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We consider the analytic construction of three-point functions of conserved higher-spin supercurrents in
three-dimensional N = 1 superconformal field theory which are Grassmann-odd in superspace. In
particular, these include the three-point functions of the supercurrent and flavor currents, which contain the
three-point functions of the energy-momentum tensor and conserved vector currents at the component
level. We present an analytic proof for arbitrary superspins that these correlators do not possess a parity-
violating contribution. We also prove that the parity-even contribution is unique, and exists (under an
assumption that is well supported by the computational approach of arXiv:2302.00593) for arbitrary
superspins. The construction of the parity-even sector is shown to reduce to solving a system of linear
homogeneous equations with a tridiagonal matrix of corank one, which we solve explicitly for arbitrary

superspins.

DOI: 10.1103/PhysRevD.108.046001

I. INTRODUCTION

In conformal field theory (CFT), the general structure of
correlation functions is highly constrained by conformal
symmetry. In particular, the three-point functions of con-
served currents such as the energy-momentum tensor,
flavor currents and more generally higher-spin currents,
are fixed up to finitely many independent structures [1-12].
For conformal field theories in three dimensions (3D),
it has been proven that the three-point functions of con-
served higher-spin currents are constrained up to only three
independent structures [13—17]. Two of the structures are
parity-even (corresponding to free theories), and one is
parity-odd (or parity violating), which has been shown to
correspond to theories of a Chern-Simons gauge field inter-
acting with parity-violating matter (see e.g. [18-28]). In
superconformal field theory (SCFT), three-point functions
are further constrained." For example, in 3D N =1
superconformal field theory it was shown in [38] that there
is an apparent tension between supersymmetry and the
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existence of parity-violating structures in three-point func-
tions. In contrast with the nonsupersymmetric case, it
was shown that parity-odd structures are not found in
the three-point functions of the energy-momentum tensor
and conserved vector currents, which were studied using a
manifestly supersymmetric approach in [35-38,45].

The general structure of three-point functions of higher-
spin supercurrents in 3D N = 1 SCFT was elucidated in
[45]. Conformal higher-spin supercurrents of superspin-s
(integer or half-integer) are defined as totally symmetric
spin-tensor superfields, J, = Jy, 4, (2) = J(a,...a,,)(2), and
satisfy the conservation equation

Da]Jmaz...(lzx(Z) = 0’ (11)
where D“ is the spinor covariant derivative in 3D A = 1
Minkowski superspace. The most important examples of
conserved supercurrents in superconformal field theory are
the flavor current and supercurrent multiplets, correspond-
ing to the cases s = % and s = % respectively (for a review
of the properties of flavor current and supercurrent mul-
tiplets in three dimensions, see [35,46] and the references
therein). The flavor current multiplet contains a conserved
vector current, while the supercurrent multiplet contains
the energy-momentum tensor and the supersymmetry
current. For higher-spin supercurrents, it was shown by
explicit calculations up to a high computational bound
(s; £20) that the general structure of the three-point
function (J,, (z1)J5,(22)J5,(z3)) is fixed up to the following
form [45]:
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(5, J5,05) = a(ls I J5) e + 0 I 85 )0, (1.2)

where (J, J5,J5, ) ¢ is a parity-even solution, and (J; J5,J. ) o

is a parity-odd solution. For the three-point functions
which are Grassmann-even (bosonic) in superspace, the
existence of the parity-odd solution is subject to the following
superspin triangle inequalities:

S1552+S3, S2SS1+S3, S3SS1+S2. (13)

When the triangle inequalities are simultaneously satisfied
there is one even solution and one odd solution, however, if
any of the above inequalities are not satisfied then the odd
solution is incompatible with the superfield conservation
equations. On the other hand, for the Grassmann-odd
(fermionic) three-point functions it was shown that the
parity-odd solution appears to vanish in general. Despite
being limited by computational power to consider superspins
s; < 20, the pattern was clear and we proposed in [45] that
these results hold in general.

The aim of this paper is to study the Grassmann-odd three-
point functions analytically for arbitrary superspins. We use a
different approach to [45], based on a method of irreducible
decomposition of tensors. Quite remarkably, we find that
these three-point functions can be constructed explicitly for
arbitrary superspins. For the parity-violating sector we give a
completely analytic proof that it vanishes for arbitrary
superspins. For the parity-even sector we found that its
construction is reduced to solving a homogeneous system of
linear equations with a tridiagonal matrix of corank one,
which proves that the parity-even sector is fixed up to a single
structure in general. We also found the solution to this system
for arbitrary superspins, thus obtaining the explicit form of
the parity-even contribution. Our analysis uses one simplify-
ing assumption which is, however, well supported by our
computational approach [45]. It was noticed in [45] that if the
third superspin satisfies the triangle inequality 53 < s1 + 55 it
is not necessary to impose the supercurrent conservation
condition at the third point because it is automatically
satisfied and does not give any further restrictions. In this
paper we assume that this property continues to hold for
arbitrary superspins. However, we should stress that our
proof that the parity-odd sector vanishes does not rely on this
assumption. It is also inconsequential for our analysis of the
parity-even sector, as after imposing the conservation con-
ditions for the first two supercurrents we prove that it is
already fixed up to an overall coefficient. Since on general
grounds we should expect at least one parity-even solution,”

’In some cases the parity-even solution and, hence, the entire
three-point function, vanishes. However, this occurs only when
the three-point function is required to be invariant under
permutations of superspace points. These cases were analyzed
systematically in [45].

it follows that the conservation condition for the third
supercurrent is, indeed, unnecessary.

The results of this paper are organized as follows. In
Sec. II we provide a brief review of the general structure of
the three-point functions of conserved currents in 3D N/ =
1 SCFT. In Sec. Il we study Grassmann-odd three-point
functions which consist of three conserved supercurrents of
arbitrary half-integer superspins. We show that the con-
struction of both the parity-even and parity-odd sector is
governed by a homogeneous system of linear equations
with tridiagonal matrix. By computing the determinants of
the tridiagonal matrices for the parity-even and parity-odd
sectors, in the former case we prove that the matrix has
corank one, and hence the parity-even solution is unique
for arbitrary superspins. In the latter case, we prove that
the matrix is nondegenerate meaning that the parity-odd
solution vanishes in general. In Sec. IV we perform a
similar analysis for Grassmann-odd three-point functions
consisting of one fermionic and two bosonic supercurrents.
Appendix is dedicated to our 3D conventions and notation.

II. SUPERCONFORMAL BUILDING BLOCKS
AND CORRELATION FUNCTIONS

In this section we will review the essentials of the group-
theoretic formalism used to compute three-point correlation
functions of primary superfields in 3D N = 1 supercon-
formal field theories. For a more detailed review of the
formalism and our conventions, the reader may consult
[17,32,35,45].

