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The correct implementation of the loop quantum gravity to the early homogeneous Universe has been the
subject of a long debate in the literature because the SUð2Þ symmetry cannot be properly retained. The role
of this symmetry is expressed by the Gauss constraint. Here, a nonvanishing Gauss constraint is found.
However, we show that using suitable variables, it can be recast into three Abelian constraints, justifying the
absence of such a symmetry in loop quantum cosmology.
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I. INTRODUCTION

The most promising proposal to quantize the gravita-
tional field is, until now, the so-called loop quantum gravity
[1–3]. This claim is based on the idea that such a proposal,
starting from a classical formulation of General Relativity,
which is (on shell) equivalent to the Einstein-Hilbert
formulation [4–8], arrives, via the introduction of the
SUð2Þ symmetry, to describe geometrical operators, like
areas and volumes of space, as associated to discrete
spectrum [9]. As a consequence, the implementation of
loop quantum gravity to the cosmological setting led to a
big bounce for the primordial Universe [10–12], due to an
anomaly of the classical limit.
The reliability of the so-called loop quantum cosmology

has been debated over the years [13–15], because the
symmetry restriction induced by the homogeneity con-
straint prevents the preservation of the SUð2Þ symmetry in
the classical and quantum formulation. Actually, the its-self
implementation of the dynamics for homogeneous models
is a step forward in the general formulation, for which a
reliable implementation of the regularized scalar con-
straint [16,17] is not viable [18].
An interesting attempt to restore a gauge SUð2Þ sym-

metry in cosmology, along with the associated Gauss
constraint, has been formulated in Refs. [19–22]. There,
a kinematical Hilbert space has been constructed by
emulating the basic formulation in loop quantum gravity.
The idea is that the homogeneity of the space still allows for
a local time-dependent Lorentz rotation of the triad vectors,
so restoring a nonidentically vanishing Gauss constraint as
for the original formulation of the Ashtekar School [23].
The present analysis starts from the same theoretical

setup of a local time-dependent gauge transformation of the

triad, but, investigating in detail the relation of the
Ashtekar-Barbero-Immirzi connection and conjugate
momentum to the standard Arnowitt-Deser-Misner
(ADM)-Hamiltonian variables, it arrives at a rather differ-
ent conclusion: the resulting picture is closer to the
formulation of the Ashtekar School than to real “spin-
network” construction [1]. When we express the SUð2Þ
gauge connection in terms of the metric variables (three
scale factors, three Euler angles and, eventually three gauge
angles), a local expansion of the involved functions outlines
a linear dependence of the Gauss constraint from the three
momenta variables, associated to the gauge angles (i.e.,
those responsible for the local Lorentz rotation). This result
suggests pursuing, ab initio a Holst formulation [6], by
expressing the SUð2Þ connection in terms of the metric
variables. This calculus strategy provides the net and
relevant issue of a linear relationship between the three
Gauss constraint components and the three null momenta
of the gauge angles: the Gauss constraint validity is ensured
by the simultaneous vanishing behavior of the three
momenta and vice versa.
Particularly, we demonstrate that the Gauss constraints

can be suitably restated into three Abelian constraints,
simply stating the gauge nature of the three angles which
rotates the dreibein. The explicit expression of the matrix
linking the two sets of constraints is provided here.
Finally, the most important consequence of the present

study is that the physical kinematical states of the theory
cannot depend on the three gauge angles (simply because in
a canonical formulation they are annihilated by the three
null momenta) so that the quantization of the model reduces
to the analysis provided in Ref. [24] on the nondiagonal
Bianchi models. In other words, the present study allows
validation of the original idea that the space of the almost-
periodic functions is the suitable approach to implement a
canonical loop quantum gravity in cosmology. Even if we
start with all the nine nonzero triad components, three of
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them are actually gauge angles, leading to a Gauss
constraint that is reducible to three Abelian vanishing
momenta. The quantization coincides with that one of a
nondiagonal Bianchi Universe, which in Ref. [24] was
associated with a diagonal representation of the fluxes, in
agreement with the analysis in Refs. [25–27].

