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We present a duality between a particle detector model coupled to the amplitude of a scalar field and one
coupled to the field’s derivative in the limit of large energy gaps. We show that the results of the models can
be mapped to each other in a one-to-one fashion modulo a rescaling by the detector’s gap. Our analysis is
valid for arbitrary scalar fields in curved spacetimes and requires minimal assumptions regarding the
detectors. The duality also applies to the case where more than one detector is coupled to the field.
This shows that many examples of entanglement harvesting with amplitude coupled Unruh-DeWitt
detectors give exactly the same result as derivative coupled detectors that interact with the field in the same
region of spacetime.
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I. INTRODUCTION

Dualities in theoretical physics uncover connections
between seemingly disparate theories, bringing new per-
spectives and approaches to problems in different fields.
Examples such as the holographic principle, with its
AdS=CFT correspondence [1,2], and T-duality in string
theory [3] demonstrate the profound impact of dualities on
our comprehension of gravity and quantum mechanics.
Moreover, dualities extend beyond high energy physics,
finding relevance in condensed matter through phenomena
like topological insulators [4,5] and analog gravity exam-
ples which can simulate quantum fields in curved space-
times [6–8]. These correspondences reveal a mathematical
unity beneath the complexity of the physical world and
have the potential to offer novel approaches to long-
standing puzzles.
While many dualities may connect areas of physics that

are a priori vastly different, in this manuscript we will be
concerned with a specific duality in the context of local
interactions with quantum field theories; more precisely,
dualities between two different kinds of couplings that
localized systems might have with quantum fields—either
by directly coupling to the field amplitude or by coupling
with its derivative. Both of these types of couplings can be
realized by physical systems coupled to quantum fields.
For instance, atoms can be considered to either couple to
the electromagnetic potential or effectively couple to its
derivative (the electric field) in different regimes [9].

Our results then establish a duality between two identical
systems such that one locally interacts with a quantum
field’s amplitude and the other one with its derivative.
Systems that are locally coupled to quantum field

theories (QFTs) have many different theoretical and
experimental applications in fields that range from high
energy physics to quantum information. Overall, non-
relativistic quantum systems coupled to quantum fields
can be used to explore quantum information protocols in
quantum field theory, even in curved spacetimes. These
systems are usually termed particle detector models and are
the main tool of study of the field of relativistic quantum
information. The applications of particle detectors in the
study of fundamental aspects of quantum field theory are
vast. Examples are studies of the Unruh effect [10–16],
Hawking radiation [10,17–19], measurements in QFT
[20,21], spacetime structure [22–24], and thermodynamics
in QFT [25,26], among others. Particle detectors have
also inspired new quantum information protocols within
quantum information theory, such as entanglement harvest-
ing [27–36], quantum collect calling [37–39], and quantum
energy teleportation [40,41].
Due to their vast applications, the term “particle detector”

is a very general term, which can be used to describe
different systems, such as atoms interacting with the
electromagnetic field [9,31,42], neutrinos interacting with
nucleons [43,44], and even the interaction of localized
systems with linearized quantum gravity [45–47]. This leads
to a variety of couplings with different quantum fields.
Nevertheless, it has been shown that, in specific cases, most
of these couplings can be mimicked by simpler couplings
of two-level systems with a scalar field [31,42,44], and
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usually it is possible to generalize results from this case to
more complex scenarios. However, even in the case of
localized quantum systems coupled to a scalar field, there are
different couplings that one can consider. For instance, a
detector can be coupled to a scalar field ϕ̂ðxÞ itself or with its
conjugate momentum π̂ðxÞ, which will be the relevant cases
in this manuscript.
We will study the relationship between particle detectors

linearly coupled to the amplitude of a quantum field or
coupled to its derivative. Wewill classify the regimes where
these models give approximate results, and we will show
that, in the limit of large enough energy gaps for the
detectors, the models are completely dual to each other
under very reasonable assumptions. The situations where
the models give approximate results match many cases
considered in the literature, such as Gaussian switching
functions and detectors with large enough gaps. Moreover,
we will also address the duality in the case where more than
one detector is coupled to the field. In the large gap limit,
we will establish a duality between quantum information
protocols implemented by amplitude coupled particle
detectors and derivative coupled particle detectors.
Our manuscript is organized as follows. In Sec. II we

