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In a previous work [Eur. Phys. J. C 80, 1117 (2020)] about the 7T deformed CFT,, from the consistency
requirement of the entanglement entropy, we found that, in addition to the usual spacelike entanglement
entropy, a timelike entanglement entropy must be introduced and treated equally. Motivated by the recent
explicit constructions of the timelike entanglement entropy and its bulk dual, we provide a comprehensive
analysis of the timelike and spacelike entanglement entropies in the 77 deformed finite size system and
finite temperature system. The results confirm our prediction that in the finite size system only the timelike
entanglement entropy receives a correction, while in the finite temperature system only the usual spacelike
entanglement entropy gets a correction. These findings affirm the necessity of a complete measure
including both spacelike and timelike entanglement entropies.
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I. INTRODUCTION

Conformal field theories (CFTs) could be deformed by
relevant, marginal, and irrelevant deformations. Relevant
and marginal deformations have been well studied. Though
the irrelevant deformations are nonrenormalizable and lead
to no consequence in the IR region, in two-dimensional
spacetime, they turn out to be generally under control and
even solvable for some particular models. One such
solvable irrelevant deformation is the TT deformation
[1-3], obtained by turning on a 77 coupling term:

()
dl
QFT __ 2 T
where the deformation parameter u has the [length]? dimen-
sionand (77T) 4 1s defined by the stress tensor of the deformed

theory. At the leading order, the deformed theory is given by
= te +u [ EX(TT),+0G2). (12
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where (TT),_o = §[TT,5 — (T4)*]. It is clear that the
Lorentz symmetry is preserved but the conformal symmetry
is broken in the 7T deformed theory.

The importance of this model is revived partially by the
proposition, given in Ref. [4], that the AdS; gravity with a
Dirichlet boundary at a finite radial distance r, is dual to
the TT deformed CFT, living on that Dirichlet boundary.
This nontrivial extension of AdS/CFT correspondence [5]
is called cutoff-AdS/TT-deformed-CFT (cAdS/dCFT)
correspondence.

In the UV region, out of the many calculable deformed
physical quantities, a particularly important one is the
entanglement entropy (EE). Until recently, the entangle-
ment entropy was defined only for spacelike intervals.
Hereinafter, we will refer the spacelike EE to the usual
standard EE. Some progress on the spacelike EE in the 7T
deformed CFT, has been achieved in recent years [6-8].

With the replica trick [9,10], in Ref. [11], the TT
deformed spacelike EE was calculated perturbatively for
the cylindrical topology. Intriguingly, the 7T correction to
the spacelike EE is dependent on different interpretations
of the identical topology. When treating the system as a
finite size one, there is no leading correction. But the finite
temperature interpretation does receive a leading correc-
tion. This indicates that the 7T correction to the spacelike
EE can be observed in the finite temperature system but is
invisible in the finite size system. This result obviously
conflicts with the fact that the entanglement entropy is a
topological quantity. Moreover, without a correction pre-
sented in the finite size system, how do we distinguish
between the undeformed CFT and the deformed CFT by the
entanglement entropy?

Published by the American Physical Society
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TABLE L. The symbol v" marks a correction to the entangle-
ment entropy caused by the 7T deformation.

Spacelike EE Timelike EE

Finite size v
Finite temperature 4

To resolve this inconsistency, in a previous paper [12], by
noticing the fact that the finite size system and the finite
temperature system share the same cylindrical topology
under exchanging ¢ <> x, we proposed that, in addition to
the spacelike EE, there should exist a timelike EE for
timelike intervals, and the timelike EE should be treated on
the same footing as the spacelike EE. We further predicted,
as shown in Table I, that the spacelike EE receives a
correction only in the 77T deformed finite temperature
system, while the timelike EE receives a correction only in
the 7T deformed finite size system.