II. ROTATIONS AS GAUGE TRANSFORMATIONS

We recall the classical description of Ashtekar varia-
bles in a homogeneous Universe. In a homogeneous
model, the space-time is a manifold M ≅ R × Σ, where
Σ is a three-dimensional Riemannian homogeneous
space. We require that the isometry group S of Σ acts
transitively and freely [22].
On Σ exists a basis of left-invariant one-forms ωI (i.e.

F�ωI ¼ ωI, ∀ F ∈ S) such that

dωI þ 1

2
fIJKω

J ∧ ωK ¼ 0: ð1Þ

The dual vector fields ξI [defined by ωIðξJÞ ¼ δIJ] are the
generators of the Lie algebra s of S

½ξI; ξJ� ¼ fKIJξK; ð2Þ

thus, fKIJ are the structure constants.
The induced Riemannian metric h on Σ is left invariant

due to the homogeneous hypothesis, hence, it can be
written in terms of ωI

h ¼ ηIJω
I ⊗ ωJ; ð3Þ

where ηIJ is a symmetric matrix constant on Σ.
A homogeneous connection A on Σ is determined by a

linear map ϕ∶ s → suð2Þ and it is written as A ¼ ϕ ∘ θMC,
where θMC ¼ ξI ⊗ ωI is the Maurer-Cartan form [19].
Using a coordinate system ðt; xiÞ adapted to the space-

time decomposition, the components of the left-invariant
one-forms ωI

i and the dual vector fields ξiI depend only
on xi, while the other quantities that are constant on Σ are
functions on t. Thus, the Ashtekar variables read [25]

Aa
i ðt; xÞ ¼ ϕa

I ðtÞωI
iðxÞ;

Ei
aðt; xÞ ¼ jdetðωJ

j ðxÞÞjpI
aðtÞξiIðxÞ: ð4Þ

We can also characterize the space-time metric g via its
component:

g00 ¼ −N2 þ NiNjhij; g0i ¼ Njhij; gij ¼ hij;

where N and Ni are the lapse function and the shift vector,
respectively, and h is the induced Riemannian metric
hij ¼ ηIJðtÞωI

iðxÞωJ
j ðxÞ. In a homogeneous model, the

lapse function is a function of time only N ¼ NðtÞ, while
the shift vector can be factorized as Ni ¼ NIðtÞξiIðxÞ.
Now, we are interested in the gauge freedom of the

Ashtekar variables. The gauge transformation for the densi-
tized triads is known pI

a ↦ pI
bO

b
a, with O ∈ SOð3Þ [22].

Due to the homogeneity hypothesis, pI
a only depends

on time and this property must hold also after the gauge
transformation. Hence, although O can be arbitrary and
does not contribute in any physical sense, it must depend on
time only too.
Moreover, the gauge transformation can be seen as a

rotation of the dreibein eia ↦ Ob
aeib. This interpretation

allows us to find the associated gauge transformation of the
connection variables ϕa

I .
Consider the usual expression of the Ashtekar connec-

tion Aa
i ¼ Γa

i þ γKa
i where γ is the Barbero-Immirzi

parameter. We can treat the two terms separately. The
second term Ka

i ¼ Kijeaj contains the external curvature
Kij which is a geometrical quantity and is not affected by
gauge transformations, while eja is a dreibein vector, so it
rotates under a gauge transformation. It is easy to check that
the rotation matrix is the inverse of the transformation
matrix that acts on eia because δij ¼ eiaeaj must be invariant.
Then, Kijeja ↦ KijðO−1Þabejb.
Moreover, also the spin part transforms as Γa

i ↦
ðO−1ÞabΓb

i . Thus, under a gauge transformation, a matrix
rotation appears:

