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In this paper, infrared regularization of semi-infinite entangling regions and island formation for regions
of finite size in the eternal Schwarzschild black hole are considered. We analyze whether the
complementarity property and pure state condition of entanglement entropy can be preserved in the
given approximation. We propose a special regularization that satisfies these two properties. With regard to
entangling regions of finite size, we derive two fundamental types of them, which we call “mirror-
symmetric” (MS) and “asymmetric” (AS). For MS regions, we discover a discontinuous evolution of the
entanglement entropy of Hawking radiation due to finite lifetime of the island. The entanglement entropy of
matter for semi-infinite regions in two-sided Schwarzschild black hole does not follow the Page curve. The
lifetime of AS regions is bounded from above due to the phenomenon that we call “Cauchy surface
breaking.” Shortly before this breaking, the island configuration becomes nonsymmetric. For both types of
finite regions, there is a critical size, below which the island never dominates. For regions smaller than
some other critical size, the island does not emerge. Finally, we show that the island prescription does not
help to solve the information paradox for certain finite regions.
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I. INTRODUCTION

Hawking radiation is a phenomenon which opens up the
window into the world of quantum effects emerging in
gravity [1,2]. Years ago, Page showed [3,4] that a detailed
comparison of the thermodynamic entropy of black holes
and the entanglement entropy of their radiation results in
the observation that the latter exhibits an unlimited growth
and finally exceeds the Bekenstein-Hawking entropy. This
is in contradiction with the expected time dependence of
the entanglement entropy visualized by the Page curve,
which should start decreasing after a certain point, called
the Page time. The descending part of the Page curve is
difficult to interpret in a straightforward way, and recently
an “island proposal” was introduced to explain the stoppage

of the entanglement entropy growth [5–7]. This proposal is
applicable to systems with dynamical gravitational degrees
of freedom. The conjecture of modifying entanglement
entropy in the presence of dynamical gravity has attracted
a lot of attention in recent years [8–76]. Entanglement islands
have been studied in the setups of two-dimensional gravity
[5,12,14,15,24,25,29,35,55], boundary conformal field
theory (CFT) [13,19,43,49,60,62–64,67,70,76], and moving
mirror models [8–11,33,37,38,45,52,69].
In this paper, we study the properties of entanglement

entropy and islands in four-dimensional Schwarzschild black
hole following the s-wave approximation, proposed in
Ref. [5] and used in the context of higher-dimensional black
holes in Ref. [18]. This approximation, having been applied
to the fields defined on the background of a higher-
dimensional Schwarzschild black hole, effectively reduces
theproblem toa two-dimensional one.Themodel [18] explains
how the entanglement entropy, associated with semi-infinite
regions “collecting” Hawking radiation, saturates after taking
into account the contribution of the entanglement island in
the outer near-horizon zone of two-sided Schwarzschild
black hole. Avariety of papers exploiting the s-wave approxi-
mation in different contexts have been published recently
[22,30,31,35,36,41,44,46,48,51,53,55,56,61,65,66,68,71–73].
We generalize the results of Ref. [18] by considering

Hawking quanta collected in entangling regions of finite
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extent. This problem reveals curious features of entangle-
ment entropy in two-sided Schwarzschild black holes.
One of the motivations for studying finite regions in
asymptotically flat black holes is to simulate a black hole
in the spacetime with a positive cosmological constant
(Schwarzschild–de Sitter black hole), in which, due to the
presence of a cosmological horizon, only a spatial region of
finite size is available to the observer.
It is well known [77,78] that the entanglement entropy

of a pure state is exactly zero, and if this state is bipartite,
then the entropies of each partition are equal. In the
following, we call these properties pure state condition
and complementarity, respectively. The latter is com-
monly used in the calculations of the entanglement entropy
for semi-infinite regions [18,22,28,41,74]. In Sec. III, we
explicitly check whether these two properties hold for two-
sided Schwarzschild spacetime in such a setup, i.e.,

Sðpure stateÞ ¼ 0; ð1Þ

SðRÞ ¼ SðR̄Þ: ð2Þ

We derive a special regularization prescription that allows
one to preserve complementarity and the pure state con-
dition in explicit calculations in two-sided Schwarzschild
black holes up to a universal constant term.
In Sec. IV,we study the time evolution of the entanglement

entropy of Hawking radiation for two fundamental types of
finite entangling regions, including their island phase.
In Sec. V, we discuss the information paradox in the

context of finite entangling regions.
A brief overview of the setup is given in Sec. II.

Section VI contains a short summary and future prospects.
Some technical details have been moved to the Appendix
for the purpose of readability.

II. SETUP

A. Geometry

We start with the metric of the four-dimensional
Schwarzschild black hole:

ds2 ¼ −fðrÞdt2 þ dr2

fðrÞ þ r2dΩ2
2; fðrÞ ¼ 1 −

rh
r
; ð3Þ

where rh denotes the black hole horizon and dΩ2
2 is the

angular part of the metric. Introducing Kruskal coordinates,
which for the right wedge take the form

U ¼ −
1

κh
e−κhðt−r�ðrÞÞ; V ¼ 1

κh
eκhðtþr�ðrÞÞ; ð4Þ

with the tortoise coordinate r�ðrÞ ¼ rþ rh ln ½ðr − rhÞ=rh�
and the surface gravity κh ¼ 1=2rh, we can rewrite the
metric in the form

ds2 ¼ −e2ρðrÞdUdV þ r2dΩ2; ð5Þ

with the conformal factor e2ρðrÞ given by

e2ρðrÞ ¼ e−2κhr

2κhr
: ð6Þ

In what follows, we need a formula for the radial distance
dðx; yÞ for the spherically symmetric two-dimensional part
of the metric. If we consider Eq. (5) as a Weyl-transformed
version of the metric ds2 ¼ −dUdV (neglecting the angu-
lar part) with the Weyl factor e2ρðrÞ, the square of the
distance dðx; yÞ can be derived as

d2ðx; yÞ ¼ eρðxÞeρðyÞ½UðxÞ − UðyÞ�½VðyÞ − VðxÞ�; ð7Þ

where bold letters denote pairs of radial and time coor-
dinates, e.g., x ¼ ðx; txÞ. In terms of (t, r) coordinates, the
distance reads

d2ðx; yÞ ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fðxÞfðyÞp
κ2h

½cosh κhðr�ðxÞ − r�ðyÞÞ

− cosh κhðtx − tyÞ�: ð8Þ
We use the following notation for spacetime points in the

right and left wedges of the Penrose diagram, respectively:

xþ ¼ ðxþ; txþÞ; x− ¼
�
x−; tx− þ

iπ
κh

�
:

Note that the imaginary part of the time coordinate of x−
implies that this point is in the left wedge.
By the infrared limit of the point x, we mean that x tends

to spacelike infinity i0 in the corresponding wedge along an
arbitrary spacelike curve: tx ¼ txðxÞ.

B. Entanglement entropy

Generally speaking, the calculation of entanglement
entropy in a higher-dimensional curved spacetime is an
extremely challenging problem. An important suggestion
made in Ref. [18] was to consider the s-wave approximation.
The fact that a static observer at spatial infinity collects
predominantly lower multipoles, while the higher ones
backscatter in the Schwarzschild black hole potential,
reduces the initially complicated setup to a simpler two-
dimensional problem of calculating the entanglement
entropy of conformal matter. In this case, the following
expression of the entanglement entropy for N ≥ 1 separate
intervals is used:

Sm ¼ c
3

X
i;j

ln
dðxi; yjÞ

ε
−
c
3

XN
i<j

ln
dðxi;xjÞ

ε

−
c
3

X
i<j

ln
dðyi; yjÞ

ε
; ð9Þ

D. S. AGEEV et al. PHYS. REV. D 108, 046005 (2023)

046005-2



where the distance dðxi; yjÞ is given by Eq. (8), xi and yi
denote left and right end points of the corresponding
intervals, and ε is a UV cutoff.
A few remarks are in order. First, one can implicitly

assume that this formula describes the entanglement
entropy of c free massless Dirac fermions. For flat
spacetime, this formula for Dirac fermions was obtained
in Ref. [79]. Taking into account the transformation
properties of entanglement entropy under Weyl transfor-
mations [6], one can assume the validity of Eq. (9) for the
curved background (5) at fixed values of angular coor-
dinates. The entanglement entropy of free massless Dirac
fermions in a curved background has been considered in the
context of the island proposal [15,53,80] and for inhomo-
geneous noninteracting Fermi gases [81].
Second, there are two versions of the theory of free Dirac

fermions, which differ in whether the fermion number is
Z2-gauged or not. As it was shown in Ref. [82], if the
number of fermions is not gauged, then there is no modular
invariance in the theory, and vice versa.1 At the same time,
the derivation of the formula (9) in flat spacetime [79] is
based on ungauged theory. Modular transformations are
“large” diffeomorphisms, and the absence of modular
invariance could be an obstacle in obtaining the formula (9)
for free Dirac fermions in a curved background. However,
there are two special cases. For one interval, N ¼ 1, the
formula (9) coincides with the entanglement entropy of any
two-dimensional CFT. For N ¼ 2 intervals, the entangle-
ment entropy in the modular invariant theory of a two-
dimensional free compact boson at the self-dual radius
coincides with the entanglement entropy (9) of free Dirac
fermions [83]. These facts give an independent support to
the formula (9) for N ¼ 1 and N ¼ 2 intervals.

