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We consider the analytic construction of three-point functions of conserved higher-spin supercurrents in
three-dimensional N ¼ 1 superconformal field theory which are Grassmann-odd in superspace. In
particular, these include the three-point functions of the supercurrent and flavor currents, which contain the
three-point functions of the energy-momentum tensor and conserved vector currents at the component
level. We present an analytic proof for arbitrary superspins that these correlators do not possess a parity-
violating contribution. We also prove that the parity-even contribution is unique, and exists (under an
assumption that is well supported by the computational approach of arXiv:2302.00593) for arbitrary
superspins. The construction of the parity-even sector is shown to reduce to solving a system of linear
homogeneous equations with a tridiagonal matrix of corank one, which we solve explicitly for arbitrary
superspins.
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I. INTRODUCTION

In conformal field theory (CFT), the general structure of
correlation functions is highly constrained by conformal
symmetry. In particular, the three-point functions of con-
served currents such as the energy-momentum tensor,
flavor currents and more generally higher-spin currents,
are fixed up to finitely many independent structures [1–12].
For conformal field theories in three dimensions (3D),
it has been proven that the three-point functions of con-
served higher-spin currents are constrained up to only three
independent structures [13–17]. Two of the structures are
parity-even (corresponding to free theories), and one is
parity-odd (or parity violating), which has been shown to
correspond to theories of a Chern-Simons gauge field inter-
acting with parity-violating matter (see e.g. [18–28]). In
superconformal field theory (SCFT), three-point functions
are further constrained.1 For example, in 3D N ¼ 1
superconformal field theory it was shown in [38] that there
is an apparent tension between supersymmetry and the

existence of parity-violating structures in three-point func-
tions. In contrast with the nonsupersymmetric case, it
was shown that parity-odd structures are not found in
the three-point functions of the energy-momentum tensor
and conserved vector currents, which were studied using a
manifestly supersymmetric approach in [35–38,45].
The general structure of three-point functions of higher-

spin supercurrents in 3D N ¼ 1 SCFT was elucidated in
[45]. Conformal higher-spin supercurrents of superspin-s
(integer or half-integer) are defined as totally symmetric
spin-tensor superfields, Js ≡ Jα1…α2sðzÞ ¼ Jðα1…α2sÞðzÞ, and
satisfy the conservation equation

Dα1Jα1α2…α2sðzÞ ¼ 0; ð1:1Þ

where Dα is the spinor covariant derivative in 3D N ¼ 1
Minkowski superspace. The most important examples of
conserved supercurrents in superconformal field theory are
the flavor current and supercurrent multiplets, correspond-
ing to the cases s ¼ 1

2
and s ¼ 3

2
respectively (for a review

of the properties of flavor current and supercurrent mul-
tiplets in three dimensions, see [35,46] and the references
therein). The flavor current multiplet contains a conserved
vector current, while the supercurrent multiplet contains
the energy-momentum tensor and the supersymmetry
current. For higher-spin supercurrents, it was shown by
explicit calculations up to a high computational bound
ðsi ≤ 20Þ that the general structure of the three-point
function hJs1ðz1ÞJ0s2ðz2ÞJ00s3ðz3Þi is fixed up to the following
form [45]:
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1The study of correlation functions in superconformal theories
has been carried out in diverse dimensions using the group-theoretic
approach developed in the following publications [29–44].
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hJs1J0s2J00s3i ¼ ahJs1J0s2J00s3iE þ bhJs1J0s2J00s3iO; ð1:2Þ

where hJs1J0s2J00s3iE is a parity-even solution, and hJs1J0s2J00s3iO
is a parity-odd solution. For the three-point functions
which are Grassmann-even (bosonic) in superspace, the
existence of theparity-odd solution is subject to the following
superspin triangle inequalities:

s1 ≤ s2 þ s3; s2 ≤ s1 þ s3; s3 ≤ s1 þ s2: ð1:3Þ

When the triangle inequalities are simultaneously satisfied
there is one even solution and one odd solution, however, if
any of the above inequalities are not satisfied then the odd
solution is incompatible with the superfield conservation
equations. On the other hand, for the Grassmann-odd
(fermionic) three-point functions it was shown that the
parity-odd solution appears to vanish in general. Despite
being limited by computational power to consider superspins
si ≤ 20, the pattern was clear and we proposed in [45] that
these results hold in general.
The aim of this paper is to study theGrassmann-odd three-

point functions analytically for arbitrary superspins.We use a
different approach to [45], based on a method of irreducible
decomposition of tensors. Quite remarkably, we find that
these three-point functions can be constructed explicitly for
arbitrary superspins. For the parity-violating sector we give a
completely analytic proof that it vanishes for arbitrary
superspins. For the parity-even sector we found that its
construction is reduced to solving a homogeneous system of
linear equations with a tridiagonal matrix of corank one,
which proves that the parity-even sector is fixed up to a single
structure in general.We also found the solution to this system
for arbitrary superspins, thus obtaining the explicit form of
the parity-even contribution. Our analysis uses one simplify-
ing assumption which is, however, well supported by our
computational approach [45]. It was noticed in [45] that if the
third superspin satisfies the triangle inequality s3 ≤ s1 þ s2 it
is not necessary to impose the supercurrent conservation
condition at the third point because it is automatically
satisfied and does not give any further restrictions. In this
paper we assume that this property continues to hold for
arbitrary superspins. However, we should stress that our
proof that the parity-odd sector vanishes does not rely on this
assumption. It is also inconsequential for our analysis of the
parity-even sector, as after imposing the conservation con-
ditions for the first two supercurrents we prove that it is
already fixed up to an overall coefficient. Since on general
grounds we should expect at least one parity-even solution,2

it follows that the conservation condition for the third
supercurrent is, indeed, unnecessary.
The results of this paper are organized as follows. In

Sec. II we provide a brief review of the general structure of
the three-point functions of conserved currents in 3D N ¼
1 SCFT. In Sec. III we study Grassmann-odd three-point
functions which consist of three conserved supercurrents of
arbitrary half-integer superspins. We show that the con-
struction of both the parity-even and parity-odd sector is
governed by a homogeneous system of linear equations
with tridiagonal matrix. By computing the determinants of
the tridiagonal matrices for the parity-even and parity-odd
sectors, in the former case we prove that the matrix has
corank one, and hence the parity-even solution is unique
for arbitrary superspins. In the latter case, we prove that
the matrix is nondegenerate meaning that the parity-odd
solution vanishes in general. In Sec. IV we perform a
similar analysis for Grassmann-odd three-point functions
consisting of one fermionic and two bosonic supercurrents.
Appendix is dedicated to our 3D conventions and notation.

II. SUPERCONFORMAL BUILDING BLOCKS
AND CORRELATION FUNCTIONS

In this section we will review the essentials of the group-
theoretic formalism used to compute three-point correlation
functions of primary superfields in 3D N ¼ 1 supercon-
formal field theories. For a more detailed review of the
formalism and our conventions, the reader may consult
[17,32,35,45].
Given two superspace points z1 and z2, we define the

two-point functions

xαβ12 ¼ ðx1 − x2Þαβ þ 2iθðα1 θ
βÞ
2 − iθα12θ

β
12; θα12 ¼ θα1 − θα2:

ð2:1Þ

The two-point function xαβ12 can be split into symmetric and
antisymmetric parts as follows:

xαβ12 ¼ xαβ12 þ
i
2
εαβθ212; θ212 ¼ θα12θ12α; x212 ¼ −

1

2
xαβ12x12αβ;

ð2:2Þ
where the symmetric component

xαβ12 ¼ ðx1 − x2Þαβ þ 2iθðα1 θ
βÞ
2 ; ð2:3Þ

is the standard bosonic two-point superspace interval. It is
useful to introduce the normalized two-point functions,
denoted by x̂12,

x̂12αβ ¼
x12αβ

ðx212Þ1=2
; x̂ασ12 x̂21σβ ¼ δαβ: ð2:4Þ

From here we can now construct an operator analogous
to the conformal inversion tensor acting on the space of

2In some cases the parity-even solution and, hence, the entire
three-point function, vanishes. However, this occurs only when
the three-point function is required to be invariant under
permutations of superspace points. These cases were analyzed
systematically in [45].
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symmetric traceless spin-tensors of arbitrary rank. Given a
normalized two-point function x̂, we define the operator

IαðkÞβðkÞðxÞ ¼ x̂ðα1ðβ1…x̂αkÞβkÞ: ð2:5Þ

This object is essential to the construction of correlation
functions of primary operators of arbitrary superspins [45].
Now given three superspace points, z1, z2, z3, we define

the three-point building blocks, Zk ¼ ðXij;ΘijÞ as follows:

Xijαβ ¼ −ðx−1ik Þαγxγδij ðx−1kj Þδβ;
Θijα ¼ ðx−1ik Þαβθβki − ðx−1jk Þαβθβkj; ð2:6Þ

where the labels ði; j; kÞ are a cyclic permutation of (1, 2,
3). They satisfy many properties similar to those of the two-
point building blocks [for simplicity we consider
ðX12;Θ12Þ]

Xασ
12X21σβ ¼ X2

12δ
α
β; X2

12 ¼ −
1

2
Xαβ
12X12αβ; ð2:7aÞ

X2
12 ¼

x212
x213x

2
23

; Θ2
12 ¼ Θα

12Θ12α; ð2:7bÞ

and may be decomposed into symmetric and antisymmetric
parts similar to (2.2) as follows:

X12αβ ¼ X12αβ −
i
2
εαβΘ2

12; X12αβ ¼ X12βα: ð2:8Þ

The symmetric spin-tensor, X12αβ, can be equivalently
represented by the three-vector X12m ¼ − 1

2
ðγmÞαβX12αβ.

