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We generalize the idea of the quantized Hall current to count gapless edge states in topological materials,
applying equally well to theories in different dimensions, with or without continuous symmetries in the
bulk or chiral anomalies on the boundaries. This current is related to the index of the Euclidean fermion
operator and can be calculated via one-loop Feynman diagrams. Quantization of the current is shown to be
governed by topology in phase space, and the procedure can be applied to topological classes governed by
eitherZ orZ2 invariants. We analyze several explicit examples of free fermions in relativistic field theories.
We speculate that it may be possible to extend the technique to interacting theories as well, such as the
interesting cases where interactions gap the edge states.
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I. INTRODUCTION

Topological insulators and superconductors, often well
described by free fermion theories [1–5], generally have
gapless fermion excitations confined to the boundary
between two different topological phases. For dþ 1 dimen-
sional defects,whered is odd, thesemassless fermions can be
Weyl fermions. In that case the boundary theory has a chiral
anomaly, and the currents for classical axial symmetries can
have nonzero divergence in the presence of background
gauge fields. These currents are conserved in the higher
dimensional bulk theory, and the violation of axial charge in
the boundary theory can be understood as the result of a
fermion number current flowing in from the bulk, as in the
integer quantum Hall effect [6]. The argument can be turned
around: the inflow of current from the bulk indicates a
boundary theory with a chiral anomaly, which in turn
requires massless particles to exist at the boundary.
It is appealing that one can deduce the existence of

gapless edge states from the inflow of current from infinity,
but it is not general. For example, gapless edge states exist
for superconducting systems for which there is no con-
served fermion number current, as well as for boundaries
with even spatial dimension d where there are no chiral
anomalies. The anomaly inflow observed by Callan and
Harvey has been shown to be an example of a more general
phenomenon operative with all topological insulators and
superconductors (see Ref. [7] and references therein). In
general, the fermion operators in the bulk for such systems
are not self-adjoint when a boundary is present, and the
partition function for the bulk has a phase canceled by the

anomaly of the edge states. This phenomenon still goes by
the title “anomaly inflow” even though for discrete and
global anomalies there is no actual current flowing onto or
off of the boundary.
In a recent paper we showed, however, that in the cases

controlled by perturbative anomalies, one can generalize the
idea of Hall currents and detect the existence gapless edge
states by this current’s divergence [8], evenwhen the anomaly
is for a discrete symmetry. That theorymakes use of the index
of the fermion operator in the Euclidian action in the presence
of external “diagnostic fields.” A very simple procedure for
calculating the current flow in terms of a one-loop Feynman
diagram allows one to detect the existence of gapless edge
states. One benefit of this complementary construction is that
it makes the topological protection of the gapless modes
manifest, arising fromawinding number inmomentum space
in direct analogy to the [9] explanation for current quantiza-
tion in the integer quantum Hall effect [9]. This feature is
obscured in the anomaly inflow analysis in [7]. Also, by
presenting the calculation in the familiar language of
Feynman diagrams, we hope to develop a framework for
computing the effects of interactions.
In the present paper we work through the examples given

in Ref. [8] in greater detail, including the construction of
the generalized Hall current, the topological origins of its
nonzero divergence, and the role of regularization. We also
extend the previous work with a discussion of the effect of
interactions. Our discussion throughout is in the context of
relativistic quantum field theory.

II. GENERAL FRAMEWORK

Our starting point is a relativistic quantum field theory of
free fermions in infinite dþ 1 dimensional Minkowski
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spacetime. The action is SM ¼ R
ddþ1xψ̄DMψ , where the

fermion operator DM can include a position dependent
mass term, e.g. one that exhibits defects like a domain wall
or a vortex singularity, which will serve as proxies for a
boundary. If the fermion operator DM hosts massless
fermion states trapped in these defects, and the defects
are space and time translation invariant in the codimen-
sions, then the spectrum will include a state with zero
momentum that is constant in the spacetime coordinates of
the defect, and is localized on the defect in the transverse
direction(s). We wish to have a simple way to detect the
existence of such states which makes manifest the under-
lying topology. The approach we use is to note that when
DM is analytically continued to Euclidian time, the
Euclidian fermion operator D is an elliptic operator and
the propagator 1=D will have poles corresponding to
gapless Minkowski edge states with zero momentum.
We detect these states by computing the index of D—
the number of zeromodes of D minus that of D†. One
obstacle to this program is that the index only counts
normalizable zeromodes, while the states we are discussing
are constant in the noncompact boundary dimensions;
another is that D† also exhibits poles corresponding to
these states. Both can be circumvented by adding “diag-
nostic” background fields that localize these states within
the boundary. These diagnostic fields are instantons, where
we use that term loosely to describe background field
configurations in Euclidian spacetime which have non-
trivial topology which localize to a spacetime point mass-
less fermions that they couple to and give the edge state
fermion operator a nonzero index. An interesting feature of
this approach is that the diagnostic fields are typically not
fields that could have been introduced into the original
Minkowski theory, as we will explain below. In the
presence of these diagnostic fields, solutions to Dψ ¼ 0

can be localized, while those to D†ψ ¼ 0 are delocalized,
resulting in a nonzero index for D. This effect is seen with
the toy operator D ¼ ∂x þ ϵðxÞ [where ϵðxÞ≡ x=jxj plays
the role of the diagnostic field] which has a localized
solution to Dψ ¼ 0 while the conjugate operator D† ¼
−∂x þ ϵðxÞ does not. The index then indicates the presence
of a massless edge state in the original Minkowski theory,
provided that it persists in the limit that the energy density
in the diagnostic fields tends to zero so that it cannot
significantly affect the bulk gap and change its topological
phase. The index being the difference between the number
of zeromodes ofD and ofD† it follows that a nonzero index
necessarily implies the presence of a boundary zeromode.
The converse does not hold: an index of zero does not rule
out the existence of an equal number of zeromodes, but
such an occurrence would not be topologically protected
and would presumably require a fine-tuning of parameters.
Computing the index then simply requires computing the

divergence of an in-flowing current by means of a 1-loop
diagram, which generalizes the inflow picture from the

quantum Hall system in any dimensions and whether the
system has a conserved current or not. Furthermore, the
index is shown to be the product of the winding number of
the diagnostic fields in coordinate space times the winding
number of the fermion dispersion relation in momentum
space, making manifest the topological nature of the
gapless modes. We will see that the Euclidian momentum
space topology is simpler than the topological invariants of
the Minkowski systems would suggest: in each case we
examine it is governed by the homotopy group πnðSnÞ,
where n is the number of spacetime dimensions. The index
we compute reflects the correct invariant of the Minkowski
system, Z2 for example, due to the interplay of momentum
space and coordinate space topology in its definition.
Our procedure is (i) start with a Minkowski theory of

interest; (ii) analytically continue to Euclidian spacetime;
(iii) introduce diagnostic fields to localize edge states;
(iv) compute the index of the Euclidian fermion operator in
the limit of vanishing diagnostic fields, which involves
computing the inflow of a generalized Hall current. In the
cases where the fermion number is not conserved, relativ-
istic systems analogous to topological superconductors, the
Euclidian action takes the form SE ¼ 1

2

R
ψTCDψ , where C

is the charge conjugation matrix. In these cases at step
(ii) we consider instead the Dirac action SE ¼ R

ψ̄Dψ and
proceed from there, since solutions to Dψ ¼ 0 are also
solutions to CDψ ¼ 0. The Dirac theory allows for the
addition of diagnostic fields not possible in the original
theory, such as a Uð1Þ gauge field coupled to fermion
number, or fields in D which appear symmetrically in CD,
and hence would not couple to the fermions in ψTCDψ .
The procedure for computing the index of an elliptic

operator D is to first define

IðMÞ ¼ Tr

�
M2

D†DþM2
−

M2

DD† þM2

�
ð2:1Þ

with

indðDÞ ¼ Ið0Þ≡ lim
M→0

IðMÞ: ð2:2Þ

Note that IðMÞ can generally take noninteger values for
arbitrary M. However, it must be an integer when M → 0.
The function IðMÞ can be computed by means of Feynman
diagrams by first defining

K ¼
�

0 −D†

D 0

�
; Γχ ¼

�
1 0

0 −1

�
; ð2:3Þ

in terms of which IðMÞ is expressed as

IðMÞ ¼ Tr

�
Γχ

M
K þM

�
: ð2:4Þ
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The matrix K and Γ have twice the dimension of D. The
operator 1=ðK þMÞ looks like a fermion propagator in a
theory whose action is

SK ¼
Z

ddþ1xΨ̄ðK þMÞΨ; ð2:5Þ

where Ψ has twice the number of components as the
original ψ field off our Minkowski theory, but the integra-
tion is still over dþ 1 spacetime coordinates. In this
extended theory, the quantity IðMÞ in Eq. (2.4) can be
expressed as the matrix element of the pseudoscalar
density,

IðMÞ ¼ −M
Z

ddþ1xhΨ̄ΓχΨi; ð2:6Þ

where hΨ̄ΓχΨi is computed using a path integral with
weight e−SK . We can also define an axial current

J χ
μ ¼ Ψ̄ΓμΓχΨ; ð2:7Þ

where Γμ ¼ i∂K̃ðpÞ=∂pμ, where we use the tilde to indicate
the operator has been Fourier transformed to momentum
space. Assuming that D ¼ =∂þ � � �, where the ellipsis
denotes nonderivative terms, then Γμ ¼ σ1 ⊗ γμ, in the
notation where Γχ ¼ σ3 ⊗ 1. Applying the axial trans-
formation Ψ → eiΓχθðxÞΨ, we can derive the Ward-
Takahashi identity for this axial current as

∂
μJ χ

μ ¼ 2MΨ̄ΓχΨ −A; ð2:8Þ

where the first term on the right is the classical divergence
due to the mass M, and the second term is the anomaly,
which can be computed using the method of Ref. [10],

A ¼ −2 lim
Λ→∞

TrðΓχeK
2=Λ2Þ ¼ −2Ið∞Þ: ð2:9Þ

As we show below the anomaly vanishes in the cases we
consider. WithA ¼ 0, Eq. (2.8) can then be used to express
the index indðDÞ as

indðDÞ ¼ −
1

2
lim
M→0

Z
ddþ1x∂μhJ χ

μi: ð2:10Þ

The current J χ
μ is what we refer to as the generalized

Hall current. With the anomaly A vanishing, the nonzero
divergence of this current in the M → 0 limit arises from
infrared divergences in the theory, and its inflow counts
gapless edge states in the original Minkowski theory. The
diagnostic fields we will add to the dþ 1 dimensional bulk
theory are chosen to contribute a term to J μ proportional to
a (dþ 1)-index epsilon tensor, where one index is saturated
by the derivative acting on the domain wall mass, while the

remaining (d − 2) indices are saturated by derivatives or
gauge fields. With the limited variety of marginal inter-
actions for the fermions, these requirements seem to
uniquely specify the choice of fields.
The generalized Hall current in Eq. (2.10) in the M → 0

limit can be computed from a one-loop Feynman diagram
TrΓμΓχK−1, which may need to regulated. The UV regu-
lator will in general contribute to the current in odd
spacetime dimensions, but not to its divergence, which
arises from infrared physics. However, in these cases the
topological meaning of the current is obscured if regulator
contributions are neglected, as the Feynman diagram can be
interpreted as being proportional to the winding number of
a map from momentum space to an n sphere—but only if
the momentum space of the fermion is compact. This
makes the winding number sensitive to the ultraviolet
behavior of the fermion propagator. Here we use Pauli-
Villars regularization when required, computing the index

of Dreg ¼ DðmÞ
DðΛÞ, and then sending the regulator mass Λ to

infinity. The regulated current then is given by TrΓμΓχK−1
reg,

where Kreg is given by Eq. (2.3) with D replaced by Dreg.
We do this in any spacetime dimension dþ 1, but find that
for even dþ 1, the regulator does not contribute to
the index.
In the next sections we work out in detail the examples of