Remarkably, such a timelike EE has been specifically
defined via analytical continuation, and the bulk dual has
been explicitly provided in Refs. [13—16] recently. Rather
than real valued as the spacelike EE, the timelike EE is a
complex-valued quantity. It is suggested that the timelike
EE needs to be correctly understood as a pseudoentropy,
which is a non-Hermitian generalization of the usual
spacelike EE. Dividing the total system into two subsys-
tems A and B, the pseudoentropy is defined by the von
Neumann entropy

SA = —Tr[TA log TA}? (13)
of the reduced transition matrix
|W><(ﬂ|}
74 = Tr . 1.4
A g [(colw) (14

Here, |y) and |@) are two different quantum states in the
total Hilbert space that is factorized as H = H, ® Hp. As
the usual EE, the pseudoentropy could also be captured by
the replica method [9,10] in the path integral formalism.
Denoting the manifold corresponding to (¢|y) as M, and
the manifold corresponding to Tr,(z4)" as M, the nth
pseudo-Rényi entropy reads

w_ o 2,
i e

where Z ,, is the partition function over the manifold M.
Taking the limit n — 1 yields the pseudoentropy

Z
Sy =1 1 L
A nl—r}}l—n Og[(ZMl)n]

(1.5)

(1.6)

Consider a two-dimensional CFT in a flat spacetime
whose time and space coordinates are (¢, x), and we now

construct a general entanglement entropy, which contains
both spacelike and timelike components. By choosing a
general interval A = (1, x1), (2, x,)] and using the replica
trick, we could obtain the general EE

‘ . . (1)

2 2
- —(t, —t
Sy = CAdS log [(Xl x) =t — 1)
In this paper, the general EE serves primarily as a
convenient formula to group timelike and spacelike EEs
together, since the spacelike and timelike EEs are just two
different limits of the general EE:

CAdS [x1=%|

S _{ Blog =+,

W=
CAds [t =t i CAdST
Y log =+ i8S,

[1 — tz,

(1.8)

X1 = Xp,

with € the UV cutoff and cpays = 3Raqs/2Gy the central
charge of CFT,. We emphasize that Eqgs. (1.6) and (1.8) are
specific to the Poincaré patch of AdS; and not a universal
formula for the general entanglement entropy. The definition
of general EE can also be extended to finite temperature CFT
and finite size CFT, respectively, as shown in Sec. I
Therefore, for a 2d CFT that is dual to the Poincaré patch
of AdSs, the timelike EE S, of a timelike interval A, whose
width is given by T = |t; — t,|, reads

S, = A jog <T> S

3 - 6 (1.9)
It is worthwhile to note that, in CFTs, a naive analytic
continuation from the spacelike EE to a timelike one is
generally incorrect [15]. According to the Ryu-Takayanagi
(RT) formula [17], Refs. [13,18] found that the complex-
valued extremal surface consists of one timelike geodesic and
two spacelike geodesics, as shown in Fig. 1. Two spacelike
geodesics connect 0A and null infinities, respectively. The
timelike geodesic connects the end points of two spacelike
geodesics on null infinities. Furthermore, the length of the
timelike geodesic is equal to the imaginary part of the
timelike EE, while the total length of two spacelike geodesics
is equal to the real part of the timelike EE. Related works on
the complex-valued extremal surface were also proposed in
Refs. [19-21].

The purpose of this paper is to confirm the predictions
made in Ref. [12]. In the cAdS/dCFT correspondence, the
general EE could be thought of as a complete measure,
which always receives a correction from the T7 deforma-
tion. The spacelike and timelike entanglement entropies
are different limits of the general entanglement entropy. As
a consistent check, we will show that the leading 7T
correction to the timelike EE exists in the finite size system
but vanishes in the finite temperature system. Utilizing the
holographic method, we will show the physical reason why
spacelike (timelike) EE receives a correction only in a finite
temperature (size) system.
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FIG. 1. Geodesics connecting to dA in the Poincaré patch of
AdS;. The red line denotes one timelike geodesic, and two green
lines denote two spacelike geodesics. The blue line denotes a
timelike interval A on the conformal boundary.

The remainder of this paper is outlined as follows. In
Sec. II, we show the leading correction of the general
entanglement entropy of the 77 deformed finite temperature
CFT, and finite size CFT),, respectively. In Sec. I1I, using the
RT formula, we show that the cutoff-AdS geodesic leads to a
precise estimation of the general entanglement entropy in 7T
deformed CFT. Section IV is devoted to our conclusions.

II. GENERAL ENTANGLEMENT ENTROPY
IN TT DEFORMED CFT

In this section, we calculate the leading corrections to
the general EE of the TT deformed CFT living on the
cylindrical manifold. After taking different limits, we
derive the corrections to the spacelike EE and timelike
EE, respectively, for the finite temperature system and finite
size system. For a TT deformed CFT on M, the general EE
of some subsystem A € M is obtained by the definition of
pseudoentropy. Substituting Eq. (1.2) into Eq. (1.6), one
could obtain the leading correction to S(A):

5S(A) = lim 55,,(A).