Given two superspace points z; and z,, we define the
two-point functions

X = (x) = x)% + 210105 —i0%,6),. 6%, = 65 — 65,

(2.1)

The two-point function x«}xg can be split into symmetric and

antisymmetric parts as follows:

1

i
xcllg = ng + 58(1/}9%2, 01, = 0320120, X7, = _Ex?gxﬂaﬁ’
(2.2)
where the symmetric component
X = (xy = xp) +2i616)), (2.3)

is the standard bosonic two-point superspace interval. It is
useful to introduce the normalized two-point functions,
denoted by %1,,

X12ap caos o

X = , 2.4
12af8 (x2,)!1/2 (2.4)

From here we can now construct an operator analogous
to the conformal inversion tensor acting on the space of
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symmetric traceless spin-tensors of arbitrary rank. Given a
normalized two-point function X, we define the operator

Ia(k)/}(k) (x) = .i'(m(/;] .. .fak>/3k). (25)

This object is essential to the construction of correlation
functions of primary operators of arbitrary superspins [45].
Now given three superspace points, z;, 25, 23, we define
the three-point building blocks, Z; = (X;;, ©;;) as follows:
_ —1 0/ —1
Xijop = —(x )ayx?.j (xkj )éﬁ’

Oija = (xﬁcl)a/s‘gfi - (xfkl)a/i'gﬁ

kj’

(2.6)

where the labels (i, j, k) are a cyclic permutation of (1, 2,
3). They satisfy many properties similar to those of the two-
point building blocks [for simplicity we consider

(X12.01,)]
1 ()
X8Xy10p = X008, Xh = ‘EXng”“ﬂ’ (2.7a)
2 Xt 2
Xo=77" 01, = 01,01, (2.7b)
X13%23

and may be decomposed into symmetric and antisymmetric
parts similar to (2.2) as follows:

i
X12(l/)’ = X12aﬂ - 58(1[)’(9%25 XIZ(I/} = XlZ/)’a' (28)
The symmetric spin-tensor, X 12qp> Can be equivalently
represented by the three-vector X5, = =3 (V)X 245-

One may also identify the superconformal invariant

VXL VA VX
Analogous to the two-point functions, it is also useful to
introduce the following normalized three-point building
blocks, denoted by X 12 @12:

% Xi2ap A o,
Xioap = : f =12, (2.10)
SCALE )1
such that
Y ac ¢ _ ca A2
X13X210p = 6. J = 01,. (2.11)

Now given an arbitrary three-point building block, X, we
construct the following higher-spin inversion operator:

A

Latiopi)(X) = Xiayp, - X p)- (2.12)

This operators possess properties similar to the two-point
higher-spin inversion operators (2.5). Let us now introduce

the following analogs of the covariant spinor derivative and
supercharge operators involving the three-point building
blocks, where (X,0) = (X,,0,):

0 0
D = s (M @ﬁ
« = gen T 10Mw® Gy
0 0
=i—+ (1")y® . 2.13
Qu =gz + (1M® 5 (2.13)
which obey the commutation relations
m 0
D0 Dp} = {Qu O} = 20"y g (214)

Now given a function f(X,,®,), there are the following
differential identities which are essential for imposing
differential constraints on three-point correlation functions
of primary superfields:

D(l)yf(Xlz,Gu) = (xT;)ayDaf(XH’@H)’ (2.15a)

D), f(X12,012) = (X33 ), Q°f (X 12,0©15).  (2.15b)
Here by D), and D(;), we denote the ordinary super-
space covariant derivatives acting on the superspace points
71 = (x1,0,) and z, = (x,, 0,), respectively.

Now consider a primary tensor superfield ® 4(z) of
dimension A transforming in an irreducible representation
of the Lorentz group. The two-point correlation function
(® 4(z1)®@P(z,)) is constrained by superconformal sym-
metry to the following form:

IAB(xu)
2 )A ’

(@408 () = e~

(2.16)

where 7 is an appropriate representation of the inversion
tensor and c is a constant real parameter. The denominator
of the two-point function is determined by the conformal
dimension of ® 4, which guarantees that the correlation
function transforms with the appropriate weight under scale
transformations.

For three-point functions, let ®, W, Il be primary
superfields with scale dimensions A;, A,, and A3 respec-
tively. The three-point function is constructed using the
general ansatz [31,32]

<q)A1 <Z1>lPA2 (Zz)HA3 (Z3)>
_ I“)A,A/‘ (x13)I(2)A2A,2 (x23)
(x13)% (x33)%

Huaa,(X12,012), (2.17)

where the tensor H 4, 4, 4, encodes all information about the
correlation function, and is related to the leading singular
operator product expansion (OPE) coefficient [11].
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In this work we are primarily interested in the structure
of three-point correlation functions of conserved (higher-
spin) supercurrents. In 3D A =1 theories, a conserved
(higher-spin) supercurrent of superspin-s (integer or half-
integer), is defined as a totally symmetric spin-tensor of
rank 25, Jo 0, (2) = J(,...a0) (2) = Jaas)(2), satisfying a
conservation equation of the form

DalJalaz...a2:<Z) =0. (218)

Conserved currents are primary superfields, and the dimen-
sion Aj of J is fixed by the conservation condition (2.18) to
Ay = s+ 1. At the component level, a higher-spin super-
current of superspin-s contains conserved conformal cur-
rents of spin-s and spin-(s + 1) respectively. Indeed, for
conserved supercurrents of superspin s, the dimension A of
the two-point function (2.16) is fixed by conservation to
A = 5+ 1. If we now consider the three-point function of
the conserved primary superfields J,(;), J;}( 7 J’y’( x)» Where
I=2s,J K = 255, then the general ansatz is

<J<)(21)J,(J (22)d7x)(23))

Loy D (13) L)V (203)

N (x33)%1 (x35)4 (P (k) (X12. @),

=25y,

(2.19)

where A; = s; + 1. Below we summarize the constraints
on H.
(i) Homogeneity:

Hawpry(x)(4°X.20)

— ()R (X, ©), (2.20)

It is often convenient to introduce ’ﬁla( ) (X, 0),

such that

(X,0) = X888 H 5 5) (X, ©),

(2.21)

Heanypyx)

where 7}:{(1(1)/}(])
(X,0), ie

+(x)(X, ©) ishomogeneous degree 0 in

A

ﬂa(])/)’(J)y(K) (22X, 20) = Hupoyx) (X, 0). (2.22)
(ii) Differential constraints:
After application of the identities (2.15a), (2.15b)
we obtain the following constraints:

Conservation at z3: Q”H Nr(k-1)(X,0) =0,
(2.23c¢)

where

HE) (X.0©)

a(DpI)r(K) V2

_ _ / ()

= (X)L P X H 1y (1) (X ©)
(2.24)

(iii) Point-switch symmetries:
If the fields J and J' coincide, then we obtain the
following point-switch identity
Hawpun

1) (X.0) = (=) DHy 0,0 (X", =0),

(2.25)

where ¢(J) is the Grassmann parity of J. Likewise, if
the fields J and J” coincide, then we obtain the
constraint

HampyrnyX,0) = (=)D H, 15 (X", =O).

(2.26)

In the next sections, we will demonstrate that conserva-
tion on z; and z, is sufficient to constrain the structure of
the three-point function to a unique parity-even solution,
while the parity-odd solution must vanish.

III. GRASSMANN-ODD THREE-POINT
FUNCTIONS (JpJ:J5)

There are only two possibilities for Grassmann-odd
three-point functions in superspace (up to permutations
of the fields), they are:

JedrdF)s (JrJpJ3), (3.1)
where “B” represents a Grassmann-even (bosonic) field,
and “F” represents a Grassmann-odd (fermionic) field.
Each of these correlation functions require separate analy-
sis, however, they have a similar underlying structure.