Ref. [8], starting with the continuum example of a single
Majorana fermion chain in 1þ 1 dimensions with 0þ 1
dimensional defect hosting a Majorana zero mode. This is
followed by the example of multiple flavors of Majorana
fermions in 1þ 1 dimension with time-reversal symmetry
violation. In both cases, the generalized Hall current
correctly produces the index of the fermion operator and
counts the number of massless fermions in Minkowski
space. We then discuss Dirac fermion in 2þ 1 dimensions,
which exhibits the integer quantum Hall effect, with the
inflow anomaly current described in Ref. [6]. We then add a
fermion number violating Majorana mass term to this
theory, modeling a topological superconductor in 2þ 1
dimensions. Again we show how the divergence of the
generalized Hall current correctly detects edge states, even
though there is no conventional Hall current in such a
system, and we discuss the topological origins of the index.
After discussing the 2þ 1 dimensional case, we work
through an analogous example in 3þ 1 dimensions: that of
Dirac fermion with a domain wall in its mass which
describes a three-dimensional topological insulator and
its edge states. We again compute the generalized Hall
current, show how it reproduces the index, and display it
topological origins. The final section provides a qualitative
argument in the context of 1þ 1 dimensional interacting
Majorana chains that the divergence of the generalized Hall
current detects zeromodes even in the presence of inter-
actions, even though the index of the free fermion propa-
gator is no longer relevant.
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III. MAJORANA FERMION 1+ 1 DIMENSIONS

A. One flavor of Majorana fermion

For our first example we consider a single Majorana
fermion in 1þ 1 dimension with domain wall profile for
the Majorana mass, with the 0þ 1 dimensional defect
hosting a 1-component real massless fermion. Majorana
edge states were first discussed in Refs. [11] and [12]. In
this theory there is no continuous symmetry, and hence no
conserved current in the bulk, and no chirality or chiral
anomaly on the 0þ 1 dimensional defect. Therefore this
system cannot exhibit the conventional Hall response. As
we will show, however, we can compute generalized Hall
currents which converge on the defect when it hosts gapless
states.
The Minkowski Lagrangian in this case is

LM ¼ 1

2
ψTCði=∂ −mÞψ ; ð3:1Þ

which is the continuum version of the 1-flavor theory
considered in Ref. [13]. Here ψ is a real, two-component
Grassmann spinor. The γ matrices we take are

γ0 ¼ C ¼ σ2; γ1 ¼ −iσ1; γχ ¼ σ3; ð3:2Þ

where σi are the Pauli matrices. This model of Majorana
fermions has a rich phase structure when interactions are
included [13], but in this section we restrict ourselves
to analyzing the free theory. To construct the generalized
Hall current for this model we first define the Euclidian
theory1

LE ¼ 1

2
ψTCDψ ; ð3:3Þ

where in Euclidean spacetime

D¼ ∂þm; γ0¼C¼ σ2; γ1¼−σ1; γχ ¼ σ3: ð3:4Þ

We now wish to study the index of D, somewhat modified
(there being a one-to-one correspondence between zerom-
odes of D and CD). The modifications involve replacing
the step function mass with a general scalar field ϕ1ðxÞ, and
adding a pseudoscalar field ϕ2ðxÞ as our diagnostic field, so
that the more general operator we consider is

D¼ ∂þϕ1þ iϕ2γχ ¼
�
ϕ1þ iϕ2 −i∂0 − ∂1

i∂0 − ∂1 ϕ1− iϕ2

�
;

D† ¼−∂þϕ1 − iϕ2γχ ¼
�

ϕ1 − iϕ2 i∂0þ ∂1

−i∂0þ ∂1 ϕ1þ iϕ2

�
: ð3:5Þ

To understand the logic of this construction, first con-
sider the operator we are ultimately interested in, where
ϕ2 ¼ 0 and ϕ1ðxÞ ¼ m0ϵðx1Þ with m0 > 0. In this case we
find two solutions each to the equations Dψ ¼ 0 and
D†χ ¼ 0, namely

ψ−ðxÞ¼
�
1

1

�
em0jx1j; ψþðxÞ¼

�
1

−1

�
e−m0jx1j;

χ−ðxÞ¼
�
1

1

�
e−m0jx1j; χþðxÞ¼

�
1

−1

�
em0jx1j; ð3:6Þ

where the � subscript refers to the eigenvalue of γ1. None
are normalizable since they are constant in x0, whether or
not they are localized in x1 about x1 ¼ 0, and therefore the
index calculation will give us indðDÞ ¼ 0. However, if we
now add ϕ2 ¼ μ0ϵðx0Þ with μ0 > 0, a domain wall in
Euclidian time, we find the four solutions to Dψ ¼ 0 and
D†χ ¼ 0 are

ψ−ðxÞ¼
�
1

1

�
em0jx1jþμ0jx0j; ψþðxÞ¼

�
1

−1

�
e−m0jx1j−μ0jx0j;

χ−ðxÞ¼
�
1

1

�
e−m0jx1jþμ0jx0j; χþðxÞ¼

�
1

−1

�
em0jx1j−μ0jx0j;

ðx2→x0Þ: ð3:7Þ

D now has a single normalizable zeromode ψþ localized at
x0 ¼ x1 ¼ 0 while D† has none. Therefore the index is
given by indðDÞ ¼ 1 in this background scalar field. By
considering the other signs form0 and μ0 one sees that more
generally we get indðDÞ ¼ −νϕ, where νϕ is the winding
number of ϕ ¼ ϕ1 þ iϕ2 in the x0 − x1 plane.

2 As we shall
see, this expectation is born out by the explicit calculation
we give below. Furthermore, our results persist even no
matter how small we take jμ0j. We also see how the
zeromodes we are counting would not have existed if there
had not been a solution to Dψ ¼ 0 for the case of interest,
ϕ2 ¼ 0 and ϕ1 ¼ m0ϵðx1Þ (for either sign ofm0), and so the
nonzero value for indðDÞ informs us that the original
Minkowski theory has massless edge states.
The reason this procedure works is that the background

ϕ2 field breaks symmetries of the original theory (in this
case, time-reversal symmetry), and a constant field would

1We use the mostly minus convention for the Minkowski
metric, and in dþ 1 dimensions we denote both Minkowski and
Euclidean time by x0. The relation between Euclidian and
Minkowski γ matrices is γ0M ¼ γ0E, γ

i
M ¼ iγiE, and γχ is the same

in both Minkowski and Euclidean spacetime.

2This is easier to see if one replaces the singular step functions
with something smoother, such as a tanh function. In fact, it has to
be smoothed out to justify the derivative expansion we perform
next.
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gap the spectrum entirely. However, by giving a domain
wall structure to ϕ2, which by itself would lead to gapless
edge states, it cannot gap fermions along the domain wall
surface at x0 ¼ 0. Thus theory with both ϕ1;2 domain walls
will be left with a massless, normalizable fermion at the
origin where the two domain walls cross.
Following the procedure laid out in the previous section,

we compute the index of D by constructing the fermion
operator K which serves as the fermion operator in a theory
with twice the number of fermion degrees of freedom,

K ¼
�

0 −D†

D 0

�
¼ Γμ∂μ þ iðϕ2Γ2 þ ϕ1Γ3Þ; ð3:8Þ

where we have defined the five 4 × 4 matrices

Γi ¼ σ1 ⊗ γi; Γ2 ¼ σ1 ⊗ γχ ;

Γ3 ¼ −σ2 ⊗ 1; Γχ ¼ σ3 ⊗ 1 ð3:9Þ

with i ¼ 0, 1.
Our task is to compute the part of the chiral current

J μ ¼ Ψ̄ΓμΓχΨ that contributes to the index, where
μ ¼ 0, 1 and Ψ is a fermion with action S ¼ Ψ̄KΨ. To
do this we first write the scalars as

ϕ ¼ ϕ1 þ iϕ2 ¼ ðvþ ρðxÞÞeiθðxÞ ð3:10Þ

assuming constant v with ρ and θ slowly varying about
ρ ¼ θ ¼ 0, their gradients falling off at infinity. To compute
the part of the current that contributes to the index we need
the leading term in a 1=v expansion, since higher order
terms will drop off too fast at infinity to contribute to the
integral

R
∂μJ μ. Thus we can write

K ¼ K0 þ δK; ð3:11Þ

with

K0¼ ∂μΓμþ ivΓ3; δK¼ ivθðxÞΓ2þ iρðxÞΓ3: ð3:12Þ

Then K−1
0 will be our free fermion propagator, while we

perturb in δK.
When expanding J μ in δK, note that because of the

insertion of Γχ in the fermion loop we require that the rest
of the graph supplies one each of the other four Γ matrices
in order to get a nonzero contribution from the trace. The
matrices Γ0;1;3 can be supplied by the fermion propagators
1=K0, while Γ2 must arise from an insertion of θ. Thus the
leading contribution is given by the graph in Fig. 1
expanded to linear order in the momentum carried by θ.
Using K̃0 to denote the Fourier transform of K0 in

momentum space, the diagram can be computed as

J μ ¼ v
∂θ

∂xν

Z
d2q
ð2πÞ2 Tr

�
ΓμΓχ

�
∂K̃−1

0

∂qν

�
Γ2K̃−1

0

�

¼ ϵμν∂νθ

Z
d2q
ð2πÞ2

4v2

ðq2 þ v2Þ2

¼ 1

π
ϵμν∂νθ: ð3:13Þ

In this expression, the derivative ∂ν acting on θðxÞ is with
respect to xν, while the derivative ∂ν acting on K̃0 is with
respect to qν. The positive sign in the first line above arises
from (−1) from the fermion loop, a (−i) from Fourier
transforming pν → −i∂=ð∂xνÞ, and another (−i) from the θ
vertex factor −ivΓ2.
From Eq. (2.10) it follows that the index ofD is given by

indðDÞ¼−
1

2

Z
d2x∂μJ μ ¼−

1

2π

I
∂θ

∂xμ
dlμ ¼−νϕ; ð3:14Þ

where νϕ is the winding number of ϕ. This result agrees
with what was predicted from our earlier heuristic argument
with a configuration of crossed domain walls.
Before turning to the question of topology we address

two issues about the way we handled the Ward-Takahashi
identity for the generalized Hall current, given in Eq. (2.8).
First of all, we set M ¼ 0 from the outset, rather than
performing the computation at nonzero M and then taking
the limit M → 0 at the end. This is discussed further in
Sec. VI, but in brief, the role of M was to serve as an IR
regulator for the calculation, but instead we used our
background field ϕ to serve as the IR regulator. Note that
the generalized Hall current we found in Eq. (3.13) is

proportional to ∂μθ ¼ iϕ�
∂

↔

μϕ=2jϕj2, and that the inverse
dependence on jϕj indicates its role as an IR regulator.
Secondly, we ignored the anomaly term, A. This quantity
can be computed using the methods of Fujikawa [10],
where

A ¼ lim
Λ→∞

TrΓχeK
2=Λ2

: ð3:15Þ

p

FIG. 1. The loop diagram for computing the generalized Hall
current for the 1þ 1-dimension Dirac fermion. The black dot is
an insertion of the chiral current ΓμΓχ with incoming momentum
pν. The outgoing field α is the spatially varying part of the phase
of the complex field ϕ1 þ iϕ2, and the fermion propagator is
given by K−1

0 .
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[Note that K, defined in Eq. (3.12), is anti-Hermitean.] The
two-derivative term inK2 gives rise to the Gaussian integral