35,(4) = 2 | 1)y = (T

A. Finite temperature

Consider a TT deformed CFT at the inverse temperature
p. This theory lives on a cylindrical manifold M, which
has a noncompact spatial direction x € (—o0, ) and
compact Euclidean time 7 € (0,) with the periodicity

7~ 1+ f. It is well known that the two-point correlation
function in the finite temperature CFT is

(O(w, #)0(0,0)) = B—z sinh (%W) sinh (’%)] 2o

with the complex coordinate w = x + it and the scaling
dimension A. By the replica trick, the entanglement
entropy of a single interval A, which has timelike width
7o and spacelike width x(, is related to the two-point
function of the twist fields:

Zu,(A)

Zy,

= (@7(0,0)®~(xo + ig. X — i7p))

2 +i ) —i —28
— [ (L2190 g o0

with the dimension A, = %% (n — 1), the UV cutoff ¢, and

the central charge cpqg. Therefore, the entanglement
entropy obtained by Eq. (1.6) is

S(A)

p . +i . —i
= C%ds log [”262 sinh <7T(xoﬂ lTO)) sinh (—ﬂ(xoﬂ lTO))]

CAdS ﬂ 277.')(0 27TiTO
=—log |=—4/2cosh{ —— ) —2cosh .
3 0% [2”6\/ . < p > o ( p ﬂ

(2.3)

Following Ref. [11], one could also calculate (TT) ,,, and
(TT) 4, in the finite temperature CFT":

_ N CAdS 2 27[2 2
T, = (F) (72) ’

i = (22) [ (2) -2 - vie+0

+0((n- 1>2>]

(2.4)

(2.5)

with the meromorphic function

sinh2 (”(XoJriTo))
O(w) = ;

 sinh? ("Lt ginh? (20

Intuitively, Q(w) has two poles (w = 0 and w = x( + i)
that correspond to the residues

'Here, we easily generalize the purely spacelike subsystem in
Ref. [11] to the general one.
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Res(Q,w =0) = %coth <w>,

, .
o+ i) = __”coth(m).

Res(Q,w 5 3

The leading correction to S(A) caused by TT deformation

is, thus,
. nu Cads |2
1 A8
] —n/M, ( 12 >

Fﬂ” (n=1)(Q +0) + O((n - 1>2>} (2.6)

_ Cags ) > 277 =
- [, (38) o0

which, with the help of Cauchy’s residue theorem, could be
simplified as

5S(A) =

(2.7)

2
SS(A) = —27w " <CAdS>22ﬁi2
[Res(Q 0) + Res(Q,0)]

18ﬂ3
7(xo — i7o)
+coth( )}
p
7l g Xo smh(z’”‘))

9ﬁ3 COSh(Z”XO) _ COSh(zer)

Via an analytical continuation 7z = it, the entanglement
entropy in the finite temperature system, to the leading
order of u, reads

2 2rt,
SW(A) :%log l2£ﬂ€ \/2cosh <”Txo> —2cosh (%)1
4.2 xo sinh (25
Pk o =) _ (28)
96° cosh( ) = cosh( ”0)

By choosing (xg,%y) = (0,T), one obtains the timelike
entanglement entropy in the 7T deformed finite temper-
ature system:

CAds po. (=T . CAdST
S(T”)f 3 —log {Ewnh(?)}—kz c

(2.9)

Comparing the above result with the timelike EE in the
original finite temperature system [15],

c p xT . CAdST
ST_%log {%mnh(ﬂ)} +i Ags . (2.10)

itis not surprising that, in the 7T deformed finite temperature
CFT,, the timelike entanglement entropy does not receive a
correction from the 7T deformation. Moreover, it is worth-
while to note that the imaginary part of the timelike
entanglement entropy originates from the complex logarith-
mic function. For the particular geometry we are considering,
if one wishes to match the imaginary component, one should
take the principle branch which has the correct magnitude
[18]. Similarly, choosing (xo, %) = (X,0), the spacelike
entanglement entropy with 77 correction is determined:

_ CAds p . (7X
=3 log [% sinh (7> }

42
A“‘SX coth X
9p° B

which exactly agrees with the result in Ref. [11].