C. Generalized entropy functional

Recently, it was shown that the expected behavior of the
Page curve emerges from the island proposal [5,7,15,84].
Considering the Hartle-Hawking vacuum [85], the reduced
density matrix of Hawking radiation collected in R is
defined by tracing out the states in the complement region
R̄, which includes the black hole interior. The island
mechanism prescribes that the states in some regions
I ⊂ R̄, called entanglement islands, are to be excluded
from tracing out.
The island contribution can be taken into account via the

generalized entropy functional defined as [14,15]

Sgen½I; R� ¼
Areað∂IÞ
4GN

þ SmðR ∪ IÞ: ð10Þ

Here, ∂I denotes the boundary of the entanglement island,
GN is Newton’s constant, and Sm is the entanglement

entropy of conformal matter. One should extremize this
functional over all possible island configurations

Sextgen½I; R� ¼ ext
∂I
fSgen½I; R�g ð11Þ

and then choose the minimal one:

SðRÞ ¼ min
∂I

fSextgen½I; R�g: ð12Þ

III. INFRARED REGULARIZATION OF
ENTANGLEMENT ENTROPY

In this section, we consider different partitions of Cauchy
surfaces in Schwarzschild spacetime and propose a regulari-
zation of spacelike infinities, which allows one to preserve
complementarity and the pure state condition of entanglement
entropy within the framework of the formula (9).
The issue can be seen from the following reasoning.

Previous papers (see, for example, Refs. [18,22,28,41,74])
have extensively used for the calculation of the entropy
for finite complements of semi-infinite entangling regions.
In particular, the entanglement entropy for the semi-infinite
region R∞ ≡ R− ∪ Rþ ¼ ði0;b−� ∪ ½bþ; i0Þ, where the
Hawking radiation is collected, is actually calculated in
Ref. [18] using the complementarity property

SmðR∞Þ ¼ SmðR̄∞Þ; ð13Þ

with the complement R̄∞ ¼ ½b−;bþ� (see Fig. 1). The
calculation of SmðR̄∞Þ leads to [18]

SmðR̄∞Þ ¼
c
6
ln

�
4fðbÞ
κ2hε

2
cosh2 κhtb

�
: ð14Þ

In the limit when the boundaries of the entangling regions
are sent to spacelike infinities i0 along the same time slices
(i.e., b → ∞ at fixed tb), this formula reduces to

lim
b→∞

SmðR̄∞Þ ¼
c
3
ln

2

κhε
þ c
3
ln cosh κhtb: ð15Þ

This is not what was expected, since in this limit of the
vanishingly small regionR∞, entangled particles of radiation
are not collected, and the entanglement entropy (14) should
have been equal to zero. However, the result grows linearly at
late times. This raises a question on whether it is possible to
introduce a prescription, which allows one to calculate the
entropy for semi-infinite entangling regions directly.

A. Warm-up: Complementarity and pure state
condition in CFT in flat background

Let us consider a finite interval R ¼ ½−l=2;l=2� on the
plane R2 with coordinates ðτ; xÞ at a constant time τ ¼ 0.
It is well known [86,87] that the entanglement entropy for
the subsystem R is1We thank an anonymous referee for pointing out to this issue.
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SmðRÞ ¼
c
3
ln

l
ε
: ð16Þ

Suppose that we are given a pure state on the entire line
τ ¼ 0, which is a hypersurface R1. Pure state condition (1)
requires SmðR1Þ ¼ 0. Sending l → ∞, we obtain R1, so
we should have had liml→∞ SmðRÞ → 0. However, the
entropy as given by Eq. (16) obviously diverges as ln l
when l → ∞. This simply means that Eq. (16) does not
hold for large l. In this regard, one has to specify the size of
the system, say, L, and then send l to L.
A possible way to deal with a system of a finite size L is

to consider a cylinder with circumference L (see Fig. 2). In
this case, the entanglement entropy for an interval of length
l is given by

SmðRÞ ¼
c
3
ln

�
L
πε

sin
πl
L

�
: ð17Þ

In the limit L → ∞ with l kept fixed, the entanglement
entropy (16) for an interval on the plane R2 is reproduced.
Because of the symmetry l → L − l of the expression
(17), the complementarity holds automatically. Moreover,
when we lengthen the interval R such that the whole system

is considered, i.e., l → L (in fact, l → L − ε for the system
on a lattice), the entanglement entropy (17) becomes

SmðRÞ ¼
c
3
lim
ε→0

ln

�
L
πε

sin

�
πðL − εÞ

L

��
¼ 0:

These simple considerations show that, by introducing a
suitable regularization we can preserve the purity state con-
dition and complementary property in this approximation.
An analogous closure of hypersurfaces of constant time,

such that they obtain S1 topology, is impossible in eternal
Schwarzschild black holes without violating the causal
structure of this spacetime, since the left and right wedges
are causally disconnected. However, we can refer to other
properties of Schwarzschild spacetime. Note that there are
conformal factors in the formula for entanglement entropy in
a curved background; see Eqs. (9) and (7). In Schwarzschild
geometry, these conformal factors inKruskal coordinates are
given by Eq. (6) and tend to zero at r → ∞. In addition to the
fact that there are two spacelike infinities i0 in this spacetime,
one can, in principle, argue that it is possible to obtain a finite
distance between spacelike infinities in the left and right
wedges after mutual cancellation of IR divergences without
imposing periodic boundary conditions. In what follows, we
will show that we can explicitly preserve complementarity
and the pure state condition of entanglement entropy with its
approximate expression for multiple intervals in eternal
Schwarzschild black holes with one (two) end points(s)
going to spacelike infinity i0 in a special way, rather than cut
off semi-infinite intervals.

B. Infrared regularization of Cauchy surfaces

Let us introduce an IR regularization of a Cauchy surface
Σ which extends between spacelike infinities in the left and
right wedges of Schwarzschild (see the Penrose diagram in
Fig. 3). Since the Hartle-Hawking state given on Σ is pure,
we should have SmðΣÞ ¼ 0 for the entanglement entropy.
To regularize Σ, we take a finite spacelike interval Σreg ⊂ Σ
such that Σreg ¼ ½q−;qþ� with the following coordinates of
the IR regulators q�:

qþ ¼ ðqþ; tqþðqþÞÞ; q− ¼
�
q−; tq−ðq−Þ þ

iπ
κh

�
:

Then, the entanglement entropy of conformal matter on
the regularized Cauchy surface Σreg is given by

SmðΣregÞ ¼
c
3
ln

dðq−;qþÞ
ε

¼ c
6
ln

�
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fðqþÞfðq−Þ

p
κ2hε

2

× ðcosh κhðr�ðqþÞ − r�ðq−ÞÞ

þ cosh κhðtqþðqþÞ − tq−ðq−ÞÞÞ
�
; ð18Þ

FIG. 1. Penrose diagram for the eternal Schwarzschild black
hole with the schematic plots of the entangling region R∞ ≡
R− ∪ Rþ (orange lines) and its complement R̄∞ ≡ ½b−;bþ�
(dashed dark red line).

FIG. 2. The interval ½−l=2;l=2� (blue) and its complement
(magenta) on the line τ ¼ 0 of the cylinder R1 × S1 with
circumference L.
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which is, in general, divergent in the IR limit q� → ∞.
However, this limit exists along the curves C of the
following type:

C∶
κhðr�ðqþÞ − r�ðq−ÞÞ ¼ c1 þ αðqþ; q−Þ;
κhðtqþðqþÞ − tq−ðq−ÞÞ ¼ c2 þ βðqþ; q−Þ;

ð19Þ

where c1 and c2 are arbitrary constants fixed for a particular
curve and

lim
q�→∞

αðqþ; q−Þ ¼ 0; lim
q�→∞

βðqþ; q−Þ ¼ 0:

Taking into account that fðq�Þ → 1 as q� → ∞, the IR
limit of Eq. (18) along some curve C (19) is given by

SmðΣÞ ¼ lim
q�→∞
q�∈C

SmðΣregÞ ¼
c
3
ln

2

κhε
þ Fðc1; c2Þ; ð20Þ

where

Fðc1; c2Þ≡ c
6
ln

�
cosh c1 þ cosh c2

2

�
≥ 0: ð21Þ

Since this function is non-negative, the entanglement
entropy can take any positive value by varying the con-
stants c1 and c2. For the same reason, we cannot get rid of
the first term on the rhs of Eq. (20) by an appropriate choice
of the constants c1 and c2. The best we can get is to let
c1 ¼ c2 ¼ 0, which according to Eq. (19) leads to

lim
q�→∞
q�∈C

ðqþ − q−Þ ¼ 0; lim
q�→∞
q�∈C

ðtqþðqþÞ − tq−ðq−ÞÞ ¼ 0:

This means that the IR limit is taken to be asympto-
tically radially symmetric, and the regulators, as they go to

spacelike infinity, asymptotically approach the same time
slice. For this case, the entropy of the Hartle-Hawking state
defined on Σ is given by

SmðΣÞjc1¼c2¼0 ¼
c
3
ln

2

κhε
: ð22Þ

Since the entropy of a pure state should be zero, we claim
that this anomalous term is to be subtracted from final
answers.
At first sight, it might seem surprising that the result in

the IR limit (22) depends on the UV cutoff ε. In fact, this is
to be expected, since ε is the only dimensional constant, in
addition to rh, to make the whole answer dimensionless.
The reasons why we get the entanglement entropy for

infinite intervals that is not infrared divergent are the special
behavior of the Weyl factor (6) at infinity and the mutual
asymptotic cancellation of the regulators. The presence of
two regulators of the same sign, which cancel each other in
final results, is the hallmark of two-sidedness and higher
dimensionality2 of the eternal Schwarzschild black hole
geometry and cannot be seen as a general method of
regularization of infinities during the calculation of entan-
glement entropy for infinite regions.