A. Method of irreducible decomposition

First let us analyse the case (JJ}-J}.); we consider three
Grassmann-odd currents: J,(2441) J;(23+1)’ J;//(ZC—H)’ where
A, B, C are positive integers. Therefore the superﬁelds J,
Y, )" are of superspin s; = A +1, 5, =B+1, 55 =C+1
respectively. Using the formalism above, all information
about the correlation function

Jaasn) (21 )J;)‘(23+1) (Zz)le/(zcﬂ) (23)), (3.2)
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is encoded in a homogeneous tensor field
Haar1)peB+1)y2c+1)(X, ©), which is a function of a
single superspace variable Z = (X,0) and satisfies the
scaling property

Haar1)peB+1)y020+1) (42X, 10)

= (ﬂz)c_A_B_%Ha(zAH)ﬂ(23+1)y(2c+1)(X, 0). (3.3)

To simplify the problem, for each set of totally symmetric
spinor indices (the a’s, (s and y’s respectively), we convert
pairs of them into vector indices as follows:
Ha2a+1)5028+1)204+1)(X, ©)
= Haa(ZA),/}/j(ZB),yy(ZC) (X ) 9)
= (yml )alrxz o (7mA )aQA_laZA
X (yn] )ﬁlﬁz e (ynB )ﬁzs-lﬁzs
k k
X (7 ])7172"'(7/ C)}’chlhc

S Haﬂ%ml‘..mA,nl‘..an]..‘kc(X7 6) (34)

The equality above holds only if and only if
Heapym,...myn,...ngk,.. ke (X, @) is totally symmetric

Ha/iy,ml ...mpny...ngky...kc (X’ ®)

= H(zﬂy,(ml comg)(ny.ng)(ky . ke) (X’ 6)’ (35)

and traceless in each group of vector indices, i.e. Vi, j

nnl[miHaﬂy,ml...m[m/-...mA,nl...nB,kl...kC (X’ 6) = 0’ (368')
nllin/Haﬂy,n1l...mA,nl...n;n‘/-...ng,kl...kc (X’ ®> = 0’ (36b)
’/Ik[ijaﬂy.ml...mA,nl...nB,kl...k,vk‘/-...kC (X’ ®) =0. (36C)

It is also required that H is subject to the y-trace constraints

(yml)aaHaﬁy,mlH.mA,n].HnB,kl.“kC (X7 9) =0, (3'73)
(ynl)aﬂHaﬂy,ml..‘mA,nl‘..nB,k]“.kC(X7 ®) =0, (37b)
<7k1)a}/Haﬁy,m]...mA,nl...nB,kl...kC (Xv ®> =0. (3'70)

Now since H is Grassmann-odd, it must be linear in ®, and,
using the property (2.8), we decompose H as follows
(raising all indices for convenience):

4
HabBr.m(A)n(B)k(C) (X,0) = ZH?ﬁy'm(AMB)k(C) (X,0),
i=1
(3.8a)

Hixﬁy-'n(A)n(B)k(C) (X,0) = @ AmAnBKC) (X))  (3.8b)

H‘ZI/}Y,WL(A)H(B)IC(C) (X, @) _ gaﬂ<yr)y5®§Br,m(A)n(B)k(C) (X) ,
(3.8¢)

Hgﬂ%m(A)"(B)k(C) (X, @) — (yp)a/i@ycp,m(A)n(B)k(C) (X),
(3.84)

Hzliy,m(A)n(B)k(C) (X,@) _ (},p)aﬂ (},r)y5®5Dpr.m(A)n(B)k(C) (X)
(3.8e)

Here it is convenient to view the contributions H; as
functions of the symmetric tensor X (which is equivalent to
a three-dimensional vector) rather than of X. In fact, since
H is linear in ® and ® = 0 we have H(X,0) = H(X,©).
The tensors A, B, C, D are constrained by conservation
equations and any algebraic symmetry properties which H
possesses. In particular, the conservation equations (2.23a),
(2.23b), are now equivalent to the following constraints on
‘H with vector indices

D HebrmAn(BC) (X, @) = 0, (3.9a)

QuHPrmAnBKO) (X @) = 0. (3.9b)
We also need consider the constraint for conservation at the
third point (2.23c), however, this is technically challenging
to impose using this analytic approach and we will not do it
here. Instead we will comment on it at the end of Secs. III C
and IIID. Since H is linear in ®, the conservation
conditions (3.9a) split up into constraints O(@°)

aga HAPr-mAnBKO) (X @) =0, (3.10a)
%Haﬂ%mw)n(mk(c) (X.©) =0,  (3.10b)

and 0(©?)
(},m)aagéaXimelﬁ%M(A)"(B)k(C) (X.®) =0, (3.11a)
(7);5@° =t mAnBC) (X, @) = 0. (3.11b)

ox™

Using the irreducible decomposition (3.8), Eq. (3.10a)
results in the algebraic relations

AMARBIKC) 4y pprmAnBC) — g, (3.12a)
Ba-m(A)n(B)k(C) + Cl],m(A)"(B)k(Q — €qperr,m(A)n(B)k(C) =0,
(3.12b)

while (3.10b) gives
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_AmAn(BK(C) Mpr DprmAnBIKC) — () (3.13a)

—BamAnBK(C) 4 Cg.m(A)n(B)K(C) _ gqperr-m(A)n(B)k(C) =0.
(3.13b)
Hence, equations (3.12a), (3.13a) together result in

A = B =0, while C and D satisfy:
|

0,(—€4 , CPMARBIKC) 4 patm(AnBKC) | pramAnBIKC)) — 0,

1y DPFIAEC) — 0, (3.14a)

C9-mAN(BIK(C) _ gqprDm,mM)n(B)k(C) =0. (3.14b)
Next we consider the relations arising from the conserva-
tion equations at O(®?). Using the decomposition (3.8),
from a straightforward computation we obtain

After substituting the algebraic relations (3.14) into (3.15a), we obtain

; , pr, » =0, .
o€ ), rm(An(BIKC) 4 ctm(An(BIKC)) = @ (3.15a)
(3.15b)
3, DPrmAn(BIKC) — ¢, (3.16)

2, CcpmAnBIK(C) — (),

We now must impose the y-trace conditions, starting with (3.7a) and (3.7b). Making use of the decomposition (3.8),

Eq. (3.7a) results in the algebraic constraints

’

’,,mpcp,mm(A—l)n(B)k(C) =0
;,]mprr,mm(A—l)n(B)k(C) =0,

while from (3.7b) we find

eqmpcp.mm(A—l)n(B)k(C) =0, (3178.)

€y DPPMA=DNBIKO) — (3.17b)

nnpcpm(A)nn(B—l)k(C) =0, eqnpcp,m(A)nn(B—l)k(C) =0, (3188.)
nnprrﬁm(A)nn(B—l)k(C) =0, eqnprr,m(A)nn(B—l)k(C) —0. (318]3)
Altogether these relations imply that both C and D are symmetric and traceless in the indices p, my, ..., my, ny, ..., ng, i.e.,
CPmAnBIKC) = Clem@n(B)KC) — pprm(An(BK(C) = p(pm(A)n(B)).rk(C) (3.19)
Next, from the y;-trace constraint (3.7c), we obtain the algebraic relations
i, DPTARBIRK(C-1) — (3.20a)
Cp,m(A)n(B)kk(C—l) + €krSDpr‘m(A>"(B)Sk(C_1) = 0. (320]3)
To make use of these relations, we decompose D into symmetric and antisymmetric parts on the indices r, ki, ..., k¢ as
follows:
C X
DpmAn(B)).rlky.ke) — D(Spm(A)n(B)),ukl...kC) i Z€rk,-tD/(4Pm(A)n(B))s(tk1...ki...kc)’ (3.21)
i=1

where the notation lAc,» denotes removal of the index k; from D ,. After substituting this decomposition into (3.20), we obtain:

DEQPM(A)"(B)),(rkk(C—l)) -0

Mkr -

D/(L‘Pm(A)"(B)),(rk(C—l)) —

C+1

(3.22a)

(pm(A)n(B)).(rk(C=1)) (3.22b)

We see that the tensor D, is fully determined in terms of C. To continue we now substitute (3.21) into (3.14) to obtain

equations relating C and Dg; we obtain:
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(pm(A)n(B)),(r m(A)n(B)),(r ...A,-... _
MDY C - Ze »C clp B)).(rki.. k- -ke) — (), (3.23a)
e, D(qm<A>n(B>>»(rk(C)) — C(pm(A)n(B)).(rk(C))
C — Z{,,pkl,]qr C(gm(A)n(B)).(rky..k;..k(C)) _ C(k;m(A>n(B)>.(pk1--./?,----k(C))} =0. (3.23b)

Further, the conservation equations (3.16) are now equiv-
alent to
apc(pm(A)n(B)),k(Q =0

angpin(A)n(B)),(rk —0.

’

(3.24)

Hence, finding the solution for the three-point function
(JpJJ7) is now equivalent to finding two transverse
tensors C and Dg, which are related by the algebraic
constraints (3.23). It may be checked for A=B=C=1
that the constraints reproduce those of the supercurrent
three-point function found in [35].

Let us now briefly comment on the analysis of three-
point functions involving flavor currents, i.e. when A, B,
C = 0. In these cases one can simply ignore the relevant

B. Conservation equations

Let us now summarize the constraint analysis in the
previous subsection in a way that makes the symmetries
more apparent. For the (JJ:-J7) correlators we have two
tensors; C of rank N+ C + 1, and D of rank N + C + 2,
where N = A + B, which possess the following sym-
metries:

keir)

C(r]..,rNH)(k]..,kC)’ Dgrl---rN+1)(k1»~-

(3.25)

The tensors C and Dy are totally symmetric and traceless
in the groups of indices r and k respectively. They also
satisfy the conservation conditions

tracelessness and y-trace conditions (3.6), (3.7) respectively 0, Clrirven)lkike) =, 0, D(s" v (kieckea) _ o
and omit the appropriate groups of tensor indices. The
analysis of the conservation equations proves to be essen- (3.26)
tially the same and we will not elaborate further on
these cases. and the algebraic relations
( k), 1 CR TR
D Ti-o TN ) (K- Keqn k; Clri--rys kiky.. ki keyy) — 0, 327
nr]kl S + C+ 1 — € rik ( a)
€, ;. Dgr““rN+‘)(k““kC+‘) — Cpra-rnin)(kae k)
C+1 R R
C 1 Z{r] I”rlkl r1 ) (kikg ok keyy) C(kir2~..VN+1)(sz~..kika+l)} =0. (327b)
The “full” tensor D, present in the decomposition (3.8), is constructed from C and Dy as follows:
( Nakoke) 1N i
J(ryecornar)(kyoke) — i Ine)\gKy - ke ki ry...rye)(thy . ki ke
Da(n D(kike) = DY + o Z:Eq ,.Cr (0 ). (3.28)

As we will see later, the algebraic relations (3.27) are sufficient to determine D completely in terms of C. However, before
we prove this it is prudent to analyze the conservation equation (3.26) for C.
Since we have identified the algebraic symmetries of C, it is convenient to convert C back into spinor notation and

contract it with commuting auxiliary spinors as follows:

v(2C))

Since the auxiliary spinors are commuting they satisfy

C(X;u(2N +2),

= Ca2an+2)8(20) (X)u

A u%enN2 vﬁl .. ‘vﬁzc‘

(3.29)
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eqpuul =0, eq5v"1P = 0. (3.30)

We now introduce a basis of monomials out of which C can be constructed. Adapting the results of [17,45], we use

P53 = g, 5uv”, 05 = X 5u™t’, Z, = )A(,,/;u"u/}, Zy = X v’ (3.31)

A general ansatz for C(X;u, v) which is homogeneous degree 2(N + 1) in u, 2C in v and C— N —2 in X is of the
following form:

C(Xiu,v) = XCN2N "a(a, b)P4Q3 " Zh V=1 Z8, (3.32)
a,b

However, there is linear dependence between the monomials (3.31) of the form
Z\Z, = Q3 - P3. (3.33)

which allows for elimination of Z,. Hence, the ansatz becomes:

2C
C(X;u,v) = XON2N " o PAQIC—H ZY =€, (3.34)
k=0

This expansion is valid for C < N + 1, which is always fulfilled for field configurations where the third superspin triangle
inequality, s3 < s1 + 55, is satisfied. Note that if s > s + s, it then follows that s; < s, 4+ 53 and 5, < 57 + s5. That is, if
one of the triangle inequalities is violated the remaining two are necessarily satisfied. It implies that one can always arrange
the fields in the three-point function to obtain a configuration for which s; < s + s,, or equivalently, C < N < N + 1. We
will assume that we have performed such an arrangement and use Eq. (3.34).

Requiring that the three-point function is conserved at z; and z, is now tantamount to imposing

0 0 0

ou® o 9X 45 (X u,v) (3.35)

By acting with this operator on the ansatz (3.34), we obtain

XC-N-3 i a P52 0327k ZN=C 6, (k)P503 + 05 (k) 0% + o3(k)P3} = 0, (3.36)
=0
where
o1(k) = =2k> +4Ck* +2k(1+ C+2N(2+N)) —2C(3+4N(2+ N)), (3.37a)
0y (k) = —k(k—1)(2N = k + 3), (3.37b)
o3(k) = (2C — k= 1)(2C — k)(2N + k + 3). (3.37¢)

The sum above may now be split up into three contributions so that the coefficients may be easily read off

2C 2C-2 2C
S aor (PRI 1 3 apam(k+ 2PEOH + 3 g s (k — 2) PO 0. (338)
k=0 k=0 k=2

Hence, we obtain the following linear system:

01 (k) + ak+262(k —+ 2) —+ ak_263<k — 2) = O, 2 S k S 2C — 2, (3393)
[ef1en] (0) + a0, (2) = 0, azcdl (2C) + azc_203 (2C - 2) = O, (339b)
0101(1) + C¥362(3) = 0, Arc-101 (2C - 1) + azc_363(2c - 3) = 0 (339C)
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It must be noted that the equations above for the
variables a; split into independent C + 1 and C dimen-
sional systems of linear homogeneous equations corre-
sponding to the parity-even and parity-odd sectors
respectively. The terms for which k is even are denoted
parity-even, while the terms for which & is odd are denoted
parity-odd, so that

C(X;u,v) = Cp(X;u,v) + Co(X;u,v), (3.40)
where
c
Crp(X;u,v) = XCN2 Z oy ngQ§<C—k> ZN-CH1
=0
(3.41a)

C
CO (X, u, ’U) = XC_N_2 Z aZk_lpgk—lQi(c—k)JFlzll\/—C-ﬁ-l‘
k=1

Indeed, this convention is consistent with that of [17,45].
Hence, in the linear homogeneous system (3.39), we define
the parity-even coefficients, ay, by, ¢y, as

ay =012k - 2), 1<k<C+1, (3.42a)
by = 0,(2k), 1<k<C, (3.42b)
cp =032k —-2), 1<k<C, (3.42¢)

and the parity-odd coefficients, a,, Bk, Cr as
ay=0,2k-1), 1<k<C, (3.43a)
by = 6,2k + 1), 1<k<C-1, (3.43b)
Cr=032k—1), 1<k<C-1. (3.43¢)