Sy (A)

(2.11)

B. Finite size

Now we focus on the T'T deformed field theory living on
a cylindrical manifold M,, which has a noncompact
temporal direction 7 € (—oo, 00) and a compact spatial
direction x € (0,L) with the periodicity x ~x + L. It is
important to notice that M,; and M, have the same
topology R x S'. Therefore, by setting # = L and exchang-
ing x <> 7 in Egs. (2.3) and (2.6) and performing the
analytical continuation 7 = if, one easily obtains the
entanglement entropy in the finite size system:

. CAdS L 27Tt0 277:)60
=3 log |:2”€\/2COS 7 2 cos 2

2xty )

SW(A)

4.2
T Chgs to sin(<2

OL® cos(*h) — cos(z’zx") '

+u (2.12)

Setting (xg,y) = (0, T'), the timelike entanglement entropy
indeed receives a correction from the 77 deformation:

42
( ) o C AdS L . ﬂ'T AdS 77,'T
S (A) leog {%sm<f ~H =513 T cot T
4 AT (2.13)
6
Meanwhile, as expected, the spacelike entanglement

entropy does not receive a correction:

_ CAds lo L sin a2
3 £ e L)\

In the above field-theoretic results, the leading 77T
correction to the timelike EE exists in finite size systems

s¥(A) (2.14)
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TABLE II.
(temperature) system.

The leading correction to the spacelike (timelike) EE caused by the 7T deformation in a finite size

EE of a single interval

Leading 77T correction

.. . . o, __ Cads L oin(al iCadsT I
Finite size Timelike: Sy = “4Slog (£sin(51)) + <482 P — 9L As T cot(=L)
Spacelike: Sy = “4log (£ sin(%Y)) 88y =0
Finite temperature Timelike: Sy = 48 log( sinh ”T) + HAdsﬂ 68y =0
Tean __ Cad /} zX
Spacelike: Sy = A3‘S log (£sinh Z%) 5y = —u 9/;{1; XCOth(er)

but vanishes in finite temperature systems, while the
leading TT correction to the spacelike EE exhibits the
opposite behavior, as shown in Table II, which is in perfect
agreement with our prediction in Ref. [12]. Meanwhile, the
leading TT correction to the general entanglement entropy
always exists in both finite size systems and finite temper-
ature systems. Therefore, the general entanglement entropy
is the right measure to mark the deformations.

ITII. GRAVITY DUALS

It is illuminating to study the spacelike (timelike) EE and
its corresponding gravity dual in the context of cAdS
(dCFT) correspondence. In this section, we will demon-
strate that the distance of the geodesic in the cutoff AdS
precisely matches the general entanglement entropy in the
TT deformed CFT,. We will compute only the geodesic
length between two boundary points, which does not prove
the existence of the geometric bulk dual of the general EE.

]

A

FIG. 2. The figure illustrates a Euclidean cylindrical manifold
with a black cylinder representing the original boundary and a
violet cylinder representing the cutoff boundary. Two red lines
denote an interval A in the compact direction and an interval 5 in
the noncompact direction. Two orange lines indicate their
corresponding intervals in the cutoff boundary.

However, the bulk dual of the timelike EE has been
explicitly studied in Ref. [18]. Before that, we first provide
a physical interpretation of our previous conjecture by
introducing a Euclidean cylindrical manifold, as depicted in
Fig. 2, which features one compact and one noncompact
direction. The compact direction is always described by a
native parameter, either the inverse temperature $ in the
finite temperature system or the total length L in the finite
size system. As a result, the interval A in the compact
direction is independent of the cutoff boundary and the
geodesic anchored on 0.4 remains unchanged. The interval
A in the compact direction is independent of the choice of
the cutoff boundary, and the geodesic anchored on d.A will
not change. In contrast, the interval 5 in the noncompact
direction will vary with the cutoff boundary, which leads to
a change in the geodesic anchored on 0B. Therefore, in the
finite temperature system, the temporal direction is com-
pact and its timelike EE remains unaffected by the TT
deformation; in the finite size system, the spatial direction
is compact and its spacelike EE remains unchanged under
the 7T deformation.

