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In a previous work [Eur. Phys. J. C 80, 1117 (2020)] about the TT̄ deformed CFT2, from the consistency
requirement of the entanglement entropy, we found that, in addition to the usual spacelike entanglement
entropy, a timelike entanglement entropy must be introduced and treated equally. Motivated by the recent
explicit constructions of the timelike entanglement entropy and its bulk dual, we provide a comprehensive
analysis of the timelike and spacelike entanglement entropies in the TT̄ deformed finite size system and
finite temperature system. The results confirm our prediction that in the finite size system only the timelike
entanglement entropy receives a correction, while in the finite temperature system only the usual spacelike
entanglement entropy gets a correction. These findings affirm the necessity of a complete measure
including both spacelike and timelike entanglement entropies.
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I. INTRODUCTION

Conformal field theories (CFTs) could be deformed by
relevant, marginal, and irrelevant deformations. Relevant
and marginal deformations have been well studied. Though
the irrelevant deformations are nonrenormalizable and lead
to no consequence in the IR region, in two-dimensional
spacetime, they turn out to be generally under control and
even solvable for some particular models. One such
solvable irrelevant deformation is the TT̄ deformation
[1–3], obtained by turning on a TT̄ coupling term:

dIðμÞQFT

dμ
¼
Z

d2xðTT̄Þμ; ð1:1Þ

where the deformation parameter μ has the ½length�2 dimen-
sion and ðTT̄Þμ is defined by the stress tensor of the deformed
theory. At the leading order, the deformed theory is given by

IðμÞQFT ¼ ICFT þ μ

Z
d2xðTT̄Þμ¼0 þOðμ2Þ; ð1:2Þ

where ðTT̄Þμ¼0 ¼ 1
8
½TαβTαβ − ðTα

αÞ2�. It is clear that the
Lorentz symmetry is preserved but the conformal symmetry
is broken in the TT̄ deformed theory.
The importance of this model is revived partially by the

proposition, given in Ref. [4], that the AdS3 gravity with a
Dirichlet boundary at a finite radial distance rc is dual to
the TT̄ deformed CFT2 living on that Dirichlet boundary.
This nontrivial extension of AdS=CFT correspondence [5]
is called cutoff-AdS=TT̄-deformed-CFT (cAdS/dCFT)
correspondence.
In the UV region, out of the many calculable deformed

physical quantities, a particularly important one is the
entanglement entropy (EE). Until recently, the entangle-
ment entropy was defined only for spacelike intervals.
Hereinafter, we will refer the spacelike EE to the usual
standard EE. Some progress on the spacelike EE in the TT̄
deformed CFT2 has been achieved in recent years [6–8].
With the replica trick [9,10], in Ref. [11], the TT̄

deformed spacelike EE was calculated perturbatively for
the cylindrical topology. Intriguingly, the TT̄ correction to
the spacelike EE is dependent on different interpretations
of the identical topology. When treating the system as a
finite size one, there is no leading correction. But the finite
temperature interpretation does receive a leading correc-
tion. This indicates that the TT̄ correction to the spacelike
EE can be observed in the finite temperature system but is
invisible in the finite size system. This result obviously
conflicts with the fact that the entanglement entropy is a
topological quantity. Moreover, without a correction pre-
sented in the finite size system, how do we distinguish
between the undeformed CFTand the deformed CFT by the
entanglement entropy?
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To resolve this inconsistency, in a previous paper [12], by
noticing the fact that the finite size system and the finite
temperature system share the same cylindrical topology
under exchanging t ↔ x, we proposed that, in addition to
the spacelike EE, there should exist a timelike EE for
timelike intervals, and the timelike EE should be treated on
the same footing as the spacelike EE. We further predicted,
as shown in Table I, that the spacelike EE receives a
correction only in the TT̄ deformed finite temperature
system, while the timelike EE receives a correction only in
the TT̄ deformed finite size system.
Remarkably, such a timelike EE has been specifically

defined via analytical continuation, and the bulk dual has
been explicitly provided in Refs. [13–16] recently. Rather
than real valued as the spacelike EE, the timelike EE is a
complex-valued quantity. It is suggested that the timelike
EE needs to be correctly understood as a pseudoentropy,
which is a non-Hermitian generalization of the usual
spacelike EE. Dividing the total system into two subsys-
tems A and B, the pseudoentropy is defined by the von
Neumann entropy