C. Infrared regularization of semi-infinite complement
of finite entangling regions

A Cauchy surface can be divided into any number of
finite entangling regions. A single finite region can lie
entirely in one wedge or be extended over two. Regardless,
the complement R̄ includes two semi-infinite intervals in
each wedge, which stretch to the corresponding spacelike
infinities i0. Our goal is to represent the complement as the
IR limit of some finite regions (see Fig. 4). One can
consider this procedure as a regularization of spacelike
infinities. In this way, the end points are defined as

yþ ¼ ðy; tyÞ; bþ ¼ ðb; tbÞ; b− ¼
�
b; tb þ

iπ
κh

�
;

qþ ¼ ðqþ; tqþðqþÞÞ; q− ¼
�
q−; tq−ðq−Þ þ

iπ
κh

�
:

Now we want to check explicitly the complementarity
property SðRÞ ¼ SðR̄Þ for the region R and its complement
R̄. In gravitational theories, both SðRÞ and SðR̄Þ are

FIG. 3. Penrose diagram for the eternal Schwarzschild black
hole with the regularized Cauchy surface Σreg ≡ ½q−;qþ�. Arrows
highlight that the regulators tend to spacelike infinities, q� → i0.

2In fact, there are two different static patches ðt; rÞ in two-sided
Schwarzschild—in the left and right wedges, respectively. Space-
like infinities r → ∞ are positive due to the positiveness of
the radial coordinate r ≥ 0, which can be introduced for space-
times of higher dimensionality. For example, this is not applicable
for two-dimensional Minkowski spacetime, in which spatial
coordinate x ∈ ð−∞;∞Þ. Therefore, there are two spacelike
infinities of different signs: x → �∞. This leads to the IR-
divergent entanglement entropy for the Cauchy surface: S ∝ ln L
as L → ∞.
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determined by the island formula (12), which contains the
“area term” and the matter contribution Sm. If the island I is
the same for both R and R̄, to verify SðRÞ ¼ SðR̄Þ it suffices
to compare the entanglement entropies of matter only:
SmðR ∪ IÞ ¼ SmðR ∪ IÞ. Indeed, in this case, the island
formulas for the region R and the complement R̄ yield the
same, because the same expression is extremized in
Eq. (12). Therefore, further in this section, we consider
only the entanglement entropy of matter Sm.
The entanglement entropy for the region R ¼ ½b�; yþ�

reads

SmðRÞ ¼
c
3
ln

dðb�; yþÞ
ε

: ð23Þ

We compare this with the entanglement entropy for the
regularized complement R̄reg ¼ ½q−;b�� ∪ ½yþ;qþ�:

SmðR̄regÞ ¼
c
3
ln

dðb�; yþÞ
ε

þ c
3
ln

dðq−;qþÞ
ε

þ c
3
ln

�
dðyþ;qþÞdðb�;q−Þ
dðyþ;q−Þdðb�;qþÞ

�
: ð24Þ

The third term on the rhs tends to zero in the IR limit taken
along any spacelike curve. This is because the distance to
the regulator qþ in the numerator has a counterpart in the
denominator, and both have similar asymptotic behavior.
The same holds for the distances to the regulator q−.
Because of the generically divergent distance between the
regulators encountered in the second term on the rhs, the IR
limit of this expression exists only along the curves given
by C (19) and yields

lim
q�→∞
q�∈C

SmðR̄regÞ ¼ SmðRÞ þ
c
3
ln

2

κhε
þ Fðc1; c2Þ: ð25Þ

This result does not depend on the wedge (left, right, or
both) in which the finite entangling region is located. The
last two terms of this expression are exactly the same as we
get when regularizing a Cauchy surface (20).
It is straightforward to extend this calculation to the case

when R consists of N disjoint intervals: R ¼ ½a1; a2� ∪
� � � ∪ ½a2N−1; a2N �. In this case, the entanglement entropy
for the regularized complement is given by

SmðR̄regÞ ¼ SmðRÞ þ
c
3
ln

dðq−;qþÞ
ε

þ c
3
ln

�
dða1;q−Þ…dða2N;qþÞ
dða1;qþÞ…dða2N;q−Þ

�
: ð26Þ

The third term on the rhs, which makes the only difference
with the case of a single interval, is vanishingly small in the
IR limit along spacelike curves. Along the curves C (19),
the whole expression becomes the same as Eq. (25).

D. Infrared regularization consistent with
complementarity and pure state condition

Let us sum up the results. We have established that, in
direct calculations, complementarity and the pure state
condition are not complied due to the anomalous term (22)
and the function Fðc1; c2Þ (21), which depends on arbitrary
parameters c1 and c2.
Note that the violation of the pure state condition and

complementarity may be related to our approach to IR
regularization, the shortcomings of which we discussed for
the flat case in Sec. III A. However, due to the features of
the analytically extended Schwarzschild geometry, we
obtained a violation up to a constant, and not up to an
IR divergent term, as in flat spacetime.
The IR limit of the entropy is well defined along the

special class of curves C (19) and for any choice of the
constants c1 and c2. SinceFðc1;c2Þ≥ 0, we let c1 ¼ c2 ¼ 0,
for which Fð0; 0Þ ¼ 0, to get rid of this contribution. This
means that the regulators are to be sent to infinity
asymptotically radially symmetric, and, as they approach
i0, they asymptotically fall on the same time slice.
Then we prescribe that we should subtract the anoma-

lous term (22). In the end, we obtain the entanglement
entropy for semi-infinite regions consistent with comple-
mentarity and the pure state condition.

IV. ENTROPY DYNAMICS FOR FINITE
ENTANGLING REGIONS

In this section, we study the dynamics of finite entangling
regions affected by the presence of entanglement islands.
In the original setup [18], which describes semi-infinite

entangling regionR∞ ¼ ði0;b−� ∪ ½bþi0Þ, the entanglement

FIG. 4. Penrose diagram for the eternal Schwarzschild black
hole with the regularized finite interval configuration: the finite
interval ½b−; yþ� (dark red) and its regularized complement
½q−;b−� ∪ ½yþ;qþ� (light red). Arrows mean that the regulators
tend to spacelike infinities, q� → i0.
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entropy (14) enters anunbounded linear growth regimeat late
times tb ≫ rh:

SmðR∞Þ ≃
c
3
κhtb: ð27Þ

This can be interpreted as a version of the information
paradox. It was shown there that taking into account the
contribution of the entanglement island leads to saturation of
the entanglement entropy SðR∞Þ. At late times, the island is
symmetric, and its end points are located in different wedges
near the black hole horizon (see Fig. 5). The entanglement
entropy in the leading-order expansion in cGN=r2h reads

SðR∞Þj late
times

≃
2πr2h
GN

þ c
6
ln

fðbÞ
κ4hε

4
þ c
6
ð2κhr�ðbÞ − 1Þ; ð28Þ

which is constant in time. We emphasize that this result of
Ref. [18] fully relies on the complementarity property.

A. Geometry and dynamics of Cauchy surfaces

1. Up-down notation

We introduce two indices for spacetime points, “up”
and “down,” meaning their location with respect to the
horizontal line t ¼ 0, which stretches between spacelike
infinities in the left and right wedges. This notation will
prove convenient below. In the following, we use the points

bup
þ ¼ ðb; tbÞ; bup

− ¼
�
b;−tb þ

iπ
κh

�
;

qup
þ ¼ ðq; tbÞ; qup=down

− ¼
�
q;∓tb þ

iπ
κh

�
: ð29Þ

Note that points bþ and b− have the same radial coor-
dinates. Real parts of their time coordinates are opposite in
sign; such a choice makes the problem time dependent

[12,18]. Also, without loss of generality, we take qup=down
�

radially symmetric.

2. Dynamics of Cauchy surfaces

Given N > 2 points on the Penrose diagram, we can
stretch a hypersurface to all of them as well as to the
corresponding spacelike infinities i0. Here, we develop a
recipe for how to select these points so that the resulting
hypersurface is a Cauchy one.
Let us divide all the points of the regularized Cauchy

surface into the inner ones, whose radial coordinates are
fixed and finite, and IR regulators q�. The latter are the end
points of the regularized finite hypersurface, which are to
be sent to i0.
In the following, we discuss the evolution of finite

regions of the type R ¼ ½qup=down
− ;bup

− � ∪ ½bup
þ ;qup

þ � (the
intermediate points qup

þ and qup=down
− , whose radial coor-

dinates are fixed, should not be confused with the IR
regulators q�). Such a choice of the region end points is
motivated by the following reason. Moving the intermedi-
ate points along their Killing vectors ∂þt in the right wedge
and ∂

−
t in the left is an isometry of the Schwarzschild

spacetime. Thus, we would not get any nontrivial dynamics
out of their flow. On the contrary, if we explicitly impose
the relations (29), we would get the points in the right
wedge moving along their Killing vectors, while in the
left edge, those points with t < 0 would move upward to
t → −∞ and with t > 0 downward to t → þ∞. This choice
is not a symmetry of the problem; therefore, it would
generate a nontrivial dynamics of the entropy [12,88].
Having said this, we should emphasize that, in the

context of finite size regions, the choice of the points
(29) has a nontrivial consequence which we call the
“Cauchy surface breaking.” This phenomenon takes place
when some points get separated during time evolution by a
timelike interval (see Fig. 6) due to different directions of
their movement on the diagram. When the Cauchy surface
breaks, the problem of studying the evolution of entangle-
ment entropy becomes ill defined, so we should keep track
of this phenomenon.
Thus, the recipe of picking a Cauchy surface is as

follows.
(a) Since a Cauchy surface is a spacelike hypersurface, all

its tangents should be spacelike. For our setup, this
means that if some of the inner points of a hypersur-
face in the left wedge lie on different sides with respect
to the line t ¼ 0, they will eventually become timelike
separated. We should either avoid such hypersurfaces
or consider their dynamics only for a finite time until
the Cauchy surface breaks.

(b) Regulators q� are chosen according to the IR regu-
larization described in Sec. III D.

Regarding the finite regions R, the Cauchy surface
breaking implies the following.