Aa
i ¼ ϕa

Iω
I
i ↦ ðO−1ÞabAb

i ¼ ðO−1Þabϕb
Iω

I
i : ð5Þ

Therefore, on the phase space ðϕa
I ; p

J
bÞ the gauge trans-

formation acts as

pI
a ↦ pI

bO
b
a; ϕa

I ↦ ðOtÞabϕb
I : ð6Þ

We can check that such a transformation leaves the Gauss
constraint weakly vanishing. In fact, the transformation of
the Gauss constraint Ga ¼ ϵab

cϕb
I p

I
c reads

Ga ↦ ϵab
cðOtÞbdOe

cϕ
d
I p

I
e ¼ ϵbd

eOb
aϕ

d
I p

I
e ¼Ob

aGb ≈ 0: ð7Þ

Now, we look for a description in metric variables like
the ones in Ref. [24]. The new phase space of the metric
variables, composed of the three scale factors a, b, c and
the three Euler angles of the physics rotation θ;ψ ;φ, needs
to include variables of the gauge freedom.
Since O ∈ SOð3Þ, it can be written in terms of Euler

angles

O ¼ expðαj3Þ expðβj2Þ expðγj3Þ; ð8Þ

where ji are the real matrix generators of SOð3Þ. Then, the
three gauge variables are these three Euler angles ðα; β; γÞ,
they are seen as a chart on SOð3Þ, α; γ ∈ ð0; 2πÞ; β ∈ ð0; πÞ.
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Hence, the new configuration coordinates are fa; b; c; θ;ψ ;
φ; α; β; γg.
In order to construct a theory in which the Gauss

constraint does not vanish identically and in which the
role of the cosmological quantities is made explicit, the
assumption of phase space with configuration variables
fa; b; c; θ;ψ ;φ;α; β; γg seems to be a reasonable solution.
The idea is to impose a canonical transformation between
the two phase spaces such that the conjugate momenta
to the gauge variables are included in the expression of the
Ashtekar variables. These momenta will play a role in
the Gauss constraint and they can be later removed from the
theory to recover the expressions in Ref. [24].

III. EXAMINATION OF THE BIANCHI I MODEL

For the nondiagonal Bianchi I model, we have a simple
expression of Ashtekar variables in terms of metric vari-
ables which allows us to do some computations. We want
to use the connection and fluxes expression in Eqs. (39)
and (42) from Ref. [24] properly gauge rotated

ϕa
I ¼

γ

2Nab
ΛJ
bη̇JIðOtÞab; ð9Þ

pI
a ¼ abacΛI

dO
d
a with ϵabc ¼ 1; ð10Þ

where Λ is the physical rotation, and a1, a2, a3 are the scale
factors.
A direct computation shows that, despite the gauge

freedom, the Gauss constraint identically vanishes (as well
as in Ref. [28]). Thus, the gauge momenta play a funda-
mental role in a nonvanishing Gauss constraint description.
Now, we want to analyze this aspect.

A. The Lie condition approach

Consider the two phase spaces: the metric one ða; b; c; θ;
ψ ;φ; α; β; γ; pa; pb; pc; pθ; pψ ; pφ; pα; pβ; pγÞ, and the
connection-fluxes one ðϕa

I ; p
I
aÞ. We want to impose a

canonical transformation between them starting from the
expression of pI

a in Eq. (10) to find a formulation of the
connection which includes a dependence on the gauge
momenta. We expect that the gauge momenta can give a
nontrivial contribution to the Gauss constraint.
For simplicity, we switch coordinates and momenta of

ðϕa
I ; p

I
aÞ and we implement a canonical transformation via

the Lie condition with a null total differential

ϕa
I dp

I
a − pidqi ¼

�
ϕa
I
∂pI

a

∂qi
− pi

�
dqi ¼ 0: ð11Þ

Now, we want to find ϕa
I . It is useful to introduce the matrix

M defined asM ¼ ∂pI
a

∂qi
, seen as a 9 × 9 matrix, such that the

term ϕa
I dp

I
a can be written as a product “matrix per vector”

ϕa
I
∂pI

a

∂qi
¼

0
BBBBBBBB@

∂p1
1

∂a
∂p2

1

∂a � � � ∂p3
3

∂a

∂p1
1

∂b
∂p2

1

∂b � � � ∂p3
3

∂b

..