One may also identify the superconformal invariant

J ¼ Θ2
12ffiffiffiffiffiffiffi
X2
12

p ¼ Θ2
23ffiffiffiffiffiffiffi
X2
23

p ¼ Θ2
31ffiffiffiffiffiffiffi
X2
31

p : ð2:9Þ

Analogous to the two-point functions, it is also useful to
introduce the following normalized three-point building
blocks, denoted by X̂12, Θ̂12:

X̂12αβ ¼
X12αβ

ðX2
12Þ1=2

; Θ̂α
12 ¼

Θα
12

ðX2
12Þ1=4

; ð2:10Þ

such that

X̂ασ
12X̂21σβ ¼ δαβ; J ¼ Θ̂2

12: ð2:11Þ

Now given an arbitrary three-point building block, X, we
construct the following higher-spin inversion operator:

IαðkÞβðkÞðXÞ ¼ X̂ðα1ðβ1…X̂αkÞβkÞ: ð2:12Þ

This operators possess properties similar to the two-point
higher-spin inversion operators (2.5). Let us now introduce

the following analogs of the covariant spinor derivative and
supercharge operators involving the three-point building
blocks, where ðX;ΘÞ ¼ ðX12;Θ12Þ:

Dα ¼
∂

∂Θα þ iðγmÞαβΘβ ∂

∂Xm ;

Qα ¼ i
∂

∂Θα þ ðγmÞαβΘβ ∂

∂Xm ; ð2:13Þ

which obey the commutation relations

fDα;Dβg ¼ fQα;Qβg ¼ 2iðγmÞαβ
∂

∂Xm : ð2:14Þ

Now given a function fðX12;Θ12Þ, there are the following
differential identities which are essential for imposing
differential constraints on three-point correlation functions
of primary superfields:

Dð1ÞγfðX12;Θ12Þ ¼ ðx−113 ÞαγDαfðX12;Θ12Þ; ð2:15aÞ

Dð2ÞγfðX12;Θ12Þ ¼ iðx−123 ÞαγQαfðX12;Θ12Þ: ð2:15bÞ

Here by Dð1Þγ and Dð2Þγ we denote the ordinary super-
space covariant derivatives acting on the superspace points
z1 ¼ ðx1; θ1Þ and z2 ¼ ðx2; θ2Þ, respectively.
Now consider a primary tensor superfield ΦAðzÞ of

dimension Δ transforming in an irreducible representation
of the Lorentz group. The two-point correlation function
hΦAðz1ÞΦBðz2Þi is constrained by superconformal sym-
metry to the following form:

hΦAðz1ÞΦBðz2Þi ¼ c
IA

Bðx12Þ
ðx212ÞΔ

; ð2:16Þ

where I is an appropriate representation of the inversion
tensor and c is a constant real parameter. The denominator
of the two-point function is determined by the conformal
dimension of ΦA, which guarantees that the correlation
function transforms with the appropriate weight under scale
transformations.
For three-point functions, let Φ, Ψ, Π be primary

superfields with scale dimensions Δ1, Δ2, and Δ3 respec-
tively. The three-point function is constructed using the
general ansatz [31,32]

hΦA1
ðz1ÞΨA2

ðz2ÞΠA3
ðz3Þi

¼ I ð1Þ
A1

A0
1ðx13ÞI ð2Þ

A2

A0
2ðx23Þ

ðx213ÞΔ1ðx223ÞΔ2
HA0

1
A0

2
A3
ðX12;Θ12Þ; ð2:17Þ

where the tensorHA1A2A3
encodes all information about the

correlation function, and is related to the leading singular
operator product expansion (OPE) coefficient [11].
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In this work we are primarily interested in the structure
of three-point correlation functions of conserved (higher-
spin) supercurrents. In 3D N ¼ 1 theories, a conserved
(higher-spin) supercurrent of superspin-s (integer or half-
integer), is defined as a totally symmetric spin-tensor of
rank 2s, Jα1…α2sðzÞ ¼ Jðα1…α2sÞðzÞ ¼ Jαð2sÞðzÞ, satisfying a
conservation equation of the form

Dα1Jα1α2…α2sðzÞ ¼ 0: ð2:18Þ
Conserved currents are primary superfields, and the dimen-
sion ΔJ of J is fixed by the conservation condition (2.18) to
ΔJ ¼ sþ 1. At the component level, a higher-spin super-
current of superspin-s contains conserved conformal cur-
rents of spin-s and spin-ðsþ 1

2
Þ respectively. Indeed, for

conserved supercurrents of superspin s, the dimension Δ of
the two-point function (2.16) is fixed by conservation to
Δ ¼ sþ 1. If we now consider the three-point function of
the conserved primary superfields JαðIÞ, J0βðJÞ, J

00
γðKÞ, where

I ¼ 2s1, J ¼ 2s2, K ¼ 2s3, then the general ansatz is

hJαðIÞðz1ÞJ0βðJÞðz2ÞJ00γðKÞðz3Þi

¼ IαðIÞα
0ðIÞðx13ÞIβðJÞβ

0ðJÞðx23Þ
ðx213ÞΔ1ðx223ÞΔ2

Hα0ðIÞβ0ðJÞγðKÞðX12;Θ12Þ;

ð2:19Þ
where Δi ¼ si þ 1. Below we summarize the constraints
on H.

(i) Homogeneity:

HαðIÞβðJÞγðKÞðλ2X; λΘÞ
¼ ðλ2ÞΔ3−Δ2−Δ1HαðIÞβðJÞγðKÞðX;ΘÞ; ð2:20Þ

It is often convenient to introduce ĤαðIÞβðJÞγðKÞðX;ΘÞ,
such that

HαðIÞβðJÞγðKÞðX;ΘÞ ¼ XΔ3−Δ3−Δ1ĤαðIÞβðJÞγðKÞðX;ΘÞ;
ð2:21Þ

where ĤαðIÞβðJÞγðKÞðX;ΘÞ is homogeneous degree 0 in
ðX;ΘÞ, i.e.

ĤαðIÞβðJÞγðKÞðλ2X; λΘÞ ¼ ĤαðIÞβðJÞγðKÞðX;ΘÞ: ð2:22Þ

(ii) Differential constraints:
After application of the identities (2.15a), (2.15b)

we obtain the following constraints:

Conservation at z1∶ DαHααðI−1ÞβðJÞγðKÞðX;ΘÞ ¼ 0;

ð2:23aÞ
Conservation at z2∶ QβHαðIÞββðJ−1ÞγðKÞðX;ΘÞ ¼ 0;

ð2:23bÞ

Conservation at z3∶ QγH̃αðIÞβðJÞγγðK−1ÞðX;ΘÞ ¼ 0;

ð2:23cÞ

where

H̃ð�Þ
αðIÞβðJÞγðKÞðX;ΘÞ

¼ ðX2ÞΔ1−Δ3IβðJÞβ
0ðJÞðXÞHIð�Þ

αðIÞβ0ðJÞγðKÞðX;ΘÞ:
ð2:24Þ

(iii) Point-switch symmetries:
If the fields J and J0 coincide, then we obtain the

following point-switch identity

HαðIÞβðIÞγðKÞðX;ΘÞ¼ð−1ÞϵðJÞHβðIÞαðIÞγðKÞð−XT;−ΘÞ;
ð2:25Þ

where ϵðJÞ is the Grassmann parity of J. Likewise, if
the fields J and J00 coincide, then we obtain the
constraint

H̃αðIÞβðJÞγðIÞðX;ΘÞ ¼ ð−1ÞϵðJÞHγðIÞβðJÞαðIÞð−XT;−ΘÞ:
ð2:26Þ

In the next sections, we will demonstrate that conserva-
tion on z1 and z2 is sufficient to constrain the structure of
the three-point function to a unique parity-even solution,
while the parity-odd solution must vanish.

III. GRASSMANN-ODD THREE-POINT
FUNCTIONS hJFJ0FJ00Fi

There are only two possibilities for Grassmann-odd
three-point functions in superspace (up to permutations
of the fields), they are:

hJFJ0FJ00Fi; hJFJ0BJ00Bi; ð3:1Þ

where “B” represents a Grassmann-even (bosonic) field,
and “F” represents a Grassmann-odd (fermionic) field.
Each of these correlation functions require separate analy-
sis, however, they have a similar underlying structure.