FIG. 5. Penrose diagram for the eternal Schwarzschild black
hole with the schematic plots of semi-infinite entangling region
R∞ ≡ R− ∪ Rþ (orange lines), the entanglement island I ≡
½a−; aþ� (magenta line), and their complement R− ∪ Rþ ∪ I ≡
½b−; a−� ∪ ½aþ;bþ� (dashed dark red line).
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(c) If the outermost inner point in the left wedge is qup
− ,

then the sign of its time coordinate is opposite to that
of the IR regulator q−. This fact can naively cause the
Cauchy surface breaking. However, by sending the
regulator to i0, we effectively make the Cauchy surface
breaking time infinite.

(d) If the outermost inner point in the left wedge is qdown
− ,

then inevitably the corresponding Cauchy surface
breaks, since the distance squared between qdown

−
and bup

− gets negative at some point (see Sec. IV C 1).
If the conditions (a)–(c) are met, then we get a Cauchy

surface, on which complementarity and the pure state
condition are respected. If, instead of (c), option (d) takes
place, we obtain a hypersurface which gets timelike at some
time moment, and, therefore, the entanglement entropy of
Hawking radiation is well defined only for a finite time.

B. Mirror-symmetric finite entangling region

Let us consider the union of two finite intervals located
in the right and left wedges, whose outer boundaries are
mirror symmetric3 (see Fig. 7):

RMS ≡ ½qup
− ;bup

− � ∪ ½bup
þ ;qup

þ �:

We call such a configuration the mirror-symmetric (MS)
finite entangling region.
The region RMS has a straightforward interpretation.

With respect to a static observer, one can imagine each part
of RMS as a domain between two concentric spheres with

radii b and q > b. Outgoing Hawking modes pass through
this domain in a finite time and then escape to infinity.
The entanglement entropy of Hawking radiation col-

lected in the MS region is given by [see Eq. (A1)]

SmðRMSÞ ¼
c
6
ln

�
16fðbÞfðqÞ

κ4hε
4

�
þ c
3
ln cosh2 κhtb

þ c
3
ln

�
cosh κhðr�ðqÞ− r�ðbÞÞ− 1

cosh κhðr�ðqÞ− r�ðbÞÞþ cosh 2κhtb

�
:

ð30Þ

If the region is large enough, i.e., q ≫ b, then at
intermediate times

1 ≪ cosh 2κhtb ≪ cosh κhðr�ðqÞ − r�ðbÞÞ

the entanglement entropy of the radiation increases mono-
tonically as

SmðRMSÞj inter
times

≃
2c
3
κhtb; ð31Þ

which is twice as fast as for the semi-infinite region (27). This
behavior arises due to the fact that the distance between the
points q− and qþ is now time dependent, since they lie on
different time slices. Also, provided that tb ¼ tq, this time
dependence is exactly the same as that of the distance
between b− and bþ, which doubles the coefficient.
At late times

cosh 2κhtb ≫ cosh κhðr�ðqÞ − r�ðbÞÞ;

the entropy saturates at the value [see Eq. (A3)]

FIG. 6. Penrose diagram for the eternal Schwarzschild black
hole with a regularized Cauchy surface. During time evolution
(from the light red curve to the dark red one), two adjacent
intermediate points in the left wedge become timelike separated,
which breaks the Cauchy surface (dashes).

FIG. 7. Penrose diagram for the eternal Schwarzschild
black hole with a mirror-symmetric entangling region RMS ≡
½qup

− ;bup
− � ∪ ½bup

þ ;qup
þ �. Arrows indicate the direction of flow of

points during time evolution.

3By mirror symmetry, we mean the reflection about the vertical
axis of symmetry of the Penrose diagram.
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SmðRMSÞj late
times

≃
c
6
ln

�
16fðbÞfðqÞ

κ4hε
4

�

þ c
3
ln ½cosh κhðr�ðqÞ− r�ðbÞÞ− 1�: ð32Þ

This can be interpreted as follows. As soon as the “first”4

particle of the black hole radiation reaches r ¼ b, the
entropy starts to increase, because more particles enter
the domain between the spheres with radii b and q. As this
particle reaches r ¼ q, the incoming and outgoing fluxes
compensate each other and the entropy saturates.
The comparison of the entropies SmðR∞Þ (27) and

SmðRMSÞ (30) is demonstrated in Fig. 8.

1. Islands of finite lifetime

Let us consider an arbitrary island configuration I ¼
½p−; aþ�, whose end points are parametrized as (see Fig. 9)

aþ ¼ ða; taÞ; p− ¼
�
p;−tp þ

iπ
κh

�
:

The full expression for Sgen½I; RMS� is given in the
Appendix, formula (A6). Since it is symmetric under
permutations of the island coordinates, a ↔ p, ta ↔ tp,
the extremization equations for a and p, as well as for ta
and tp, are the same. This fact tells us that we should
consider a mirror-symmetric ansatz for the island:

a ¼ p; ta ¼ tp:

For intermediate times

cosh κhðr�ðbÞ − r�ðaÞÞ ≪ cosh κhðta þ tbÞ
≪ cosh κhðr�ðqÞ − r�ðaÞÞ; ð33Þ

there is an analytical solution to the extremization equations

ta ¼ tb; 0 < a − rh ≪ rh:

Using this, an approximate analytical expression for the
entanglement entropy is given by [see Eq. (A17) for details]

Sextgen½I; RMS�j inter
times

≃ SðR∞Þj late
times

þ c
3
ln cosh κhtb

−
c
3
exp ½2κhtb − κhðr�ðqÞ − r�ðbÞÞ�

þ c
6
ln

4fðqÞ
κ2hε

2
: ð34Þ

The first term on the rhs is the entropy for the semi-infinite
region (28) studied in Ref. [18]. Other terms represent finite
size effects. Interestingly, the third term, being vanishingly
small in the large-q limit, affects the dynamics, although its
influence is suppressed at intermediate times. The fourth
term gives the anomalous term (22) in the limit q → ∞.
The growth of Sextgen½I; RMS� is approximately linear and is

the same as of the entropy SmðR∞Þ (14), unlike SmðRMSÞ
(31). The comparison with numerical results is shown
in Fig. 10.
At early times

cosh κhðta � tbÞ ≪ cosh κhðr�ðbÞ − r�ðaÞÞ;

FIG. 9. Penrose diagram for the eternal Schwarzschild black
hole with a finite mirror-symmetric entangling region RMS ≡
½qup

− ;bup
− � ∪ ½bup

þ ;qup
þ � (orange) and the island I ¼ ½p−; aþ� (ma-

genta). Arrows indicate the direction of flow of points during time
evolution.
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FIG. 8. Entropy evolution of MS finite region RMS with q ¼ 50
(dark magenta line) and q ¼ 100 (sky blue line) and of the semi-
infinite region R∞ (blue dashed line). For all cases, we take
b ¼ 5, rh ¼ 1, c ¼ 3, and ε ¼ 1. The monotonic growth of
SmðRMSÞ is twice as fast compared to SmðR∞Þ.

4Since the eternal black hole radiates permanently, by the first
particle of radiation we mean the referent one emitted at t ¼ 0.
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there is no real solution to the extremization problem for
a > rh; see Eq. (A11).
At late times

cosh κhðta þ tbÞ ≫ cosh κhðr�ðqÞ − r�ðaÞÞ;
cosh 2κhtb ≫ cosh κhðr�ðqÞ − r�ðbÞÞ;

along with ta ≈ tb, the generalized entropy functional
Sgen½I; RMS� grows monotonically with time ta (A13);
hence, there is no solution either.
We conclude that the island exists only for a finite time,

determined by the inequalities (33) (see Fig. 10). Starting

from relatively small values of q, the island never domi-
nates (see Fig. 11). Reducing the size of the finite region—
by increasing b or decreasing q—leads to a decrease in the
lifetime of the island (see Fig. 12). For sufficiently large b
or small q, the island does not appear at all; i.e., there is a
region size threshold at which the island ceases to exist.
There is also a discontinuity in the entropy at the moment

when the island disappears; see Fig. 10. In Sec. V, we will
show that this behavior causes the entanglement entropy to
exceed the Bekenstein-Hawking entropy.
Numerical analysis reveals several additional features.

From Figs. 10 and 11, we note that the entropy for the
configuration without islands reaches saturation at the
moment that approximately coincides with the disappear-
ance of the island. Also, the parameters of the island
configuration a and ta for RMS coincide with that for R∞,
up to a short period of time before the disappearance of the
island (see Fig. 13). The island gets smaller but remains
mirror symmetric throughout the entire lifetime.

C. Asymmetric finite entangling region

1. Cauchy surface breaking

Now let us consider the following union of two intervals,
which we call the asymmetric (AS) finite entangling region
(see Fig. 14):

RAS ≡ ½qdown
− ;bup

− � ∪ ½bup
þ ;qup

þ �:

Its name comes from the fact that this region is not in any
sense symmetrical in the Penrose diagram.
In this setup, there is an upper bound on time tb (see

Sec. IVA): During time evolution, the point qdown
− moves

in time along the flow of the Killing vector ∂
−
t , while

the point bup
− moves in the opposite direction, such that

the interval between them eventually becomes timelike

20 40 60 80 100 120
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80

100

120

FIG. 11. Entanglement entropy evolution of the region RMS
with q ¼ 150 (dark magenta line) and the generalized entangle-
ment entropy functional Sextgen½I; RMS� (sky blue line). We take the
parameters as b ¼ 5, rh ¼ 1, c ¼ 3, GN ¼ 0.1, and ε ¼ 1.
During the entire lifetime, the island does not dominate.
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120
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FIG. 12. Time evolution of the generalized entanglement
entropy Sextgen½I; RMS� for different b and q. The parameters are
fixed as rh ¼ 1, c ¼ 3, GN ¼ 0.1, and ε ¼ 1. A decrease in q
leads to a faster disappearance of the island. An increase in b
leads to its later appearance.