review particle detectors linearly coupled to the field
amplitude and to the field derivative. In Sec. III we
establish the duality between the models, relating the
results of the derivative coupled case with the amplitude
coupled model, and we prove a theorem that shows that, in
the large gap limit, the two models behave similarly apart
from a rescaling of the switching function. In Sec. IV we
show that there are physically realizable energy gaps
which allow the duality to approximately hold. We then
conclude that many previous examples studied in the
literature where the amplitude coupling was considered
would give similar results for the derivative coupled
model. In Sec. V we review the protocol of entanglement
harvesting, so that we can later compare the two scenarios.
In Sec. VI we establish this duality in the case where two
detectors are coupled to the field and discuss the impli-
cations in entanglement harvesting. The conclusions of
our work can be found in Sec. VII.

II. PARTICLE DETECTOR MODELS

A. Unruh-DeWitt model with field amplitude coupling

In this section, we review the amplitude coupled two-level
Unruh-DeWitt (UDW) model [10,48], which is the simplest
and most common particle detector model in the literature.
This model has proven to be a powerful tool for implement-
ing local operations in quantum fields and allows one to
easily consider quantum information protocols in quantum
field theory. More recently, its applications have extended
to probing spacetime structure [22,23,49], addressing the
problem of measurements in QFT [20], and quantifying the
entanglement present in quantum fields [50].

In its simplest form, the UDW model consists of a
two-level system linearly coupled to a real scalar quantum
field. In order to introduce the essential aspects of
the model, let us consider an nþ 1-dimensional globally
hyperbolic spacetime M possessing a Lorentzian metric g.1

The field ϕ̂ðxÞ is assumed to satisfy the Klein-Gordon
equation

ð∇μ∇μ −m2 − ξRÞϕ̂ðxÞ ¼ 0; ð1Þ

wherem is the mass of the field, ξ is a constant, and R is the
Ricci scalar. If fukðxÞ; ukðxÞ�g is a Klein-Gordon ortho-
normal basis of solutions for Eq. (1), then we write

ϕ̂ðxÞ ¼
Z

dnk
�
ukðxÞâk þ ukðxÞ�â†k

�
; ð2Þ

where the ladder operators satisfy the bosonic canonical
commutation relations, namely,

½âk; â†p� ¼ δðnÞðk − pÞ: ð3Þ

As for the detector, we consider it to be following a
spacetime trajectory zðτÞ inM, with τ being the proper time
of the trajectory. Furthermore, we denote by fΣτgτ∈R the
local rest spaces of the trajectory zðτÞ that can be covered
by Fermi normal coordinates (FNCs) x ¼ ðτ; xÞ and locally
foliate M [51–53].
The quantum degrees of freedom of the detector are

described as a two-level system whose time evolution is
defined by the following Hamiltonian:

ĤD ¼ Ωσ̂þσ̂−: ð4Þ

Here, Ω is the energy gap, whereas σ̂þ and σ̂− are the usual
ladder operators. For the sake of concreteness, if the Hilbert
space of the system is spanned by the orthonormal states
fjgi; jeig (the ground and excited states), then we write
σ̂þ ¼ jeihgj and σ̂− ¼ jgihej.
The coupling between the field and the detector is

completely characterized by the interaction Hamiltonian
density (written in the interaction picture)

ĥIðxÞ ¼ λΛðxÞμ̂ðτÞϕ̂ðxÞ: ð5Þ

In the equation above, λ is a coupling constant, and ΛðxÞ is
the so-called spacetime smearing function, which allows us
to consider a more realistic model where the interaction
between the field and the detector is localized in a finite
region of spacetime. Indeed, it is common to split this

1Our metric signature is ðþ;−;−;−Þ.
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function as ΛðxÞ ¼ χðτÞfðxÞ, where χðτÞ is the switching
function, which controls the process of switching the
detector’s interaction “on” and “off,” and fðxÞ describes
the shape of the detector in its rest frame. The fact that f
does not depend on τ imposes the rigidity condition for the
detector shape [16,52]. The operator μ̂ðτÞ is called the
detector’s monopole operator, and in the interaction picture
it is given by