Z
d2k
ð2πÞ2 e

−k2=Λ2 ∝ Λ2: ð3:16Þ

On the other hand, since the Γ matrices obey the Clifford
algebra for SOð4Þ, the Γ-matrix trace with Γχ requires that

the expansion of eK
2=Λ2

supplies at least four different Γμ to
the trace before one obtains a nonzero value. As K=Λ is
linear in the Γ matrices, these four Γ matrices will be
accompanied by a factor of 1=Λ4 which overwhelms the
factor of Λ2 from the momentum integral and causes the
anomaly termA to vanish as Λ → ∞. This will occur in all
of our examples, since the doubled theory always has the
same dþ 1 spacetime dimension as the original theory,
while the Γ matrices belong to the Clifford algebra for
SOðdþ 3Þ.
The calculation we have performed does not make

explicit the topological quantization of the index. To display
the topology underpinning of the calculation explicitly we
define D̃0 to equal D̃ with ϕ1 → v and ϕ2 → 0 and use the
identities Γμ ¼ −i∂μK̃0 and fγχ ; D̃0g ¼ 2vγχ to rewrite
Eq. (3.13) as

J μ ¼ −iv∂νθ
Z

d2q
ð2πÞ2 Tr½Γχð∂νK̃−1

0 ÞΓ2K̃−1
0 ∂μK̃0�

¼ −iv∂νθ
Z

d2q
ð2πÞ2 Tr½γχðD̃

−1
0 ∂μD̃0∂νD̃−1

0 þ D̃0 → D̃†
0Þ�

¼ i
4
ϵμν∂νθϵστ

Z
d2q
ð2πÞ2 Tr½γχðD̃

−1
0 ∂σD̃0D̃−1

0 ∂τD̃0

þ D̃0∂σD̃−1
0 D̃0∂τD̃−1

0 þ D̃0 → D̃†
0Þ�: ð3:17Þ

We can then define the special unitary matrix

ξ ¼ D̃0ffiffiffiffiffiffiffiffiffiffiffiffiffi
det D̃0

p ¼ vffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 þ v2

p þ iq̂μγμ
qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

q2 þ v2
p ; ð3:18Þ

in terms of which Eq. (3.17) can be rewritten as

J μ ¼
i
2
ϵμν∂νθϵστ

Z
d2q
ð2πÞ2 Trγχ ½ðξ

†
∂σξÞðξ†∂τξÞ

þ ðξ∂σξ†Þðξ∂τξ†Þ�; ð3:19Þ

unaffected by the normalizing determinant factor (which
cannot vanish for nonzero v). As a final manipulation, we
can define the “axial current,”

Aj ¼
i
2
ðξ†∂jξ − ξ∂jξ

†Þ; ð3:20Þ

and using the identity γχξγχ ¼ ξ† we can write the
generalized Hall current as

J μ ¼ −iϵμν∂νθϵστ
Z

d2q
ð2πÞ2 Tr½γχAσAτ�: ð3:21Þ

In Appendix A we show that the above integral is propor-
tional to the winding number of the map provided by the
Dirac propagator from momentum space compactified to
S2, to “Dirac space” (the analog of the Bloch sphere), also
S2 in two spacetime dimensions. That winding number νq is
an element of π2ðS2Þ ¼ Z, and for this particular map we
have νq ¼ 1. Making use of the normalization given in
Eq. (A.11) we arrive at

J μ ¼
ϵμν∂νθ

π
νq; νq ¼ 1: ð3:22Þ

The topological quantization in momentum space is
analogous to the topological origin of the quantization
of the integer quantum Hall effect discovered in the
celebrated TKNN paper and related work [9,14,15].3

Our final result for the index is then given by

indðDÞ ¼ −νϕνq; ð3:23Þ

where νϕ is the winding number of our diagnostic field in
coordinate space, obtained by integrating ϵμν∂νθ and
determined by the homotopy group π1½Uð1Þ� ¼ Z. We
see that the index, which counts edge states, is manifestly
quantized by simultaneous nontrivial topology in both
momentum and coordinate space. This result confirms
our heuristic argument about localizing the zeromode with
crossed domain walls, and agrees with Eq. (3.14).
Relativistic quantum field theories can be assigned to the

same ten topological classes as used for condensed matter
systems; for example see Ref. [5]. The translation is simple,
with what are called time-reversal symmetry, particle hole
symmetry, and sublattice symmetry replaced by the con-
ventional T, C and CT symmetries respectively in the
relativistic theory. The ten categories are constructed from
(i) time-reversal symmetry with TT ¼ T, or T symmetry
with TT ¼ −T, or T violation; (ii) charge conjugation
symmetry with CT ¼ C, or C symmetry with CT ¼ −C, or

3In contrast with the physics in 2þ 1 dimensions for which the
topology is dependent on the UV regulator (as we demonstrate
in the next section), the calculation here and in 3þ 1 dimensions
is insensitive to UV physics. That is because the current in

Eq. (3.21) is proportional to ∂μθ ¼ iϕ�
∂μ

↔
ϕ=2jϕj2 which cannot

be obtained by the variation of a local relevant or marginal
operator, and hence cannot be sensitive to the UV. In contrast, the
current we will find in 2þ 1 dimensions [Eq. (4.9)] is the
variation of the Chern-Simons operator which is a local marginal
operator and receives contributions from the UV regulator.

DAVID B. KAPLAN and SRIMOYEE SEN PHYS. REV. D 108, 045019 (2023)

045019-6



C violation; (iii) both C and T violation, but good CT
symmetry. The only caveat in comparing using the tables
from condensed matter papers is that the symmetry of C is
opposite that of the conventional particle-hole symmetry
“P,” since in the relativistic case charge conjugation is the
transformation ψ → Cψ̄T for a Dirac fermion, while
particle hole symmetry is ψ → Pψ�, without the extra γ0

matrix. In the present example we have both T and C with
symmetric T and antisymmetric C, which puts the system
in the BDI [16] class, with topological invariant Z. If we
had considered a Nf -flavor version of the theory consid-
ered in this section without special global flavor sym-
metries, we would have trivially found indðDÞ ¼ −Nfνϕνq,
which can take on any value in Z as one would expect for a
BDI topological class in one spatial dimension.

B. Multiple flavors of d = 1 + 1 Majorana fermions
with time-reversal symmetry violation

With Nf flavors of free fermions in our 1þ 1 dimen-
sional model, it is possible to include both scalar and
pseudoscalar mass terms:

LM ¼ 1

2
ψT
i Cði=∂δij −mij − iγχμijÞψ j; ð3:24Þ

where m must be a real and symmetric matrix, while μ is
imaginary and antisymmetric. Without loss of generality it
is possible to take mij to be diagonal.
The theory with μij ¼ 0 is invariant under the antiunitary

time-reversal symmetry, ψ iðx; tÞ → σ1ψ iðx;−tÞ. When the
masses have domain wall profiles, such as mi ¼ m0ϵðxÞ
with m0 > 0, there will be Nf massless Majorana modes
localized at the mass defect with wave function

ηiðtÞ
�

1

−1

�
ð3:25Þ

in the 0þ 1-dimension theory at the defect. In order to gap
these modes in the free theory, one might add a term
μijηiσ1ηj with μ imaginary and antisymmetric, and it is
easy to see that this term lifts into the bulk theory as the μ
term in Eq. (3.24). However, the pseudoscalar μ term is odd
under the time-reversal symmetry we identified (since μ is
imaginary), and therefore time-reversal symmetry requires
μ ¼ 0 and ensures that the edge states remain gapless. Such
a system is in the BDI topological class, whose gapless
states are characterized by the group Z [17].
For Nf ≥ 3 it is possible to show that one can choose m

and μ such that time-reversal symmetry is broken, and
generically the edge states will be gapped pairwise, so that
there will be one massless edge state for Nf odd, and none
for Nf even. Such a system is in the D class, with topology
characterized by the group Z2 [17].

For Nf ¼ 2, time reversal is not actually broken when
μ ≠ 0, since the theory is invariant under the simultaneous
antiunitary transformations ψ1ðx; tÞ → þσ1ψ1ðx;−tÞ and
ψ2ðx; tÞ → −σ1ψ2ðx;−tÞ. In this case edge states can still
be gapped because the fermions transform with opposite
signs under time reversal and the system is topologically
trivial. So the system is indistinguishable from the D class
as far as edge states are concerned.
We focus on this simplest Nf ¼ 2 case to show how the

index calculation procedure we have developed here gets
the correct answer, that there are no gapless edge states. The
Minkowski theory we consider is

LM ¼ 1

2
ψT
i Cði=∂ −m0ϵðxÞ − iγχμτ2Þψ i; ð3:26Þ

where we have suppressed the two flavor indices. The
ði=∂ −m0ϵðxÞÞ operator is diagonal in flavor, while τ2 is the
y-Pauli matrix acting in flavor space, and μ is real and
constant in spacetime.
Our Euclidean operatorD with a diagnostic field ϕðxÞ in

this case is given by

D ¼ =∂þ ϕ1ðxÞ þ iðϕ2ðxÞ þ μτ2Þγχ : ð3:27Þ

This can be diagonalized in flavor to give two 1-flavor
Dirac operators

D� ¼ =∂þ ϕ1ðxÞ þ iðϕ2ðxÞ � μÞγχ : ð3:28Þ

Now we expect the sum of two contributions to J μ

proportional to ϵμν∂νðθþ þ θ−Þ where

θ� ¼ arctan
ϕ2ðxÞ � μ

ϕ1ðxÞ
: ð3:29Þ

Now we see that even if ϕðxÞ ¼ ϕ1ðxÞ þ iϕ2ðxÞ has
winding number, as we take the limit ϕ2 → 0, that winding
number vanishes. For example, if we take ϕ1 ¼ mϵðxÞ and
ϕ2ðxÞ ¼ m0ϵðτÞ, the two contributions to the index will
both equal 1 for jm0j > jμj, but will jump to zero for
jm0j < jμj as we remove our diagnostic field—this is
possible because the bulk goes gapless at the critical value
jm0j ¼ jμj. So the index in this case would give the correct
answer of zero, as it will for any even number of flavors.
If we have an odd number of flavors with a constant μ

matrix for Nf ¼ 2nþ 1, we will find n pairs of fermions
coupling to ϕ2ðxÞwith�μi shifts, each contributing zero to
the index; however there would be one flavor with no shift,
and we would find an index of 1 then. Thus we find that
indðDÞ takes values in Z2. That is the correct answer since
having no T symmetry while having C symmetry with
antisymmetric C puts the model in the D topological class,
whose topological invariant in one spatial dimension is Z2.
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We emphasize though that in our calculation the reduc-
tion of the topological invariant from Z in the time-reversal
symmetric case to Z2 in the case with broken time-reversal
symmetry manifests itself in the change in the spacetime
coordinate topology that the fermion sees, and not due to a
change in momentum space. The index we compute sees
the topology in phase space, and is sensitive to both.