50 100 150 200 250

50

100

150

FIG. 10. Entanglement entropy evolution of the finite entan-
gling region RMS with q ¼ 350 (dark magenta and sky blue lines)
and of the semi-infinite region R∞ (blue and cyan lines). For both
cases, we take b ¼ 5, rh ¼ 1, c ¼ 3, GN ¼ 0.1, and ε ¼ 1. The
dominating (minimum) contribution is marked with solid lines.
Nondominating configurations are marked with dashed lines. The
moments of the emergence and disappearance of the islands are
marked with black dashed lines. After the disappearance of the
island for the region RMS (sky blue line), there is an instantaneous
transition to the entropy for the configuration without island (dark
magenta line).
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(see Fig. 14). Indeed, consider the distance squared
between qdown

− and bup
− :

d2ðqdown
− ;bup

− Þ ∝ cosh κhðr�ðqÞ − r�ðbÞÞ − cosh 2κhtb:

This expression gets negative at the moment

tbreakðb; qÞ ¼
r�ðqÞ − r�ðbÞ

2
: ð35Þ

Hence, for tb > tbreak, the problem becomes ill defined,
since there is no longer a Cauchy surface (i.e., a spacelike
hypersurface) to define a pure quantum state. A larger size
of the finite region RAS leads to a larger tbreak. In the limit
q → ∞, this time also gets infinite: tbreak → ∞, and the
Cauchy surface breaking never happens.
For intermediate times rh ≪ tb ≪ tbreak, the entangle-

ment entropy for RAS grows linearly [refer to Eq. (A18) for
the full expression]:

SmðRASÞ ≃
c
3
κhtb: ð36Þ

Figure 15 shows that the entanglement entropy for RAS
almost coincides with that for the semi-infinite region R∞,
without strong dependence on q. Just before the breaking
time tbreak, the entropy abruptly decreases and hits the
singularity, after which it is not well defined.

2. Nonsymmetric islands

Let us consider the island ansatz I ¼ ½p−; aþ� for the
AS entangling region (see Fig. 16). For relatively early
times, i.e.,

cosh κhðtp þ tbÞ ≪ cosh κhðr�ðqÞ − r�ðpÞÞ;
cosh κhðta − tbÞ ≪ cosh κhðr�ðqÞ − r�ðaÞÞ;

FIG. 14. Penrose diagram for the eternal Schwarzschild black
hole with a finite asymmetric entangling region RAS ≡ ½qdown

− ;
bup
− � ∪ ½bup

þ ;qup
þ �. Arrows indicate the direction of flow of points

during time evolution.
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FIG. 15. Entropy evolution for the finite entangling region RAS
with q ¼ 50 (dark magenta line) and q ¼ 100 (sky blue line)
and for the semi-infinite one R∞ (blue line). For all cases, we take
b ¼ 5, rh ¼ 1, c ¼ 3, and ε ¼ 1. The entropy forRAS has the same
slope as that for R∞ but gets singular at tbreak (35) (dotted lines).
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FIG. 13. Top: evolution of the island radial coordinate a
corresponding to the finite size entangling region RMS (orange)
with q ¼ 150 and to the semi-infinite region R∞ (blue). Bottom:
evolution of the island time coordinate ta for the same regions.
Parameters are fixed as b ¼ 5, rh ¼ 1, c ¼ 3, GN ¼ 0.1, and
ε ¼ 1. Just before the island for the region RMS disappears, its
coordinates start to deviate from the coordinates of the island
for R∞.
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all the terms in the formula for the generalized entropy
functional Sgen½I; RAS�, that are nonsymmetric with respect
to permutations of the island coordinates a ↔ p, ta ↔ tp,
get suppressed [see Eq. (A20)]. Hence, for early times, it is
reasonable to take amirror-symmetric ansatz: a ≃ p, ta ≃ tp.
Then, for intermediate times

cosh κhðr�ðaÞ − r�ðbÞÞ ≪ cosh κhðta þ tbÞ
≪ cosh κhðr�ðqÞ − r�ðbÞÞ; ð37Þ

the extremization gives the same solution as in Ref. [18]:

ta ¼ tb; 0 < a − rh ≪ rh:

The approximate analytical expression for the generalized
entropy is given by Eq. (A26):

Sextgen½I; RAS�j inter
times

≃ SðR∞Þj late
times

−
c
3
exp ½2κhtb − κhðr�ðqÞ

− r�ðbÞÞ� þ
c
6
ln

4fðqÞ
κ2hε

2
: ð38Þ

The limit q → ∞ at fixed tb of this expression recovers the
semi-infinite case (28), except for the anomalous term (22),
which is to be subtracted.
At late times

cosh κhðtp þ tbÞ ≫ cosh κhðr�ðqÞ − r�ðpÞÞ;
cosh κhðta − tbÞ ≫ cosh κhðr�ðqÞ − r�ðaÞÞ;

the contribution of nonsymmetric terms in Sgen½I; RAS�
becomes significant, which leads to the fact that the solution

to the extremization equations becomes nonsymmetric.
This logic is verified by numerical calculations; see Fig. 17.
Numerical results provide us with more details. For large

finite entangling regions r�ðqÞ ≫ r�ðbÞ (see Fig. 18), the

FIG. 16. Penrose diagram for the eternal Schwarzschild black
hole with a finite asymmetric entangling region RAS ≡ ½qdown

− ;
bup
− � ∪ ½bup

þ ;qup
þ � (orange) and the island I ¼ ½p−; aþ� (magenta).

Arrows indicate the direction of flow of points during time
evolution.
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FIG. 17. Top: evolution of the island radial coordinates a (blue)
and p (orange) corresponding to the finite size entangling region
RAS with b ¼ 5 and q ¼ 150. Bottom: evolution of the island
time coordinates ta (blue) and tp (orange) corresponding to the
same region. Parameters are fixed as rh ¼ 1, c ¼ 3, GN ¼ 0.1,
and ε ¼ 1. Near the breaking time tbreak (35), there are spatial
a ≠ p and time ta ≠ tp asymmetries.
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FIG. 18. Entanglement entropy evolution of the region RAS
with b ¼ 5 and q ¼ 350 (dark magenta line) and of the same
region with the island (sky blue line). The parameters are taken as
rh ¼ 1, c ¼ 3, GN ¼ 0.1, and ε ¼ 1. Note the abrupt decrease
near tbreak (35), which is caused by the subsequent Cauchy
surface breaking.

D. S. AGEEV et al. PHYS. REV. D 108, 046005 (2023)

046005-12



dynamics of the entropy is qualitatively the same as for R∞,
except that SðRASÞ slightly decreases just before the
Cauchy surface breaking. For smaller regions, the island
contribution is never dominant (see Fig. 19).
The Cauchy surface breaking, which bounds the

lifetime of the configuration containing the AS finite
region, constrains the lifetime of the island as well. It is
not the case for sufficiently large regions, such that
cosh κhðr�ðaÞ − r�ðbÞÞ ≪ cosh κhtbreak, because in this
case there is no solution under the condition (37).
However, for smaller regions, the appearance of the island
may not occur before tbreak.
The lifetime of the island shortens as the size of the

entangling region RAS gets smaller (as q decreases or b
increases; see Fig. 20).

V. INFORMATION LOSS PARADOX FOR FINITE
ENTANGLING REGIONS

A Cauchy surface Σ in the eternal Schwarzschild black
holemight be divided into the semi-infinite entangling region
R∞, the region associated with the black hole BH, and the
domain in between. If the latter is negligible, we have

Σ ¼ BH ∪ R∞: ð39Þ
Given that the state is pure, the entanglement entropy

obeys the complementarity property

SðR∞Þ ¼ SðBHÞ: ð40Þ
The fine-grained entropy SðBHÞ is to be bounded from

above by the coarse-grained entropy SthermoðBHÞ:
SðBHÞ ≤ SthermoðBHÞ: ð41Þ

The latter is twice the Bekenstein-Hawking entropy [12,18]:

SthermoðBHÞ ¼ 2SB-H ¼ 2πr2h
GN

: ð42Þ

As a result, the upper bound on the entanglement entropy of
Hawking radiation is expected to be [25]

SðR∞Þ ≤ 2SB-H: ð43Þ

In fact, this limit is violated due to the unstoppable growth of
the entanglement entropy. This might be seen as a version of
the information loss paradox [12,18].
The evolution of the entropy changes in the presence of

entanglement islands. When the island starts to dominate,
the entanglement entropy is given by Eq. (28) and consists
of two terms, one of which is the Bekenstein-Hawking
entropy, while the other denotes additional corrections:

SðR∞Þj late
times

≃ 2SB-H þ Scorr: ð44Þ

These corrections are time independent and small com-
pared to the area term SB-H under the “black hole classi-
cality” condition [18]

r2h
GN

≫ c: ð45Þ

We say that the information paradox in two-sided
Schwarzschild black holes does not arise if either the
bound (43) is respected or violated only by terms sup-
pressed under Eq. (45). Formally,

SðR∞Þ ≤ 2SB-H þ Scorr;
Scorr
SB-H

≪ 1: ð46Þ

We can also divide a Cauchy surface into the region
associated with the black hole BH, a finite entangling
region R, a finite domain in between, and an adjacent semi-
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FIG. 19. Entanglement entropy evolution of the region RAS
with b ¼ 5 and q ¼ 150 (dark magenta line) and of the same
region with the island (sky blue line). The parameters are taken as
rh ¼ 1, c ¼ 3, GN ¼ 0.1, and ε ¼ 1. The extremization pro-
cedure never leads us to the entropy with an island over that for
the configuration without an island.
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FIG. 20. Time evolution of the generalized entanglement
entropy Sextgen½I; RAS� for different b and q. Parameters are fixed
as rh ¼ 1, c ¼ 3, GN ¼ 0.1, and ε ¼ 1. The lifetime of the island
configuration increases due to the change in the time of the
Cauchy surface breaking tbreak, as well as due to the dependence
of the time of the island appearance on b.
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infinite region C, which extends to spacelike infinities i0

