, so we
begin by reviewing the latter.
The meaning of maxEWðBÞ and minEWðBÞ is quite

clear in the context of the AdS=CFT correspondence. The
CFT is a nonperturbative completion of the semiclassical
gravitational theory (or perturbative string theory) in the
bulk. When we restrict to the semiclassical regime—
technically, by specifying a code subspace in the CFT—
this becomes a duality between two equivalent descrip-
tions. Viewed as a map from the bulk to the boundary, the
duality is an isometry that implements a form of quantum
error correction. It is possible, therefore, to define restric-
tions of the duality that relate a subregionB of the boundary
to an appropriate subset of the bulk. After fixing the code
subspace, the wedge maxEWðBÞ characterizes the region
that can be fully reconstructed from B; and minEWðBÞ is
the smallest bulk region outside which no information can
be reconstructed.
This interpretation is supported by several nontrivial

properties that maxEWðBÞ and minEWðBÞ have been
shown to obey. Historically, the initial evidence was not
directly related to reconstruction, but to the related [48,49]
entropy formula, Eq. (1.2)14; if maxEWðBÞ ¼ minEWðBÞ,
then SðBÞ ¼ Sgen½EWðBÞ�. This can be verified explicitly
when SðBÞ can be computed in the CFT. Moreover, the
entanglement wedges of disjoint boundary regions obey
strong subadditivity of the generalized entropy, which
suggests that Sgen½EWðAÞ�; Sgen½EWðBÞ�; Sgen½EWðCÞ� re-
ally correspond to the ordinary von Neumann entropies of
subsystems A, B, C of a quantum mechanical system (the
CFT) [3,50].
Consistent with their information theoretic interpretation,

thewedgesmaxEWðBÞ andminEWðBÞ also obey nesting, as
well as no-cloning, which follows immediately from com-
plementarity; maxEWðB̄Þ0 ¼ minEWðBÞ ⊃ maxEWðBÞ.
These properties were in fact some of the primary early
evidence that entanglement wedges were more than just a
way of computing CFT entropies, and in fact described the
bulk dual of the boundary region B [2,3].
On the other hand, no duality analogous to AdS=CFT is

available in the general setting in which emaxðaÞ and eminðaÞ
are defined. There is no manifest, complete quantum
mechanical system such as the CFT, to whose subsystems
these entanglementwedges couldbe associated.On the “bulk
side,” emaxðaÞ and eminðaÞ admit a description in terms of
semiclassical gravity, exactly like maxEWðBÞ and
minEWðBÞ. But the analogue of the “boundary side,” a,
is now also a gravitating region, whereas B was a purely
quantum mechanical system. In particular, it is obvious that
the description of a in terms of semiclassical gravity—its

only currently known description—cannot be equivalent
by a duality to that of emaxðaÞ.
Thus, we are not yet in a position to interpret a and its

entanglement wedges in terms of a duality, i.e., as two
known, equivalent representations of the same data.
Instead, the existence and properties of emaxðaÞ and
eminðaÞ suggest that a should possess an unknown, new
structure that is purely quantum mechanical (and thus
distinct from its semiclassical description), in which all
information in emaxðaÞ, and none outside eminðaÞ, can be
represented. We will denote this unknown quantum
mechanical system by a.
Our viewpoint, then, is that the relation between a and

the entanglement wedge of a should be a new holographic
correspondence in general spacetimes whose details we
have yet to learn. Fortunately, we can already infer some
aspects of the unknown system a from the properties of
emaxðaÞ and eminðaÞ, as follows.
By its definition, information in emaxðaÞ can be trans-

mitted towards a, across any intermediate homology sur-
face between their edges, with resources set by the area of
that surface. Information outside eminðaÞ can similarly be
transmitted away from eminðaÞ. Exactly the same properties
hold for maxEWðBÞ and minEWðBÞ with respect to B,
where they reflect the fact that B encodes all information in
maxEWðBÞ and none outside minEWðBÞ. This analogy
suggests that a encodes all information in emaxðaÞ and none
outside eminðaÞ.
The purely quantum-mechanical nature of a is suggested

by Theorem 31, which states that Sgen½eðaÞ�; Sgen½eðbÞ�;
Sgen½eðcÞ� obey strong subadditivity as though they were
von Neumann entropies. This feature distinguishes a from
eðaÞ and prevents us from trivially defining the former as
the latter. For a to possess a von Neumann entropy, it must
be manifestly a quantum mechanical subalgebra; thus it
cannot be defined as a spacetime region in semiclassical
gravity.
The nesting of emin, Theorem 27, suggests that a should