. ..
. . .

. ..
.

∂p1
1

∂γ
∂p2

1

∂γ � � � ∂p3
3

∂γ

1
CCCCCCCCA

0
BBBBB@

ϕ1
1

ϕ1
2

..

.

ϕ3
3

1
CCCCCA
: ð12Þ

In such a way, the Lie condition can be written as p⃗ ¼ Mϕ⃗,
where p⃗ ¼ ðpa; pb; pc; pθ; pψ ; pφ; pα; pβ; pγÞ is the vector
of the momenta, while ϕ⃗ is the vector of the ϕa

I , ordered as
in Eq. (12).
Using the expression of pI

a in terms of metric variables,
M can be written explicitly, but the expression is too long
to write it here. However, the computation of the inverse is
too difficult, and also computing program such as Wolfram
Mathematica does not give a solution. At least, the
determinant does not vanish identically and the matrix is
invertible in an open subset of the configuration space.
The complexity of the matrix is due to the abundant

presence of trigonometric functions. Consequently, to do
an approximate analysis, we need to fix the values of the
angles such that the matrix is invertible. These values
are π=2 for all the angles. At this point, the matrix M is
invertible, and ϕa

I can be written in terms of the gauge
momenta. From which, a nonidentically vanishing Gauss
constraint is provided

G ¼ ðpβ; pα; pγÞ: ð13Þ

We can check that, imposing the constraint (i.e. putting the
gauge momenta to zero), we recover the same expression
of ϕa

I as in Eq. (9).
Since the nonvanishing condition of the determinant is

an open condition, there exists an open neighborhood
of π=2 in which the matrix is invertible. So, now we can
do an expansion of M at the first order with respect to a
small parameter ε, and, for ε small enough, we obtain an
invertible matrix. We need a small parameter for each
angle: the small parameter that affects the θ angle is defined
as εθ ¼ θ − π=2, and similarly for all the other angles.
From this, we compute M at the first order. The inverse of
the matrix can be found as well as the connection. In the
first-order approximation, the Gauss constraint has a
simple expression

G ≃ ðpβ þ εγpα; pα þ εβpγ − εγpβ; pγÞ: ð14Þ

It trivial to check that, for ε → 0, one finds the quantities
computed at π=2.
A nonvanishing Gauss constraint is found, this means

that a formulation in terms of the gauge variables is the
right way forward. However, this result is not satisfying.
The expression for the Gauss constraint is an approximated

IS THE DIAGONAL CASE A GENERAL PICTURE FOR LOOP … PHYS. REV. D 108, 046003 (2023)

046003-3



form around an arbitrary point in which the limit does
not bring back to any well-known theory. Moreover, no
explanation is given about the identically vanishing Gauss
constraint that emerges in the previous formulations.
Hence, a deeper analysis is required.

B. The Lagrangian approach

We want to investigate what happens to the Hamiltonian
formulation starting from the Hols action [3,6]

SH ¼ c3

8πGγ

Z
dt

�
pI
aϕ̇

a
I þ λaGa − NIVI −

N
2
γS

�
; ð15Þ

and considering the connection and the dreibein with
respect to the metric variables (9), (10). Here, λa are
Lagrange multipliers and

Ga ¼ ϵab
cϕb

I p
I
c; VI ¼ Gbϕ

b
I ;

S ¼ −
1

γ2jdetðpK
c Þj

ðpI
aϕ

a
I p

J
bϕ

b
J − pI

aϕ
a
Jp

J
bϕ

b
I Þ;

are the Gauss, diffeomorphism and scalar constraints,
respectively.
We recall that ϕa