(see Fig. 21):

Σ ¼ BH ∪ R ∪ C: ð47Þ
The strong subadditivity of entanglement entropy [78]

for a tripartition like Eq. (47) gives the inequality

SðBH ∪ R ∪ CÞ þ SðRÞ ≤ SðBH ∪ RÞ þ SðR ∪ CÞ: ð48Þ
Then, using the complementarity property

SðBHÞ ¼ SðR ∪ CÞ;
SðRÞ ¼ SðBH ∪ CÞ;
SðCÞ ¼ SðBH ∪ RÞ; ð49Þ

and the pure state condition for the total state, SðΣÞ ¼ 0, we
derive the upper bound on the entanglement entropy for a
finite region R (the strong bound):

SðRÞ ≤ 2SB-H þ SðCÞ: ð50Þ

We interpret its violation as the information paradox for
finite entangling regions. The island prescription leads to
softening of this constraint (the soft bound):

SðRÞ ≤ 2SB-H þ SðCÞ þ Scorr: ð51Þ

A. MS finite entangling region

1. Do islands for CMS influence the bound?

As CMS we referred to a semi-infinite outer entangling
region, which is adjacent to RMS. It can be defined as the
limit of the following finite entangling region:

CMS ¼ lim
w→∞

½wdown
− ;qup

− � ∪ ½qup
þ ;wup

þ �:

The points wdown
− and wup

þ are IR regulators. Essentially, it is
the same region as considered in Ref. [18]. Hence, we
already know the features of its dynamics: The entropy for
CMS grows at early times [see Eq. (14)]:

SðCMSÞjearly
times

¼ c
6
ln

�
4fðqÞ cosh2 κhtq

κ2hε
2

�
; ð52Þ

while, at late times, it saturates due to the formation of the
island IC for this region [see Eq. (28)]:

SðCMSÞj late
times

≃
2πr2h
GN

þ c
6
ln

fðqÞ
κ4hε

4
þ c
6
ð2κhr�ðqÞ − 1Þ: ð53Þ

Since the end points qup
� are adjacent for RMS and CMS,

their shifts influence oppositely the formation of the islands
I for RMS and IC for CMS. Indeed, there are the island
solutions, when the following conditions are satisfied:

RMS∶ cosh κhðr�ðbÞ − r�ðaRÞÞ ≪ cosh κhðtRa þ tbÞ
≪ cosh κhðr�ðqÞ − r�ðaRÞÞ;

CMS∶ cosh κhðtCa þ tbÞ ≫ cosh κhðr�ðqÞ − r�ðaCÞÞ
> cosh κhðr�ðqÞ − r�ðbÞÞ:

We see that these conditions cannot hold together because
aR ≃ aC; therefore, the corresponding islands I and IC do
not exist simultaneously.
Actually, even when the island IC is formed, the bound

on the entropy for RMS, imposed by SðCMSÞj late
times

, cannot be
violated, because SðCMSÞj late

times
(53) and SmðRMSÞj late

times
(32)

have the same dependence on q and, thus, never intersect.
What we are left with to check is whether the strong bound,
related to CMS without the island IC, holds:

FIG. 21. Top: Penrose diagram for the eternal Schwarzschild
black hole with semi-infinite entangling region R∞ partitioned
into finite MS subregion RMS ≡ RMS

− ∪ RMSþ (orange) and its
adjacent semi-infinite region CMS ≡ CMS

− ∪ CMSþ (blue). Bottom:
the same diagram with semi-infinite entangling region R∞
partitioned into finite AS subregion RAS ≡ RAS

− ∪ RASþ (orange)
and its adjacent semi-infinite region CAS ≡ CAS

− ∪ CASþ (blue).
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SðRMSÞ≤
?
Sbound ¼

2πr2h
GN

þ c
6
ln

�
4fðqÞ cosh2 κhtq

κ2hε
2

�
:

ð54Þ

2. Without islands for RMS

Since the entropy of matter for MS region (31) grows
twice as fast as that for the semi-infinite region R∞, and the
strong bound (54) is imposed by the semi-infinite region
of the same type as R∞, the bound might be eventually
violated. However, the entropy saturates at some finite
value (see Sec. IV B), while the bound would keep growing
linearly. Therefore, if the bound is violated, then only for a
finite time (see dark magenta curve in Fig. 22).

3. Island dominating for finite time

When the island I dominates, Sextgen½I; RMS� is larger than
the strong bound by Scorr, which does not change signifi-
cantly if we vary q. Indeed, their difference Scorr is

Scorr ¼ Sextgen½I; RMS� − Sbound

≃
c
6
ln

fðbÞ
κ4hε

4
þ c
3
κhr�ðbÞ −

c
6

−
c
3
exp ½2κhtb − κhðr�ðqÞ − r�ðbÞÞ�; ð55Þ

with a strongly suppressed dependence on tb and q.
After the disappearance of the island, there is a discon-

tinuous transition to the constant entropy (32). Its value
depends on q and is significantly larger than the strong
bound (see Fig. 22), because, during the island domination,

the matter entropy SmðRMSÞ grows twice as fast (31) as the
bound. After that, the difference decreases. The larger
the value of q is, the longer the constraint is violated. Thus,
we say that the island prescription for RMS does not solve
the information paradox completely.

4. Never dominant island

For relatively small sizes of the region RMS, the entropy
of matter always dominates (see Sec. IV B) and does not
exceed the entropy with an island:

SðRMSÞ ¼ SmðRMSÞ < Sextgen½I; RMS� ¼ Sbound þ Scorr; ð56Þ
hence, the soft bound is not violated.

B. AS finite entangling region

The semi-infinite adjacent region for AS region turns out
to be neither of MS type nor AS. It can be defined as the
following limit:

CAS ¼ lim
w→∞

½wdown
− ;qdown

− � ∪ ½qup
þ ;wup

þ �:

The entropy of matter for this region is [see Eq. (A27)]

SmðCASÞ ¼
c
6
ln

4fðqÞ
κ2hε

2
; ð57Þ

which is time independent, because all points of CAS lie
on the same time slice. This entropy is of the order of
c ≪ r2h=GN, and, hence, it is subdominant compared to
SB-H. This means that there is no information paradox for
the region CAS even without islands.
As for the region RAS, the strong bound (50) is explicitly

given by

SðRASÞ≤
?
Sbound ¼

2πr2h
GN

þ c
6
ln

4fðqÞ
κ2hε

2
: ð58Þ

We want to check whether this inequality holds.

1. Without islands

If we do not take into account the islands for RAS, the
entanglement entropy for RAS has the largest possible value
just before the Cauchy surface breaking. For large enough
q, the entropy exceeds the strong bound (see the dark
magenta curve in Fig. 23). However, there is some critical
value qcrit, such that for q < qcrit the Cauchy surface breaks
before the strong bound is violated, and, hence, the
information paradox does not arise.

2. Island dominating for finite time

The island contribution to the generalized entropy
SðRASÞ starts to dominate for large enough q. It exceeds
the strong bound (50) (see Fig. 23), but the soft bound is
still satisfied:

100 120 140 160 180 200 220 240

100

120
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160

180

200

FIG. 22. The early-time evolution of the matter entropy
SmðRMSÞ (dark magenta line), the entropy for the configuration
with the island Sextgen½I; RMS� (sky blue line), and the strong bound
(54) (dotted blue line) for a finite size entangling region RMS with
b ¼ 5 and q ¼ 350. We take rh ¼ 1, c ¼ 3,GN ¼ 0.1, and ε ¼ 1.
After the disappearance of the island, there is a discontinuous
transition to the entropy of matter SmðRMSÞ that is larger than the
upper bound during some finite time of violation tv. As q
increases, the maximum difference between SmðRMSÞ and the
strong bound increases, while Scorr does not change significantly.
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SðRASÞ ≤ Sbound þ Scorr; ð59Þ

where Scorr ¼ Sextgen½I; RAS� − Sbound is given by the same
expression as in the MS case (55) and is proportional
to c ≪ r2h=GN.

3. Never dominant island

If the island configuration never dominates, then the
entropy ofmatter is always less than the generalized entropy:

SðRASÞ ¼ SmðRASÞ < Sextgen½I; RAS� ¼ Sbound þ Scorr: ð60Þ

Therefore, the soft bound (51) is obeyed.