With the above definitions, the linear homogeneous equa-
tions (3.39) split into two independent systems which can

(3-41b)  be written in the form Ma = 0. More explicitly
|
B ap bl 0 0 7 B (o) T
¢, a, by 0 0 a
0 Co as b3 0 ay
Even: Mg ) ) , ag = , (3.44a)
0 . Cc—1 ac bC (05 Te)
L O 0 0 Cc dAcqqA L Qpc
511 E] 0 0 7 a7
& @ by 0 a3
Cy &3 B'; 0 as
Odd: M, = R ap = , (3.44b)
cee Ec_z Elc_l I;C—l A c-3
L O 0 0 EC_1 ac _ Layc—1
where Mg, M, are square matrices of dimension C + 1, C a by 0 0 0
respectively. The system of Eq. (3.44) is associated with the ¢ ay by O 0
solution C(X; u, v), while the system (3.44b) is associated
with the solution C(X; u, v). The question now is whether 0 ¢ a3 by 0
there exists explicit solutions to these linear homogeneous A= (345)
systems for arbitrary A, B, C. )
The matrices of the form (3.44) are referred to as tri- 0 ... ... Cra ap by
diagonal matrices, before we continue with the analysis let us 0 0 ... 0 ¢y a

comment on some of their features. The sufficient conditions
under which a tridiagonal matrix is invertible for arbitrary
sequences a;, by, ¢, has been discussed in e.g. [47,48]. Now
consider the determinant of a tridiagonal matrix

One of its most important properties is that it satisfies the

recurrence relation
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Ar=arhy —bjoicpiBrn, Ag=1, A =0, (3.46)

which may be seen by performing a Laplace expansion on the
last row. The sequence A is often called the “generalized
continuant” with respect to the sequences ay, by, c;. There
are methods to compute this determinant in closed form for
simple cases, for example if the tridiagonal matrix under
consideration is “Toeplitz” (i.e. if the sequences are constant
a, = a, by = b, c; = c). For Toeplitz tridiagonal matrices
one obtains

1
A=
¢ Va?—4bc
X{<a+\/a2—4bc>k“ B <a—\/a2—4bc)k+1}
2 2 ’

(3.47)

for a2 —4bc #0, while for a?> —4bc =0 we obtain
A = (k+1)(9*. For general sequences ay, by, ¢, there
is no straightforward approach to compute A, and it must
|

Gy = 4C(=1 4 k(4k —3) = 2N(N +2)) — 4(2k — 1) (2k(k — 1) = N(N +2)),

by = —4k(1 +2k)(N —k + 1),

G =4(142C=2k)(C=k)(1+k+N),

We also have AEC) = det[M(OC)]. Below we present some examples of the matrix M, and the determinant A

N = A + B and fixed C:

computed recursively using (3.46). Another important fea-
ture of tridiagonal matrices is that in general their nullity
(corank) is either O or 1, which implies that any system of
linear homogeneous equations with a tridiagonal matrix has
at most one nontrivial solution.

In the next subsections, we study the continuants
of Mg, M, for the homogeneous systems (3.44a),
(3.44b), and obtain their explicit form for arbitrary A, B,
C. This determines whether M, M, are invertible, and the
number of solutions for the homogeneous systems
(3.44a), (3.44D).

C. Parity-odd case

First we will analyse the system of equations for the
parity-odd sector. Note that if detfM ] # O then the system
of equations Mya, = 0 admits only the trivial solution.

Letus denote M, = ME)C) to indicate that the dimension of
the tridiagonal matrix in (3.44b) is Cx C. We also

introduce the k x k continuant A,((C), where 1 <k<C. It
satisfies the continuant equation (3.46) with

1<k<C, (3.48a)

(3.48b)
1<k<C-1. (3.48¢)

© for arbitrary

MY = [—4N(N +2)]. (3.49a)
[—12N(N +2 —12N
M2 — (N'+2) , (3.49b)
12(N+2) 24—4N(N+2)
[—20N(N +2) —12N 0
MY = | 40(N+2) 60-12N(N+2) —40(N-1) |, (3.49¢)
I 0 12(N+3)  72—4N(N +2)
—28N(N +2) —12N 0 0
84(N +2) 96 —20N(N +2 —40(N — 1 0
MY — (N +2) (N +2) (N-1) (3.490)
0 40(N +3) 176 — 12N(N +2)  —84(N —2)
I 0 0 12(N +4) 144 — 4N(N +2)
The corresponding determinants are
AV = —aN(N +2), (3.50a)
AP = 48(N = 1)N(N +2)(N +3). (3.50b)
AY = —960(N — 2)(N = 1)N(N + 2)(N + 3)(N +4). (3.50¢)
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A = 26880(N — 3)(N = 2)(N = )N(N + 2)(N + 3)(N + 4)(N + 5).

(3.50d)

Indeed the matrices above are invertible as det[M,] # 0, therefore we have the solution @, = 0. The determinant can be
efficiently computed using the recursion formula (3.46), and the pattern appears holds for large integers N, C. Using

Mathematica we explicitly computed A(CO

However, the continuant &,({C)

Aiq satisfies the following recurrence relation:

A9 =798 A9 =_402Cc-1)N2+N),

(©)

where 7, is given by

P = 4N = k)(2+ k + N)(=1 +2C — 2k).

To see this, consider the combination A 9

for arbitrary N, up to C = 500. In all cases we found it is nontrivial.
can also be obtained explicitly for all 1 < k < C, and arbitrary C. First, one can show that

1<k<C, (3.51)

(3.52)

() = a3 oA\, + By AL Using Egs. (3.64), (3.52), this combination

becomes (7i 17k — drsa¥r + Ekﬂékﬂ)ﬁi ). However it may be shown using Eqgs. (3.48) and (3.52) that

Vi1 7a = Arsafx + bria &g =0,

(3.53)

for arbitrary k, N, C, which implies that the recurrence relation (3.46) is indeed satisfied. We find the following general

solution for (3.5 1)3:

) ouwTG=C+k) (N+k+1)

A =2

1<k<C.

rG-0)

N+ D(N=k)!

(3.54)

()

One can check (using e.g. Mathematica) that it solves the continuant equation (3.46). Recalling that det(M,,’| = NCC), it

then follows that

23C
detM'S] = V7

(N+C+1)!

which is always nontrivial. This implies that M, is of full
rank and, hence, the system of equations (3.44b) admits
only the trivial solution @, = 0. Therefore, recalling that
Cy is the parity-odd solution corresponding to the system
of equations (3.44b), from the analysis above we have
shown that Cy(X;u, v) = 0 for arbitrary A, B, C.

Now we will show that the tensor D¢ associated with Co,
which are related by the algebraic relations (3.27), also
vanishes. Since we have shown that C, = 0 in general,
Eq. (3.27) implies

nrllegrl-»~VN+1)(k1-~kC+1> — 0’ (356&)
eprllegrl-~-rN+l)(kl--~kC+l> —0. (356]})

Hence, Dy is totally symmetric and traceless in all tensor
indices

*Recall that we have arranged the operators in the three-point
function so that s3 < s; + s, which implies C < N.

Td-o)N+1)(N-O) .