A. Banados-Teitelboim-Zanelli (BTZ) black hole
Consider a BTZ black hole that is described by
2_ 2 2 2

— R
e LS dr? + g —d,
r’ AdS

ds? =

(3.1)

2
RAdS

where r_ is the radius of event horizon and ¢ is the compact
temporal direction ¢ ~ ¢ 4 if. It is well known that the finite
temperature CFT, is dual to a BTZ black hole with the
same temperature:

pl=—t

27R3gs

(3.2)

In the cAdS/dCFT correspondence, the 7T deformed CFT
at finite temperature is dual to a BTZ black hole with the
radial cutoff r,:

6R%
2 = —AdS (3.3)
TCAdSH
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Taking r = r, and multiplying a factor R%,q/(r> — r%) in
the BTZ black hole metric, the metric of the cutoff
boundary, where the TT deformed CFT lives, reads

dx?

1—r3/r2

Notice that the timelike interval on the boundary keeps
invariant, because the compact temporal direction should
be physical. This is the reason that the timelike EE does not
receive a correction from the 77T deformation. To see this,
for an interval A, with the timelike width ¢, and the
spacelike width x,, in the TT deformed CFT, we calculate
the general entanglement entropy with the RT formula.
Performing the following coordinates transformation:

r’ ryt ryx
u-\/l——‘Lcosh( i >exp( s ),
r’ Rias ;

ds? = —d® + (3.4)

Two boundary points
could be written as

the metric (3.1) becomes

2

R
ds® = ;‘—;S (du?® — dv® + dzZ?). (3.6)

0A = {(uy,v1,21), (U, v2,22)}

e 2
"+ rilo ' Xo [, Ty
¢ R )P\ Rz el
re Ripas AdS ¢

2
R AdS

2

exp riXg e
2 K

Ripas re

Rias
2 +
(! O (22 ey N
v = l—r—;rsmh(rz+ >exp<r2+x>, <1 r, 2 ’”cexp(R/Z\ds r+/r> (3.7)
r Rias Rias
7= T+ exp< r2+x > ’ (3.5)  Therefore, one can determine the length of the geodesic y,
r Rias to be
|
— 2 _ _ _ 2
Ly, = Ragsarcosh [1 G L (”22 nf+ (G2 =2 }
21322
(rX/r2 =1) cosh(r+ m
= Rgsarcosh [ }
r+/rc
X0 Ty Xg
¢ 2 21; sinh( 3 )
= 2R s log [i 200sh<r2x0> - 2cosh<r;r 0)} r+ — Ra —
r. Rigs Rigs r cosh( L ) cosh( *ds)
=l R g5 cosh( ;%\Z‘;

) ;
2 Iy Xo ‘ rily +0(43—>
r; COSh(Rids) — COSh(Rids) r

(3.8)

Notice that the first term in the last line should not be thought of a leading correction caused by TT flow. To see this point,

replacing the metric of the cutoff boundary with ds?> = —dt*> + dx?, one can compute the length of the geodesic y,:
(ri/r2=1) cosh(”to) + cosh(%5™)
L, =R Adsarcosh[ A }
r +/ re

rity
rot r2 2 ) P
= 2R 4510 2 cosh —2cosh | =2 +—= + —|—0<—+).
Ads 108 [ Fy \/ <RAdS> <R/2xds)] e COSh(uxO) - COSh(WO) re
AdS

RAdS COSh(

(3.9)

Therefore, utilizing Eqgs. (3.2) and (3.3) and identifying € = mcaqgt/6, the right estimation of the general entanglement

entropy corrected by 77 deformation is

L R 2 2t R 3 X0 ¢inh 27xg
Zra  PAdS log A 2 005h< ﬂxO) -2 cosh< z 0) _ads @ cAgSﬂ f ( ) 5 (3.10)
4Gy 2Gy 2me p p 2Gy  3f° cosh(Z2 =) - cosh( ”0)
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that is,

p

=

This precisely matches the field-theoretic result (2.8).