VI. CONCLUSIONS AND FUTURE
PROSPECTS

In this paper, we address the properties of the entangle-
ment entropy of Hawking radiation on the background of
the eternal Schwarzschild black hole in the context of
entangling regions of finite size. This can be seen as a
starting point for studying the entropy in spacetimes with
finite observable domains. Among them are de Sitter (dS)
and Schwarzschild–de Sitter (SdS) universes, where a
physical observer is bounded within the cosmological
horizon. Therefore, only finite entangling regions are of
physical significance in these spacetimes, and a generali-
zation of the results of this paper on dS and SdS cases is
needed.
We have elaborated on the infrared regularization of

spacelike infinities of Cauchy surfaces and semi-infinite
regions in two-sided Schwarzschild black holes. Our
procedure allows to preserve complementarity and the

pure state condition within the approximation (9) and in
the prescription of subtracting the anomalous term (22).
We have established two qualitatively different types of

finite entangling regions—mirror-symmetric and asymmet-
ric. The first type represents finite domains between
concentric spheres. The slope of the early-time evolution
of the entanglement entropy of conformal matter for such
regions is twice as large as for the canonical semi-infinite
setup. For late times, the entropy saturates at a constant
value even without entanglement islands. Island configu-
rations exist only for finite time for such regions.
The outer end points of AS regions are chosen spatially

symmetric and lie on the same time slice. The corres-
ponding Cauchy surfaces have a finite lifetime depending
on the size of the entangling regions. In this case, the
entropy grows linearly. At the time when the Cauchy
surface breaks, the entanglement entropy hits singularity.
Just before this moment, the island configuration becomes
nonsymmetric. Also, islands for the regions of both types
might never dominate in the generalized entropy functional
if their size is relatively small.
We have derived constraints from above on the entan-

glement entropy for finite entangling regions coming
from strong subadditivity and complementarity. The upper
bounds depend on the size of the region and on the location
of its end points. For the AS type, the paradox is solved by
entanglement islands. However, the entanglement entropy
for MS regions might violate the upper bound even in the
island prescription.
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APPENDIX: EXPLICIT FORMULAS
FOR ENTANGLEMENT ENTROPY

FOR FINITE ENTANGLING REGIONS

1. MS entangling region without island

With use of the formula for the entropy collected in
multiple intervals (9) and the formula for distances (8),
along with the definition of up and down points (29), the
entanglement entropy for the mirror-symmetric finite
entangling region takes the form

50 100 150

20

40

60

80

FIG. 23. Time evolution of the entropy SmðRASÞ (dark magenta
line), the generalized entropy Sextgen½I; RAS� (sky blue line), and the
strong bound (58) (dotted blue line) for the finite size entangling
region RMS with b ¼ 5 and q ¼ 350. The parameters are rh ¼ 1,
c ¼ 3, GN ¼ 0.1, and ε ¼ 1. Introduction of the island helps
to keep the entropy close to the bound within the level of
corrections Scorr.
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SðRMSÞ ¼
c
3
ln

�
dðbup

þ ;bup
− Þdðqup

− ;bup
− Þ

ε2

�

þ c
3
ln

�
dðbup

þ ;qup
þ Þdðqup

− ;qup
þ Þ

ε2

�

−
c
3
ln

�
dðbup

− ;qup
þ Þdðqup

− ;bup
þ Þ

ε2

�

¼ c
6
ln

�
16fðbÞfðqÞ

κ4hε
4

cosh4κhtb

�

þ c
3
ln

�
cosh κhðr�ðqÞ − r�ðbÞÞ − 1

cosh κhðr�ðqÞ − r�ðbÞÞ þ cosh 2κhtb

�
:

ðA1Þ

At late times, such that

cosh 2κhtb ≫ cosh κhðr�ðqÞ − r�ðbÞÞ; ðA2Þ

the expression simplifies to

SðRMSÞj late
times

≃
c
6
ln

�
16fðbÞfðqÞ

κ4hε
4

�

þ c
3
ln ½cosh κhðr�ðqÞ − r�ðbÞÞ − 1�: ðA3Þ

In the limit q → ∞, we get

lim
q→∞

SðRMSÞ ¼
c
6
ln

�
16fðbÞ
κ4hε

4
cosh4ðκhtbÞ

�
: ðA4Þ

2. MS entangling region with island

The entropy for a nontrivial island configuration before
the extremization procedure has the form (10). A general
single-interval, nonsymmetric ansatz for the island is
I ¼ ½p−; aþ�. The area of its boundary is

Areað∂IÞ ¼ 4πða2 þ p2Þ: ðA5Þ

With use of this, the entanglement entropy functional takes
the form

Sgen½I; RMS� ¼
πða2 þ p2Þ

GN
þ c
6
ln

�
32

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fðaÞfðpÞp

fðbÞfðqÞ
κ6hε

6
cosh4 κhtb

�

þ c
6
ln ½cosh κhðr�ðaÞ − r�ðpÞÞ þ cosh κhðta þ tpÞ� þ

c
6
ln

�
cosh κhðr�ðbÞ − r�ðaÞÞ − cosh κhðta − tbÞ
cosh κhðr�ðbÞ − r�ðaÞÞ þ cosh κhðta þ tbÞ

�

þ c
6
ln

�
cosh κhðr�ðbÞ − r�ðpÞÞ − cosh κhðtp − tbÞ
cosh κhðr�ðbÞ − r�ðpÞÞ þ cosh κhðtp þ tbÞ

�
þ c
6
ln

�
cosh κhðr�ðqÞ − r�ðaÞÞ þ cosh κhðta þ tbÞ
cosh κhðr�ðqÞ − r�ðaÞÞ − cosh κhðta − tbÞ

�

þ c
6
ln

�
cosh κhðr�ðqÞ − r�ðpÞÞ þ cosh κhðtp þ tbÞ
cosh κhðr�ðqÞ − r�ðpÞÞ − cosh κhðtp − tbÞ

�
þ c
3
ln

�
cosh κhðr�ðqÞ − r�ðbÞÞ − 1

cosh κhðr�ðqÞ − r�ðbÞÞ þ cosh 2κhtb

�
:

ðA6Þ

This expression is to be extremized with respect to the parameters ða; ta; p; tpÞ.
The four-parameter extremization can be brought to extremization over only two parameters. Indeed, all the terms in

Sgen½I; RMS� are symmetric with respect to permutations a ↔ p, ta ↔ tp; hence, it is reasonable to take a mirror-symmetric
ansatz for the island: IMS ¼ ½a−; aþ�. For such a choice, the full expression for the generalized entropy functional reads as

Sgen½IMS;RMS� ¼
2πa2

GN
þ c
6
ln

�
64fðaÞfðbÞfðqÞ

κ6hε
6

cosh2 κhtacosh4 κhtb

�
þ c
3
ln

�
cosh κhðr�ðbÞ− r�ðaÞÞ− cosh κhðta− tbÞ
cosh κhðr�ðbÞ− r�ðaÞÞþ cosh κhðtaþ tbÞ

�

þ c
3
ln

�
cosh κhðr�ðqÞ− r�ðaÞÞþ cosh κhðtaþ tbÞ
cosh κhðr�ðqÞ− r�ðaÞÞ− cosh κhðta − tbÞ

�
þ c
3
ln

�
cosh κhðr�ðqÞ− r�ðbÞÞ− 1

cosh κhðr�ðqÞ− r�ðbÞÞþ cosh 2κhtb

�
: ðA7Þ

In this expression, we can identify a part of the terms with the generalized entropy functional for the semi-infinite region and
the other part with an effect of finite size of the region:

Sgen½IMS; RMS� ¼ Sgen½IMS; R∞� þ
c
6
ln

�
4fðqÞ
κ2hε

2
cosh2 κhtb

�
þ c
3
ln

�
cosh κhðr�ðqÞ − r�ðaÞÞ þ cosh κhðta þ tbÞ
cosh κhðr�ðqÞ − r�ðaÞÞ − cosh κhðta − tbÞ

�

þ c
3
ln

�
cosh κhðr�ðqÞ − r�ðbÞÞ − 1

cosh κhðr�ðqÞ − r�ðbÞÞ þ cosh 2κhtb

�
: ðA8Þ
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It can be simplified further by using small-, intermediate-,
or large-time approximations.
We use a general property that for x ≫ 1 holds

cosh x ≃ 1=2ex, and for A and B such that cosh B ≪
cosh A and A ≫ 1 holds

lnðcosh Aþ cosh BÞ ≈ Aþ 2 cosh B expð−AÞ: ðA9Þ

Then, for early times (small with respect to tortoise radial
coordinate of the inner end points),

cosh κhðta � tbÞ ≪ cosh κhðr�ðbÞ − r�ðaÞÞ
< cosh κhðr�ðqÞ − r�ðaÞÞ; ðA10Þ

we obtain

Sgen½IMS; RMS�jearly
times

≃ Sgen½IMS; R∞�

þ c
6
ln

�
4fðqÞ
κ2hε

2
cosh2 κhtb

�
: ðA11Þ

Since the remaining term, describing the effect of the finite
size of the region, does not depend on either a or ta, there is
no solution as in the semi-infinite case [18].
For late times

cosh κhðta þ tbÞ ≫ cosh κhðr�ðqÞ − r�ðaÞÞ;
cosh 2κhtb ≫ cosh κhðr�ðqÞ − r�ðbÞÞ; ðA12Þ

the functional reduces to

Sgen½IMS; RMS�jearly
times

≃
2πa2

GN
þ c
3
κhðta þ tbÞ þ

c
6
ln

�
4fðaÞfðbÞfðqÞ

κ6hε
6

cosh2 κhtb

�

þ c
3
ln

�
cosh κhðr�ðbÞ − r�ðaÞÞ − cosh κhðta − tbÞ
cosh κhðr�ðqÞ − r�ðaÞÞ − cosh κhðta − tbÞ

�
þ c
3
ln ½cosh κhðr�ðqÞ − r�ðbÞÞ − 1�: ðA13Þ

Because of linear growth, there is no solution to the extremization equation for ta ≈ tb.
For intermediate times

1 ≪ cosh κhðr�ðbÞ − r�ðaÞÞ ≪ x

≪ cosh κhðr�ðqÞ − r�ðbÞÞ < cosh κhðr�ðqÞ − r�ðaÞÞ; ðA14Þ

where x ¼ cosh κhðta þ tbÞ or cosh 2κhtb, making use of Eq. (A9) and ta; tb ≫ rh, we can simplify the generalized entropy
functional to

Sgen½IMS; RMS�j inter
times

≃
2πa2

GN
þ c
6
ln

�
4fðaÞfðbÞfðqÞ

κ6hε
6

cosh2κhtb

�
þ c
3
κhðr�ðbÞ − r�ðaÞÞ

−
2c
3
cosh κhðta − tbÞe−κhðr�ðbÞ−r�ðaÞÞ −

c
3
e−κhðtaþtbÞþκhðr�ðbÞ−r�ðaÞÞ

−
c
6
e2κhtb−κhðr�ðqÞ−r�ðbÞÞ þ c

3
cosh κhðta − tbÞe−κhðr�ðqÞ−r�ðaÞÞ þ

c
6
eκhðtaþtbÞ−κhðr�ðqÞ−r�ðaÞÞ: ðA15Þ

The extremal curve with respect to the time coordinate is at ta ¼ tb. Using this, we get