SA ¼ −Tr½τA log τA�; ð1:3Þ

of the reduced transition matrix

τA ¼ TrB

�jψihφj
hφjψi

�
: ð1:4Þ

Here, jψi and jφi are two different quantum states in the
total Hilbert space that is factorized as H ¼ HA ⊗ HB. As
the usual EE, the pseudoentropy could also be captured by
the replica method [9,10] in the path integral formalism.
Denoting the manifold corresponding to hφjψi as M1 and
the manifold corresponding to TrAðτAÞn as Mn, the nth
pseudo-Rényi entropy reads

SðnÞA ¼ 1

1 − n
log

�
ZMn

ðZM1
Þn
�
; ð1:5Þ

where ZM is the partition function over the manifold M.
Taking the limit n → 1 yields the pseudoentropy

SA ¼ lim
n→1

1

1 − n
log

�
ZMn

ðZM1
Þn
�
: ð1:6Þ

Consider a two-dimensional CFT in a flat spacetime
whose time and space coordinates are ðt; xÞ, and we now

construct a general entanglement entropy, which contains
both spacelike and timelike components. By choosing a
general interval A ¼ ½ðt1; x1Þ; ðt2; x2Þ� and using the replica
trick, we could obtain the general EE

SA ¼ cAdS
6

log

�ðx1 − x2Þ2 − ðt1 − t2Þ2
ϵ2

�
: ð1:7Þ

In this paper, the general EE serves primarily as a
convenient formula to group timelike and spacelike EEs
together, since the spacelike and timelike EEs are just two
different limits of the general EE:

SA ¼
(

cAdS
3
log jx1−x2j

ϵ ; t1 ¼ t2;
cAdS
3
log jt1−t2j

ϵ þ i cAdSπ
6

; x1 ¼ x2;
ð1:8Þ

with ϵ the UV cutoff and cAdS ¼ 3RAdS=2GN the central
charge of CFT2. We emphasize that Eqs. (1.6) and (1.8) are
specific to the Poincaré patch of AdS3 and not a universal
formula for the general entanglement entropy. The definition
of general EE can also be extended to finite temperature CFT
and finite size CFT, respectively, as shown in Sec. II.
Therefore, for a 2d CFT that is dual to the Poincaré patch
of AdS3, the timelike EE SA of a timelike interval A, whose
width is given by T ¼ jt1 − t2j, reads

SA ¼ cAdS
3

log

�
T
ϵ

�
þ i

cAdSπ
6

: ð1:9Þ

It is worthwhile to note that, in CFTs, a naive analytic
continuation from the spacelike EE to a timelike one is
generally incorrect [15]. According to the Ryu-Takayanagi
(RT) formula [17], Refs. [13,18] found that the complex-
valuedextremal surface consists of one timelikegeodesic and
two spacelike geodesics, as shown in Fig. 1. Two spacelike
geodesics connect ∂A and null infinities, respectively. The
timelike geodesic connects the end points of two spacelike
geodesics on null infinities. Furthermore, the length of the
timelike geodesic is equal to the imaginary part of the
timelike EE,while the total length of two spacelikegeodesics
is equal to the real part of the timelike EE. Related works on
the complex-valued extremal surface were also proposed in
Refs. [19–21].
The purpose of this paper is to confirm the predictions

made in Ref. [12]. In the cAdS=dCFT correspondence, the
general EE could be thought of as a complete measure,
which always receives a correction from the TT̄ deforma-
tion. The spacelike and timelike entanglement entropies
are different limits of the general entanglement entropy. As
a consistent check, we will show that the leading TT̄
correction to the timelike EE exists in the finite size system
but vanishes in the finite temperature system. Utilizing the
holographic method, we will show the physical reason why
spacelike (timelike) EE receives a correction only in a finite
temperature (size) system.