μ̂ðτÞ ¼ eiΩτσ̂þ þ e−iΩτσ̂−: ð6Þ

It will be relevant for us to study the dimensions of λ, ΛðxÞ,
and ϕ̂ðxÞ. With conventions such that ℏ ¼ c ¼ 1, we
impose that ΛðxÞ has the units of a spatial density, which
corresponds to units of En, where E is a unit of energy. We
then find that ½ϕ̂� ¼ E

n−1
2 , which gives us ½λ� ¼ E

3−n
2 . This

particular choice makes it so that the coupling constant is
dimensionless only in n ¼ 3 spatial dimensions.
The evolution of states in the total system (fieldþ

detector) is governed by the time evolution operator

ÛIðτ1; τ0Þ ¼ T τ exp

�
−i

Z
Mτ0τ1

dVĥIðxÞ
�
; ð7Þ

where Mτ0τ1 is the spacetime region between the surfaces
Στ0 and Στ1 , and dV ¼ dτdnx

ffiffiffiffiffiffi−gp
is the invariant spacetime

volume element. A word of attention is in order here: as
shown in [53], in general, the time ordering operator will
depend upon the choice of time parameter and foliation
between the surfaces Στ0 and Στ1 . However, provided we
keep all our predictions to leading order in the perturbative
parameter λ and choose suitable initial states, there will be
no dependence in the notion of time ordering chosen. Thus,
we can basically write T instead of T τ in this context and
write the time ordering operation with respect to any
parameter to leading order in perturbation theory.
Our main interest is to compute the final state of the

probe after the interaction with the field. In order to do so,
let us consider the initial state

ρ̂0 ¼ jgihgj ⊗ ρ̂ϕ;0; ð8Þ

where we assume ρ̂ϕ;0 to be any Gaussian state of the
quantum field.
The state ρ̂0 then evolves with ÛI ¼ ÛIð∞;−∞Þ. We

take τ0 → −∞ and τ1 → ∞ because the support of the
spacetime smearing function ΛðxÞ automatically imple-
ments the finite time duration of the interaction.2

After tracing out the field degrees of freedom, we have
the density matrix ρ̂D that describes the final state of the
detector. To leading order in λ, we find

ρ̂D ¼ Trϕ½ÛI ρ̂0Û
†
I � ¼

�
1 − L 0

0 L

�
þOðλ4Þ; ð9Þ

with

L ¼ λ2
Z

dVdV 0e−iΩðτ−τ0ÞΛðxÞΛðx0ÞWðx; x0Þ: ð10Þ

Notice that the next order would be λ4 and not λ3, due to the
assumption that ρ̂ϕ;0 is a Gaussian state with zero mean. It
can then be shown that all the predictions of the theory are
functions of integrals of the Wightman function

Wðx;x0Þρϕ;0 ¼ hϕ̂ðxÞϕ̂ðx0Þiρ̂ϕ;0 ¼ Tr
h
ϕ̂ðxÞϕ̂ðx0Þρ̂ϕ;0

i
: ð11Þ

When the context makes it clear over which state we are
evaluating the correlation function, we will just write
Wðx; x0Þ for short.

B. UDW model with derivative coupling

Many other types of coupling between the field and
the detector have been explored in the literature. One of the
most used models is the derivative coupling, where the
detector couples to the derivative of the field. This model
has been considered in the literature in many studies in both
flat and curved spacetimes [35,54–56]. In fact, the deriva-
tive coupling in lower dimensions can be used to obtain
particle detector models that mimic the response of linearly
coupled detectors in higher dimensions, as considered
in [35,54,56], for instance. The derivative coupling can
also be used to mimic couplings of systems with the
electromagnetic field, as discussed in [31,42]. The main
goal of this manuscript is to establish a duality between the
derivative coupling and the amplitude coupling models in
the same spacetime of dimension nþ 1.
In order to define the derivative coupled UDW model,

consider ∂τ to be the timelike coordinate vector field in
FNCs, defined locally around the trajectory of the detector
zðτÞ. Then, the interaction Hamiltonian density that defines
the UDW model with derivative coupling is

ˆ̃hIðxÞ ¼ λ̃ Λ̃ðxÞ ˆ̃μðτÞ∂τϕ̂ðxÞ: ð12Þ

Notice that we have used tildes to denote the operators and
functions in this model. This notation will come in handy
when we discuss the duality, which is the main result of
this paper. Furthermore, it is important to notice that the
addition of the derivative to the field adds an extra
dimension of energy that has to be compensated by one

of the terms present in ˆ̃hIðxÞ, therefore changing their units.