Sgen½IMS; RMS�j inter
times

≃
2πa2

GN
þ c
6
ln

�
4fðaÞfðbÞfðqÞ

κ6hε
6

cosh2κhtb

�
þ c
3
κhðr�ðbÞ − r�ðaÞÞ −

c
3
e2κhtb−κhðr�ðqÞ−r�ðbÞÞ: ðA16Þ

We keep the vanishingly small last term from other exponential terms as that describing the leading-order effect of the finite
size of the region.
Taking then a near-horizon-zone ansatz for the radial coordinate of the island, a ¼ rh þ δa, δa ≪ rh, we find the analytical

expression (34) for the entropy in the leading order in δa=rh without solving the extremization equation on a explicitly:

Sextgen½IMS; RMS�j inter
times

≃
2πr2h
GN

þ c
6
ln

fðbÞ
κ4hε

4
þ c
3
κhr�ðbÞ −

c
6
þ c
6
ln

�
4fðqÞcosh2 κhtb

κ2hε
2

�
−
c
3
e2κhtb−κhðr�ðqÞ−r�ðbÞÞ þOðδa=rhÞ:

ðA17Þ
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3. AS entangling region without island

The entanglement entropy for the asymmetric finite entangling region takes the form

SðRASÞ ¼
c
3
ln

�
dðbup

þ ;bup
− Þdðqdown

− ;bup
− Þ

ε2

�
þ c
3
ln

�
dðbup

þ ;qup
þ Þdðqdown

− ;qup
þ Þ

ε2

�
−
c
3
ln

�
dðbup

− ;qup
þ Þdðqdown

− ;bup
þ Þ

ε2

�

¼ c
6
ln

�
16fðbÞfðqÞ

κ4hε
4

cosh2 κhtb

�
þ c
6
ln

�
cosh κhðr�ðqÞ − r�ðbÞÞ − cosh 2κhtb
cosh κhðr�ðqÞ − r�ðbÞÞ þ cosh 2κhtb

�

þ c
6
ln

�
cosh κhðr�ðqÞ − r�ðbÞÞ − 1

cosh κhðr�ðqÞ − r�ðbÞÞ þ 1

�
: ðA18Þ

In the limit q → ∞, we obtain

lim
q→∞

SðRASÞ ¼
c
6
ln

�
16fðbÞ
κ4hε

4
cosh2 κhtb

�
: ðA19Þ

4. AS entangling region with island

The generalized entropy functional for a general nonsymmetric island ansatz is

Sgen½I; RAS� ¼
πða2 þ p2Þ

GN
þ c
6
ln

�
32

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fðaÞfðpÞp

fðbÞfðqÞ
κ6hε

6
cosh2 κhtb

�

þ c
6
ln ½cosh κhðr�ðaÞ − r�ðpÞÞ þ cosh κhðta þ tpÞ� þ

c
6
ln

�
cosh κhðr�ðbÞ − r�ðaÞÞ − cosh κhðta − tbÞ
cosh κhðr�ðbÞ − r�ðaÞÞ þ cosh κhðta þ tbÞ

�

þ c
6
ln

�
cosh κhðr�ðbÞ − r�ðpÞÞ − cosh κhðtp − tbÞ
cosh κhðr�ðbÞ − r�ðpÞÞ þ cosh κhðtp þ tbÞ

�
þ c
6
ln

�
cosh κhðr�ðqÞ − r�ðbÞÞ − 1

cosh κhðr�ðqÞ − r�ðbÞÞ þ 1

�

þ c
6
ln

�
cosh κhðr�ðqÞ − r�ðbÞÞ − cosh 2κhtb
cosh κhðr�ðqÞ − r�ðbÞÞ þ cosh 2κhtb

�
þ c
6
ln

�
cosh κhðr�ðqÞ − r�ðaÞÞ þ cosh κhðta − tbÞ
cosh κhðr�ðqÞ − r�ðaÞÞ − cosh κhðta − tbÞ

�

þ c
6
ln

�
cosh κhðr�ðqÞ − r�ðpÞÞ þ cosh κhðtp þ tbÞ
cosh κhðr�ðqÞ − r�ðpÞÞ − cosh κhðtp þ tbÞ

�
: ðA20Þ

The only nonsymmetric under exchange a ↔ p, ta ↔ tp terms in this expression are in the last two lines. These terms are
vanishingly small for times such that

cosh κhðtp þ tbÞ ≪ cosh κhðr�ðqÞ − r�ðpÞÞ;
cosh κhðta − tbÞ ≪ cosh κhðr�ðqÞ − r�ðaÞÞ: ðA21Þ

Under these assumptions, taking the mirror-symmetric ansatz for island IMS ¼ ½a−; aþ� is valid. Substituting it to S½I; RAS�,
we arrive at

Sgen½IMS; RAS� ≃
2πa2

GN
þ c
6
ln

�
64fðaÞfðbÞfðqÞ

κ6hε
6

cosh2 κhtacosh2 κhtb

�

þ c
3
ln

�
cosh κhðr�ðbÞ − r�ðaÞÞ − cosh κhðta − tbÞ
cosh κhðr�ðbÞ − r�ðaÞÞ þ cosh κhðta þ tbÞ

�
þ c
6
ln

�
cosh κhðr�ðqÞ − r�ðbÞÞ − 1

cosh κhðr�ðqÞ − r�ðbÞÞ þ 1

�

þ c
6
ln

�
cosh κhðr�ðqÞ − r�ðbÞÞ − cosh 2κhtb
cosh κhðr�ðqÞ − r�ðbÞÞ þ cosh 2κhtb

�
þ c
6
ln

�
cosh κhðr�ðqÞ − r�ðaÞÞ þ cosh κhðta − tbÞ
cosh κhðr�ðqÞ − r�ðaÞÞ − cosh κhðta − tbÞ

�

þ c
6
ln

�
cosh κhðr�ðqÞ − r�ðaÞÞ þ cosh κhðta þ tbÞ
cosh κhðr�ðqÞ − r�ðaÞÞ − cosh κhðta þ tbÞ

�
: ðA22Þ

If we then assume that the island end points are near the horizon and times are long before the Cauchy surface breaking
(35) (intermediate times), such that
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1 ≪ cosh κhðr�ðbÞ − r�ðaÞÞ ≪ x

≪ cosh κhðr�ðqÞ − r�ðbÞÞ < cosh κhðr�ðqÞ − r�ðaÞÞ; ðA23Þ
where x ¼ cosh κhðta þ tbÞ or cosh 2κhtb, making use of Eq. (A9) and ta; tb ≫ rh, we can simplify the generalized entropy
functional to

Sgen½IMS; RAS�j inter
times

≃
2πa2

GN
þ c
6
ln

�
4fðaÞfðbÞfðqÞ

κ6hε
6

�
þ c
3
κhðr�ðbÞ − r�ðaÞÞ −

2c
3

cosh κhðta − tbÞe−κhðr�ðbÞ−r�ðaÞÞ

−
c
3
e−κhðtaþtbÞþκhðr�ðbÞ−r�ðaÞÞ −

c
3
e2κhtb−κhðr�ðqÞ−r�ðbÞÞ þ 2c

3
cosh κhðta − tbÞe−κhðr�ðqÞ−r�ðaÞÞ

þ c
3
eκhðtaþtbÞ−κhðr�ðqÞ−r�ðaÞÞ: ðA24Þ

Extremizing with respect to ta, we obtain

Sgen½IMS; RAS�j inter
times

≃
2πa2

GN
þ c
6
ln

�
4fðaÞfðbÞfðqÞ

κ6hε
6

�
þ c
3
κhðr�ðbÞ − r�ðaÞÞ −

c
3
e2κhtb−κhðr�ðqÞ−r�ðbÞÞ; ðA25Þ

and, hence, an approximate analytical expression (38) in the near-horizon zone in the leading order in δa=rh is

Sextgen½IMS; RAS�j inter
times

≃
2πr2h
GN

þ c
6
ln

fðbÞ
κ4hε

4
þ c
3
κhr�ðbÞ −

c
6
þ c
6
ln

4fðqÞ
κ2hε

2
−
c
3
e2κhtb−κhðr�ðqÞ−r�ðbÞÞ þOðδa=rhÞ: ðA26Þ

5. Outer entangling region for AS finite region

The entanglement entropy for CAS takes the form

SmðCASÞ ¼ lim
w→∞

�
c
3
ln

�
dðqup

þ ;qdown
− Þdðqup

þ ;wup
þ Þ

ε2

�
þ c
3
ln

�
dðwdown

− ;qdown
− Þdðwdown

− ;wup
þ Þ

ε2

�

−
c
3
ln

�
dðwdown

− ;qup
þ Þdðwup

þ ;qdown
− Þ

ε2

��

¼ lim
w→∞

c
6
ln

�
16fðqÞfðwÞ

κ4hε
4

�
þ lim

w→∞

c
3
ln

�
cosh κhðr�ðwÞ − r�ðqÞÞ − 1

cosh κhðr�ðwÞ − r�ðqÞÞ þ 1

�

¼ c
6
ln

4fðqÞ
κ2hε

2
þ c
3
ln

2

κhε
: ðA27Þ

According to our prescription for IR regularization, the latter term is to be subtracted. Interestingly, the same result can be
obtained if CAS is considered as the complement of the regularized Cauchy surface. The entropy for it we have already
calculated in Eq. (18): SmðCASÞ ¼ SmðΣ̄regÞ.
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