IV. DIRAC FERMION AND MAJORANA
FERMIONS IN 2+ 1 DIMENSIONS

A. A d = 2 + 1 Dirac fermion with Uð1Þ fermion
number symmetry

Our next example is a massive Dirac fermion in 2þ 1
(Minkowski) dimensions, which is directly analogous to
the integer quantum Hall effect and is quite familiar. The
coordinates are fx0; x1; x2g ¼ ft; x; yg, and the fermion
mass mðyÞ which has a “domain wall” structure—a
monotonically increasing function of y with mð0Þ ¼ 0
[18]. For convenience we choose the particular basis for
the γ matrices

γ0 ¼ σ2; γ1 ¼ −iσ1; γ2 ¼ iσ3; ð4:1Þ

in which case the Dirac equation ½i=∂ −mðyÞ�ψ ¼ 0 has the
two special solutions,

ψ� ¼ e−iωðt�xÞe∓
R

y

0
dsmðsÞχ�; ð4:2Þ

where χ� are constant 2-component spinors satisfying
σ3χ� ¼ �χ�. The solution ψþ is localized on the 1þ 1
dimensional domain wall and corresponds to a massless
Weyl fermion that travels at the speed of light in the −x

direction. However, since eþ
R

y

0
dsmðsÞ is not normalizable,

the ψ− solution does not correspond to a state in the Hilbert
space. Therefore the spectrum on the domain wall is chiral,
and if the fermion number is gauged, this 1þ 1 dimen-
sional theory on the domain wall is anomalous.
We must next determine how to localize the massless

edge state with diagnostic fields and produce a nonzero
index. This is readily accomplished with help from the
Atiyah-Singer index theorem, which states that in d ¼ 2 the
index of the massless Dirac operator in the presence of

gauge fields is given by 1
2π

R
d2xϵijFij ¼ 1

2π

H
A⃗ · d l

!
, where

the loop integral is computed at infinity. Therefore we can
add a 3D gauge field and be assured that for some
background field configurations a nonzero index will result
whenever a gapless edge state existed in the absence of
those gauge fields.
All other eigenstates of the Dirac operator are gapped

and are not localized. One might therefore expect that these
heavy states could be integrated out, leaving an effective
1þ 1 dimensional theory of a Weyl fermion at y ¼ 0, along
with irrelevant operators. However, when fermion number

symmetry is gauged the heavy fermions do not decouple
entirely, giving rise to a marginal Chern-Simons operator
after being integrated out of the theory, as pointed out by a
number of authors [6,19,20]. For a constant mass m, this
contribution is4

LCS ¼
1

4π

m
jmj ϵ

μνρAμ∂νAρ: ð4:3Þ

The coefficient of this operator depends on the sign of m
but not its magnitude; the dependence on the sign is
required because m changes sign under T or P trans-
formations (time-reversal and space reflection), as does the
Chern-Simons operator. Variation of LCS with respect to
the gauge field gives rise to a current,

JμCS ¼
1

2π

m
jmj ϵ

μνρ
∂νAρ: ð4:4Þ

Callan and Harvey [6] discussed the effects of this
operator in the presence of a domain wall profile, sub-
stituting the step function ϵðyÞ for m=jmj in the above
expression, so that JμCS corresponds to a current flowing on
or off of the domain wall from both sides, with a divergence
proportional to δðyÞ that exactly cancels the anomalous
divergence of the chiral current on the domain wall. There
are a few problems with their analysis. For one, the
substitution of spatially varying mass for a constant mass
in the coefficient of the Chern Simons term is not correct
where the fermion mass is varying appreciably, i.e. near the
domain wall; however to demonstrate overall charge
conservation, one need only look at the spatial integral
of the divergence of the current, which involves the Chern
Simons coefficient at infinity, where the substitution is
valid if the mass is not rapidly changing there. A second
problem is that while the 1-loop integral for deriving
LCS is finite, the full theory requires a regulator which
contributes to the Chern-Simons operator as well. For
example, with a Pauli-Villars regulator of mass Λ, the
coefficient in Eqs. (4.3) and (4.4) becomes proportional to
ðm=jmj − Λ=jΛjÞ. With the Pauli-Villars mass Λ being
independent of y, the effect is to double the inflowing
current on one side of the domain wall, and cancel it on the
other. This has no effect on the divergence of the current,
but corrects the coefficient of the Chern-Simons term and
makes a topological interpretation possible by compactify-
ing momentum space. Other regularization schemes, such
as the lattice, can have richer topological phase structure.
Even with the correct expression for the current, the

connection with the integer quantum Hall effect is obscure,
beyond the fact that an electric field in the x direction gives

4Our notation is that the covariant derivative isDμ ¼ ð∂μ − iAμÞ,
where Aμ has mass dimension 1, setting the electric charge to
e ¼ 1.
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rise to a current in the y direction; missing is an analog of
the famous plot of the resistivity ρxy versus magnetic field
in the condensed matter system, with its characteristic
steps. In the Dirac fermion case, the domain wall plays the
role of one of the boundaries of the quantum Hall system,
and the Dirac mass—which is time-reversal violating in
2þ 1 dimensions—plays the role of the magnetic field,
while the resistivity is the ratio of the applied electric field
to the Chern Simons current. However, one does not see a
stepwise increase in the current as a function of the Dirac
mass. Once again, that is a result of how the short-distance
physics of the theory is being regulated. For example, when
one uses a lattice and Wilson terms to regulate the UV, one
does see quantized jumps in the Chern-Simons current as a
function of the fermion mass [21–23].
The Euclidean fermion operator for this fermion is

D¼½DþmðyÞ�; γ0¼σ2; γ1¼−σ1; γ2¼σ3; ð4:5Þ

with Dμ ¼ ∂μ þ iAμ. From Eq. (2.3) we have

K ¼
�

0 −D†

D 0

�
¼ DμΓμ − imðyÞΓ3; ð4:6Þ

where we define the matrices [satisfying the SOð5Þ Clifford
algebra]

Γμ ¼ σ1⊗ γμ; Γ3¼ σ2⊗ 1; Γχ ¼ σ3⊗ 1 ð4:7Þ

for μ ¼ 0, 1, 2. Our task now is to compute the generalized
Hall current J μ in Eq. (2.7). Since the bulk mass jmj serves
to regulate the IR divergences of the theory, we can take the
limit M → 0 in Eq. (2.10) from the start. Another sim-
plification is that since we only need the current inflow
from infinity in the limit that the gauge field strength is
weak, we can compute J μ to leading order in a 1=m
expansion which is given by the Feynman diagram in Fig. 2
expanded to first order in the incoming momentum.5

We first perform the calculation naively, without a Pauli-
Villars regulator, with the result

J α ¼ ∂γAβ

Z
d3q
ð2πÞ3 TrΓαΓχð∂γK̃−1

0 ðqÞÞΓβK̃−1
0 ðqÞ; ð4:8Þ

where as before, the tilde indicates a Fourier transform to
momentum space, and K̃0 ¼ K̃jAμ¼0. The factor of ΓαΓχ in
the trace comes from the insertion of the generalized Hall
current, while the photon vertex gives iΓβ; the two factors
of K̃−1

0 are the two fermion propagators, and the derivative
∂γ ¼ ∂=∂qγ arises from expanding the graph to first order in

the external momentum p. With Γα ¼ −i∂αK̃0, we can
rewrite this as

J αðpÞ ¼ ∂γAβ

Z
d3q
ð2πÞ3

× Tr½ΓχðK̃−1
0 ∂γK̃0ÞðK̃−1

0 ∂βK̃0ÞðK̃−1
0 ∂αK̃0Þ�

¼ −ϵαβγ∂γAβ

Z
d3q
ð2πÞ3

4m
ðm2 þ q2Þ2

¼ −
1

2π

m
jmj ϵαβγ∂γAβ: ð4:9Þ

With a domain wall profile for mðyÞ, the above expression
exhibits a generalized Hall current flow converging on (or
diverging from) the wall similar to the electromagnetic
current found by Callan and Harvey [6].
To better understand the topology behind the loop

integral, it is convenient to rewrite Eq. (4.9) in terms of
the fermion operator D̃0 of the undoubled theory,

J α ¼ −ϵαβγ∂γAβ

�
1

3
ϵijk

Z
d3q
ð2πÞ3

× Tr½ðD̃−1
0 ∂iD̃0ÞðD̃−1

0 ∂jD̃0ÞðD̃−1
0 ∂kD̃0Þ�

�
: ð4:10Þ

As in the example in the previous section, for constantm
we can define the SUð2Þ matrix

UðqÞ ¼ D̃0ðqÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det D̃0ðqÞ

q ≡ cos
θ

2
þ iθ̂ · γ sin

θ

2
ð4:11Þ

where θ is a real 3-vector with θ ¼ jθj and

cos
θ

2
¼ mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m2þq2
p ; sin

θ

2
¼ qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m2þq2
p ; θ̂¼ q̂: ð4:12Þ

The coordinates θi parametrize SUð2Þ ≅ S3 as a three-
dimensional ball of radius 2π, where we can identifyU ¼ 1

and jθj ¼ 0 as the “north pole” of S3, while U ¼ −1 and
jθj ¼ 2π corresponds to the “south pole.” However, as the
magnitude of the momentum q ranges from q ¼ 0 to

A

p

FIG. 2. Loop diagram for computing the generalized Hall
current for the 2þ 1-dimension Dirac fermion. The black dot
is an insertion of the chiral current ΓαΓχ with incoming
momentum p, and the propagators are given by K−1.

5The term we keep will give a finite contribution to the index,
while higher order operators fall off too fast at infinity to
contribute to the integral

R
∂μJ μ.
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q ¼ ∞, we see that UðqÞ only visits half of S3. In
particular, for m > 0 we see that q ¼ 0 corresponds to
jθj ¼ 0, the north pole, while q → ∞ corresponds to
jθj ¼ π, the equator, so the mapping only covers the
northern hemisphere of S3. On the other hand, when
m < 0 one can see that the mapping just covers the
southern hemisphere. We can rewrite our expression
[Eq. (4.10)] in terms of the θi variables as

J α ¼ −
1

3
ϵαβγ∂γAβϵijk

Z
d3q
ð2πÞ3

× Tr

��
U† ∂U

∂qi

��
U† ∂U

∂qj

��
U† ∂U

∂qk

��

¼ −
1

π
ϵαβγ∂γAβ

�
1

24π2
ϵijk

Z
V1=2

d3θ

× Tr

��
U† ∂U

∂θi

��
U† ∂U

∂θj

��
U† ∂U

∂θk

���
ð4:13Þ

where as discussed above, the volume of integration V1=2

only covers half of the ball, corresponding to the northern
hemisphere of S3 form > 0, or the southern hemisphere for
m < 0. As such, the integral cannot be considered to be the
winding number of a map from momentum space to S3.
The situation is remedied when a regulator is included.
Here we consider a Pauli-Villars regulator, which corre-
sponds to replacing D → Dreg ¼ D=DPV ¼ DðmÞ=DðΛÞ
everywhere, where in DPV we have simply replaced m by
the Pauli-Villars mass Λ, which we will take to þ∞
after the calculation. This has the effect of compactifying
momentum space, since limq→∞ D̃regðqÞ ¼ 1, independent
of the orientation of the momentum vector q. The calcu-
lation proceeds as before, but now the SUð2Þ matrix in
Eq. (4.11) gets replaced by

UregðqÞ ¼
D̃regðqÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det D̃regðqÞ

q

≡ cos
θreg
2

þ iθ̂reg · γ sin
θreg
2

ð4:14Þ

where θ̂reg ¼ q̂ as before, and

cos
θreg
2

¼ Λmþ q2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðm2 þ q2ÞðΛ2 þ q2Þ

p ;

sin
θreg
2

¼ qðΛ −mÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðm2 þ q2ÞðΛ2 þ q2Þ

p : ð4:15Þ

We note that at q → ∞ we have UregðqÞ → 1, correspond-
ing to compactifying momentum space to S3 and mapping
the point at q ¼ ∞ to the north pole of the S3 parametrized
by θ. [This is in contrast to U in Eq. (4.11) which maps the

2-sphere at q → ∞ onto the equator of S3.] At q ¼ 0,
however, we find that Uregð0Þ ¼ �1 depending on the
relative sign of m and Λ. When Λ and m have the same

sign, cos θreg
2
≥ 0 for all values of q, with θreg ¼ 0 for both

q ¼ 0 and q ¼ ∞. In this case UregðqÞ describes a
topologically trivial map from our compact momentum
space to the northern hemisphere of S3 (0 ≤ θreg ≤ π=2).
However, when m and Λ have opposite signs UregðqÞ is a
nontrivial map from momentum space to S3 with winding
number equal to 1. It is no surprise then that we find that for
the regulated theory