2Typically, when one writes ΛðxÞ ¼ χðτÞfðxÞ, one assumes
χðτÞ and fðxÞ to be localized functions which define a finite (or
approximately finite) interaction region.
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We will keep λ̃ dimensionless and change the units of the
spacetime smearing function. That is, ½Λ̃� ¼ En−1. In
particular, in the case of n ¼ 3, we find that Λ̃ now has
units of a two-dimensional density (E2).3

The final state for a UDW detector with derivative
coupling can be computed by following exactly the same
procedure as in the linear coupling case, with the replace-
ment ϕ̂ðxÞ ↦ ψ̂ðxÞ ¼ ∂τϕ̂ðxÞ. Indeed, if we consider the
initial state of the detector-field system to be jgihgj ⊗ ρ̂ϕ;0,
we can still write the final state of the detector as in Eq. (9),
with the replacement L ↦ L̃, which is defined by

L̃ ¼ λ̃2
Z

dVdV 0e−iΩðτ−τ0ÞΛ̃ðxÞΛ̃ðx0ÞW̃ðx; x0Þ; ð13Þ

where the function W̃ðx; x0Þ is the correlation function of
the operator ψ̂ðxÞ ¼ ∂τϕ̂ðxÞ in the state ρ̂ϕ;0, namely,

W̃ðx; x0Þ ¼ h∂τϕ̂ðxÞ∂τ0ϕ̂ðx0Þiρ̂ϕ;0 ¼ hψ̂ðxÞψ̂ðx0Þiρ̂ϕ;0 : ð14Þ

In essence, all calculations that can be done for the case
of the amplitude coupling model can be mapped into
the derivative coupling model by replacing ϕ̂ðxÞ ↦
ψ̂ðxÞ and changing the corresponding spacetime smear-
ing function and coupling constant. Notice that, due to
the different correlation functions, there is no a priori
reason to expect the results of each model to behave
similarly.

III. DUALITY BETWEEN LINEAR COUPLING
AND DERIVATIVE COUPLING

In this section, we present the duality between the UDW
model with amplitude coupling and the UDW model with
derivative coupling. Such a duality will be characterized as
a relationship between the spacetime smearing functions
of both cases, with some special attention given to the
switching function that controls the time window of the
interaction between the field and the local probes. For
the sake of notation clarity, quantities related to the
derivative coupling case will be distinguished from the
ones in the amplitude coupling case by the overhead
symbol ∼, as in Sec. II. Nonetheless, in order to address
a more general result, we will allow for the energy gap Ω̃ to

be time dependent. The effect of this will then be to change
the free Hamiltonian for the derivative coupling to

ˆ̃HD ¼ Ω̃ðτÞσ̂þσ̂−: ð15Þ

With this change, the interaction Hamiltonian density of
the derivative coupling UDW detector (in the interaction
picture) can be written as

ˆ̃hIðτÞ ¼ λ̃ Λ̃ðxÞðeiθðτÞσ̂þ þ e−iθðτÞσ̂−Þ∂τϕ̂ðxÞ; ð16Þ

where the Heisenberg equation gives the relationship
between Ω̃ðtÞ and θðtÞ,

d
dτ

θðτÞ ¼ Ω̃ðτÞ: ð17Þ

We now consider the detector to start in the ground state
as in Eq. (8) and evolve it through the time evolution
operator (7) with the appropriate interaction Hamiltonian

density in each case—either ĥIðτÞ or ˆ̃hIðτÞ. After tracing out
the field degrees of freedom, the density matrix describing
the detector’s state will have exactly the same form as
Eq. (9) for both the amplitude and derivative coupling
cases. The only difference is that now, for the latter case,
we need to make the replacement L ↦ L̃, with

L̃ ¼ λ̃2
Z

dVdV 0Λ̃ðxÞΛ̃ðx0Þe−iðθðτÞ−θðτ0ÞÞW̃ðx; x0Þ; ð18Þ

where Wðx; x0Þ and W̃ðx; x0Þ are given by Eqs. (11)
and (14), respectively. In particular, they satisfy