be constructed from resources that can be associated to a,
even if they transcend the semiclassical description of a. If
eminðaÞ is the smallest region outside which nothing can be
reconstructed from a, then its growth as a is increased can
only be explained by such a relation.
The failure of emax to obey nesting (which has no analog

for maxEW) suggests that one of the resources that
determine a is the amount of entanglement between a
and emaxðaÞ ∩ a0. In fact, the example of Hawking radiation
after the Page time suggests that the additional information
that distinguishes a from a can somehow be made to appear
precisely in those physical degrees of freedom in a that are
entangled with emaxðaÞ ∩ a0 in the semiclassical descrip-
tion. (In most other examples, these would be dominated by
short-wavelength degrees of freedom near the boundary of
a, most of them near the Planck scale; and it is not clear
how the information can be caused to appear there. We will

14In fact, subregions in a relativistic field theory have a type-III
von Neumann algebra, in which an entropy is not defined. We
may sidestep this subtlety here by putting the CFT on a lattice
with fine enough spacing.

RAPHAEL BOUSSO and GEOFF PENINGTON PHYS. REV. D 108, 046007 (2023)

046007-10



return to this question when we discuss summoning,
below.)
The failure of emax to obey nesting also implies that the

interior of a in itself is not simply related to the resources
determining a. To see this, consider a wedge a that is a
proper subset of emaxðaÞ. Then a can be enlarged by
deforming its edge infinitesimally into emaxðaÞ and wig-
gling the corresponding portion so that the area decreases
significantly. This will decrease the entanglement resource
and hence can decrease emax, even though it will have
increased the interior of a.
Finally, and perhaps most importantly, the no-cloning

Theorem 29 suggests that an observer with access to a can
somehow summon information from the spacelike related
region emaxðaÞ ∩ a0. The cloning of a quantum state is
definitely inconsistent only if it can actually be verified by
an observer. If a and b were merely formal representations
of the quantum information in their entanglement wedges,
then there would be no observable paradox if those wedges
failed to be disjoint. The fact that the theorem forbids an
overlap suggests that a and b can in principle be opera-
tionally accessed by a single observer (or a pair of
observers who can subsequently meet), without completely
destroying the entire spacetime. If summoning is possible,
then the theorem has an essential role; it prevents the
simultaneous summoning of information in the overlap of
emaxðaÞ ∩ eminðbÞ to two distant observers with access
respectively to a and to b, who could otherwise later verify
that they have cloned an unknown quantum state.

B. Summoning of spacelike related information

The properties of emax and emin have led us to the
conjecture that a bulk observer in a can summon spacelike-
related information from emaxðaÞ ∩ a0. This is a radical and
novel proposition. Moreover, if information can be sum-
moned, then presumably this action can be reversed,
perhaps after applying a local operator to the quantum
information while it is controlled by the bulk observer in a.
In this manner, any simple operator in emaxðaÞ ∩ a0 can be
enacted from a. Thus, information can be manipulated at
spacelike separation from a.
We do not know by what protocol a bulk observer might

accomplish the summoning task. But spacelike information
transfer is obviously inconsistent with locality. Thus,
summoning must involve a breakdown of the semiclassical
description of an appropriate portion of the bulk—perhaps
emaxðaÞ ∩ a0—so that locality cannot be invoked against
the process.
To gain further intuition, let us retreat for a moment to

more familiar ground of entanglement wedges of AdS
boundary regions and of external quantum systems. We
will see that the semiclassical bulk description does break
down in AdS=CFT, when a CFT observer instantaneously

summons information from deep in the bulk. But first,
consider Hawking radiation extracted from a gravitating
spacetime M and stored in an external bath R.
After the Page time, EWðRÞ contains an island I inside

the black hole. Assuming unitarity, we know that the
information that in the semiclassical description appears
to be in the island is actually encoded in the quantum
system R. At most, “summoning” information from the
island (for example, the state of the star that collapsed and
formed the black hole) only requires decoding the infor-
mation in R into an easily accessible form.
If the same radiation resides instead in an asymptotic

region a ⊂ M, then eðaÞ ⊂ I. We do not expect any
significant difference to the previous case; the information
in I can be decoded from the radiation in a. Although
gravity is present in a, it is irrelevant, as this task involves
only low-energy quantum field theory degrees of freedom
contained within a. The extent to which information must
be summoned is limited to the decoding task, and decoding
is a completely semiclassical process within a itself.
When the Petz recovery map is implemented through a