J α ¼ −
1

π
ϵαβγ∂γAβðpÞ

�
1

24π2
ϵijk

Z
V
d3θreg

× Tr

��
U†

reg
∂Ureg

∂θi

��
U†

reg
∂Ureg

∂θj

��
U†

reg
∂Ureg

∂θk

���

¼ νq
π
ϵαβγ∂βAγ; ð4:16Þ

where

νq ¼
1

2

�
Λ
jΛj −

m
jmj

�
ð4:17Þ

is the winding number of the map from compact momen-
tum space to S3, where νq ¼ 0whenΛ andm have the same
signs, and νq ¼ �1 when Λ and m have the opposite signs.
This relation between the topology in momentum space of
the fermion dispersion relation and the quantization of the
Hall current in 2þ 1 dimensions has been remarked on
previously in connection with the Ward-Takahashi identity
in Refs. [23,24].
We arrive at the index of D as the surface integral at

infinity in Euclidian 3-space

indðDÞ ¼ −
1

2

Z
S
J αdSα ¼ −

νq
2π

Z
S
ϵαβγ∂βAγdSα; ð4:18Þ

and it remains for us to show that what is multiplying νq is
an integer winding number in coordinate space. For our
diagnostic gauge field, we choose A0;1 to be independent of
y, while A2 ¼ 0, and for our integration region we take the
volume to be a cylinder with its axis perpendicular to the
domain wall, which we then take to infinite size in every
direction. The surface integral only gets contributions from
the end caps of the cylinder, νq being different at the two
ends when we assume that Λ (with Λ > 0) and m have the
same sign for y > 0 and the opposite signs for y < 0. The
expression for the index then becomes
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indðDÞ ¼ −
�I

A⃗ · d l
!�

νqðyÞ
����
y¼∞

y¼−∞
¼ −νAνqðyÞ

����
y¼∞

y¼−∞

¼ −
νA
2

�
Λ
jΛj −

mðyÞ
jmðyÞj

�
y¼∞

y¼−∞
¼ νA; ð4:19Þ

where νA is the winding number of our Abelian gauge field
integrated over the circle at infinity in the τ − x plane
(where τ ¼ x0 and x ¼ x1), evaluated at y ¼ x2 ¼ �∞. We
see that a diagnostic gauge field with winding number
νA ¼ 1 yields indðDÞ ¼ 1, revealing the existence of the
gapless edge state in the corresponding Minkowski space-
time theory through a combined topological configuration
in both coordinate and momentum space. Again, with more
flavors we could get any integer value for the index,
consistent with the fact that this model is in the D class
(antisymmetric C and broken T symmetry) for which the
topological invariant is known to be Z in two spatial
dimensions.

B. A d = 2 + 1 Majorana fermion with only Z2 fermion
number symmetry

The model becomes more interesting when we explicitly
break the fermion number symmetry down toZ2 by adding a
Majorana mass (with the domain wall profile still in the
Dirac mass). This system is analogous to a topological
superconductor with the Majorana mass playing the role of
the condensation of Cooper pairs. As it has no conserved
fermion number, there is no conventional Hall current in this
model, even though, as we shall see, for some parameters
there exist gapless edge states. The Minkowski theory is

LM ¼ ψ̄ði=∂ −mÞψ þ iμ
2
ψTCψ þ iμ

2
ψ̄Cψ̄T; ð4:20Þ

wherem is real, we can takeμ to be real and positive, andC is
the charge conjugation matrix satisfying

C† ¼ C−1 ¼ C; CγμC−1 ¼ −ðγμÞT: ð4:21Þ

Once again we will assume a domain wall profile mðyÞ,
while keeping theMajorana mass μ constant. Because of the
lack of continuous symmetry in this model, there are no
conserved currents and hence no anomaly current inflow
picture at nonzero μ. Nevertheless, wewill show that one can
still detect massless edge states in this model by computing
the generalized Hall current, which does have inflow onto
the defect whenmassless edge states exist, and we show that
we can use this inflow to count such states.
Since Dirac notation is cumbersome when the fermion

number is violated, our first step is to rewrite LM in terms
of two real spinor fields χ1;2, where ψ ¼ ðχ1 þ iχ2Þ=

ffiffiffi
2

p
.

The Lagrangian can then be expressed in terms of a
4-component spinor

χ ¼
�
χ1

χ2

�
ð4:22Þ

as

LM ¼ 1

2
χT
��

1 i

−i 1

�
⊗ γ0Mði∂−mÞ− μ

�
0 1

1 0

�
⊗ C

�
A

χ;

ð4:23Þ

where the subscript “A” means “antisymmetric part,”
derivatives being antisymmetric. We can now Wick rotate
to Euclidean space and write the Euclidean Lagrangian as

LE ¼ 1

2
χT
��

1 i

−i 1

�
⊗ γ0ð∂þmÞ þ μ

�
0 1

1 0

�
⊗ C

�
A

χ:

ð4:24Þ

In the particular γ-matrix basis of Eq. (4.5)

γ0 ¼ C ¼ σ2; γ1 ¼ −σ1; γ2 ¼ σ3; ð4:25Þ

we can write LE in terms of the fermion fields

ζ ¼ 1ffiffiffi
2

p
�
χ1 þ χ2

χ1 − χ2

�
≡

�
ζþ
ζ−

�
ð4:26Þ

as

LE ¼ 1

2
½ζTþCDþζþ þ ζT−CD−ζ−�;

D� ¼ =∂þ ðm� μÞ: ð4:27Þ

As in the 1þ 1 dimensional case we can drop the C
matrix and use ½indðDþÞ þ indðD−Þ� to detect edge states
in this case, with mðyÞ having a domain wall form and μ
being constant. We can immediately adapt the result
[Eq. (4.19)] in the previous section and evaluate this
index as

indðDÞ≡ ½indðDþÞ þ indðD−Þ�

¼ −
�I

A⃗ · d l
!�

ðνþq ðyÞ þ ν−q ðyÞÞ
����
y¼∞

y¼−∞

¼ −νAðνþq ðyÞ þ ν−q ðyÞÞjy¼∞
y¼−∞; ð4:28Þ

where

νð�Þ
q ¼ 1

2

�
Λ
jΛj −

m� μ

jm� μj
�
: ð4:29Þ

Assuming positive Λ, we have
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ðνðþÞ
q þ νð−Þq Þ ¼

8<
:

2 m < −jμj;
1 −jμj < m < jμj;
0 jμj < m:

ð4:30Þ

The analog of Eq. (4.19) then follows for the index in this
theory,

indðDÞ ¼ −νA½νðþÞ
q ðyÞ þ νð−Þq ðyÞ�jy¼∞

y¼−∞; ð4:31Þ

where νA is the winding number in the diagnostic gauge
field. For νA ¼ 1 it follows that the index takes on one of
the values 0;�1;�2 depending on which the cases in
Eq. (4.30) pertain for the asymptotic values of m at the two
sides of the domain wall. If we denote the asymptotic
values mð�∞Þ ¼ m�, then our result for the index for
various cases is given in Table I.
We now show that the above results agree with what one

finds when constructing explicit domain wall solutions for
this model. We return the Minkowski Lagrangian

LM ¼ ψ̄ði∂ −mÞψ þ i
μ

2
ψTCψ

þ i
μ

2
ψ̄Cψ̄T; sign of μ ð4:32Þ

and consider the equation of motion in our basis

γ0 ¼ σ2; γ1 ¼ −iσ1; γ2 ¼ iσ3; C¼ σ2: ð4:33Þ

To obtain the solutions to the equations of motion we
redefine the fermion field ψ ¼ ei

π
4φ in which case we can

write the solutions as

φðxÞ ¼
�
α1eð−m−μÞy þ iβ1eð−mþμÞy

α2eðmþμÞy þ iβ2eðm−μÞy

�
: ð4:34Þ

We take μ to be spatially constant, and without a loss of
generality we assume μ > 0, while the mass m depends on
the coordinate y and takes the asymptotic values m → m�
as y → �∞. For y > 0, a localized solution requires that
the coefficient of y in the exponent in Eq. (4.34) be negative
when m is replaced by mþ. Out of the four exponentials in
Eq. (4.34), there are always two that meet this criterion.
Labeling them by their coefficients, they are

mþ > jμj∶ α1; β1;

−jμj < mþ < jμj∶ α1; β2;

mþ < −jμj∶ α2; β2: ð4:35Þ

We can do the same thing for solutions at y < 0 and
m → m−; in this case the coefficient of y must be positive,
and again there are always two solutions, the same as the
above but with subscripts 1,2 reversed:

m− > jμj∶ α2; β2;

−jμj < m− < jμj∶ α2; β1;

m− < −jμj∶ α1; β1: ð4:36Þ

When we match solutions at y ¼ 0 there must be
localized solutions of the same chirality on both sides,
and they must be both real or both imaginary. That means
that the must be the same αi or βi solution for positive and
negative y. It is evident then that depending on the two
values m� relative to jμj there can be 2, 1, or 0 solutions.
For example, if mþ > jμj while −jμj < m− < jμj, then
there is one localized positive chirality β1 solution that can
be matched across y ¼ 0. The number and chirality of edge
state solutions are given in Table II, where the R, L entry
tells us whether we have upper or lower component
solutions respectively.
Note that the index in Table I is giving us the number of

positive chirality massless edge states minus the number of
negative chirality ones. The reason for that is that the
equation D†ψ ¼ 0 has the same solutions as Dψ ¼ 0
except for a parity flip, exchanging R ↔ L. When the
gauge field is turned on with νA ¼ 1, then it localizes the R
solutions of D while delocalizing the L solutions.
Therefore what the index is counting is the number of R
solutions for Dψ ¼ 0, minus the number of R solutions for
D†ψ ¼ 0, which is equivalent to the number of positive
chirality massless edge states minus the number of negative
chirality ones for the operator D.
The index we computed still takes values in Z, which is

appropriate since the Majorana mass μ does not break T
symmetry and the system remains in the D topological
class.