A. Method of irreducible decomposition

First let us analyse the case hJFJ0FJ00Fi; we consider three
Grassmann-odd currents: Jαð2Aþ1Þ, J0αð2Bþ1Þ, J

00
γð2Cþ1Þ, where

A, B, C are positive integers. Therefore, the superfields J,
J0, J00 are of superspin s1 ¼ Aþ 1

2
, s2 ¼ Bþ 1

2
, s3 ¼ Cþ 1

2

respectively. Using the formalism above, all information
about the correlation function

hJαð2Aþ1Þðz1ÞJ0βð2Bþ1Þðz2ÞJ00γð2Cþ1Þðz3Þi; ð3:2Þ
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is encoded in a homogeneous tensor field
Hαð2Aþ1Þβð2Bþ1Þγð2Cþ1ÞðX;ΘÞ, which is a function of a
single superspace variable Z ¼ ðX;ΘÞ and satisfies the
scaling property

Hαð2Aþ1Þβð2Bþ1Þγð2Cþ1Þðλ2X; λΘÞ
¼ ðλ2ÞC−A−B−3

2Hαð2Aþ1Þβð2Bþ1Þγð2Cþ1ÞðX;ΘÞ: ð3:3Þ

To simplify the problem, for each set of totally symmetric
spinor indices (the α’s, β’s and γ’s respectively), we convert
pairs of them into vector indices as follows:

Hαð2Aþ1Þβð2Bþ1Þγð2Cþ1ÞðX;ΘÞ
≡Hααð2AÞ;ββð2BÞ;γγð2CÞðX;ΘÞ
¼ ðγm1Þα1α2…ðγmAÞα2A−1α2A
× ðγn1Þβ1β2…ðγnBÞβ2B−1β2B
× ðγk1Þγ1γ2…ðγkCÞγ2C−1γ2C
×Hαβγ;m1…mA;n1…nB;k1…kCðX;ΘÞ: ð3:4Þ

The equality above holds only if and only if
Hαβγ;m1…mAn1…nBk1…kCðX;ΘÞ is totally symmetric

Hαβγ;m1…mAn1…nBk1…kCðX;ΘÞ
¼ Hαβγ;ðm1…mAÞðn1…nBÞðk1…kCÞðX;ΘÞ; ð3:5Þ

and traceless in each group of vector indices, i.e. ∀ i; j

ηmimjHαβγ;m1…mimj…mA;n1…nB;k1…kCðX;ΘÞ ¼ 0; ð3:6aÞ

ηninjHαβγ;m1…mA;n1…ninj…nB;k1…kCðX;ΘÞ ¼ 0; ð3:6bÞ

ηkikjHαβγ;m1…mA;n1…nB;k1…kikj…kCðX;ΘÞ ¼ 0: ð3:6cÞ

It is also required thatH is subject to the γ-trace constraints

ðγm1ÞσαHαβγ;m1…mA;n1…nB;k1…kCðX;ΘÞ ¼ 0; ð3:7aÞ

ðγn1ÞσβHαβγ;m1…mA;n1…nB;k1…kCðX;ΘÞ ¼ 0; ð3:7bÞ

ðγk1ÞσγHαβγ;m1…mA;n1…nB;k1…kCðX;ΘÞ ¼ 0: ð3:7cÞ

Now sinceH is Grassmann-odd, it must be linear inΘ, and,
using the property (2.8), we decompose H as follows
(raising all indices for convenience):

Hαβγ;mðAÞnðBÞkðCÞðX;ΘÞ ¼
X4
i¼1

Hαβγ;mðAÞnðBÞkðCÞ
i ðX;ΘÞ;

ð3:8aÞ

Hαβγ;mðAÞnðBÞkðCÞ
1 ðX;ΘÞ ¼ εαβΘγAmðAÞnðBÞkðCÞðXÞ; ð3:8bÞ

Hαβγ;mðAÞnðBÞkðCÞ
2 ðX;ΘÞ ¼ εαβðγrÞγδΘδBr;mðAÞnðBÞkðCÞðXÞ;

ð3:8cÞ

Hαβγ;mðAÞnðBÞkðCÞ
3 ðX;ΘÞ ¼ ðγpÞαβΘγCp;mðAÞnðBÞkðCÞðXÞ;

ð3:8dÞ

Hαβγ;mðAÞnðBÞkðCÞ
4 ðX;ΘÞ¼ðγpÞαβðγrÞγδΘδDpr;mðAÞnðBÞkðCÞðXÞ:

ð3:8eÞ

Here it is convenient to view the contributions Hi as
functions of the symmetric tensor X (which is equivalent to
a three-dimensional vector) rather than of X. In fact, since
H is linear in Θ and Θ3 ¼ 0 we haveHðX;ΘÞ ¼ HðX;ΘÞ.
The tensors A, B, C, D are constrained by conservation
equations and any algebraic symmetry properties which H
possesses. In particular, the conservation equations (2.23a),
(2.23b), are now equivalent to the following constraints on
H with vector indices

DαHαβγ;mðAÞnðBÞkðCÞðX;ΘÞ ¼ 0; ð3:9aÞ

QβHαβγ;mðAÞnðBÞkðCÞðX;ΘÞ ¼ 0: ð3:9bÞ

We also need consider the constraint for conservation at the
third point (2.23c), however, this is technically challenging
to impose using this analytic approach and we will not do it
here. Instead we will comment on it at the end of Secs. III C
and III D. Since H is linear in Θ, the conservation
conditions (3.9a) split up into constraints OðΘ0Þ

∂

∂Θα H
αβγ;mðAÞnðBÞkðCÞðX;ΘÞ ¼ 0; ð3:10aÞ

∂

∂Θβ H
αβγ;mðAÞnðBÞkðCÞðX;ΘÞ ¼ 0; ð3:10bÞ

and OðΘ2Þ

ðγmÞαδΘδ ∂

∂XmHαβγ;mðAÞnðBÞkðCÞðX;ΘÞ ¼ 0; ð3:11aÞ

ðγmÞβδΘδ ∂

∂XmHαβγ;mðAÞnðBÞkðCÞðX;ΘÞ ¼ 0: ð3:11bÞ

Using the irreducible decomposition (3.8), Eq. (3.10a)
results in the algebraic relations

AmðAÞnðBÞkðCÞ þ ηprDpr;mðAÞnðBÞkðCÞ ¼ 0; ð3:12aÞ

Bq;mðAÞnðBÞkðCÞ þ Cq;mðAÞnðBÞkðCÞ − ϵqprDpr;mðAÞnðBÞkðCÞ ¼ 0;

ð3:12bÞ

while (3.10b) gives

GRASSMANN-ODD THREE-POINT FUNCTIONS OF CONSERVED … PHYS. REV. D 108, 046001 (2023)

046001-5



−AmðAÞnðBÞkðCÞ þ ηprDpr;mðAÞnðBÞkðCÞ ¼ 0; ð3:13aÞ

−Bq;mðAÞnðBÞkðCÞ þCq;mðAÞnðBÞkðCÞ− ϵqprDpr;mðAÞnðBÞkðCÞ ¼ 0:

ð3:13bÞ

Hence, equations (3.12a), (3.13a) together result in
A ¼ B ¼ 0, while C and D satisfy:

ηprDpr;mðAÞnðBÞkðCÞ ¼ 0; ð3:14aÞ

Cq;mðAÞnðBÞkðCÞ − ϵqprDpr;mðAÞnðBÞkðCÞ ¼ 0: ð3:14bÞ

Next we consider the relations arising from the conserva-
tion equations at OðΘ2Þ. Using the decomposition (3.8),
from a straightforward computation we obtain

∂tðϵtprDpr;mðAÞnðBÞkðCÞ þ Ct;mðAÞnðBÞkðCÞÞ ¼ 0; ð3:15aÞ

∂tð−ϵtqpCp;mðAÞnðBÞkðCÞ þDqt;mðAÞnðBÞkðCÞ þDtq;mðAÞnðBÞkðCÞÞ ¼ 0: ð3:15bÞ

After substituting the algebraic relations (3.14) into (3.15a), we obtain

∂pCp;mðAÞnðBÞkðCÞ ¼ 0; ∂pDpr;mðAÞnðBÞkðCÞ ¼ 0: ð3:16Þ
We now must impose the γ-trace conditions, starting with (3.7a) and (3.7b). Making use of the decomposition (3.8),
Eq. (3.7a) results in the algebraic constraints

ηmpCp;mmðA−1ÞnðBÞkðCÞ ¼ 0; ϵqmpCp;mmðA−1ÞnðBÞkðCÞ ¼ 0; ð3:17aÞ

ηmpDpr;mmðA−1ÞnðBÞkðCÞ ¼ 0; ϵqmpDpr;mmðA−1ÞnðBÞkðCÞ ¼ 0; ð3:17bÞ

while from (3.7b) we find

ηnpCp;mðAÞnnðB−1ÞkðCÞ ¼ 0; ϵqnpCp;mðAÞnnðB−1ÞkðCÞ ¼ 0; ð3:18aÞ

ηnpDpr;mðAÞnnðB−1ÞkðCÞ ¼ 0; ϵqnpDpr;mðAÞnnðB−1ÞkðCÞ ¼ 0: ð3:18bÞ

Altogether these relations imply that both C and D are symmetric and traceless in the indices p;m1;…; mA; n1;…; nB, i.e.,

Cp;mðAÞnðBÞkðCÞ ≡ CðpmðAÞnðBÞÞkðCÞ; Dpr;mðAÞnðBÞkðCÞ ≡DðpmðAÞnðBÞÞ;rkðCÞ: ð3:19Þ

Next, from the γk-trace constraint (3.7c), we obtain the algebraic relations

ηkrDpr;mðAÞnðBÞkkðC−1Þ ¼ 0; ð3:20aÞ

Cp;mðAÞnðBÞkkðC−1Þ þ ϵkrsDpr;mðAÞnðBÞskðC−1Þ ¼ 0: ð3:20bÞ

To make use of these relations, we decompose D into symmetric and antisymmetric parts on the indices r; k1;…; kC as
follows:

DðpmðAÞnðBÞÞ;rðk1…kCÞ ¼ DðpmðAÞnðBÞÞ;ðrk1…kCÞ
S þ

XC
i¼1

ϵrki tD
ðpmðAÞnðBÞÞ;ðtk1…k̂i…kCÞ
A ; ð3:21Þ

where the notation k̂i denotes removal of the index ki fromDA. After substituting this decomposition into (3.20), we obtain:

ηkrD
ðpmðAÞnðBÞÞ;ðrkkðC−1ÞÞ
S ¼ 0; ð3:22aÞ

DðpmðAÞnðBÞÞ;ðrkðC−1ÞÞ
A ¼ 1

Cþ 1
CðpmðAÞnðBÞÞ;ðrkðC−1ÞÞ: ð3:22bÞ

We see that the tensor DA is fully determined in terms of C. To continue we now substitute (3.21) into (3.14) to obtain
equations relating C and DS; we obtain:
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ηprD
ðpmðAÞnðBÞÞ;ðrkðCÞÞ
S þ 1