C <N, (3.55)

D(’1~-’N+1)(k1»~kc+1) — D(’1~~-’N+1k1»~kc+1)
S - =S :

(3.57)

We can now construct a solution for Dg using auxiliary
spinors as follows:

Ds(X, M(2N + 2C + 4)) = DSa(2N+2C+4) (X) l/tal .. .Ma2N+2C+4 .
(3.58)

Since Dy is transverse, the polynomial Dg(X;u) must
satisfy the conservation equation

Jd 9 0

2T Ds(X;u) =0,
au b 3,y S K )

(3.59)

The only possible structure (up to a constant coefficient) for
Dg(X;u) is of the form

Dg(X;u(2N +2C +4)) = XCN=2ZNTC+2 - (3.60)
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Explicit computation of (3.59) gives
Jd 0 0

ou® ou? 0X o

= _4(N + C + 2)2(1 + ZC)XC—N—3ZIIV+C+1’

Dg(X;u)
(3.61)

which is always nonzero. Therefore Dy = 0 for the parity-
odd sector. Hence, for Grassmann-odd three-point func-
tions of the form (JJ:-J7), there is no parity-odd solution
for arbitrary superspins.

Let us point out that we did not need to use the constraint
arising from conservation on the third point. Imposing the
conservation equations at the first two points was sufficient
to prove vanishing of the parity-odd contribution. Let us,

|

however, indicate that our consideration is sensitive to the
fact that the operator inserted at the third point is a
conserved supercurrent. Indeed, we used the fact that its
dimension is s3 + 1, saturating the unitarity bound, which
implies that this operator is a conserved supercurrent.

D. Parity-even case
For the parity even case, we follow the same approach.
Let us denote Mg, := MSZC) (recall that the dimension of the
matrix M(EC) in (3.44) is now (C+ 1) x (C + 1)) and con-
sider the continuant A,({C), 1<k<C+1, with A(chl =
det[M<EC)]. The continuant satisfies Eq. (3.46), where

ap =2C(3 + 2k(4k — 7) — 4N(N + 2))

—4(k—1)(3 +4k(k —2) —2N(N +2)), 1<k<C+1, (3.62a)
by = —2k(2k — 1)(3 + 2N — 2k), 1<k<C, (3.62b)
¢y =2(14+2C—-2k)(1+C—k)(1+2k+2N), 1<k<C. (3.62¢)

Below are some examples of the matrix Mg and the determinant A(c(21 for fixed C:
—2(2N +1)(2N +3) —2(2N +1
M) _ [ 2EN+DEN +3) 2N+ 1)) (3,63
2(2N +3) 2
[—4(2N + 1)(2N +3) —2(2N +1) 0
MV = 12(2N +3) —8(N2+2N-2) —122N-1) |, (3.63b)
i 0 2(2N +5) 12
[—6(2N + 1)(2N + 3) —2(2N +1) 0 0
30(2N +3 —2(8N? + 16N — 15 —12(2N -1 0
M) _ (2N +3) ( ) (N - 1) | (3.63)
0 12(2N +5) —2(4N? +8N —39) -30(2N -3)
L 0 0 202N +7) 30
[—8(2N + 1)(2N +3) —2(2N +1) 0 0 0 1
56(2N + 3) —4(6N? + 12N — 11) —12(2N - 1) 0 0
MV = 0 30(2N +5) —16(N* +2N -9) —-30(2N - 3) 0
0 0 12(2N +7) —4(2N? 4+ 4N — 45) —56(2N -5)
i 0 0 0 2(2N +9) 56 |
(3.63d)
I
0

Contrary to the parity-odd case, all of the matrices above

are singular, i.e. Azl = Ay = Af) = A?) = 0. For large
integers we use the recursion formula (3.46) to analyse the
0

general structure of A(C +1- Analogous to the parity-odd
case, we computed it for arbitrary N up to C = 500 and

found in all cases A<C , = 0. It then follows that the matrix

+
MEEC) is of corank one and the solution, ag, to

M%N’C)&'E =0, is fixed up to a single overall constant in

all cases, and therefore Cr is unique.
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For the parity-even case it also turns out to be possible to
solve for the continuants A,(CC) for 1 <k < C+ 1. One can

show that A,((C) satisfies the following recurrence relation:

A9 =9 Al =201 +2N)(3 +2N),
1<k<CH1, (3.64)
where y]((c) is given by
1 = =2(C—k)(14+2N = 2k)(3 + 2N +2k).  (3.65)
(©)

To show this, consider again the combination A;7, —

oA, + b ALY Using Egs. (3.64), (3.65), we

obtain (i 17k — disa¥i + bk+lck+1)Al(<C)' It is then simple
to show using Eqs. (3.62) and (3.65) that this combination
vanishes for arbitrary k, N, C, which implies that the
recurrence relation (3.46) is indeed satisfied. Analogous to
the parity-odd case, it is possible to find an explicit solution
for the recurrence relation (3.64), and we find the following
general formula for the continuant:

3k 1 3
© _ (w1 2C!
A = (=1 = T(==N+k|T[=+N+k),
¢ =D z(C—k)! <2 +> <2+ +)

I<k<C. (3.60)

For k = C + 1, we have A<CC+)1 = y(CC)A(CC). However, we

note that y(cc> = 0, which implies A(CC+)1 = det[M(EC)] =0,
|

for arbitrary N, C. Hence, we have shown that the matrix
M is always of corank one and the system (3.44a) has a
unique nontrivial solution.* This, in turn, implies that the
tensor C(X;u,v) is unique up to an overall coefficient.
The explicit solution to the system Ma = 0 and, thus, for
the tensor Cg can also be found for arbitrary N, C. Indeed,
by analysing the nullspace of M we obtain the following
solution for the coefficients a,; of (3.41a):

(~D)R2%T(C+ 1)k + N +3)
[k + DI(C—k + DI(N +3) 7

A = 1§k§C

(3.67)

This is also a solution to the parity-even sector of the
recurrence relations (3.39), which can be explicitly
checked. Hence, we have obtained a unique solution (up
to an overall coefficient) for Cr in explicit form for
arbitrary superspins.

Now recall that the three-point functions under consid-
eration are determined not just by the tensor C(/1-+-"v+1)(k1---kc)

but also by the tensor D{/"")1-#¢1) which is transverse

[see Eq. (3.24)] and related to CU1-"v+1)(ki-ke) by the
algebraic relation (3.23). Remarkably, it is possible to solve
for Dy in terms of C using (3.23). To show it let us begin by
constructing irreducible decompositions for C and D. Since
we know that C is parity-even, it cannot contain €, and we use
the decompositions

N+1 C A
Clrvrin)br.oke) — lrirwsik- ZZ riky Tk Ke)
N+ . - ¢ ko Rk k
n Z ’7 Pty rnpiky . ke) + Z nk'kjcz(trlmrNH 1---Kikj... C), (368)
j>i=1 j>i=l

where C,, C;, Cy are the irreducible components of rank N + C — 1 (C, exists only for C > 1). Requiring that the above
ansatz is traceless in the appropriate groups of indices fixes C; and C, in terms of C, as follows (indices suppressed):

2C 2(N+1)
3 IN+1 2 4 20-1 2

(3.69)

Hence, C is determined completely in terms of the totally symmetric and traceless tensors C| and C,. Now let us construct
an irreducible decomposition of Dg. Due to the algebraic relation (3.27), we know that Dg must be linear in €. The only way
to construct Dg such that it contains ¢ is by using the following decomposition:

N+1 C+1

— E :E : ...... ki k. k
frd €qu /Tq rl Ny1K) j C+l>’

i=1 j=

Dg’1~~~r1v+1)(k1~~~kc+1 (3.70)

*Alternatively, note that (3.66) implies that the largest nontrivial minor of My is of dimension C x C. Therefore, Rank(Mpg) = C,
which implies Nullity(Mg) = 1.
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where the tensor 7' (of rank N + C + 1) is decomposed as follows:

N C N
T4-(rry) (ki ke) — Tgrlw'rNkh“qu) + ZZ’,Ir[k,-Tgrl---?i"-”Nklmkj--»kch)

=1 j=1

N C PN
+ Z nriro(ﬁ-'-?i?/--JNklwkCII) + Z r]kiij(rl-nrNkl~'~kikj~~'qu)
3 4 .

j>i=1

(3.71)

Jj>i=1

Here T is the irreducible component of rank N + C + 1 and T, T, T4 are the irreducible components of rank N + C — 1
(where T, exists only for C > 1). It should be noted that one could also consider contributions to 7" proportionate to 79",
n?%i, but such contributions will cancel when substituted into (3.70) and, hence, they do not contribute to the irreducible
decomposition of Dg. Requiring that D is traceless on the appropriate groups of indices fixes 7’3 and 7 in terms of T, as
follows (indices suppressed):

2C 2N

3 IN+1 % 4 20-1"2

(3.72)

Hence, Dy is described completely in terms of the totally symmetric and traceless tensors 7'y and T’,. If we now consider the

algebraic relations (3.27) and substitute in the above decompositions, after some tedious calculation one obtains:

1 C+1

0= nrlklD§r1~~’N+1)(k1~-~kC+1) + oS

N+1 C+1

+
+

||
[N
~.
||
)

where the constant 7(N, C) is defined as follows:

6C? +2N? +3C(1 +4N)—5N -3
(2C - 1)(1 +2N)

«(N.C) = (3.74)

Requiring that the above combination vanishes gives
T2 = §2C2, where

(2C—1)(1 +2C+2N)
(14 C)(6C*+2N?* +3C(1 +4N) —=5N - 3)°
(3.75)

&H=-

One can proceed in a similar way with the second algebraic
relation in (3.27). After some calculation we found that it
relates 7y and C; as T| = &,C;, where

2C+ 1
C+DHINTC+2)

& =- (3.76)

A similar calculation was performed in [35], where it was
shown that forA =B =C=1,& = —3, & = —¢, which
is in full agreement with the expressions above.

Finally, we need to show that Dg found this way is
transverse, i.e.

angprl...rN)(k1~~~kc+1) —0. (3'77)

E €kirlklC(rl”-rN+l)(klk2-~~],;i--~kC+l)
i=2

AR U S 1 2C Frooirnstkye ke @)
_ qrik; N.C T( PPy ky ok ke q) 1 C( 1T Nyt ky ek ke g 373
: ¢ {T( O e tTav)e . (373)

[
For this let us define the tensor

E(rim)kiken) — g D(prl---rN>(kl--~kC+l>
p

y . (378)

Our aim is to show that E(1--w)(kikeit) — 0, To find
E(ri-m)(ki-kei) we contract Dg in Eqgs. (3.70)—(3.72) with
the derivative. However, from the algebraic relations (3.23)
and the fact that C is transverse it follows that
E(ri-m)kiken) s totally symmetric and traceless:

Erirn)kiker) = glrirvki ki) (379)

Using Egs. (3.70)—(3.72) we find that the totally symmetric
and traceless contribution is given by

N+1
E(rryyikiken) — — epqr,-apTgﬂlrz---;‘i---rNﬂkl--~kc+1)
i=2
C+1 ( Koo kens)
_ ki gp\d72- - IN1 Ry Keg
g €pq 0P .
j=1

(3.80)

Since the tensor 7' is proportional to Cy, it is constructed
out of the vector X and the Minkowski metric #™". It is not
difficult to see that for a tensor 7'; constructed out of X™
and ™", the combination (3.80) must vanish. Hence E = 0
and Dy is transverse.
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Let us summarize the results of this subsection. We have
shown that the parity-even contribution is fixed up to an
overall coefficient. Moreover, it can be explicitly found for
arbitrary superspins by solving a linear homogeneous
system of equations with the tridiagonal matrix (3.44a).
Once the solution for the parity-even coefficients a,; is
found, the tensor C is obtained using eq. (3.41a) and the
tensor Dy is obtained from C as discussed above. Note that
our analysis for the parity even solution is incomplete
since we have not imposed the conservation condition at the
third point. This is technically difficult to impose using
the approach outlined in the present paper, and from this
viewpoint the computational approach developed in [45] is
far more useful. However, it was verified in [45] up to
s; = 20 that if s3 <s; + s, (that is, the third triangle
inequality is satisfied) then the third conservation equation
is automatically satisfied and does not result in any new
restrictions on the three-point function. The analysis in this
subsection assumes that this property continues to hold for
arbitrary superspins.

E. Point-switch symmetries

For the (JpJ:J%) three-point functions we can also
examine the case where J = J' for arbitrary superspins.
We want to determine the conditions under which the
parity-even solution satisfies the point-switch symmetry. If
we consider the condition (2.25) and the irreducible
decomposition (3.8), we obtain the following conditions
on C and D:

C}(EHWVNH)(klwkc)(X) _ C}(;1~~VNA1)(/<1~J<C)(_X) -0,
(3.81a)

Dgl"'VN“)(kl'”kC“)(X) _ Dglu-rNJrl)(kl"'kCAl)(_X) =0.
(3.81b)

Let us consider (3.81a) first. Using auxiliary spinors, this
condition may be written as

Ce(X;u,v) — Cg(=X;u,v) =0. (3.82)

However, recall that Cx(X; u, v) is of the form

C
Ce(Xiu,v) = XCN2N" 0y PRFOY M ZN-CH1 (3.83)
k=0

ForJ =J,wehave N = A + B = 2A, and from (3.82) we
obtain

C
D (14 (=) ey PP Tz <.
k=0

(3.84)

Hence, the parity-even solution Cg(X;u,v) satisfies the
point-switch only for C odd, i.e. for s3 = 2k + %, k € Zy,
which is consistent with the results of [45].

Now assume that Cp, satisfies the point-switch symmetry
(3.81a). We want to show that Dg, which is fully deter-
mined by Cg, satisfies (3.81b). Since (3.81a) is satisfied,
from (3.68) we must have C,(X) = C(-X), C,(X) =
C>(—X) (indices suppressed). Now consider (3.28) and
the irreducible decomposition for Dg given by (3.70).
Since Ty «xC,, T, xC,, we have T(X)=T,(-X),
T,(X) =T,(—X). It is then easy to see by substituting
(3.28), (3.70) into (3.81b) that D also satisfies the point-
switch symmetry. Concerning point-switch symmetries that
involve J”, these are difficult to check using the approach
outlined in this paper, as one must compute 7 using (2.24)
and check (2.26). However, the results of [45] cover these
cases in more detail and so we will not discuss them here.

IV. GRASSMANN-ODD THREE-POINT
FUNCTIONS (JzJ3pJ5)

Let us now consider the case (JJ3J%), which proves to
be considerably simpler. Let us begin with making impor-
tant comments on the arrangement of the operators in this
three-point function. First, we arrange them in such a way
that the operator at the third position is bosonic. Second, we
arrange them in such a way that the third superspin satisfies
the triangle inequality, that is s3 < s 4 5,. As was men-
tioned in the previous section if one of the triangle
inequalities is violated the remaining two are necessarily
satisfied. This means that we can always place a bosonic
operator with the superspin satisfying the triangle inequal-
ity at the third position.