I is computed from the usual expression
of the connection Aa

i ¼ Γa
i þ γKa

i , while pI
a has the

geometrical meaning as the homogeneous part of the
dreibein vectors. We want the Holst action to be explicit
in terms of metric variables, the calculation of the single
terms provides that the Gauss constraint vanishes Ga ¼ 0,
and so the diffeomorphism constraint Vi ¼ 0, while the
scalar constraint has the same expression as in Eq. (46)
from Ref. [24].
As we expect, the gauge freedom does not appear in the

Lagrangian, and it is invariant under gauge transformation.
Hence, the momenta can be computed and the gauge
momenta are null (i.e. pα ¼ 0, pβ ¼ 0, pγ ¼ 0), while
the others are the same presented in Ref. [24]. We can now
perform the Legendre transformation with Lagrangian
multipliers λi to find the Hamiltonian

H ¼ c3

8πG

�
λ1pα þ λ2pβ þ λ3pγ −

N
2
S
�
: ð16Þ

Thus, the theory of the nondiagonal Bianchi I model in
metric variables is a constrained Hamiltonian theory with
phase space ða; b; c; θ;ψ ;φ; α; β; γ; pa; pb; pc; pθ; pψ ; pφ;
pα; pβ; pγÞ with four constraints

pα ≈ 0; pβ ≈ 0; pγ ≈ 0; S ≈ 0 ð17Þ

and with a Hamiltonian which is a linear combination of
such constraints.

Notice that the same theory written in terms of con-
nection and dreibein ðϕa

I ; p
J
bÞ has four constraints given by

Ga ≈ 0 and S ≈ 0.
The scalar constraint is the same in both formulations in

the sense that it is possible to switch from one to the other
using transformation (9). This property does not hold for
the Gauss constraint, which also in gauge variables van-
ishes. However, it is replaced by the three constraints on the
pure gauge momenta.
We interpret this result as follows: the Gauss constraint

after the canonical transformation becomes the gauge
momenta constraint. In such a way, the dependence on
the gauge momenta we introduce in the Ashtekar variables
vanishes on the constraints’ hypersurface, recovering the
usual description.

IV. EQUIVALENCE BETWEEN GAUSS
CONSTRAINT AND PURE GAUGE MOMENTA

In this section, we want to find an explicit expression
for the Gauss constraint. Previously, we showed that there
exists a relation between the Gauss constraint and the
momenta constraint, which we interpreted as

Ga ¼ 0 ⇔ pg ¼ 0 ð18Þ

where g ∈ fα; β; γg.
Such a relation is satisfied if the Gauss constraint is

linearly dependent on pure gauge momenta pg only. For
simplicity, it will be our ansatz. Thus, we enunciate the
following conjecture:
Conjecture 1. The Gauss constraint depends on the

gauge momenta via a 3 × 3 matrix Lag:

Ga ¼ Lagpg; ð19Þ

with a is SUð2Þ internal index and g ∈ fα; β; γg.
Using this ansatz, we can explicitly compute the coef-

ficients of the linear combination without using M, nor
an explicit expression of ϕa

I . Let p
I
a as in Eq. (10) and

the gauge momenta pg given by the transformation that
satisfies the Lie condition (11).
With this assumption, the Gauss constraint reads

Ga ¼ ϵab
cϕb

I p
I
c ¼ ϕb

I ðpphÞIdϵabcOd
c

¼ Lagpg ¼ Lagϕ
b
I
∂pI

b

∂qg
¼ ϕb

I ðpphÞIdLag
∂Od

b

∂qg
;

where ðpphÞId is the physical part of the dreibein (i.e. the one
not gauge rotated). From this, we can derive the following
equation:

ϵab
c ¼ LagðOtÞcd

∂Od
b

∂qg
: ð20Þ
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This equation is enough to fully characterize the matrix
Lag, in fact, the rhs has the same skew-symmetric property
as the Levi-Civita symbol. Therefore, we obtain nine linear
independent equations. The equations’ system has nine
equations in nine variables and the associated determinant
is sin3 β, so, it is nondegenerate. Hence, it exists one and
only one solution. The solution Lag can be found easily and
it reads