TABLE I. The symbol ✓ marks a correction to the entangle-
ment entropy caused by the TT̄ deformation.

Spacelike EE Timelike EE

Finite size ✓
Finite temperature ✓
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The remainder of this paper is outlined as follows. In
Sec. II, we show the leading correction of the general
entanglement entropy of the TT̄ deformed finite temperature
CFT2 and finite size CFT2, respectively. In Sec. III, using the
RT formula, we show that the cutoff-AdS geodesic leads to a
precise estimation of the general entanglement entropy inTT̄
deformed CFT. Section IV is devoted to our conclusions.

II. GENERAL ENTANGLEMENT ENTROPY
IN TT̄ DEFORMED CFT

In this section, we calculate the leading corrections to
the general EE of the TT̄ deformed CFT living on the
cylindrical manifold. After taking different limits, we
derive the corrections to the spacelike EE and timelike
EE, respectively, for the finite temperature system and finite
size system. For a TT̄ deformed CFTonM, the general EE
of some subsystem A ∈ M is obtained by the definition of
pseudoentropy. Substituting Eq. (1.2) into Eq. (1.6), one
could obtain the leading correction to SðAÞ:

δSðAÞ ¼ lim
n→1

δSnðAÞ;

δSnðAÞ ¼
nμ

1 − n

Z
M

½hTT̄iM − hTT̄iMn
�: ð2:1Þ

A. Finite temperature

Consider a TT̄ deformed CFT at the inverse temperature
β. This theory lives on a cylindrical manifold M1, which
has a noncompact spatial direction x ∈ ð−∞;∞Þ and
compact Euclidean time τ ∈ ð0; βÞ with the periodicity

τ ∼ τ þ β. It is well known that the two-point correlation
function in the finite temperature CFT is

hOðw; w̄ÞOð0; 0Þi ¼
�
β2

π2
sinh

�
πw
β

�
sinh

�
πw̄
β

��−2Δ
ð2:2Þ

with the complex coordinate w ¼ xþ iτ and the scaling
dimension Δ. By the replica trick, the entanglement
entropy of a single interval A, which has timelike width
τ0 and spacelike width x0, is related to the two-point
function of the twist fields:

ZMn
ðAÞ

Zn
M1

¼ hΦþð0; 0ÞΦ−ðx0 þ iτ0; x0 − iτ0Þi

¼
�
β2

π2ϵ2
sinh

�
πðx0 þ iτ0Þ

β

�
sinh

�
πðx0 − iτ0Þ

β

��−2Δn

with the dimension Δn ¼ cAdS
24

ðn − 1
nÞ, the UV cutoff ϵ, and

the central charge cAdS. Therefore, the entanglement
entropy obtained by Eq. (1.6) is

SðAÞ

¼ cAdS
6

log

�
β2

π2ϵ2
sinh

�
πðx0 þ iτ0Þ

β

�
sinh

�
πðx0 − iτ0Þ

β

��

¼ cAdS
3

log

�
β

2πϵ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 cosh

�
2πx0
β

�
− 2 cosh

�
2πiτ0
β

�s �
:

ð2:3Þ

Following Ref. [11], one could also calculate hTT̄iM1
and

hTT̄iMn
in the finite temperature CFT1:

hTT̄iM1
¼
�
cAdS
12

�
2
�
2π2

β2

�
2

; ð2:4Þ

hTT̄iMn
¼
�
cAdS
12

�
2
��

2π2

β2

�
2

−
2π2

β2
ðn − 1ÞðQþ Q̄Þ

þOððn − 1Þ2Þ
�
; ð2:5Þ

with the meromorphic function

QðwÞ ≔
sinh2ðπðx0þiτ0Þ

β Þ
sinh2ðπðx0þiτ0−wÞ

β Þsinh2ðπwβ Þ
:

Intuitively, QðwÞ has two poles (w ¼ 0 and w ¼ x0 þ iτ0)
that correspond to the residues

FIG. 1. Geodesics connecting to ∂A in the Poincaré patch of
AdS3. The red line denotes one timelike geodesic, and two green
lines denote two spacelike geodesics. The blue line denotes a
timelike interval A on the conformal boundary.

1Here, we easily generalize the purely spacelike subsystem in
Ref. [11] to the general one.
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ResðQ;w ¼ 0Þ ¼ 2π

β
coth

�
πðx0 þ iτ0Þ

β

�
;

ResðQ;w ¼ x0 þ iτ0Þ ¼ −
2π

β
coth

�
πðx0 þ iτ0Þ

β

�
:

The leading correction to SðAÞ caused by TT̄ deformation
is, thus,

δSðAÞ ¼ lim
n→1

nμ
1 − n

Z
M1

�
cAdS
12

�
2

×
�
2π2

β2
ðn − 1ÞðQþ Q̄Þ þOððn − 1Þ2Þ

�
ð2:6Þ

¼ −μ
Z
M1

�
cAdS
12

�
2 2π2

β2
ðQþ Q̄Þ; ð2:7Þ

which, with the help of Cauchy’s residue theorem, could be
simplified as

δSðAÞ ¼ −2πμ
Z

x0

0

dx

�
cAdS
12

�
2 2π2

β2

× ½ResðQ; 0Þ þ ResðQ̄; 0Þ�

¼ −μ
π4c2AdS
18β3

x0

�
coth

�
πðx0 þ iτ0Þ

β

�

þ coth

�
πðx0 − iτ0Þ

β

��

¼ −μ
π4c2AdS
9β3

x0 sinhð2πx0β Þ
coshð2πx0β Þ − coshð2πiτ0β Þ :

Via an analytical continuation τ ¼ it, the entanglement
entropy in the finite temperature system, to the leading
order of μ, reads

SðμÞðAÞ ¼ cAdS
3

log

"
β

2πϵ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2cosh

�
2πx0
β

�
− 2cosh

�
2πt0
β

�s #

−μ
π4c2AdS
9β3

x0 sinhð2πx0β Þ
coshð2πx0β Þ− coshð2πt0β Þ : ð2:8Þ

By choosing ðx0; t0Þ ¼ ð0; TÞ, one obtains the timelike
entanglement entropy in the TT̄ deformed finite temper-
ature system:

SðμÞT ¼ cAdS
3

log

�
β

πϵ
sinh

�
πT
β

��
þ i

cAdSπ
6

: ð2:9Þ

Comparing the above result with the timelike EE in the
original finite temperature system [15],

ST ¼ cAdS
3

log

�
β

πϵ
sinh

�
πT
β

��
þ i

cAdSπ
6

; ð2:10Þ

it is not surprising that, in theTT̄ deformed finite temperature
CFT2, the timelike entanglement entropy does not receive a
correction from the TT̄ deformation. Moreover, it is worth-
while to note that the imaginary part of the timelike
entanglement entropy originates from the complex logarith-
mic function. For the particular geometrywe are considering,
if onewishes to match the imaginary component, one should
take the principle branch which has the correct magnitude
[18]. Similarly, choosing ðx0; t0Þ ¼ ðX; 0Þ, the spacelike
entanglement entropy with TT̄ correction is determined:

SðμÞX ðAÞ ¼ cAdS
3

log

�
β

πϵ
sinh

�
πX
β

��

− μ
π4c2AdS
9β3

X coth

�
πX
β

�
; ð2:11Þ

which exactly agrees with the result in Ref. [11].