gravitational path integral [21], the act of decoding the
radiation appears to “move” information from the island
into a or R through a semiclassical Euclidean wormhole
created by the process. But from the Lorentzian point of
view, this process is still acausal, so the semiclassical
description ofM as a whole breaks down in any case. With
the above interpretation, it breaks down because of decod-
ing; otherwise, it breaks down earlier, at the Page time,
when information seemingly in I first begins to be available
for decoding in R or a.
For decoding the Hawking radiation in a, we have seen

that it is sufficient to regard a as the quantum algebra
generated by operators acting on low-energy quantum fields
in a. Next wewould like discuss summoningmore generally.
As a relatively simple example, consider the task of instanta-
neously summoning information from deep inside AdS into
an asymptotic region a, say the exterior of a large sphere. In
this case, involving only low-energy semiclassical quantum
fields ina appears to be insufficient. To understand this, let us
begin by reviewing a related but better understood problem:
how a boundary (or CFT) observer can summon information
from deep inside the bulk.
Consider a CFT in the state jΨ1i at t ¼ 0, corresponding

to a spacetime M that is nearly empty AdS, with only one
qubit in the unknown state jϕi at its center. Let a ⊂ M be
the spatial exterior of a large sphere in the Wheeler-de Witt
patch of the boundary time t ¼ 0 (see Fig. 5).
According to the AdS=CFT duality, the state jψi is a

logical qubit encoded in the boundary CFT. Therefore, a
“CFT observer” with full access to the CFT operator
algebra (or indeed, with access to somewhat more than
half of the boundary) could implement a unitary operator at
t ¼ 0 that distills jψi into a localized CFT excitation,
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jΨ2i ¼ UCFTjΨ1i: ð5:1Þ

We can arrange for this new state jΨ2i to have the property
that its bulk dual is nearly empty AdS with a particle in the
state jϕi just outside the large sphere ða.
The CFT evolution we have just described obviously has

no bulk dual consistent with semiclassical gravity. A
particle cannot move in a spacelike way. Moreover, it is
not clear at what bulk time this jump should be thought of
as taking place. We can only say that in the causal past of
the boundary time t ¼ 0, the bulk has a particle in the
center; and in the causal future of the same boundary slice,
the bulk has a particle in the asymptotic region a. But the
Wheeler-de Witt patch of the slice t ¼ 0 has no semi-
classical bulk interpretation; see Fig. 5.
Arguably, the process is somewhat less violent; UCFT

destroys a large portion of the Wheeler-de Witt patch, but it
need not destroy all of it. Let λ be small length scale on the
boundary, such that the entanglement wedge of a boundary
region of size λ is much more shallow than a. Putting the
CFT on a λ-spaced lattice should not alter our discussion,
which suggests that UCFT need not involve any such short
wavelength modes. If we arrange for the particle to appear
at the inner boundary of a, then locality does not forbid,
and the above argument suggests, that the bulk evolution
remains semiclassical in the asymptotic region a through-
out the process, preserving its geometric description.
This allows us to view the above process as a blueprint

for summoning information from emaxðaÞ ∩ a0 into a. From
the bulk point of view, the operator UCFT has retrieved
spacelike-related information from deep in the bulk, and
placed it at the edge of the asymptotic region a. The process
preserves the semiclassical description of a but not of
emaxðaÞ ∩ a0 (which in this simple example is simply a0).
The existence of the boundary operator UCFT does not

tell us how an asymptotic observer in a would accomplish

the same task on their own initiative. But it may be possible.
The full CFT algebra is generated by local CFT operators
(modulo details about gauge constraints). By the extrapo-
late dictionary, a local CFT operator is dual to a quasilocal
bulk operator near the asymptotic boundary. Hence, UCFT
should be contained in the algebra a generated by quasi-
local bulk operators in a. To be clear: these quasilocal bulk
operators do not in general act only on light bulk quantum
fields; generically the bulk dual of a heavy CFT operator
will create a black hole. However, that black hole will still
be localized near the asymptotic boundary, and hence the
bulk operator is still contained in the algebra a.
In fact, an argument by Marolf [51] suggests thatUCFT is

contained in an algebra generated by only light bulk QFT
operators in a along with the ADM Hamiltonian H. Any
simple bulk operator at t ¼ 0 can be rewritten as an integral
over bulk operators ΦðtÞ near the asymptotic boundary at
times t ∈ ½−π=2; π=2� [52]. In a quantum theory, we must
therefore have ΦðtÞ ¼ expðiHtÞΦð0Þ expð−iHtÞ.
It follows that any simple operator in a0 is contained in

the quantum algebra generated by H along with light bulk
quantum fields in a. It is crucial here that this the full
algebra in nonperturbative quantum gravity; in the classical
limit the time evolution of asymptotic boundary operators
is in general not analytic and hence is not determined by
local data at the boundary [53]. Of course, in principle, the
ADM Hamiltonian H can be determined solely by meas-
uring the metric in a with sufficient precision. However,
that precision scales as OðGÞ in the semiclassical limit.
This means that the semiclassical graviton field hμν ¼
ffiffiffiffi
G