TABLE I. The index indðDÞ for spatial topology νA ¼ 1 as a
function of m� and the asymptotic values of the fermion mass on
the two sides of the domain wall, relative to the constant
Majorana mass μ.

mþ < −jμj −jμj < mþ < jμj jμj < mþ

m− < −jμj 0 1 2
−jμj < m− < jμj −1 0 1
jμj < m− −2 −1 0

TABLE II. The number and chirality of edge state solutions to
Dψ ¼ 0 before introducing a gauge field, where the R,L indicates
chirality. The table for solutions to D†ψ ¼ 0 would be the same
with substitution L ↔ R.

mþ < −jμj −jμj < mþ < jμj jμj < mþ

m− < −jμj 0 R 2R
−jμj < m− < jμj L 0 R
jμj < m− 2L L 0
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V. DIRAC FERMION IN 3+ 1 DIMENSIONS

Our last example of a Dirac fermion 3þ 1 dimension
shares many features with the 1þ 1-dimension example.
When the mass m has a domain wall profile, the Dirac
equation in Minkowski spacetime has exact solutions
corresponding to 2-component massless edge states local-
ized on the 2þ 1 dimensional wall. Such a domain wall
describes the physics of a topological insulator, where the
region with m < 0 is considered the interior of the
topological insulator and the region with m > 0 is consid-
ered to be the exterior. There is no analog of chirality in
2þ 1 dimensions, and hence no charge violation on the
wall in the presence of background gauge fields and no
inflowing current from the bulk to the wall maintaining
current conservation. This makes the theory of three-
dimensional topological insulator another interesting exam-
ple to which one could imagine applying our construction
for which to compute the generalized Hall current and
index.
The Euclidean Dirac operator is simply =∂þmðx3Þwhich

has a static and unnormalizable solution localized at x3 ¼ 0
and constant in all the other coordinates. The edge state has
two nonzero spinor components and is an eigenstate of γ3.
To fully localize this state we add as diagnostic fields a
four-dimensional gauge field and a pseudoscalar, and again
we consider the mass to be an arbitrary scalar field for now.
Thus the operator we consider is

D ¼ Dμγμ þ ϕ1 þ iϕ2γχ ; ð5:1Þ

where Dμ ¼ ð∂μ þ iAμÞ is the d ¼ 4 gauge covariant
derivative and γμ, γχ are our 4D Dirac matrices.
To compute the index of D we once again construct the

K operator,

K ¼
�

0 −D†

D 0

�
¼ DμΓμ þ iϕ2Γ4 þ iϕ1Γ5; ð5:2Þ

where μ ¼ 0;…3 and the Γa are the eight-dimensional
matrices

Γμ ¼ σ1 ⊗ γμ; μ ¼ 0;…; 3;

Γ4 ¼ σ1 ⊗ γχ ;

Γ5 ¼ −σ2 ⊗ 1;

Γχ ¼ σ3 ⊗ 1; index starts at 0: ð5:3Þ

Our task is to compute the part of the chiral current
J a ¼ Ψ̄ΓaΓχΨ that contributes to the index, where Ψ is a
fermion with action S ¼ Ψ̄KΨ. As in the 1þ 1 dimen-
sional example in Eq. (3.10), we first write the scalars as

ϕ ¼ ϕ1 þ iϕ2 ¼ ðvþ ρðxÞÞeiθðxÞ; ð5:4Þ

assuming constant v and slowly varying ρ and θ where
ρ ¼ θ ¼ 0. We compute the leading contribution to the
chiral current in a 1=v expansion, since higher order terms
will drop off too fast at infinity to contribute to the integralR
∂μJ μ. To this end we write

K ¼ K0 þ δK; ð5:5Þ

with

K0 ¼ ∂μΓμ þ ivΓ5;

δK ¼ iAμΓμ þ iθvΓ4 þ iρðxÞΓ5: ð5:6Þ

Then K−1
0 will be the free fermion propagator, while we

perturb in δK. To compute the part of the current that
contributes to the index we need the leading term in a 1=v
expansion, since higher order terms will drop off too fast at
infinity to contribute to the integral

R
∂μJ μ.

When expanding J μ in δK, the Γχ insertion in the
fermion loop requires that the rest of the graph supplies one
each of the other six Γa matrices in order to get a nonzero
contribution from the trace. First consider the source of Γ4;5

in the graph. We see the Γ5 can come from one of the
fermion propagators K−1

0 , but to obtain Γ4 we require an
insertion of θ in the graph, while to lowest order the ρ
contribution will vanish. To obtain the other four Γμ we
note that the result for J μ will be proportional to an epsilon
tensor ϵμαβγ and that we can only contract the α, β, γ indices
with a gauge field and two derivatives—one acting on the
gauge field, the other on θ. Thus we must expand the
graphs in Fig. 3 to linear order in the momenta carried by
the gauge field and by θ.
It is straightforward to evaluate this loop integral, with

the result

A

A
+

p
k

k p

FIG. 3. Loop diagrams for computing the generalized Hall
current for the 3þ 1-dimension Dirac fermion. The black dot is
an insertion of the chiral current ΓαΓχ with incoming momentum
pþ k. The outgoing fields are the gauge field and the phase θ of
the complex field ϕ1 þ iϕ2, and the fermion propagator is given
by K−1

0 .
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J μ ¼ v∂γθ∂αAβ

Z
d4q
ð2πÞ4TrðΓμΓχ ½ð∂αK̃−1

0 ÞΓβK̃−1
0 Γ4ð∂γK̃−1

0 Þ

þ ð∂γK̃−1
0 ÞΓ4K̃−1

0 Γβð∂αK̃−1
0 Þ�Þ

¼−ϵμαβγ∂γθ∂αAβ

Z
d4q
ð2πÞ4

16v2

ðq2þv2Þ3

¼−
1

2π2
ϵμαβγ∂γθ∂αAβ; ð5:7Þ

where the derivatives inside the integral are with respect to
q. The prefactor in the first line includes a (−1) for the
fermion loop, (−1) from the Fourier transform p2 → −∂2x,
(−1) from the two derivatives with respect to momentum
with opposite signs due to momentum flow, and factors
ð−ivÞ and −iΓβ for θ and Aβ vertices respectively.
To highlight the momentum space topology underlying

the above calculation, we follow similar steps as in the
1þ 1 dimensional example of Sec. III to rewrite the result
as the analog of Eq. (3.19):

J μ ¼
1

12
ϵμαβγ∂γθ∂αAβ

× ϵρστω

Z
d4q
ð2πÞ4 Trγχ ½ðξ

†
∂ρξÞðξ†∂σξÞðξ†∂τξÞðξ†∂ωξÞ

þ ðξ∂ρξ†Þðξ∂σξ†Þðξ∂τξ†Þðξ∂ωξ†Þ�; ð5:8Þ

where

ξ ¼ D̃0

ðdet D̃0Þ14
¼ vffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

q2 þ v2
p þ i

qμγμffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 þ v2

p : ð5:9Þ

Making use of the currents Aμ and Vμ defined as

Aμ ¼
i
2
ðξ†∂μξ − ξ∂μξ

†Þ;

Vμ ¼
1

2
ðξ†∂μξþ ξ∂μξ

†Þ; ð5:10Þ

the integrand in Eq. (5.8) can be related to the volume form
derived for four spacetime dimensions in Eq. (A11) using
the relation that one can derive

−
ϵρστω
96π2

½ðξ†∂ρξÞðξ†∂σξÞðξ†∂τξÞðξ†∂ωξÞ
þðξ∂ρξ†Þðξ∂σξ†Þðξ∂τξ†Þðξ∂ωξ†Þ�

¼ϵρστω

�
−

1

16π2
AρAσAτAωþ∂σ

�
1

24π2
AσAτVω

��
: ð5:11Þ

On taking the trace of the above equation multiplied by γχ,
the first term on the right is recognized from Eq. (A11) as
the volume measure for S4, while the second term is the
divergence of a current which is well defined without

singularities on S4, and hence integrates to zero. Therefore
the generalized Hall current in Eq. (5.8) can be written as

J μ ¼ −
νq
2π2

ϵμαβγ∂γθ∂αAβ; ð5:12Þ

where νq is the element of π4ðS4Þ:

νq ¼ −
1

16π2
ϵabcd

Z
d4qTrγχAaAbAcAd ¼ 1: ð5:13Þ

The index is given by

indðDÞ ¼ −
1

2

Z
d4x∂μJ μ

¼ νq
4π2

Z
S
ϵμαβγ∂γθ∂αAβdSμ: ð5:14Þ

To evaluate the spatial integral we first must choose a
topologically nontrivial set of diagnostic fields to localize
the solutions to Dψ ¼ 0. That can be done by making use
of the Bogomolny-Prasad-Sommerfeld monopole field
configuration discussed in Ref. [25] which considers a
massless Dirac fermion in three Euclidean dimensions
interacting with a scalar field and a gauge field,

Φ ¼ g
2π

�
a −

1

2r

�
; A ¼ −

gð1þ cos θÞ
4πr sin θ

êφ; ð5:15Þ

and discuss how when the couplings obey the minimal
Dirac quantization relation, eg ¼ 2π, the d ¼ 3 conjugate
Dirac operator D†

3 has a zeromode proportional to
expð−arÞ while D3 has none. This configuration can be
lifted into our four-dimensional Euclidean theory by taking
A to be the first three components of our four-component
gauge field, independent of the fourth coordinate, while

ϕ¼mðx4Þþ iΦðxÞ; A4¼ 0; Fij¼ ϵijk4
gr̂k
4πr2

; ð5:16Þ

where for notational convenience we have relabeled our
coordinates so that the domain wall mass is a function of x4
and coordinates on the mass defect are labeled by x1;2;3.
Since we have set the electric charge e ¼ 1 in our covariant
derivative, we take g ¼ 2π for the magnetic charge. With
these background fields we then expect that the existence of
a massless edge state in the original d ¼ 3þ 1 Minkowski
theory implies one zeromode for D† only if a > 0 and no
zeromode for D, so that indðDÞ ¼ −θðaÞ.
This is indeed what we find. Plugging in these fields into

Eq. (5.12), we get the generalized Hall current
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J i ¼
r̂i

2π2r

ð2ar − 1Þ dmðx3Þ
dx3

ð2ar − 1Þ2 þ 4r2mðx3Þ2
;

J 3 ¼
mðx3Þ

2π2r2ðð2ar − 1Þ2 þ 4r2mðx3Þ2Þ
; ð5:17Þ

for i ¼ 0, 1, 2. We then compute the integral of its
divergence,

Z
d4x∂μJμ

¼ lim
L3;R→∞

�Z
R
d3rJ4

����
x3¼L3

x4¼−L3

þ
Z

L3

−L3

dx3

Z
dΩR2R̂ · J⃗

�
:

ð5:18Þ

Specializing to the mass profilemð�∞Þ ¼ �m0, and using
the expression for current given in Eq. (5.17) we find

lim
L3;R→∞

Z
L4

−L4

dx4

Z
dΩR2r̂ · J⃗ ¼ 2tan−1ðm0

a Þ
π

;

lim
L3;R→∞

Z
R
d3rJ3

����
x3¼L3

x3¼−L3

¼
�
1þ

2tan−1 a
m0

π

�
: ð5:19Þ

Summing these two terms gives us

Z
d4x∂μJ μ ¼ 2θðaÞ ð5:20Þ

and yields the anticipated result for the index,

indðDÞ ¼ −
1

2

Z
d4x∂μJ μ ¼ −θðaÞ: ð5:21Þ

So we see again that with diagnostic fields to localize
massless edge states, the index of the Euclidean fermion
operator counts these edge states and is quantized because
of both the spacetime topology of the background fields,
and the momentum space topology of the fermion
dispersion relation. As in the d ¼ 1þ 1 case and unlike
the d ¼ 2þ 1 example, we find that the d ¼ 3þ 1 result is
not affected by regulator fields, which decouple.
This model is in the DIII class, symmetric under both C

and T with both C and T matrices antisymmetric [5]. The
topological invariant in this case for three spatial dimen-
sions is Z, consistent with what we would find if we
generalized this theory to more flavors without any flavor
symmetry.