We consider one Grassmann-odd current, J2441), Of
spin s; = A + % and two Grassmann-even currents J:; (2B)"
J;//(ZC)’ of spins s, = B, s3 = C respectively, where A, B, C

are positive integers. All information about the correlation
function

<Ja(2A+1)(Zl>J/ﬂ(23) (22)J;/,(2C)<Z3)>’ (4-1)

is now encoded in a homogeneous tensor field
Haa+1)p28+1)y20+1)(X, ©), which satisfies the scaling

property

Haas1pen)ycc) (42X, 10)

= (12>C_A_B_%Ha(2A+1)ﬂ(zB)y(zc) (X,0). (4.2)

Analogous to the previous case, for each set of totally
symmetric spinor indices (the a’s, s and y’s respectively),
we convert pairs of them into vector indices as follows:
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= Haa(2A) B).y(2C) (X ®)
= (" )ayay - (") a0
X (") (™) g s
X () (e
X Hom,...mpmy..ngikr.. ke (X ©).
(4.3)

Haa+1)p08)y20) (X, ©)

Again, the equality above holds only if and only if
Hem,..omyn,..ngk, .. ke (X, @) is totally symmetric and trace-
less in each group of vector indices. It is also required that
‘H is subject to the y-trace constraint

(yml )o-aHa,ml ..mg,ny...ng.ky.. ke (X’ G)) =0. (44)

Indeed, since H is Grassmann-odd it is linear in ®, and we
decompose H it follows (again, raising all indices for
convenience):

Ham(A)n(B)K(C) (X,0) = ZH?,m(A)n(B)k(C) (X,0), (4.5a)
i=1
Hzlx,m(A)n(B)k(C) (X, @) — ®(1Am(A)n(B)k(C) (X), (45b)
a,m(A)n(B)k(C a m(A)n
HE (A)n(B)k( >(X, Q) = (Yp) ;O°BP: (A) (B)k(C)(X)'
(4.5¢)

Hence, in this case there are only two contributions to
consider. The conservation equations (2.23a), (2.23b) are
now equivalent to the following constraints on H with
vector indices:

D HEMANBKC) (X, @) =0,  (4.6a)
(Yn) ﬂQ Ham )nn(B—1)k (C)(X, @) =0. (46b)
They split up into constraints O(@°)
4 a,m(A)n(B)k(C) (X @) =0 (4.78_)
00 ’ '
O pam@ym(B-DKC) (X, @) = 0, 4.7b
(1) 5o (x.0) (470)
and 0(©?)
m a,m(A k(C) —_
(r")as®’ ame (X,0) =0, (4.8a)
()" (7"’)/;595—7%“ mAnmB-DHO (X, 0) = 0. (4.8b)

ox™

Using the irreducible decomposition (4.5), Eq. (4.7a)
immediately results in A = 0, while (4.7b) gives

”pan.m(A)nn(B—l)k(C) =0, Bp.m(A)nn(B—l)k(C) =0.

(4.9)

Next, after imposing the y-trace condition (4.4), we find
that B must satisfy

€qpn

”mep,mm(A—l)n(B)k(C) =0, € Bp.mm(A—l)n(B)k(C) =0.

qpm
(4.10)

Altogether (4.9) and (4.10) imply that B is symmetric and
traceless in the indices p, my, ..., my, ny, ..., ng, i.c.
Brm(A)n(B)k(C) = B(pm(A)n(B)).k(C) (4.11)
If we now consider the equations arising from conservation
at 0(®?), a simple computation shows that B must satisfy

0, BrmAn(B)KC) (4.12)

Therefore we need to construct a single transverse tensor B
of rank A+ B+ C+ 1. We see that the tensor B has
absolutely same properties as the tensor C from the
previous section. Hence, the analysis becomes exactly
the same as for C in the (JrJ}J}) case and we will not
repeat it. Recalling the results from the previous section, we
find that (JrJ3J%) has vanishing parity-odd contribution
for all values of the superspins and a unique parity-even
structure.” The explicit form of the parity-even solution can
be found from the tridiagonal system of linear equations
just like in the previous section.
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APPENDIX: 3D CONVENTIONS AND NOTATION

For the Minkowski metric we use the “mostly plus”
convention: 7,,, = diag(—1, 1, 1). Spinor indices are then
raised and lowered with the SL(2,R) invariant antisym-
metric e-tensor

Here we also have assumed that with our arrangement of the
operators the conservation condition at the third point is auto-
matically satisfied for all superspins. It is verified in our
computational approach in [45] up to s; = 20.
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0 -1 0 1
gaﬂ = , gaﬂ = s gaygyﬂ = 5aﬂ’
1 0 -1 0
(Ala)
¢(1 = 8aﬁ¢ﬁ9 ¢a = gaﬁ¢ﬂ' (Alb)

The y-matrices are chosen to be real, and are expressed in
terms of the Pauli matrices, o, as follows:

(r0)o = —ioy = <(1) _01) () =03= <(1) _01>

(A2a)
0 -1

(r2) = —o1 = <_1 0 ) (A2b)
Ym)ap = €p6(m)a’s  (rm)™ = €(rm)s’- (A2¢)

The y-matrices are traceless and symmetric
(Ym)%a =0, (Ym)ap = (Vm) pars (A3)

and also satisfy the Clifford algebra

Ym¥n + Yn¥m = 2Mpn- (A4)

For products of y-matrices we make use of the identities

(}/m)ap (yn)p/j = '7mn5aﬁ + €mnp (7p)aﬁ’ (Asa)
(ym)ap(%'z)pg(yp)aﬁ = ”mn(}/p>aﬂ - nmp(yn)aﬂ
+ Mnp (ym)a/} + emnpéa/}’ (ASb)

where we have introduced the 3D Levi-Civita tensor ¢, with
€"1? = —¢y;, = 1. We also have the orthogonality and
completeness relations for the y-matrices

(ym)aﬂ(ym)pa = _50/)5/3'6 - 5a55ﬂp’ (7m)aﬁ<7n>aﬂ = _2’7mn'
(A6)

The y-matrices are used to swap from vector indices to
spinor indices. For example, given some three-vector x,,,, it
may equivalently be expressed in terms of a symmetric
second-rank spinor x,; as follows:

1
xaﬂ = (7m)a[;’xm7 Xm = _5 (Vm)aﬂxaﬂ’ <A7a)

1
det(x,4) = ix”/"xa/; = —x"x,, = —x°. (A7b)

The same conventions are also adopted for the spacetime
partial derivatives d,,

1
aaﬂ = (ym)aﬂarm On = _5 (Vm)aﬁaa ’ (Aga)
0, X" = 0, 0ppXP® = —0,L84" — 6,°04”,  (A8b)
1
&mo,, = —Efaﬁaaﬂ- (A9)
We also define the supersymmetry generators Q,
0 0
=i— my O — Al0
and the covariant spinor derivatives
0 0
Dy, = ——+i(y") 40— All
a 00% + 1(}/ )aﬂ ox™ ’ ( )

which anticommute with the supersymmetry generators,
{Q4.Dg} =0, and obey the standard anticommutation
relations

{DavD/}} = 2i(7m)aﬁam' (A12)
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