B. Finite size

Now we focus on the TT̄ deformed field theory living on
a cylindrical manifold M2, which has a noncompact
temporal direction τ ∈ ð−∞;∞Þ and a compact spatial
direction x ∈ ð0; LÞ with the periodicity x ∼ xþ L. It is
important to notice that M1 and M2 have the same
topology R × S1. Therefore, by setting β ¼ L and exchang-
ing x ↔ τ in Eqs. (2.3) and (2.6) and performing the
analytical continuation τ ¼ it, one easily obtains the
entanglement entropy in the finite size system:

SðμÞðAÞ ¼ cAdS
3

log

�
L
2πϵ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 cos

2πt0
L

− 2 cos
2πx0
L

r �

þ μ
π4c2AdS
9L3

t0 sinð2πt0L Þ
cosð2πt0L Þ − cosð2πx0L Þ : ð2:12Þ

Setting ðx0; t0Þ ¼ ð0; TÞ, the timelike entanglement entropy
indeed receives a correction from the TT̄ deformation:

SðμÞT ðAÞ ¼ cAdS
3

log

�
L
πϵ

sin

�
πT
L

��
− μ

π4c2AdS
9L3

T cot

�
πT
L

�

þ i
cAdSπ
6

: ð2:13Þ

Meanwhile, as expected, the spacelike entanglement
entropy does not receive a correction:

SðμÞX ðAÞ ¼ cAdS
3

log

�
L
πϵ

sin

�
πX
L

��
: ð2:14Þ

In the above field-theoretic results, the leading TT̄
correction to the timelike EE exists in finite size systems
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but vanishes in finite temperature systems, while the
leading TT̄ correction to the spacelike EE exhibits the
opposite behavior, as shown in Table II, which is in perfect
agreement with our prediction in Ref. [12]. Meanwhile, the
leading TT̄ correction to the general entanglement entropy
always exists in both finite size systems and finite temper-
ature systems. Therefore, the general entanglement entropy
is the right measure to mark the deformations.

III. GRAVITY DUALS

It is illuminating to study the spacelike (timelike) EE and
its corresponding gravity dual in the context of cAdS
(dCFT) correspondence. In this section, we will demon-
strate that the distance of the geodesic in the cutoff AdS
precisely matches the general entanglement entropy in the
TT̄ deformed CFT2. We will compute only the geodesic
length between two boundary points, which does not prove
the existence of the geometric bulk dual of the general EE.

However, the bulk dual of the timelike EE has been
explicitly studied in Ref. [18]. Before that, we first provide
a physical interpretation of our previous conjecture by
introducing a Euclidean cylindrical manifold, as depicted in
Fig. 2, which features one compact and one noncompact
direction. The compact direction is always described by a
native parameter, either the inverse temperature β in the
finite temperature system or the total length L in the finite
size system. As a result, the interval A in the compact
direction is independent of the cutoff boundary and the
geodesic anchored on ∂A remains unchanged. The interval
A in the compact direction is independent of the choice of
the cutoff boundary, and the geodesic anchored on ∂A will
not change. In contrast, the interval B in the noncompact
direction will vary with the cutoff boundary, which leads to
a change in the geodesic anchored on ∂B. Therefore, in the
finite temperature system, the temporal direction is com-
pact and its timelike EE remains unaffected by the TT̄
deformation; in the finite size system, the spatial direction
is compact and its spacelike EE remains unchanged under
the TT̄ deformation.