p
δgμν does not know about Oð1Þ fluctuations in energy;

the ADM Hamiltonian is not a semiclassical bulk QFT
operator. In contrast to the situation with Hawking radiation
above, the algebra a needs to contain more than just
semiclassical bulk QFT operators if it is to encode the
entanglement wedge eðaÞ. Any bulk observer who wants to
summon information from deep in the bulk needs access
to nonsemiclassical—presumably Planckian—degrees of
freedom.15

C. Independence of semiclassical bulk regions

Seemingly independent regions in semiclassical gravity
may in fact be the same fundamental degrees of freedom, in
different guises. A classic example is the black hole interior
and the Hawking radiation. Arguably, these are comple-
mentary descriptions of the same quantum system, i.e.,
different ways of representing the same quantum informa-
tion [54]. But given two bulk regions in an arbitrary
semiclassical spacetime, no general method was known
to determine whether they are truly independent, or partly
or wholly complementary.

FIG. 5. Left: In the spacetime dual to the CFT state jΨ1i, a qubit
is located near the center of the bulk. Middle: In the spacetime
dual to the CFT state jΨ2i, the same qubit is located at the edge of
the asymptotic region a (yellow diamond) around the time t ¼ 0.
Right: Consider the CFT in the state jΨ1i for t < 0 and jΨ2i for
t > 0; this is implemented by acting with UCFT at t ¼ 0. This
boundary state admits no semiclassical bulk dual in the black
patch, spacelike to a. Our results suggest that an asymptotic bulk
observer in a may be able to trigger this process.

15An independent argument to this effect based on tensor
network toy models was given in [28].
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In AdS=CFT, the fundamental degrees of freedom are
known. At the fundamental level, independence reduces to
the trivial condition that two boundary regions A and B are
disjoint. This is equivalent to the condition that EWðAÞ and
EWðBÞ are disjoint. It leads to a reasonable conjecture for a
sufficient condition for the independence of gravitating
regions in AdS: two bulk regions a, b are independent
if there exist disjoint boundary regions A, B such that
a ⊂ EWðAÞ and b ⊂ EWðBÞ.
Bulk entanglement wedges allow us generalize this to a

necessary and sufficient criterion in arbitrary spacetimes:
two bulk regions a, b are independent if and only if
a ⊂ eðbÞ0 and b ⊂ eðaÞ0.
So far, we have neglected the difference between max-

and min-entanglement wedges. This leads to a subtlety
already in AdS=CFT, where minEWðBÞ and minEWðB̄Þ
can overlap despite B and B̄ being manifestly indepen-
dent. Based merely on the characterization of minEWðBÞ
as the smallest region about whose exterior B has no
information, this overlap makes it hard to rule out the
possibility of cloning. Additional structure in the map
from bulk to boundary must prevent that. On the other
hand, if maxEWðBÞ and maxEWðB̄Þ overlapped there
would definitively be a cloning paradox: information that
passed through both maxEWðBÞ and maxEWðB̄Þ would
necessarily be reconstructible on both B and B̄. The true
condition that maxEWðBÞ cannot overlap with minEWðB̄Þ
(and vice versa) is therefore both somewhat stronger than
the minimal condition necessary for the theory to avoid a
provable cloning paradox, but weaker than needed to
prove (from the bulk alone) that no such paradox exists.
To understand why this particular condition is true (but
not anything stronger), we have to remember that B and B̄

are not merely independent subsystems, but in fact
complementary subsystems. As a result, all information
not encoded in B must be encoded in B̄ and vice versa;
consequently, we always have minEWðB̄Þ ¼ maxEWðBÞ0.
A similar ambiguity exists regarding the condition for

two bulk wedges a, b to be independent. It is reasonable to
expect that a and b should be totally independent—
and hence any cloning of information in both a and b
should be definitively paradoxical—only if a ⊂ eminðbÞ0
and b ⊂ eminðaÞ0. As above, however, the provable result is
somewhat stronger than the minimal condition necessary to
avoid a definitive paradox. Instead, we find that our no-
cloning condition holds whenever either a ⊂ eminðbÞ and
b ⊂ emaxðaÞ, or a ⊂ emaxðbÞ and b ⊂ eminðaÞ. Unlike in the
discussion of overlaps of boundary entanglement wedges,
we do not know a deeper principle—analogous to B and B̄
being complementary subsystems—that picks out this
particular condition.
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