Cþ 1

XC
i¼1

ϵkiprCðpmðAÞnðBÞÞ;ðrk1…k̂i…kCÞ ¼ 0; ð3:23aÞ

ϵpqrD
ðqmðAÞnðBÞÞ;ðrkðCÞÞ
S − CðpmðAÞnðBÞÞ;ðrkðCÞÞ

þ 1

Cþ 1

XC
i¼1

fηpkiηqrCðqmðAÞnðBÞÞ;ðrk1…k̂i…kðCÞÞ − CðkimðAÞnðBÞÞ;ðpk1…k̂i…kðCÞÞg ¼ 0: ð3:23bÞ

Further, the conservation equations (3.16) are now equiv-
alent to

∂pCðpmðAÞnðBÞÞ;kðCÞ ¼ 0; ∂pD
ðpmðAÞnðBÞÞ;ðrkðCÞÞ
S ¼ 0:

ð3:24Þ

Hence, finding the solution for the three-point function
hJFJ0FJ00Fi is now equivalent to finding two transverse
tensors C and DS, which are related by the algebraic
constraints (3.23). It may be checked for A ¼ B ¼ C ¼ 1
that the constraints reproduce those of the supercurrent
three-point function found in [35].
Let us now briefly comment on the analysis of three-

point functions involving flavor currents, i.e. when A, B,
C ¼ 0. In these cases one can simply ignore the relevant
tracelessness and γ-trace conditions (3.6), (3.7) respectively
and omit the appropriate groups of tensor indices. The
analysis of the conservation equations proves to be essen-
tially the same and we will not elaborate further on
these cases.

B. Conservation equations

Let us now summarize the constraint analysis in the
previous subsection in a way that makes the symmetries
more apparent. For the hJFJ0FJ00Fi correlators we have two
tensors; C of rank N þ Cþ 1, and D of rank N þ Cþ 2,
where N ¼ Aþ B, which possess the following sym-
metries:

Cðr1…rNþ1Þðk1…kCÞ; Dðr1…rNþ1Þðk1…kCþ1Þ
S : ð3:25Þ

The tensors C and DS are totally symmetric and traceless
in the groups of indices r and k respectively. They also
satisfy the conservation conditions

∂r1C
ðr1…rNþ1Þðk1…kCÞ ¼ 0; ∂r1D

ðr1…rNþ1Þðk1…kCþ1Þ
S ¼ 0;

ð3:26Þ

and the algebraic relations

ηr1k1D
ðr1…rNþ1Þðk1…kCþ1Þ
S þ 1

Cþ 1

XCþ1

i¼2

ϵki r1k1C
ðr1…rNþ1Þðk1k2…k̂i…kCþ1Þ ¼ 0; ð3:27aÞ

ϵpr1k1D
ðr1…rNþ1Þðk1…kCþ1Þ
S − Cðpr2…rNþ1Þðk2…kCþ1Þ

þ 1

Cþ 1

XCþ1

i¼2

fηpkiηr1k1Cðr1…rNþ1Þðk1k2…k̂i…kCþ1Þ − Cðkir2…rNþ1Þðpk2…k̂i…kCþ1Þg ¼ 0: ð3:27bÞ

The “full” tensor D, present in the decomposition (3.8), is constructed from C and DS as follows:

Dq;ðr1…rNþ1Þðk1…kCÞ ¼ Dðr1…rNþ1Þðqk1…kCÞ
S þ 1

Cþ 1

XC
i¼1

ϵqki tCðr1…rNþ1Þðtk1…k̂i…kCÞ: ð3:28Þ

As we will see later, the algebraic relations (3.27) are sufficient to determine D completely in terms of C. However, before
we prove this it is prudent to analyze the conservation equation (3.26) for C.
Since we have identified the algebraic symmetries of C, it is convenient to convert C back into spinor notation and

contract it with commuting auxiliary spinors as follows:

CðX; uð2N þ 2Þ; vð2CÞÞ ¼ Cαð2Nþ2Þβð2CÞðXÞuα1…uα2Nþ2vβ1…vβ2C : ð3:29Þ

Since the auxiliary spinors are commuting they satisfy
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εαβuαuβ ¼ 0; εαβvαvβ ¼ 0: ð3:30Þ

We now introduce a basis of monomials out of which C can be constructed. Adapting the results of [17,45], we use

P3 ¼ εαβuαvβ; Q3 ¼ X̂αβuαvβ; Z1 ¼ X̂αβuαuβ; Z2 ¼ X̂αβvαvβ: ð3:31Þ
A general ansatz for CðX; u; vÞ which is homogeneous degree 2ðN þ 1Þ in u, 2C in v and C − N − 2 in X is of the
following form:

CðX; u; vÞ ¼ XC−N−2
X
a;b

αða; bÞPa
3Q

2ðC−bÞ−a
3 ZbþN−Cþ1

1 Zb
2: ð3:32Þ

However, there is linear dependence between the monomials (3.31) of the form

Z1Z2 ¼ Q2
3 − P2

3; ð3:33Þ
which allows for elimination of Z2. Hence, the ansatz becomes:

CðX; u; vÞ ¼ XC−N−2
X2C
k¼0

αkPk
3Q

2C−k
3 ZN−Cþ1

1 : ð3:34Þ

This expansion is valid for C ≤ N þ 1, which is always fulfilled for field configurations where the third superspin triangle
inequality, s3 ≤ s1 þ s2, is satisfied. Note that if s3 > s1 þ s2 it then follows that s1 ≤ s2 þ s3 and s2 ≤ s1 þ s3. That is, if
one of the triangle inequalities is violated the remaining two are necessarily satisfied. It implies that one can always arrange
the fields in the three-point function to obtain a configuration for which s3 ≤ s1 þ s2, or equivalently, C ≤ N < N þ 1. We
will assume that we have performed such an arrangement and use Eq. (3.34).
Requiring that the three-point function is conserved at z1 and z2 is now tantamount to imposing

∂

∂uα
∂

∂uβ
∂

∂Xαβ
CðX;u; vÞ ¼ 0: ð3:35Þ

By acting with this operator on the ansatz (3.34), we obtain

XC−N−3
X2C
k¼0

αkPk−2
3 Q2C−2−k

3 ZN−C
1 fσ1ðkÞP2

3Q
2
3 þ σ2ðkÞQ4

3 þ σ3ðkÞP4
3g ¼ 0; ð3:36Þ

where

σ1ðkÞ ¼ −2k3 þ 4Ck2 þ 2kð1þ Cþ 2Nð2þ NÞÞ − 2Cð3þ 4Nð2þ NÞÞ; ð3:37aÞ

σ2ðkÞ ¼ −kðk − 1Þð2N − kþ 3Þ; ð3:37bÞ

σ3ðkÞ ¼ ð2C − k − 1Þð2C − kÞð2N þ kþ 3Þ: ð3:37cÞ

The sum above may now be split up into three contributions so that the coefficients may be easily read off

X2C
k¼0

αkσ1ðkÞPk
3Q

2C−k
3 þ

X2C−2
k¼0

αkþ2σ2ðkþ 2ÞPk
3Q

2C−k
3 þ

X2C
k¼2

αk−2σ3ðk − 2ÞPk
3Q

2C−k
3 ¼ 0: ð3:38Þ

Hence, we obtain the following linear system:

αkσ1ðkÞ þ αkþ2σ2ðkþ 2Þ þ αk−2σ3ðk − 2Þ ¼ 0; 2 ≤ k ≤ 2C − 2; ð3:39aÞ

α0σ1ð0Þ þ α2σ2ð2Þ ¼ 0; α2Cσ1ð2CÞ þ α2C−2σ3ð2C − 2Þ ¼ 0; ð3:39bÞ

α1σ1ð1Þ þ α3σ2ð3Þ ¼ 0; α2C−1σ1ð2C − 1Þ þ α2C−3σ3ð2C − 3Þ ¼ 0: ð3:39cÞ

EVGENY I. BUCHBINDER and BENJAMIN J. STONE PHYS. REV. D 108, 046001 (2023)

046001-8



It must be noted that the equations above for the
variables αk split into independent Cþ 1 and C dimen-
sional systems of linear homogeneous equations corre-
sponding to the parity-even and parity-odd sectors
respectively. The terms for which k is even are denoted
parity-even, while the terms for which k is odd are denoted
parity-odd, so that

CðX; u; vÞ ¼ CEðX; u; vÞ þ COðX;u; vÞ; ð3:40Þ

where

CEðX; u; vÞ ¼ XC−N−2
XC
k¼0

α2kP2k
3 Q2ðC−kÞ

3 ZN−Cþ1
1 ;

ð3:41aÞ

COðX; u; vÞ ¼ XC−N−2
XC
k¼1

α2k−1P2k−1
3 Q2ðC−kÞþ1

3 ZN−Cþ1
1 :

ð3:41bÞ

Indeed, this convention is consistent with that of [17,45].
Hence, in the linear homogeneous system (3.39), we define
the parity-even coefficients, ak, bk, ck, as

ak ¼ σ1ð2k − 2Þ; 1 ≤ k ≤ Cþ 1; ð3:42aÞ

bk ¼ σ2ð2kÞ; 1 ≤ k ≤ C; ð3:42bÞ

ck ¼ σ3ð2k − 2Þ; 1 ≤ k ≤ C; ð3:42cÞ

and the parity-odd coefficients, ãk, b̃k, c̃k as

ãk ¼ σ1ð2k − 1Þ; 1 ≤ k ≤ C; ð3:43aÞ

b̃k ¼ σ2ð2kþ 1Þ; 1 ≤ k ≤ C − 1; ð3:43bÞ

c̃k ¼ σ3ð2k − 1Þ; 1 ≤ k ≤ C − 1: ð3:43cÞ

With the above definitions, the linear homogeneous equa-
tions (3.39) split into two independent systems which can
be written in the form Mα⃗ ¼ 0. More explicitly

Even∶ ME ¼

2
6666666664

a1 b1 0 0 … 0

c1 a2 b2 0 … 0

0 c2 a3 b3 … 0

..