A. Bañados-Teitelboim-Zanelli (BTZ) black hole

Consider a BTZ black hole that is described by

ds2 ¼ −
r2 − r2þ
R2
AdS

dt2 þ R2
AdS

r2 − r2þ
dr2 þ r2

R2
AdS

dx2; ð3:1Þ

where rþ is the radius of event horizon and t is the compact
temporal direction t ∼ tþ iβ. It is well known that the finite
temperature CFT2 is dual to a BTZ black hole with the
same temperature:

β−1 ¼ rþ
2πR2

AdS

: ð3:2Þ

In the cAdS=dCFT correspondence, the TT̄ deformed CFT
at finite temperature is dual to a BTZ black hole with the
radial cutoff rc:

r2c ¼
6R4

AdS

πcAdSμ
: ð3:3Þ

TABLE II. The leading correction to the spacelike (timelike) EE caused by the TT̄ deformation in a finite size
(temperature) system.

EE of a single interval Leading TT̄ correction

Finite size Timelike: ST ¼ cAdS
3
log ðLπϵ sinðπTL ÞÞ þ icAdSπ

6 δST ¼ −μ π4c2AdS
9L3 T cotðπTL Þ

Spacelike: SX ¼ cAdS
3
log ðLπϵ sinðπXL ÞÞ δSX ¼ 0

Finite temperature Timelike: ST ¼ cAdS
3
log ð βπϵ sinh πT

ϵ Þ þ icAdSπ
6

δST ¼ 0

Spacelike: SX ¼ cAdS
3
log ð βπϵ sinh πX

ϵ Þ δSX ¼ −μ π4c2AdS
9β3

X cothðπXβ Þ

FIG. 2. The figure illustrates a Euclidean cylindrical manifold
with a black cylinder representing the original boundary and a
violet cylinder representing the cutoff boundary. Two red lines
denote an intervalA in the compact direction and an interval B in
the noncompact direction. Two orange lines indicate their
corresponding intervals in the cutoff boundary.
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Taking r ¼ rc and multiplying a factor R2
AdS=ðr2c − r2þÞ in

the BTZ black hole metric, the metric of the cutoff
boundary, where the TT̄ deformed CFT lives, reads

ds2 ¼ −dt2 þ dx2

1 − r2þ=r2c
: ð3:4Þ

Notice that the timelike interval on the boundary keeps
invariant, because the compact temporal direction should
be physical. This is the reason that the timelike EE does not
receive a correction from the TT̄ deformation. To see this,
for an interval A, with the timelike width t0 and the
spacelike width x0, in the TT̄ deformed CFT, we calculate
the general entanglement entropy with the RT formula.
Performing the following coordinates transformation:

u ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

r2þ
r2

r
cosh

�
rþt
R2
AdS

�
exp

�
rþx
R2
AdS

�
;

v ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

r2þ
r2

r
sinh

�
rþt
R2
AdS

�
exp

�
rþx
R2
AdS

�
;

z ¼ rþ
r
exp

�
rþx
R2
AdS

�
; ð3:5Þ

the metric (3.1) becomes

ds2 ¼ R2
AdS

z2
ðdu2 − dv2 þ dz2Þ: ð3:6Þ

Two boundary points ∂A ¼ fðu1; v1; z1Þ; ðu2; v2; z2Þg
could be written as

u1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1−

r2þ
r2c

s
;

u2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1−

r2þ
r2c

s
cosh

�
rþt0
R2
AdS

�
exp

 
rþx0
R2
AdS

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1−

r2þ
r2c

s !
;

v1 ¼ 0; v2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1−

r2þ
r2c

s
sinh

�
rþt0
R2
AdS

�
exp

 
rþx0
R2
AdS

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1−

r2þ
r2c

s !
;