S(l‘) —

CAds1
) ——1lo

3

B. Global AdS;

Consider the finite size CFT, at zero temperature that is
dual to the global AdS;. The metric of the global AdS; is
given by
ds* = R3 js(—cosh? pd®? + dp? + sinh? pd¢?®),  (3.12)
where ¢ is the compact spatial direction ¢ ~ ¢ + 2z. In the

cAdS/dCFT correspondence, the TT deformed CFT lives
at the radial cutoff p,.:

3L?

cosh? p. = ——=——,
2um’ e pgs

(3.13)

where the total length of the boundary circle is L, and the
metric of the cutoff boundary reads

ds®> = —coth? p,d6&* + d¢p*. (3.14)
Intriguingly, the timelike interval in the boundary is indeed
changed by TT deformation, which means that timelike EE
in the finite size system will be corrected by 7T deforma-

tion. By choosing an interval A with the timelike width
|

\/2cosh<%) —2005h<%>] —u e

Xo smh(2’”‘°)

9p° cosh(Q”x") - cosh(Q’”")

7T CadS

(3.11)

L90 Ll/’n

to = 52 and the spacelike width x, =
the followmg coordinates transformatlon

and performing

u = tanh p cos (@) exp (i),
v = tanh p sin(0) exp (i¢),

p— 1 P’ 3-15
oy O (i) (3.15)
the metric (3.12) becomes
R2
ds? = % (du® + dv* + d7?). (3.16)

The two boundary points 0A = {(u;, v,21), (Ua, v2,25)}
could be written as

27X 27t
u; =tanhp., u,=tanhp,cos <%> exp <i%tanhpc> ,

2 27t
v1 =0, v,=tanhp,sin <%) exp <i%tanhpc> ,

1 1 2nt
exp <i zotanhpL.),

coshp,’ ‘
and the distance of the geodesic y,, anchored on dA, could
be captured by

7= (3.17)

B coshp,.

L

= RAdSarcosh[

cos (#tanh p,.) + (cosh~2p, — 1) cos(22)
cosh™2p,.

_Rpgs 7wt sm(zm“)

2rt 27x coshZp, L L
= 2R g5 log [coshp,.4 /2 cos —2co +
pos 8 [ ! \/ ( L ) ( L )] cos(22) - cos(%52)
27t
R cos(=2
A‘;S 27t ( £ ) 27X, o 3 (318)
cosh“p, cos( 0) — cos( 0) cosh’p,
Rags 7ty 2nty
27n‘0> (27[)60) coshp. L sin(~72)
~2Rp45log [coshp.y/2cos| — ) —2cos + 3.19
Ads 108 [ P \/ < L L cos(2’”") —cos(z’””) ( )
Substituting Eq. (3.13) into Eq. (3.19) and identifying € = zcu/6, one obtains
L 27Tt0 271')60 2/'”1:4CAdS RAdS to sin(zm")
~2Rp4s51 2cos|— ) —2 — . 3.20
Ads 108 lz \/ co ( L ) COS( L >‘| + 373 COS(ZMO) 008(277)60) ( )

With the RT formula, one finds the following estimation of the general entanglement entropy:
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(v) _ CAdS
Sy =22
A 3 Y

which is a perfect match with the field-theoretic result
(2.13).

IV. CONCLUSIONS

The TT deformation has been widely studied in recent
years, due to its integrability in 2d CFTs and its applica-
tions in holography. In a previous work, we had amazingly
found that the usual spacelike entanglement entropy alone
is not sufficient to fully mark the 7T deformation and that a
timelike entanglement entropy must be introduced. The
conventional spacelike entanglement entropy fails to fully
capture the entangling properties, as it remains unchanged
between the undeformed finite size CFT and the TT
deformed one. In this paper, we show that, complemen-
tarily, the timelike entanglement entropy could distinguish
the undeformed finite size CFT and the TT deformed
one. In the context of cAdS/dCFT correspondence, we
affirm the indispensability of the timelike entanglement
entropy, as it proves crucial in differentiating between the

L 2rt 27X
—/2 — -2
g lZﬂe\/ cos< i3 ) cos( i3 )] +

4.2 s (2mty
UT* oy to sin( 7 )

OL*  cos(%h) — cos(Z%)’

(3.21)

[

undeformed CFT and the T7 deformed CFT. Our main
results have been shown in Table II.

In this paper, our findings heavily rely on the AdS/CFT
correspondence. It is equally crucial to investigate the
timelike entanglement entropy within the framework of
the dS/CFT correspondence. Moreover, the physical inter-
pretation of the timelike entanglement entropy remains
obscure, making explicit studies on this topic of utmost
importance. Consequently, the timelike entanglement
entropy may hold significant potential in enhancing our
comprehension of black hole information and the emer-
gence of spacetime geometry from entanglement.
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