. ..
. . .

. . .
. . .

. ..
.

0 … … cC−1 aC bC
0 0 … 0 cC aCþ1

3
7777777775
; α⃗E ¼

2
6666666664

α0

α2

α4

..

.

α2C−2

α2C

3
7777777775
; ð3:44aÞ

Odd∶ MO ¼

2
6666666664

ã1 b̃1 0 0 … 0

c̃1 ã2 b̃2 0 … 0

0 c̃2 ã3 b̃3 … 0

..

. ..
. . .

. . .
. . .

. ..
.

0 … … c̃C−2 ãC−1 b̃C−1
0 0 … 0 c̃C−1 ãC

3
7777777775
; α⃗O ¼

2
6666666664

α1

α3

α5

..

.

α2C−3

α2C−1

3
7777777775
; ð3:44bÞ

whereME,MO are square matrices of dimension Cþ 1, C
respectively. The system of Eq. (3.44) is associated with the
solution CEðX; u; vÞ, while the system (3.44b) is associated
with the solution COðX; u; vÞ. The question now is whether
there exists explicit solutions to these linear homogeneous
systems for arbitrary A, B, C.
The matrices of the form (3.44) are referred to as tri-

diagonalmatrices, beforewe continuewith the analysis let us
comment on some of their features. The sufficient conditions
under which a tridiagonal matrix is invertible for arbitrary
sequences ak, bk, ck has been discussed in e.g. [47,48]. Now
consider the determinant of a tridiagonal matrix

Δk ¼

���������������

a1 b1 0 0 … 0

c1 a2 b2 0 … 0

0 c2 a3 b3 … 0

..

. ..
. . .

. . .
. . .

. ..
.

0 … … ck−2 ak−1 bk−1
0 0 … 0 ck−1 ak

���������������

: ð3:45Þ

One of its most important properties is that it satisfies the
recurrence relation
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Δk ¼ akΔk−1−bk−1ck−1Δk−2; Δ0 ¼ 1; Δ−1 ¼ 0; ð3:46Þ

whichmaybe seenbyperforming aLaplace expansion on the
last row. The sequence Δk is often called the “generalized
continuant” with respect to the sequences ak, bk, ck. There
are methods to compute this determinant in closed form for
simple cases, for example if the tridiagonal matrix under
consideration is “Toeplitz” (i.e. if the sequences are constant
ak ¼ a, bk ¼ b, ck ¼ c). For Toeplitz tridiagonal matrices
one obtains

Δk ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2 − 4bc
p

×
��

aþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 − 4bc

p

2

�
kþ1

−
�
a−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 − 4bc

p

2

�
kþ1

�
;

ð3:47Þ

for a2 − 4bc ≠ 0, while for a2 − 4bc ¼ 0 we obtain
Δk ¼ ðkþ 1Þða

2
Þk. For general sequences ak, bk, ck there

is no straightforward approach to compute Δk and it must

computed recursively using (3.46). Another important fea-
ture of tridiagonal matrices is that in general their nullity
(corank) is either 0 or 1, which implies that any system of
linear homogeneous equations with a tridiagonal matrix has
at most one nontrivial solution.
In the next subsections, we study the continuants

of ME, MO for the homogeneous systems (3.44a),
(3.44b), and obtain their explicit form for arbitrary A, B,
C. This determines whetherME,MO are invertible, and the
number of solutions for the homogeneous systems
(3.44a), (3.44b).

C. Parity-odd case

First we will analyse the system of equations for the
parity-odd sector. Note that if det½MO� ≠ 0 then the system
of equations MOα⃗O ¼ 0 admits only the trivial solution.

Let us denoteMO ≔ MðCÞ
O to indicate that the dimension of

the tridiagonal matrix in (3.44b) is C × C. We also

introduce the k × k continuant Δ̃ðCÞ
k , where 1 ≤ k ≤ C. It

satisfies the continuant equation (3.46) with

ãk ¼ 4Cð−1þ kð4k − 3Þ − 2NðN þ 2ÞÞ − 4ð2k − 1Þð2kðk − 1Þ − NðN þ 2ÞÞ; 1 ≤ k ≤ C; ð3:48aÞ

b̃k ¼ −4kð1þ 2kÞðN − kþ 1Þ; 1 ≤ k ≤ C − 1; ð3:48bÞ

c̃k ¼ 4ð1þ 2C − 2kÞðC − kÞð1þ kþ NÞ; 1 ≤ k ≤ C − 1: ð3:48cÞ

We also have Δ̃ðCÞ
C ¼ det½MðCÞ

O �. Below we present some examples of the matrixMO and the determinant Δ̃ðCÞ
C for arbitrary

N ¼ Aþ B and fixed C:

Mð1Þ
O ¼ ½−4NðN þ 2Þ�; ð3:49aÞ

Mð2Þ
O ¼

�−12NðN þ 2Þ −12N
12ðN þ 2Þ 24 − 4NðN þ 2Þ

	
; ð3:49bÞ

Mð3Þ
O ¼

2
64
−20NðN þ 2Þ −12N 0

40ðN þ 2Þ 60 − 12NðN þ 2Þ −40ðN − 1Þ
0 12ðN þ 3Þ 72 − 4NðN þ 2Þ

3
75; ð3:49cÞ

Mð4Þ
O ¼

2
6664
−28NðN þ 2Þ −12N 0 0

84ðN þ 2Þ 96 − 20NðN þ 2Þ −40ðN − 1Þ 0

0 40ðN þ 3Þ 176 − 12NðN þ 2Þ −84ðN − 2Þ
0 0 12ðN þ 4Þ 144 − 4NðN þ 2Þ

3
7775: ð3:49dÞ

The corresponding determinants are

Δ̃ð1Þ
1 ¼ −4NðN þ 2Þ; ð3:50aÞ

Δ̃ð2Þ
2 ¼ 48ðN − 1ÞNðN þ 2ÞðN þ 3Þ; ð3:50bÞ

Δ̃ð3Þ
3 ¼ −960ðN − 2ÞðN − 1ÞNðN þ 2ÞðN þ 3ÞðN þ 4Þ; ð3:50cÞ
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Δ̃ð4Þ
4 ¼ 26880ðN − 3ÞðN − 2ÞðN − 1ÞNðN þ 2ÞðN þ 3ÞðN þ 4ÞðN þ 5Þ: ð3:50dÞ

Indeed the matrices above are invertible as det½MO� ≠ 0, therefore we have the solution α⃗O ¼ 0. The determinant can be
efficiently computed using the recursion formula (3.46), and the pattern appears holds for large integers N, C. Using

Mathematica we explicitly computed Δ̃ðCÞ
C for arbitrary N, up to C ¼ 500. In all cases we found it is nontrivial.

However, the continuant Δ̃ðCÞ
k can also be obtained explicitly for all 1 ≤ k ≤ C, and arbitrary C. First, one can show that

Δ̃ðCÞ
k satisfies the following recurrence relation:

Δ̃ðCÞ
k ¼ γ̃ðCÞk−1Δ̃

ðCÞ
k−1; Δ̃ðCÞ

1 ¼ −4ð2C − 1ÞNð2þ NÞ; 1 ≤ k ≤ C; ð3:51Þ

where γ̃ðCÞk is given by

γ̃ðCÞk ¼ −4ðN − kÞð2þ kþ NÞð−1þ 2C − 2kÞ: ð3:52Þ

To see this, consider the combination Δ̃ðCÞ
kþ2 − ãkþ2Δ̃

ðCÞ
kþ1 þ b̃kþ1c̃kþ1Δ̃

ðCÞ
k . Using Eqs. (3.64), (3.52), this combination

becomes ðγ̃kþ1γ̃k − ãkþ2γ̃k þ b̃kþ1c̃kþ1ÞΔ̃ðCÞ
k . However it may be shown using Eqs. (3.48) and (3.52) that

γ̃kþ1γ̃k − ãkþ2γ̃k þ b̃kþ1c̃kþ1 ¼ 0; ð3:53Þ

for arbitrary k, N, C, which implies that the recurrence relation (3.46) is indeed satisfied. We find the following general
solution for (3.51)3:

Δ̃ðCÞ
k ¼ 23k

Γð1
2
− Cþ kÞ

Γð1
2
− CÞ

ðN þ kþ 1Þ!
ðN þ 1ÞðN − kÞ! ; 1 ≤ k ≤ C: ð3:54Þ

One can check (using e.g. Mathematica) that it solves the continuant equation (3.46). Recalling that det½MðCÞ
O � ¼ Δ̃ðCÞ

C , it
then follows that

det½MðCÞ
O � ¼ 23C

ffiffiffi
π

p
Γð1

2
− CÞ

ðN þ Cþ 1Þ!
ðN þ 1ÞðN − CÞ! ; C ≤ N; ð3:55Þ

which is always nontrivial. This implies that MO is of full
rank and, hence, the system of equations (3.44b) admits
only the trivial solution α⃗O ¼ 0. Therefore, recalling that
CO is the parity-odd solution corresponding to the system
of equations (3.44b), from the analysis above we have
shown that COðX; u; vÞ ¼ 0 for arbitrary A, B, C.
Now wewill show that the tensorDS associated with CO,

which are related by the algebraic relations (3.27), also
vanishes. Since we have shown that CO ¼ 0 in general,
Eq. (3.27) implies