z1 ¼
rþ
rc

; z2 ¼
rþ
rc

exp

�
rþx0
R2
AdS

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1− r2þ=r2c

q �
: ð3:7Þ

Therefore, one can determine the length of the geodesic γA
to be

LγA ¼ RAdSarcosh

�
1þ ðu2 − u1Þ2 − ðv2 − v1Þ2 þ ðz2 − z1Þ2

2z1z2

�

¼ RAdSarcosh

�ðr2þ=r2c − 1Þ coshðrþt0R2
AdS
Þ þ cosh ðrþx0R2

AdS

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − r2þ=r2c

p
Þ

r2þ=r2c

�

¼ 2RAdS log

�
rc
rþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 cosh

�
rþx0
R2
AdS

�
− 2 cosh

�
rþt0
R2
AdS

�s �
−
r2þ
r2c

rþx0
2RAdS

sinhðrþx0R2
AdS
Þ

coshðrþx0R2
AdS
Þ − coshðrþt0R2

AdS
Þ

þ r2þ
r2c

RAdS coshðrþt0R2
AdS
Þ

coshðrþx0R2
AdS
Þ − coshðrþt0R2

AdS
Þ þO

�
r3þ
r3c

�
: ð3:8Þ

Notice that the first term in the last line should not be thought of a leading correction caused by TT̄ flow. To see this point,
replacing the metric of the cutoff boundary with ds2 ¼ −dt2 þ dx2, one can compute the length of the geodesic γA:

LγA ¼ RAdSarcosh

�ðr2þ=r2c − 1Þ coshðrþt0R2
AdS
Þ þ coshðrþx0R2

AdS
Þ

r2þ=r2c

�

¼ 2RAdS log

�
rc
rþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 cosh

�
rþx0
R2
AdS

�
− 2 cosh

�
rþt0
R2
AdS

�s �
þ r2þ

r2c

RAdS coshðrþt0R2
AdS
Þ

coshðrþx0R2
AdS
Þ − coshðrþt0R2

AdS
Þ þO

�
r3þ
r3c

�
: ð3:9Þ

Therefore, utilizing Eqs. (3.2) and (3.3) and identifying ϵ2 ¼ πcAdSμ=6, the right estimation of the general entanglement
entropy corrected by TT̄ deformation is

LγA

4GN
∼
RAdS

2GN
log

"
β

2πϵ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 cosh

�
2πx0
β

�
− 2 cosh

�
2πt0
β

�s #
−
RAdS

2GN

π3cAdSμ
3β2

πx0
β sinhð2πx0β Þ

coshð2πx0β Þ − coshð2πt0β Þ ; ð3:10Þ
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that is,

SðμÞA ¼ cAdS
3

log

"
β

2πϵ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 cosh

�
2πx0
β

�
− 2 cosh

�
2πt0
β

�s #
− μ

π4c2AdS
9β3

x0 sinhð2πx0β Þ
coshð2πx0β Þ − coshð2πt0β Þ : ð3:11Þ

This precisely matches the field-theoretic result (2.8).

B. Global AdS3

Consider the finite size CFT2 at zero temperature that is
dual to the global AdS3. The metric of the global AdS3 is
given by

ds2 ¼ R2
AdSð− cosh2 ρdθ2 þ dρ2 þ sinh2 ρdϕ2Þ; ð3:12Þ

where ϕ is the compact spatial direction ϕ ∼ ϕþ 2π. In the
cAdS=dCFT correspondence, the TT̄ deformed CFT lives
at the radial cutoff ρc:

cosh2 ρc ¼
3L2

2μπ3cAdS
; ð3:13Þ

where the total length of the boundary circle is L, and the
metric of the cutoff boundary reads

ds2 ¼ − coth2 ρcdθ2 þ dϕ2: ð3:14Þ

Intriguingly, the timelike interval in the boundary is indeed
changed by TT̄ deformation, which means that timelike EE
in the finite size system will be corrected by TT̄ deforma-
tion. By choosing an interval A with the timelike width

t0 ¼ Lθ0
2π and the spacelike width x0 ¼ Lϕ0

2π and performing
the following coordinates transformation:

u ¼ tanh ρ cosðθÞ exp ðiϕÞ;
v ¼ tanh ρ sinðθÞ exp ðiϕÞ;