Lag ¼

0
B@

− csc β cos γ sin γ cot β cos γ

csc β sin γ cos γ − cot β sin γ

0 0 1

1
CA: ð21Þ

Finally, the Gauss constraint can be written explicitly in
terms of gauge momenta

Ga ¼

0
B@

− csc β cos γpα þ sin γpβ þ cot β cos γpγ

csc β sin γpα þ cos γpβ − cot β sin γpγ

pγ

1
CA: ð22Þ

The conjecture enables us to find the explicit dependence
of the Gauss constraint on the gauge momenta. The matrix of
coefficients is invertible since its determinant is detðLagÞ ¼
− csc β, then the equivalence condition (18) holds.
This explains the vanishing Gauss constraint in our

initial approach, and in general, in the similar approaches
of loop quantum cosmology. In fact, the connection
Aa
i ¼ Γa

i þ γKa
i is reduced and, when it is described in

terms of metric variables, it results in a function defined on
the constraints’ hypersurface, as well as the dreibein, and
so, the linear dependence (19) implies that the Gauss
constraint computed from such a connection must vanish.

A. Relation with suð2Þ
The Gauss constraint is deeply linked with the gauge

group SUð2Þ and, in particular, with its Lie algebra suð2Þ.
We want to explore this link in view of the previous results.
The expression in (22) has no evident SUð2Þ symmetry.

However, via a change of coordinates, a contribution of
suð2Þ appears in the expression.
Consider the matrix O of the gauge transformation

parametrized by three angles α1, α2, α3 such that O ¼
exp ðαijiÞ ¼ exp ½αðnijiÞ�, where ji are the generators of
SUð2Þ, ni ¼ αi=α and α ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðα1Þ2 þ ðα2Þ2 þ ðα3Þ2

p
.

Imposing Eq. (20) we find a new set of equations, they
admit only one solution, and the matrix Lag can be found.
An expansion for small α of Lag give us

Lag ≃

0
B@

1 0 0

0 1 0

0 0 1

1
CAþ 1

2

0
B@

0 α3 −α2
−α3 0 α1

α2 −α1 0

1
CAþOðα2Þ:

ð23Þ

It is interesting to notice that the first-order term is a skew-
symmetric 3 × 3 matrix, so it is an element of the Lie
algebra soð3Þ ≃ suð2Þ.
There is another and more profound link between the

Gauss constraint and the SUð2Þ group that will be exam-
ined in the next section.

V. GAUSS CONSTRAINT AS THE GENERATOR
OF GAUGE TRANSFORMATIONS

It is well known that the Gauss constraint Ga is the
generator of the gauge transformations on the phase space
ðϕa

I ; p
J
bÞ [1,2,19,24]. This feature should hold in the new

variables. Therefore, we want to compute the canonical
Poisson brackets with respect to fα; β; γ; pα; pβ; pγg of the
Gauss constraint in (22). We obtain

fGa;Gbg ¼ −ϵabcGc: ð24Þ

The sign is not relevant. We expect that this formulation
comes out from the canonical transformation in (11) in
which the connection and dreibein are switched, then a sign
in the Poisson bracket appears.
Hence, the Gauss constraint respects the suð2Þ-Lie

algebra and generates the SUð2Þ gauge transformations.
Furthermore, it is linear in gauge momenta, so the hyper-
surface defined by Ga ¼ 0 is also described by pα ¼ pβ ¼
pγ ¼ 0. Thus, the Gauss constraint is equivalent to three
constraints on the momenta. Consequently, the generators
of the gauge transformation can be decomposed into three
generators which commute each other

fpα; pβg ¼ fpα; pγg ¼ fpβ; pγg ¼ 0: ð25Þ

This decomposition is particularly useful in simplifying
the implementation of the Gauss constraint in a quantum
theory.