ηr1k1D
ðr1…rNþ1Þðk1…kCþ1Þ
S ¼ 0; ð3:56aÞ

ϵpr1k1D
ðr1…rNþ1Þðk1…kCþ1Þ
S ¼ 0: ð3:56bÞ

Hence, DS is totally symmetric and traceless in all tensor
indices

Dðr1…rNþ1Þðk1…kCþ1Þ
S ≡Dðr1…rNþ1k1…kCþ1Þ

S : ð3:57Þ

We can now construct a solution for DS using auxiliary
spinors as follows:

DSðX;uð2Nþ 2Cþ 4ÞÞ ¼DSαð2Nþ2Cþ4ÞðXÞuα1…uα2Nþ2Cþ4 :

ð3:58Þ

Since DS is transverse, the polynomial DSðX; uÞ must
satisfy the conservation equation

∂

∂uα
∂

∂uβ
∂

∂Xαβ
DSðX; uÞ ¼ 0: ð3:59Þ

The only possible structure (up to a constant coefficient) for
DSðX; uÞ is of the form

DSðX; uð2N þ 2Cþ 4ÞÞ ¼ XC−N−2ZNþCþ2
1 : ð3:60Þ

3Recall that we have arranged the operators in the three-point
function so that s3 ≤ s1 þ s2 which implies C ≤ N.
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Explicit computation of (3.59) gives

∂

∂uα
∂

∂uβ
∂

∂Xαβ
DSðX; uÞ

¼ −4ðN þ Cþ 2Þ2ð1þ 2CÞXC−N−3ZNþCþ1
1 ; ð3:61Þ

which is always nonzero. Therefore DS ¼ 0 for the parity-
odd sector. Hence, for Grassmann-odd three-point func-
tions of the form hJFJ0FJ00Fi, there is no parity-odd solution
for arbitrary superspins.
Let us point out that we did not need to use the constraint

arising from conservation on the third point. Imposing the
conservation equations at the first two points was sufficient
to prove vanishing of the parity-odd contribution. Let us,

however, indicate that our consideration is sensitive to the
fact that the operator inserted at the third point is a
conserved supercurrent. Indeed, we used the fact that its
dimension is s3 þ 1, saturating the unitarity bound, which
implies that this operator is a conserved supercurrent.

D. Parity-even case

For the parity even case, we follow the same approach.

Let us denoteME ≔ MðCÞ
E (recall that the dimension of the

matrix MðCÞ
E in (3.44) is now ðCþ 1Þ × ðCþ 1Þ) and con-

sider the continuant ΔðCÞ
k , 1 ≤ k ≤ Cþ 1, with ΔðCÞ

Cþ1 ¼
det½MðCÞ

E �. The continuant satisfies Eq. (3.46), where

ak ¼ 2Cð3þ 2kð4k − 7Þ − 4NðN þ 2ÞÞ
− 4ðk − 1Þð3þ 4kðk − 2Þ − 2NðN þ 2ÞÞ; 1 ≤ k ≤ Cþ 1; ð3:62aÞ

bk ¼ −2kð2k − 1Þð3þ 2N − 2kÞ; 1 ≤ k ≤ C; ð3:62bÞ

ck ¼ 2ð1þ 2C − 2kÞð1þ C − kÞð1þ 2kþ 2NÞ; 1 ≤ k ≤ C: ð3:62cÞ

Below are some examples of the matrix ME and the determinant ΔðCÞ
Cþ1 for fixed C:

MðN;1Þ
E ¼

�−2ð2N þ 1Þð2N þ 3Þ −2ð2N þ 1Þ
2ð2N þ 3Þ 2

	
; ð3:63aÞ

MðN;2Þ
E ¼

2
64
−4ð2N þ 1Þð2N þ 3Þ −2ð2N þ 1Þ 0

12ð2N þ 3Þ −8ðN2 þ 2N − 2Þ −12ð2N − 1Þ
0 2ð2N þ 5Þ 12

3
75; ð3:63bÞ

MðN;3Þ
E ¼

2
6664
−6ð2N þ 1Þð2N þ 3Þ −2ð2N þ 1Þ 0 0

30ð2N þ 3Þ −2ð8N2 þ 16N − 15Þ −12ð2N − 1Þ 0

0 12ð2N þ 5Þ −2ð4N2 þ 8N − 39Þ −30ð2N − 3Þ
0 0 2ð2N þ 7Þ 30

3
7775; ð3:63cÞ

MðN;4Þ
E ¼

2
6666664

−8ð2N þ 1Þð2N þ 3Þ −2ð2N þ 1Þ 0 0 0

56ð2N þ 3Þ −4ð6N2 þ 12N − 11Þ −12ð2N − 1Þ 0 0

0 30ð2N þ 5Þ −16ðN2 þ 2N − 9Þ −30ð2N − 3Þ 0

0 0 12ð2N þ 7Þ −4ð2N2 þ 4N − 45Þ −56ð2N − 5Þ
0 0 0 2ð2N þ 9Þ 56

3
7777775
:

ð3:63dÞ

Contrary to the parity-odd case, all of the matrices above
are singular, i.e. Δð1Þ

2 ¼ Δð2Þ
3 ¼ Δð3Þ

4 ¼ Δð4Þ
5 ¼ 0. For large

integers we use the recursion formula (3.46) to analyse the

general structure of ΔðCÞ
Cþ1. Analogous to the parity-odd

case, we computed it for arbitrary N up to C ¼ 500 and

found in all cases ΔðCÞ
Cþ1 ¼ 0. It then follows that the matrix

MðCÞ
E is of corank one and the solution, α⃗E, to

MðN;CÞ
E α⃗E ¼ 0, is fixed up to a single overall constant in

all cases, and therefore CE is unique.
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For the parity-even case it also turns out to be possible to

solve for the continuants ΔðCÞ
k for 1 ≤ k ≤ Cþ 1. One can

show that ΔðCÞ
k satisfies the following recurrence relation:

ΔðCÞ
k ¼ γðCÞk−1Δ

ðCÞ
k−1; ΔðCÞ

1 ¼ −2Cð1þ 2NÞð3þ 2NÞ;
1 ≤ k ≤ Cþ 1; ð3:64Þ

where γðCÞk is given by

γðCÞk ¼ −2ðC − kÞð1þ 2N − 2kÞð3þ 2N þ 2kÞ: ð3:65Þ

To show this, consider again the combination ΔðCÞ
kþ2 −

akþ2Δ
ðCÞ
kþ1 þ bkþ1ckþ1Δ

ðCÞ
k . Using Eqs. (3.64), (3.65), we

obtain ðγkþ1γk − akþ2γk þ bkþ1ckþ1ÞΔðCÞ
k . It is then simple

to show using Eqs. (3.62) and (3.65) that this combination
vanishes for arbitrary k, N, C, which implies that the
recurrence relation (3.46) is indeed satisfied. Analogous to
the parity-odd case, it is possible to find an explicit solution
for the recurrence relation (3.64), and we find the following
general formula for the continuant:

ΔðCÞ
k ¼ ð−1ÞNþ1

23kC!
πðC − kÞ!Γ

�
1

2
− N þ k

�
Γ
�
3

2
þ N þ k

�
;

1 ≤ k ≤ C: ð3:66Þ

For k ¼ Cþ 1, we have ΔðCÞ
Cþ1 ¼ γðCÞC ΔðCÞ

C . However, we

note that γðCÞC ¼ 0, which implies ΔðCÞ
Cþ1 ¼ det½MðCÞ

E � ¼ 0,

for arbitrary N, C. Hence, we have shown that the matrix
ME is always of corank one and the system (3.44a) has a
unique nontrivial solution.4 This, in turn, implies that the
tensor CEðX; u; vÞ is unique up to an overall coefficient.
The explicit solution to the system Mα⃗ ¼ 0 and, thus, for
the tensor CE can also be found for arbitrary N, C. Indeed,
by analysing the nullspace of ME we obtain the following
solution for the coefficients α2k of (3.41a):

α2k ¼
ð−1Þk22kΓðCþ 1ÞΓðkþ N þ 3

2
Þ

Γð2kþ 1ÞΓðC − kþ 1ÞΓðN þ 3
2
Þ α0; 1 ≤ k ≤ C:

ð3:67Þ

This is also a solution to the parity-even sector of the
recurrence relations (3.39), which can be explicitly
checked. Hence, we have obtained a unique solution (up
to an overall coefficient) for CE in explicit form for
arbitrary superspins.
Now recall that the three-point functions under consid-

eration are determined not just by the tensorCðr1…rNþ1Þðk1…kCÞ

but also by the tensorDðr1…rNþ1Þðk1…kCþ1Þ
S which is transverse

[see Eq. (3.24)] and related to Cðr1…rNþ1Þðk1…kCÞ by the
algebraic relation (3.23). Remarkably, it is possible to solve
forDS in terms of C using (3.23). To show it let us begin by
constructing irreducible decompositions for C and D. Since
we know thatC is parity-even, it cannot contain ϵ, andwe use
the decompositions

Cðr1…rNþ1Þðk1…kCÞ ¼ Cðr1…rNþ1k1…kCÞ
1 þ

XNþ1

i¼1

XC
j¼1

ηrikjC
ðr1…r̂i…rNþ1k1…k̂j…kCÞ
2

þ
XNþ1

j>i¼1

ηrirjC
ðr1…r̂ir̂j…rNþ1k1…kCÞ
3 þ

XC
j>i¼1

ηkikjC
ðr1…rNþ1k1…k̂ik̂j…kCÞ
4 ; ð3:68Þ

where C2, C3, C4 are the irreducible components of rank N þ C − 1 (C4 exists only for C > 1). Requiring that the above
ansatz is traceless in the appropriate groups of indices fixes C3 and C4 in terms of C2 as follows (indices suppressed):