z ¼ 1

cosh ρ
exp ðiϕÞ; ð3:15Þ

the metric (3.12) becomes

ds2 ¼ R2
AdS

z2
ðdu2 þ dv2 þ dz2Þ: ð3:16Þ

The two boundary points ∂A ¼ fðu1; v1; z1Þ; ðu2; v2; z2Þg
could be written as

u1¼ tanhρc; u2¼ tanhρc cos

�
2πx0
L

�
exp

�
i
2πt0
L

tanhρc

�
;

v1¼0; v2¼ tanhρc sin

�
2πx0
L

�
exp

�
i
2πt0
L

tanhρc

�
;

z1¼
1

coshρc
; z2¼

1

coshρc
exp

�
i
2πt0
L

tanhρc

�
; ð3:17Þ

and the distance of the geodesic γA, anchored on ∂A, could
be captured by

LγA ¼ RAdSarcosh
�
cos ð2πt0L tanh ρcÞ þ ðcosh−2ρc − 1Þ cosð2πx0L Þ

cosh−2ρc

�

¼ 2RAdS log

"
cosh ρc

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 cos

�
2πt0
L

�
− 2 cos

�
2πx0
L

�s #
þ

RAdS
cosh2ρc

πt0
L sinð2πt0L Þ

cosð2πt0L Þ − cosð2πx0L Þ

þ RAdS

cosh2ρc

cosð2πt0L Þ
cosð2πt0L Þ − cosð2πx0L Þ þO

�
1

cosh3ρc

�
ð3:18Þ

∼2RAdS log

"
cosh ρc

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 cos

�
2πt0
L

�
− 2 cos

�
2πx0
L

�s #
þ

RAdS
cosh2ρc

πt0
L sinð2πt0L Þ

cosð2πt0L Þ − cosð2πx0L Þ : ð3:19Þ

Substituting Eq. (3.13) into Eq. (3.19) and identifying ϵ2 ¼ πcμ=6, one obtains

LγA ∼ 2RAdS log

"
L
2πϵ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 cos

�
2πt0
L

�
− 2 cos

�
2πx0
L

�s #
þ 2μπ4cAdS

3L3

RAdSt0 sinð2πt0L Þ
cosð2πt0L Þ − cosð2πx0L Þ : ð3:20Þ

With the RT formula, one finds the following estimation of the general entanglement entropy:
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SðμÞA ¼ cAdS
3

log

"
L
2πϵ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 cos

�
2πt0
L

�
− 2 cos

�
2πx0
L

�s #
þ μπ4c2AdS

9L3

t0 sinð2πt0L Þ
cosð2πt0L Þ − cosð2πx0L Þ ; ð3:21Þ

which is a perfect match with the field-theoretic result
(2.13).

IV. CONCLUSIONS

The TT̄ deformation has been widely studied in recent
years, due to its integrability in 2d CFTs and its applica-
tions in holography. In a previous work, we had amazingly
found that the usual spacelike entanglement entropy alone
is not sufficient to fully mark the TT̄ deformation and that a
timelike entanglement entropy must be introduced. The
conventional spacelike entanglement entropy fails to fully
capture the entangling properties, as it remains unchanged
between the undeformed finite size CFT and the TT̄
deformed one. In this paper, we show that, complemen-
tarily, the timelike entanglement entropy could distinguish
the undeformed finite size CFT and the TT̄ deformed
one. In the context of cAdS/dCFT correspondence, we
affirm the indispensability of the timelike entanglement
entropy, as it proves crucial in differentiating between the

undeformed CFT and the TT̄ deformed CFT. Our main
results have been shown in Table II.
In this paper, our findings heavily rely on the AdS=CFT

correspondence. It is equally crucial to investigate the
timelike entanglement entropy within the framework of
the dS=CFT correspondence. Moreover, the physical inter-
pretation of the timelike entanglement entropy remains
obscure, making explicit studies on this topic of utmost
importance. Consequently, the timelike entanglement
entropy may hold significant potential in enhancing our
comprehension of black hole information and the emer-
gence of spacetime geometry from entanglement.
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