VI. INTERACTIONS

Our interest in understanding edge states via the index of
the Euclidean fermion operator led us to computing the
incoming flux at infinity of the generalized Hall current.
This has all been for free fermions, but interacting systems

are more interesting [26–34], and we know that interactions
can change the topological classification [13]. The ram-
ifications go beyond condensed matter systems and have
been applied to lattice models for chiral gauge theories,
where vectorlike fermions appear as chiral edge states until
interactions are turned on, gapping some of them and
leaving behind a chiral representation [35–38]. For an
analogous discussion in continuum chiral gauge theories,
see [39,40]. Clearly the index of the free fermion operator
cannot capture this physics. The generalized Hall current,
on the other hand, is well defined even in the presence of
interactions, and so it is reasonable to ask whether its
divergence still tells us about massless edge states in an
interacting theory. In this section we speculate that that is
plausible, in the context of the same 1þ 1 model described
in Ref. [13].
First we examine more closely how the calculations for

free fermions were done. Our method followed the work of
Callan and Harvey [6], which in turn used the methods
developed by Goldstone and Wilczek [41]. We computed
the generalized Hall current in a derivative expansion,
integrating out the fermions in a background field. In the
d ¼ 1þ 1 example, this background field was a complex
scalar field, and we obtained a contribution to the current

proportional to ∂μθ ¼ iϕ�
∂μ

↔
ϕ=jϕj2. Recall that the index

was defined in Eq. (2.10) as the integral of the divergence
of the generalized Hall current in the limit that the doubled
fermion’s mass M tended to zero. As seen in Eq. (2.1), the
mass M was introduced as an infrared cutoff, and in the
Ward-Takahashi identity for the current in Eq. (2.8),

∂
μJ χ

μ ¼ 2MΨ̄ΓχΨ −A; ð6:1Þ

where A ¼ 0. The nonzero divergence indicating the
existence of the massless edge state comes from the
2MΨ̄ΓχΨ term on the right-hand side, in the limit that
M → 0, where M serves as an IR regulator. In our
calculation, the inverse dependence on jϕj2 is the sign of
an infrared divergence regulated by hϕi—it was because
the background field served as an IR regulator that we
could set the parameter M in Eq. (2.10) to zero before
computing the Feynman diagrams. We replaced M by a
spatially varying the ϕ field as the IR regulator so that a
nonzero index of the fermion operator D would indicate
there was a massless edge state when ϕ was removed. The
calculation was performed as if the fermions were fully
gapped by ϕ. This is clearly false, since we were studying
systems with an exact zeromode. The current we computed
cannot be valid in the region where the zeromode wave
function is appreciable since the fermion is not gapped
there and the derivative expansion in the background field
breaks down. However, since the index is proportional toR
∂μJ μ, it only depends on the current asymptotically far

away from the localized zeromode, For that reason we were
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able to treat the fermion as gapped, and justify the
derivative expansion. This is the same justification as for
the Callan-Harvey calculation [6].
We will argue that in theories where interactions fully

gap the fermions, this spatially constant gap will serve as
the dominant infrared regulator in calculating the general-
ized Hall current, and since it cannot localize the fermions,
it will lead to a vanishing divergence of the current. We
envision a mechanism similar to what we saw in Sec. III
where we discussed the example of 2N flavors of free,
d ¼ 1þ 1 Majorana fermions in the presence of time-
reversal violation. There we found that if we explicitly
broke time-reversal invariance via a spatially constant
iμψTCγχψ term, the index vanished. The reason was that
in this case, as we removed the diagnostic field ϕ2ðxÞ → 0,
the spatial topology experienced by the fermion abruptly
became trivial at the point where μ dominated over ϕ2 as
the infrared regulator. The question then is whether the
same phenomenon can occur when interactions gap the
fermions as we remove the diagnostic fields. This seems
plausible, making the procedure described here for
detecting massless edge states relevant when interactions
are introduced, even though the original motivation of
looking at zeromodes of the free fermion operator is no
longer applicable. To understand this better, we look at the
model of Ref. [13] in greater detail.
Consider 2N copies of the 1þ 1-dimension Majorana

fermion model discussed in Sec. III. As shown in Eq. (3.6)
the Minkowski domain wall solutions in the free theory
with a step function mass take the form

ψ iðx; tÞ ¼ ηiðtÞe−mjxj
�

1

−1

�
; ð6:2Þ

and when quantized, the Hermitian η̂i operators obey the
Clifford algebra

fη̂i; η̂jg ¼ 2δij; i ¼ 1;…; 2N: ð6:3Þ

From these we can construct the ladder operators

ĉa ¼
η̂aþ iη̂aþN

2
; ĉ†a¼ η̂a− iη̂aþN

2
; a¼ 1;…N; ð6:4Þ

which obey the usual fermion anticommutation relations

fĉa; ĉbg ¼ fĉ†a; ĉ†bg ¼ 0; fĉa; ĉ†bg ¼ δab: ð6:5Þ

The 2N-fold degenerate edge states can then be constructed
by acting with c†a operators on a state j0i, which is defined
to be the state annihilated by all of the ĉa operators.
Since the η̂i operators obey a Clifford algebra, they

define an soð2NÞ Lie algebra, under which the degenerate
ground states transform as the 2N-dimensional reducible
spinor representation. When considering interactions

between the edge states, it is convenient to represent the
η̂i operators as 2N × 2N Hermitian Dirac gamma matrices
which act on these states. Interactions between these states
can then be represented as a matrix consisting of sums of
totally antisymmetrized products of even numbers of
gamma matrices, which we will call Hint.
One constraint we will impose on the interactions is that

they preserve time-reversal symmetry, since the gapless
edge states in the free theory owe their existence to that
symmetry in the first place, as discussed in Sec. III B. The
action of time reversal on the bulk states is ψ → σ1ψ which
takes η̂i → −η̂i. This sign is not interesting since we will
only be considering products of an even number of the η̂i
operators; however, in order for an interaction represented
as an antisymmetrized product of 2k antisymmetrized
gamma matrices to be Hermitian it must be proportional
to ik, which means that operators with an odd k flip sign
under the antiunitary time-reversal transformation. So we
restrict the interaction to operators involving products of
multiples of four fermion fields.
One of the results of Ref. [13] is that this time-reversal

invariant Hint can gap all of the edge states in this model if
and only if the number of flavors is a multiple of eight.
Completely gapping the edge states means that there is a
unique, nondegenerate ground state—so to prove this result
we need to show that a sum of totally antisymmetrized
products of 4k SOð2NÞ gamma matrices can only have a
unique lowest eigenvalue when 2N ¼ 0 mod 8. This is
easy to show, and the argument is given in Appendix B.
Consider the case with eight flavors of fermions and

consider the interaction defined in Eqs. (B10) and (B11).
On the domain wall,

Hint ¼ ωðĉ1ĉ2ĉ3ĉ4 þ H:c:þ 1Þ; ð6:6Þ

which for ω > 0 has the unique ground state jΩi ¼
ðj0000i − j1111iÞ= ffiffiffi

2
p

with energy E ¼ 0, fourteen degen-
erate states with E ¼ ω, and an isolated state with energy
E ¼ 2ω. In the effective Euclidean 0þ 1-dimension theory
one can compute the 1-particle propagator and find

hΩjηie−ĤintτηjjΩi ¼ e−ωτδij: ð6:7Þ

How do these interactions affect the actual calculation of
the divergence of the generalized Hall current in the
doubled Euclidean version of the 1þ 1-dimension
Minkowski theory? We do not have a quantitative answer,
but believe that the gapping of the single particle propa-
gator in the fully interacting theory will render the
generalized Hall current divergenceless.6

In the 1þ 1-dimension bulk theory we expect the
interactions act like the ’t Hooft operator induced by

6For work on the Greens function for theories with gapped
edge states, see Refs. [42–45].
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instantons in Ref. [46], saturating the zeromodes and
serving as topologically trivial infrared cutoff. In the
absence of interactions and diagnostic fields, the fermion
propagator we use to compute the generalized Hall current
in the Nf ¼ 8 model defined as

R Q
8
i¼1dΨie−SΨjðy1ÞΨ̄kðy2ÞR Q

8
i¼1dΨie−S

; S¼
Z

d2xΨ̄DΨ ð6:8Þ

is divergent since the denominator vanishes due to the
integration over zeromodes ofDwhich do not appear in the
action.
Suppose we now add a fully gapping interaction, such as

the one given in (Eq. (B11),

Lint ¼ ω½ðψ1 þ iψ5ÞTCγχðψ2 þ iψ6Þ�
× ½ðψ3 þ iψ7ÞTCγχðψ4 þ iψ8Þ� þ H:c: ð6:9Þ

The natural extension to add in the doubled Euclidian
theory is then

Lint¼ω½ðΨ̄1þiΨ̄5ÞΓ3ðΨ2þiΨ6Þ�½ðΨ̄3þiΨ̄7ÞΓ3ðΨ4þiΨ8Þ�
þH:c:; ð6:10Þ

where Γ3 ¼ σ1 × γχ is the doubled version of γχ given in
Eq. (3.9). When this term is added to the action in Eq. (6.8)
the fermion propagator is no longer IR divergent since the
zeromodes of D now appear in the action. As a result, one
should still find a well defined index as the diagnostic fields
are removed—but as the infrared cutoff arising from the
interaction presumably has trivial spatial topology, we
expect a topological phase transition to a trivial phase with
vanishing divergence for the generalized Hall current,
similar to that seen in Sec. III B. It would be interesting
to develop a quantitative method to perform the calculation
in the presence of interactions, but this is beyond the scope
of this paper.

VII. DISCUSSION

We have shown that the presence of the massless edge
states in topological matter manifests itself by the inflow of
a current—which we call a generalized Hall current—in a
related system in Euclidian spacetime. The divergence of
this current indicates the existence of massless edge states
just as the Hall current inflow does for the integer quantum
Hall effect. But this current appears in all topological
classes in Minkowski spacetime, including those that do
not have conserved currents because of a lack of continuous
symmetries (such as a topological superconductor), or
whose edges do not suffer from chiral anomalies because
they lack chiral symmetry (such as topological insulators in
1þ 1 and 3þ 1 dimensions). In this sense one arrives at a
unified picture for disparate manifestations of topological
matter.

Furthermore, while the original motivation was to study
the index of the free Euclidean Dirac operator, the gener-
alized Hall currents can be computed for interacting
systems as well, and we gave qualitative arguments for
why we expect the utility of such currents to persist.
Whether this idea can be put on a firmer foundation is an
open question. It is an attractive proposition to be able to
compute analytically how interactions affect topological
properties in different systems in various dimensions. If a
general theory for gapping massless chiral edge states in
3þ 1 dimensions can be derived, that might shed light on
what restrictions there are on the matter content of chiral
gauge theories regulated on a lattice; this is of obvious
interest given that the Standard Model is a chiral gauge
theory.
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APPENDIX A: TOPOLOGY IN MOMENTUM
SPACE FOR DIRAC OPERATORS

We have seen repeatedly in this paper that the Feynman
diagram for the generalized Hall current can be expressed
as a trace involving a unitary matrix ξ and its derivatives,
contracted with an epsilon tensor, where ξ is the unitarized
Euclidiean fermion operator in dþ 1 dimensions, ξ ¼
D̃=ðdet D̃Þ2−k where dþ 1 ¼ 2k for even dimensions and
d ¼ 2k for odd dimensions. ξ in general takes the form

ξ ¼ aðpÞ þ i=bðpÞ; aðpÞ2 þ bμðpÞbμðpÞ ¼ 1: ðA1Þ

For an ordinary Dirac fermion, we have

a ¼ mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ p2

p ; bμ ¼
pμffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m2 þ p2
p : ðA2Þ

We see that the dþ 2-component unit vector fa; bμg
represents a map from (dþ 1)-dimensional momentum
space to the sphere Sdþ1. Note, however, that ξ maps all of
momentum space onto half of the sphere, as p → ∞. At
p ¼ 0 we have ξ ¼ 1, while for infinite momentum,
ξ → ip̂μγμ which can be thought of as the equator of the
sphere, where the poles are represented by the matrices�1.
A map onto all of Sdþ1 is described by U ¼ ξ2, where for
infinite momentum U → −1. Evidently the topology for a
Dirac fermion in (dþ 1)-dimensional momentum space is

GENERALIZED HALL CURRENTS IN TOPOLOGICAL … PHYS. REV. D 108, 045019 (2023)