C3 ¼ −
2C

2N þ 1
C2; C4 ¼ −

2ðN þ 1Þ
2C − 1

C2: ð3:69Þ

Hence, C is determined completely in terms of the totally symmetric and traceless tensors C1 and C2. Now let us construct
an irreducible decomposition ofDS. Due to the algebraic relation (3.27), we know thatDS must be linear in ϵ. The only way
to construct DS such that it contains ϵ is by using the following decomposition:

Dðr1…rNþ1Þðk1…kCþ1Þ
S ¼

XNþ1

i¼1

XCþ1

j¼1

ϵqrikjTq;ðr1…r̂i…rNþ1k1…k̂j…kCþ1Þ; ð3:70Þ

4Alternatively, note that (3.66) implies that the largest nontrivial minor of ME is of dimension C × C. Therefore, RankðMEÞ ¼ C,
which implies NullityðMEÞ ¼ 1.
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where the tensor T (of rank N þ Cþ 1) is decomposed as follows:

Tq;ðr1…rNÞðk1…kCÞ ¼ Tðr1…rNk1…kCqÞ
1 þ

XN
i¼1

XC
j¼1

ηrikjT
ðr1…r̂i…rNk1…k̂j…kCqÞ
2

þ
XN
j>i¼1

ηrirjT
ðr1…r̂i r̂j…rNk1…kCqÞ
3 þ

XC
j>i¼1

ηkikjT
ðr1…rNk1…k̂ik̂j…kCqÞ
4 : ð3:71Þ

Here T1 is the irreducible component of rank N þ Cþ 1 and T2, T3, T4 are the irreducible components of rank N þ C − 1
(where T4 exists only for C > 1). It should be noted that one could also consider contributions to T proportionate to ηqri ,
ηqkj , but such contributions will cancel when substituted into (3.70) and, hence, they do not contribute to the irreducible
decomposition of DS. Requiring that D is traceless on the appropriate groups of indices fixes T3 and T4 in terms of T2 as
follows (indices suppressed):

T3 ¼ −
2C

2N þ 1
T2; T4 ¼ −

2N
2C − 1

T2: ð3:72Þ

Hence,DS is described completely in terms of the totally symmetric and traceless tensors T1 and T2. If we now consider the
algebraic relations (3.27) and substitute in the above decompositions, after some tedious calculation one obtains:

0 ¼ ηr1k1D
ðr1…rNþ1Þðk1…kCþ1Þ
S þ 1

Cþ 1

XCþ1

i¼2

ϵki r1k1C
ðr1…rNþ1Þðk1k2…k̂i…kCþ1Þ

¼
XNþ1

i¼2

XCþ1

j¼2

ϵqrikj
�
τðN;CÞTðr̂1…r̂i…rNþ1k̂1…k̂j…kCþ1qÞ

2 þ 1

Cþ 1

�
1þ 2C

2N þ 1

�
C
ðr̂1…r̂i…rNþ1k̂1…k̂j…kCþ1qÞ
2

�
; ð3:73Þ

where the constant τðN;CÞ is defined as follows:

τðN;CÞ ¼ 6C2 þ 2N2 þ 3Cð1þ 4NÞ − 5N − 3

ð2C − 1Þð1þ 2NÞ : ð3:74Þ

Requiring that the above combination vanishes gives
T2 ¼ ξ2C2, where

ξ2 ¼ −
ð2C − 1Þð1þ 2Cþ 2NÞ

ð1þ CÞð6C2 þ 2N2 þ 3Cð1þ 4NÞ − 5N − 3Þ :

ð3:75Þ

One can proceed in a similar way with the second algebraic
relation in (3.27). After some calculation we found that it
relates T1 and C1 as T1 ¼ ξ1C1, where

ξ1 ¼ −
2Cþ 1

ðCþ 1ÞðN þ Cþ 2Þ : ð3:76Þ

A similar calculation was performed in [35], where it was
shown that for A ¼ B ¼ C ¼ 1, ξ1 ¼ − 3

10
, ξ2 ¼ − 1

8
, which

is in full agreement with the expressions above.
Finally, we need to show that DS found this way is

transverse, i.e.

∂pD
ðpr1…rNÞðk1…kCþ1Þ
S ¼ 0: ð3:77Þ

For this let us define the tensor

Eðr1…rNÞðk1…kCþ1Þ ¼ ∂pD
ðpr1…rNÞðk1…kCþ1Þ
S : ð3:78Þ

Our aim is to show that Eðr1…rNÞðk1…kCþ1Þ ¼ 0. To find
Eðr1…rNÞðk1…kCþ1Þ we contract DS in Eqs. (3.70)–(3.72) with
the derivative. However, from the algebraic relations (3.23)
and the fact that C is transverse it follows that
Eðr1…rNÞðk1…kCþ1Þ is totally symmetric and traceless:

Eðr1…rNÞðk1…kCþ1Þ ≡ Eðr1…rNk1…kCþ1Þ: ð3:79Þ

Using Eqs. (3.70)–(3.72) we find that the totally symmetric
and traceless contribution is given by

Eðr2…rNþ1k1…kCþ1Þ ¼ −
XNþ1

i¼2

ϵpq
ri∂pTðqr2…r̂i…rNþ1k1…kCþ1Þ

1

−
XCþ1

j¼1

ϵpq
kj∂pT

ðqr2…rNþ1k1…k̂j…kCþ1Þ
1 :

ð3:80Þ
Since the tensor T1 is proportional to C1, it is constructed
out of the vector Xm and the Minkowski metric ηmn. It is not
difficult to see that for a tensor T1 constructed out of Xm

and ηmn, the combination (3.80) must vanish. Hence E ¼ 0
and DS is transverse.
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Let us summarize the results of this subsection. We have
shown that the parity-even contribution is fixed up to an
overall coefficient. Moreover, it can be explicitly found for
arbitrary superspins by solving a linear homogeneous
system of equations with the tridiagonal matrix (3.44a).
Once the solution for the parity-even coefficients α2k is
found, the tensor C is obtained using eq. (3.41a) and the
tensor DS is obtained from C as discussed above. Note that
our analysis for the parity even solution is incomplete
since we have not imposed the conservation condition at the
third point. This is technically difficult to impose using
the approach outlined in the present paper, and from this
viewpoint the computational approach developed in [45] is
far more useful. However, it was verified in [45] up to
si ¼ 20 that if s3 ≤ s1 þ s2 (that is, the third triangle
inequality is satisfied) then the third conservation equation
is automatically satisfied and does not result in any new
restrictions on the three-point function. The analysis in this
subsection assumes that this property continues to hold for
arbitrary superspins.

E. Point-switch symmetries

For the hJFJ0FJ00Fi three-point functions we can also
examine the case where J ¼ J0 for arbitrary superspins.
We want to determine the conditions under which the
parity-even solution satisfies the point-switch symmetry. If
we consider the condition (2.25) and the irreducible
decomposition (3.8), we obtain the following conditions
on C and D:

Cðr1…rNþ1Þðk1…kCÞ
E ðXÞ − Cðr1…rNþ1Þðk1…kCÞ

E ð−XÞ ¼ 0;

ð3:81aÞ

Dðr1…rNþ1Þðk1…kCþ1Þ
E ðXÞ −Dðr1…rNþ1Þðk1…kCþ1Þ

E ð−XÞ ¼ 0:

ð3:81bÞ

Let us consider (3.81a) first. Using auxiliary spinors, this
condition may be written as

CEðX; u; vÞ − CEð−X; u; vÞ ¼ 0: ð3:82Þ

However, recall that CEðX; u; vÞ is of the form

CEðX; u; vÞ ¼ XC−N−2
XC
k¼0

α2kP2k
3 Q2ðC−kÞ

3 ZN−Cþ1
1 : ð3:83Þ

For J ¼ J0, we have N ¼ Aþ B ¼ 2A, and from (3.82) we
obtain

XC
k¼0

ð1þ ð−1ÞCÞα2kP2k
3 Q2ðC−kÞ

3 ZN−Cþ1
1 ¼ 0: ð3:84Þ

Hence, the parity-even solution CEðX; u; vÞ satisfies the
point-switch only for C odd, i.e. for s3 ¼ 2kþ 3

2
, k ∈ Z≥0,

which is consistent with the results of [45].
Now assume that CE satisfies the point-switch symmetry

(3.81a). We want to show that DE, which is fully deter-
mined by CE, satisfies (3.81b). Since (3.81a) is satisfied,
from (3.68) we must have C1ðXÞ ¼ C1ð−XÞ, C2ðXÞ ¼
C2ð−XÞ (indices suppressed). Now consider (3.28) and
the irreducible decomposition for DS given by (3.70).
Since T1 ∝ C1, T2 ∝ C2, we have T1ðXÞ ¼ T1ð−XÞ,
T2ðXÞ ¼ T2ð−XÞ. It is then easy to see by substituting
(3.28), (3.70) into (3.81b) that DE also satisfies the point-
switch symmetry. Concerning point-switch symmetries that
involve J00, these are difficult to check using the approach
outlined in this paper, as one must compute H̃ using (2.24)
and check (2.26). However, the results of [45] cover these
cases in more detail and so we will not discuss them here.