A. Quantum Gauss constraint

In Ref. [24] is shown that the quantization of the
nondiagonal Bianchi I model can be provided in diagonal
fluxes and angles variables. It is reasonable that a similar
quantization can be provided for the other nondiagonal
models, given a loop quantization of homogeneous
Universes. However, to complete the description in the
loop framework, we need to include the gauge trans-
formations and a nonvanishing Gauss constraint.
Supposing that we have a quantization like in the non-

diagonal Bianchi I case, it is enough to add the gauge
variables to the phase space of the diagonal fluxes and
angles. These gauge variables will be the Euler angles of the
gauge rotation and they will be quantized independently (as
the physical angles [24]) via the Schrödinger picture. Thus,
the wave functions are Ψðp1; p2; p3; θ1; θ2; θ3; α; β; γÞ,
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where p1, p2, p3 are the diagonal fluxes and θ1, θ2, θ3 are
the physical angles.
Moreover, the Hamiltonian (such as the Lagrangian) is

independent of the gauge variables, hence the wave
function factorizes Ψ ¼ ϕðα; β; γÞΦðp1; p2; p3; θ1; θ2; θ3Þ.
On these functions, the action on the Gauss constraint is

essentially a first-order derivative, so the imposition of the
weak constraint ĜaΨ ¼ 0 is equivalent to

−iℏ
∂Ψ
∂α

¼ 0; −iℏ
∂Ψ
∂β

¼ 0; −iℏ
∂Ψ
∂γ

¼ 0: ð26Þ

The solution of this set of equations is trivial: ϕðα; β; γÞ ¼
const. Thus, the Gauss constraint in this Hilbert space
imposes the independence of the wave function on the
gauge angles. Therefore, the kinematical Hilbert space for
the nondiagonal Bianchi I model presented in Ref. [24]
remains the same also including the gauge transformations.

VI. CONCLUDING REMARK

The analysis above deepens the idea proposed in
Ref. [22], that a nonvanishing Gauss constraint can be
restored also in the minisuperspace of a Bianchi model, as
soon as the most general for the Ashtekar-Barbero-Immirzi
connection is considered.
Actually, we interpret this general formulation in terms

of the ADM metric variables. The introduction of gauge
variables is responsible for restoring the SUð2Þ symmetry
and ensuring that the corresponding connection has to
verify a Gauss constraint. However, the main result we
obtained is that the components of such a Gauss constraint
are linearly dependent on the three momenta corresponding
to the gauge angles. Thus, in terms of metric variables, the

SUð2Þ symmetry reduces to the vanishing behavior of
these three momenta, i.e. it is, de facto reduced to a set of
Abelian constraints.
We also clarified how the noncommutative character of

the Gauss constraint components is restored via the trans-
formation linking the two representations, associated with
the SUð2Þ generators.
This issue has a deep impact on the Dirac quantization of

the model since the three momenta operators, associated
with the gauge angles, must annihilate the state function,
which is therefore independent of such angles. Hence, our
quantization of the model is equivalent to a nondiagonal
quantum Bianchi cosmology, as discussed in Ref. [24],
especially concerning the kinematical Hilbert space struc-
ture. Since in Ref. [24], the quantum picture is associated
with a diagonal set of flux variables, plus the three Euler
angles expected to be canonically quantized, the present
analysis allows us to claim that the quantization of the
Bianchi I model, discussed in Ref. [26], see also Ref. [14]
for a critical revision, is actually a rather general formu-
lation, and the only one available in a minisuperspace
dynamics. In other words, the scale factors associated in a
Bianchi cosmology to independent space directions are the
most relevant subjects of a loop quantum cosmology
quantization procedure and are characterized by an
almost-periodic functions representation.
The reason why the minisuperspace SUð2Þ symmetry

can be decomposed on an Abelian symmetry of the phase
space kinematics is reliably due to the fact that for the space
Ashtekar-Barbero-Immirzi connection, a local Lorentz
rotation depending on time only retains a global character.
Thus, a genuine SUð2Þ-formulation in the sense of loop
quantum gravity is still forbidden.
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