045019-17



described by the Oðdþ 1Þ nonlinear sigma model in
(dþ 1) dimensions.
A convenient way to describe this nonlinear sigma model

is as an SOðdþ 2Þ=SOðdþ 1Þ sigma model, which is what
we do here. By computing

ffiffiffi
g

p
, where gμν is the metric of

the sigma model and g is its determinant, we can simply
express the volume form in terms of the matrix ξ, in a form
easy to relate to the Feynman diagram calculations.
We define

ξ ¼ eiθμγμ=4 ¼ cos
θ

4
þ i=̂θ sin

θ

4
;

U ¼ ξ2 ¼ eiθμγμ=2 ¼ cos
θ

2
þ i=̂θ sin

θ

2
;

Aa ¼
i
2
ðξ†∂aξ − ξ∂aξ

†Þ ¼ Aaμγμ: ðA3Þ

For even dþ 1, it is easy to show that U parametrizes an
SOðdþ 2Þ=SOðdþ 1Þ sigma model. We can write U as

U ¼ eiθμσ
0
μ;dþ2 ; μ ¼ 1;…; dþ 1; ðA4Þ

where

σ0μν ¼
i
4
½γ0μ;γ0ν�; γ0μ ¼ iγdþ2γμ; γ0dþ2¼ γdþ2; ðA5Þ

since σ0μ;dþ2 ¼ γμ=2. In this form we see that UðxÞ would
describe the Goldstone bosons of the spontaneous sym-
metry breaking pattern SOðdþ 2Þ → SOðdþ 1Þ, where
the σ0μν generate SOðdþ 2Þ, and the subset σ0μ;dþ2 are the
“broken generators” which are not also generators of the
SOðdþ 1Þ subalgebra. A similar construction can be made
for odd dþ 1.
The metric for this sigma model is given by

gμν ∝ Tr∂μU†
∂νU ∝ TrAμAν ¼ AμαAνβTrγαγβ ∝ ðAATÞμν;

ðA6Þ

where the proportionalities are all constant. Thus we have

ffiffiffi
g

p ¼ N detA: ðA7Þ

With the convention for both SOð2kÞ and SOð2kþ 1Þ

Tr½γ2kþ1γμ1…γμ2k � ¼ ð2iÞkϵμ1…μ2k ; ðA8Þ

we can rewrite this as

ffiffiffi
g

p ¼Nϵμ1…μdþ1
×

�
Trγdþ2Aμ1…Aμdþ1

even dþ1

TrAμ1…Aμdþ1
odd dþ1

: ðA9Þ

With the normalization condition

Z
ddþ1θ

ffiffiffi
g

p ¼ 1; ðA10Þ

we have

dþ 1 ¼ 2∶
ffiffiffi
g

p ¼ −
i
4π

ϵijTrγ3AiAj

¼ i
16π

ϵijTr½γχð∂iUÞðU†
∂jUÞ

¼ 1

8π

�
sin θ=2

θ

�
;

dþ 1 ¼ 3∶
ffiffiffi
g

p ¼ i
3π2

ϵijkTrAiAjAk

¼ 1

24π2
ϵijkTrðU†

∂iUÞðU†
∂jUÞðU†

∂kUÞ

¼ 1

4π2

�
sin θ=2

θ

�
2

;

dþ 1 ¼ 4∶
ffiffiffi
g

p ¼ −
1

16π2
ϵijklTrγ5AiAjAkAl

¼ −
1

256π2
ϵijklTr½γ5ð∂iUÞðU†

∂jUÞ
× ðU†

∂kUÞðU†
∂lUÞ

¼ 3

16π2

�
sin θ=2

θ

�
3

;

dþ 1 ¼ 5∶
ffiffiffi
g

p ¼ 1

15π3
ϵijklmTrAiAjAkAlAm

¼ i
480π3

ϵijklmTr½ðU†
∂iUÞðU†

∂jUÞ
× ðU†

∂kUÞðU†
∂lUÞðU†

∂mUÞ

¼ i
1

2π3

�
sin θ=2

θ

�
4

: ðA11Þ

The integral in Eq. (A10) has an interpretation other than
as the normalized volume integral: with the definitions in
Eqs. (A1) and (A3) it is the winding number of a mapUðpÞ
from momentum space to SOðdþ 2Þ=SOðdþ 1Þ ≅ Sdþ1.
SinceUðpÞ → −1 as jpj → ∞ in any direction, momentum
space is effectively compactified to Sdþ1, and so the
winding number is an element of the homotopy group
πnðSnÞ with n ¼ dþ 1.

APPENDIX B: GAPPING THE MAJORANA
EDGE STATES WITH INTERACTIONS

IN 1 + 1 DIMENSIONS

Here we give a simple argument for a result of [13],
that one can fully gap the edge states in the 1þ 1 dimen-
sional Majorana model when the number of flavors is
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2N ¼ 0 mod 8, and not for other numbers of flavors. For a
pedagogical review, see [47].
We have seen in Sec. VI that for 2N flavors, the most

general time-reversal invariant interactions can be written
as sums of totally antisymmetrized products of 4k SOð2NÞ
gamma matrices acting on the 2N-dimensional Hilbert
space of degenerate ground states. Call this interaction
matrix Hint, and consider the effect on Hint of two
special matrices: γ2Nþ1, which anticommutes with all the
other gamma matrices, and C̃ which has the following
properties7:

C̃ ¼ C̃† ¼ C̃−1;

C̃γμC̃ ¼
�−γTμ 2N ¼ 8kþ 2; 8kþ 6

þγTμ 2N ¼ 8k; 8kþ 4:
;

C̃T ¼
�þC̃ 2N ¼ 8k; 8kþ 6

−C̃ 2N ¼ 8kþ 2; 8kþ 4:
;

C̃γ2Nþ1C̃ ¼
�þγ2Nþ1 2N ¼ 4k;

−γ2Nþ1 2N ¼ 4kþ 2:
: ðB1Þ

An explicit representation of C̃ can be easily found using
the following recursive definition for the gamma matrices
of SOð2NÞ. For SOð2Þ we take the Pauli matrices as our
gamma matrices:

SOð2Þ∶ γð2Þi ¼ σi; i ¼ 1;…; 3; ðB2Þ

and then for SOð2NÞ for N ≥ 2 we take

γð2NÞ
i ¼ σ1 ⊗ γð2N−2Þ

i ; i ¼ 1;…; 2N − 1;

γð2NÞ
2N ¼ σ2 ⊗ 1;

γð2NÞ
2Nþ1 ¼ σ3 ⊗ 1: ðB3Þ

In this basis the matrix C̃ is found to be a direct product of
matrices alternating between σ2 and σ3:

C̃ð2Þ ¼ σ2; C̃ð4Þ ¼ σ3 ⊗ σ2; C̃ð6Þ ¼ σ2 ⊗ σ3 ⊗ σ2;

C̃ð8Þ ¼ σ3 ⊗ σ2 ⊗ σ3 ⊗ σ2; ðB4Þ

and so on. It can be easily verified in this basis that C̃
possesses the properties in Eq. (B1).
Now it is easy to prove that the eigenvalues of Hint have

to be at least doubly degenerate for all SOð2NÞ groups

except 2N ¼ 8k, where k is an integer. Hint consists of
sums of products of 4k γ matrices totally antisymmetrized
in their indices, with real coefficients; it follows that

Hint¼H†
int; ½Hint;γ2Nþ1� ¼ 0; C̃HintC̃¼HT

int: ðB5Þ

Since ½Hint; γ2Nþ1� ¼ 0 we can simultaneously diagonal-
ize Hint and γ2Nþ1 with eigenvectors ψn;σ where

Hintψn;σ ¼ λnψn;σ;

γ2Nþ1ψn;σ ¼ σψn;σ; λn ∈R; σ ¼ �1: ðB6Þ

Now consider their action on the vector χn;σ ≡ C̃ψ�
n;σ:

Hintχn;σ ¼ C̃ðC̃HintC̃Þψ�
n;σ ¼ C̃HT

intψ
�
n ¼ C̃H�

intψ
�
n

¼ λnC̃ψ�
n ¼ λnχn;σ; ðB7Þ

and

γ2Nþ1χn;σ ¼ C̃ðC̃γ2Nþ1C̃Þψ�
n;σ

¼
�
C̃γ2Nþ1ψ

�
n;σ ¼þσχn;σ 2N¼ 4k

−C̃γ2Nþ1ψ
�
n;σ ¼−σχn;σ 2N¼ 4kþ2:

ðB8Þ

Thus χn;σ is an eigenstate ofHint with eigenvalue λn, and now
we would like to know if it is proportional to ψn;σ, in which
casewe have learned nothing, or orthogonal toψn;σ , inwhich
case we have shown that the eigenvalue λ is at least doubly
degenerate.
First of all, we see that while γ2Nþ1ψn;σ ¼ σψn;σ we have

γ2Nþ1χn;σ ¼ −σχn;σ for 2N ¼ 4k0 þ 2 ¼ 8kþ 2; 8kþ 6,
proving that ψn;σ and χn;σ are indeed orthogonal in these
cases and the spectrum is doubly degenerate. We can also
directly compute their inner product and find

χ†n;σψn;σ ¼ ψT
n;σC̃ψn;σ; ðB9Þ

which equals zero whenever C̃ is antisymmetric, which
occurs for 2N ¼ 8kþ 2; 8kþ 4—and so the spectrum is
doubly degenerate in these cases also.
Putting the two results together we see double degen-

eracy for 2N¼8kþ2;8kþ4;8kþ6, leaving only 2N¼8k
as a possible candidate for Hint to have unique eigenvalues.
Nowwe can ask: for SOð8kÞ dowe need to go beyond the

γ4 terms inHint in order to gap all of the edge states? For this
wewill just count parameters.Hint is 2N-dimensional, so we
should be able to obtain 2N different eigenvalues if we have
at least 2N parameters inHint. (This is overkill, sincewe only
need the lowest eigenvalue to be unique). The number of
independent antisymmetric 4-index tensors, whose indices
can take 2N values is 2N!=½4!ð2N − 4Þ!� which is greater
than 2N for N ≥ 3. Therefore a purely 4-fermion interaction
can gap all the fermions for every SOð8kÞ.

7Note that the conventional definition of the charge conjuga-
tion matrix C satisfies CγμC ¼ −γTμ whereas C̃ defined here sat-
isfies that equation for SOð4kþ 2Þ but C̃γμC̃ ¼ þγTμ for SOð4kÞ,
both C and C̃ to conjugate the generators, σμν → −σTμν, and the
alternating sign better serves our purpose here. For SOð4kÞ the
conventional C is given by multiplying C̃ by the chiral matrix
γ4kþ1.
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A simple example in the eight flavor model of a time-
reversal invariant interaction that gaps all of the edge
states is

Hint ¼ ωðĉ1ĉ2ĉ3ĉ4 þ H:c:þ 1Þ; ðB10Þ

where the ĉi ladder operators were defined in Eq. (6.4), and
we assume ω > 0. (Under time reversal, ĉi ↔ −ĉ†i .)
The eigenstates of Hint include a unique ground state
with eigenvalue E ¼ 0, fourteen degenerate states with
eigenvalue E ¼ ω, and a unique maximal state with

eigenvalue 2ω. The eigenstates corresponding to the mini-
mum and maximum energy are linear combinations of the
empty and fully occupied states, ðj0000i ∓ j1111iÞ= ffiffiffi

2
p

,
where ĉij0000i ¼ 0, and j1111i ¼ ĉ†4ĉ

†
3ĉ

†
2ĉ

†
1j0000i.

The interaction in Eq. (B10) can be realized in our
1þ 1-dimension Lagrangian by the term

Lint ¼ ω½ðψ1 þ iψ5ÞTCγχðψ2 þ iψ6Þ�
× ½ðψ3 þ iψ7ÞTCγχðψ4 þ iψ8Þ� þ H:c: ðB11Þ
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