IV. GRASSMANN-ODD THREE-POINT
FUNCTIONS hJFJ0BJ00Bi

Let us now consider the case hJFJ0BJ00Bi, which proves to
be considerably simpler. Let us begin with making impor-
tant comments on the arrangement of the operators in this
three-point function. First, we arrange them in such a way
that the operator at the third position is bosonic. Second, we
arrange them in such a way that the third superspin satisfies
the triangle inequality, that is s3 ≤ s1 þ s2. As was men-
tioned in the previous section if one of the triangle
inequalities is violated the remaining two are necessarily
satisfied. This means that we can always place a bosonic
operator with the superspin satisfying the triangle inequal-
ity at the third position.
We consider one Grassmann-odd current, Jαð2Aþ1Þ, of

spin s1 ¼ Aþ 1
2
, and two Grassmann-even currents J0αð2BÞ,

J00γð2CÞ, of spins s2 ¼ B, s3 ¼ C respectively, where A, B, C

are positive integers. All information about the correlation
function

hJαð2Aþ1Þðz1ÞJ0βð2BÞðz2ÞJ00γð2CÞðz3Þi; ð4:1Þ

is now encoded in a homogeneous tensor field
Hαð2Aþ1Þβð2Bþ1Þγð2Cþ1ÞðX;ΘÞ, which satisfies the scaling
property

Hαð2Aþ1Þβð2BÞγð2CÞðλ2X; λΘÞ
¼ ðλ2ÞC−A−B−3

2Hαð2Aþ1Þβð2BÞγð2CÞðX;ΘÞ: ð4:2Þ

Analogous to the previous case, for each set of totally
symmetric spinor indices (the α’s, β’s and γ’s respectively),
we convert pairs of them into vector indices as follows:
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Hαð2Aþ1Þβð2BÞγð2CÞðX;ΘÞ≡Hααð2AÞ;βð2BÞ;γð2CÞðX;ΘÞ
¼ ðγm1Þα1α2…ðγmAÞα2A−1α2A
× ðγn1Þβ1β2…ðγnBÞβ2B−1β2B
× ðγk1Þγ1γ2…ðγkCÞγ2C−1γ2C
×Hα;m1…mA;n1…nB;k1…kCðX;ΘÞ:

ð4:3Þ

Again, the equality above holds only if and only if
Hα;m1…mAn1…nBk1…kCðX;ΘÞ is totally symmetric and trace-
less in each group of vector indices. It is also required that
H is subject to the γ-trace constraint

ðγm1ÞσαHα;m1…mA;n1…nB;k1…kCðX;ΘÞ ¼ 0: ð4:4Þ

Indeed, since H is Grassmann-odd it is linear in Θ, and we
decompose H it follows (again, raising all indices for
convenience):

Hα;mðAÞnðBÞkðCÞðX;ΘÞ ¼
X2
i¼1

Hα;mðAÞnðBÞkðCÞ
i ðX;ΘÞ; ð4:5aÞ

Hα;mðAÞnðBÞkðCÞ
1 ðX;ΘÞ ¼ ΘαAmðAÞnðBÞkðCÞðXÞ; ð4:5bÞ

Hα;mðAÞnðBÞkðCÞ
2 ðX;ΘÞ ¼ ðγpÞαδΘδBp;mðAÞnðBÞkðCÞðXÞ:

ð4:5cÞ

Hence, in this case there are only two contributions to
consider. The conservation equations (2.23a), (2.23b) are
now equivalent to the following constraints on H with
vector indices:

DαHα;mðAÞnðBÞkðCÞðX;ΘÞ ¼ 0; ð4:6aÞ

ðγnÞσβQβHα;mðAÞnnðB−1ÞkðCÞðX;ΘÞ ¼ 0: ð4:6bÞ

They split up into constraints OðΘ0Þ
∂

∂Θα H
α;mðAÞnðBÞkðCÞðX;ΘÞ ¼ 0; ð4:7aÞ

ðγnÞσβ
∂

∂Θβ H
α;mðAÞnnðB−1ÞkðCÞðX;ΘÞ ¼ 0; ð4:7bÞ

and OðΘ2Þ

ðγmÞαδΘδ ∂

∂Xm Hα;mðAÞnðBÞkðCÞðX;ΘÞ ¼ 0; ð4:8aÞ

ðγnÞσβðγmÞβδΘδ ∂

∂Xm Hα;mðAÞnnðB−1ÞkðCÞðX;ΘÞ ¼ 0: ð4:8bÞ

Using the irreducible decomposition (4.5), Eq. (4.7a)
immediately results in A ¼ 0, while (4.7b) gives

ηpnBp;mðAÞnnðB−1ÞkðCÞ ¼ 0; ϵqpnBp;mðAÞnnðB−1ÞkðCÞ ¼ 0:

ð4:9Þ

Next, after imposing the γ-trace condition (4.4), we find
that B must satisfy

ηpmBp;mmðA−1ÞnðBÞkðCÞ ¼ 0; ϵqpmBp;mmðA−1ÞnðBÞkðCÞ ¼ 0:

ð4:10Þ

Altogether (4.9) and (4.10) imply that B is symmetric and
traceless in the indices p, m1;…; mA, n1;…; nB, i.e.

Bp;mðAÞnðBÞkðCÞ ≡ BðpmðAÞnðBÞÞ;kðCÞ: ð4:11Þ

If we now consider the equations arising from conservation
at OðΘ2Þ, a simple computation shows that B must satisfy

∂pBðpmðAÞnðBÞÞ;kðCÞ ¼ 0: ð4:12Þ

Therefore we need to construct a single transverse tensor B
of rank Aþ Bþ Cþ 1. We see that the tensor B has
absolutely same properties as the tensor C from the
previous section. Hence, the analysis becomes exactly
the same as for C in the hJFJ0FJ00Fi case and we will not
repeat it. Recalling the results from the previous section, we
find that hJFJ0BJ00Bi has vanishing parity-odd contribution
for all values of the superspins and a unique parity-even
structure.5 The explicit form of the parity-even solution can
be found from the tridiagonal system of linear equations
just like in the previous section.
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APPENDIX: 3D CONVENTIONS AND NOTATION

For the Minkowski metric we use the “mostly plus”
convention: ηmn ¼ diagð−1; 1; 1Þ. Spinor indices are then
raised and lowered with the SLð2;RÞ invariant antisym-
metric ε-tensor

5Here we also have assumed that with our arrangement of the
operators the conservation condition at the third point is auto-
matically satisfied for all superspins. It is verified in our
computational approach in [45] up to si ¼ 20.
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εαβ ¼
�
0 −1
1 0

�
; εαβ ¼

�
0 1

−1 0

�
; εαγε

γβ ¼ δα
β;

ðA1aÞ

ϕα ¼ εαβϕ
β; ϕα ¼ εαβϕβ: ðA1bÞ

The γ-matrices are chosen to be real, and are expressed in
terms of the Pauli matrices, σ, as follows:

ðγ0Þαβ ¼ −iσ2 ¼
�
0 −1
1 0

�
; ðγ1Þαβ ¼ σ3 ¼

�
1 0

0 −1

�
;

ðA2aÞ

ðγ2Þαβ ¼ −σ1 ¼
�

0 −1
−1 0

�
; ðA2bÞ

ðγmÞαβ ¼ εβδðγmÞαδ; ðγmÞαβ ¼ εαδðγmÞδβ: ðA2cÞ

The γ-matrices are traceless and symmetric

ðγmÞαα ¼ 0; ðγmÞαβ ¼ ðγmÞβα; ðA3Þ

and also satisfy the Clifford algebra

γmγn þ γnγm ¼ 2ηmn: ðA4Þ

For products of γ-matrices we make use of the identities

ðγmÞαρðγnÞρβ ¼ ηmnδα
β þ ϵmnpðγpÞαβ; ðA5aÞ

ðγmÞαρðγnÞρσðγpÞσβ ¼ ηmnðγpÞαβ − ηmpðγnÞαβ
þ ηnpðγmÞαβ þ ϵmnpδα

β; ðA5bÞ

where we have introduced the 3D Levi-Civita tensor ϵ, with
ϵ012 ¼ −ϵ012 ¼ 1. We also have the orthogonality and
completeness relations for the γ-matrices

ðγmÞαβðγmÞρσ ¼ −δαρδβσ − δα
σδβ

ρ; ðγmÞαβðγnÞαβ ¼ −2ηmn:

ðA6Þ

The γ-matrices are used to swap from vector indices to
spinor indices. For example, given some three-vector xm, it
may equivalently be expressed in terms of a symmetric
second-rank spinor xαβ as follows:

xαβ ¼ ðγmÞαβxm; xm ¼ −
1

2
ðγmÞαβxαβ; ðA7aÞ

detðxαβÞ ¼
1

2
xαβxαβ ¼ −xmxm ¼ −x2: ðA7bÞ

The same conventions are also adopted for the spacetime
partial derivatives ∂m

∂αβ ¼ ðγmÞαβ∂m; ∂m ¼ −
1

2
ðγmÞαβ∂αβ; ðA8aÞ

∂mxn ¼ δnm; ∂αβxρσ ¼ −δαρδβσ − δα
σδβ

ρ; ðA8bÞ

ξm∂m ¼ −
1

2
ξαβ∂αβ: ðA9Þ

We also define the supersymmetry generators Qα

Qα ¼ i
∂

∂θα
þ ðγmÞαβθβ

∂

∂xm
; ðA10Þ

and the covariant spinor derivatives

Dα ¼
∂

∂θα
þ iðγmÞαβθβ

∂

∂xm
; ðA11Þ

which anticommute with the supersymmetry generators,
fQα; Dβg ¼ 0, and obey the standard anticommutation
relations

fDα; Dβg ¼ 2iðγmÞαβ∂m: ðA12Þ
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