W̃ðx; x0Þ ¼ ∂τ∂τ0Wðx; x0Þ: ð19Þ

In order to establish a relationship between the final state
in the two models, it is then enough to relate L and L̃. In
order to do so, we will perform integration by parts in the
integral of Eq. (18) using the relationship between the
correlation functions in Eq. (19). For convenience, let us
write ∂τ ¼ uμ∇μ in what follows, so that we can apply the
divergence theorem straightforwardly with the volume
element dV,

L̃¼ λ̃2
Z

dVdV 0Λ̃ðxÞΛ̃ðx0Þe−iðθ−θ0Þuμuν0∇μ∇ν0Wðx;x0Þ

¼−λ̃2
Z

dVdV 0∇μðΛ̃ðxÞe−iθuμÞΛ̃ðx0Þeiθ0uν0∇ν0Wðx;x0Þ

¼ λ̃2
Z

dVdV 0∇μðΛ̃ðxÞe−iθuμÞ∇ν0 ðΛ̃ðx0Þeiθ0uν0 ÞWðx;x0Þ;

ð20Þ

3It is common in the literature to instead change the dimen-
sions of the coupling constant in the case of the derivative
coupling [35,54–56]. However, in this manuscript it will be more
convenient to rescale the switching function χ̃ðτÞ instead, under
the assumption that Λ̃ðxÞ ¼ χ̃ðτÞf̃ðxÞ. It is important to note that,
regardless of the choice made, λ̃ χ̃ðτÞ will have the same units in
both cases.
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where we have neglected the boundary terms under
the assumption that the integrands are localized in
spacetime.4 In order to study the conditions under which
the amplitude coupled model and the derivative coupled
model will give the same result, we can now impose
L ¼ L̃, which will lead us to the following differential
equation for Λ̃ðxÞ and θðτÞ in terms of ΛðxÞ and Ω:

λ̃
�
∂τðΛ̃ðxÞe−iθðτÞÞ þ ð∇μuμÞΛ̃ðxÞe−iθðτÞ

�
¼ λΛðxÞe−iΩτ:

ð21Þ

If the equation above is satisfied for the spacetime
smearing function Λ̃ðxÞ and the θðτÞ, the amplitude
coupled model and the derivative coupled model will yield
the same results.
Although Eq. (21) might look complicated at first, a few

reasonable assumptions can be used in order to simplify it.
First, we will assume that the vector field ∂τ is divergence-
less. That is, ∇μuμ ¼ 0. This assumption naturally gets rid
of one of the terms we have. Next, we assume the rigidity
condition for both the amplitude and derivative coupled
cases, so that ΛðxÞ ¼ χðτÞfðxÞ and Λ̃ðxÞ ¼ χ̃ðτÞf̃ðxÞ. This
allows us to factor out the space dependence in the
equation. Under the assumption that λ̃ ¼ λ and f̃ðxÞ ¼
fðxÞ [that is, the detectors have the same coupling constant
and the same rigid shape in the rest frame of zðτÞ], Eq. (21)
can be recast as

d
dτ

�
χ̃ðτÞe−iθðτÞ

�
¼ χðτÞe−iΩτ: ð22Þ

This equation can be directly integrated and yields5

χ̃ðτÞe−iθðτÞ ¼
Z

τ

−∞
dξχðξÞe−iΩξ: ð23Þ

In particular, under the assumption that χ̃ðτÞ is a positive
function, we find that θðτÞ is the complex phase of the
integral on the right-hand side of Eq. (23), while

χ̃ðτÞ ¼
				
Z

τ

−∞
dξχðξÞe−iΩξ

				: ð24Þ

Although we were able to relate the parameters of the
derivative coupled theory to the parameters of the ampli-
tude coupled model, we still have to check that there are

cases where χ̃ðτÞ is a function strongly supported in a finite
region, so that the integration by parts of Eq. (18) can be
performed with no boundary terms. In order to address this,
we state and prove the following theorem.
Theorem 1.—Let χðtÞ ∈ L1ðRÞ be a differentiable func-

tion such that χ0ðtÞ ∈ L1ðRÞ and limt→−∞χðtÞ ¼ 0. Define

fΩðtÞ ¼
Z

t

−∞
dξχðξÞe−iΩξ: ð25Þ

Then, the following relation holds:

lim
Ω→∞

ΩfΩðtÞ − iχðtÞe−iΩt ¼ 0: ð26Þ

Proof.—Since χðtÞ ∈ L1ðRÞ is a differentiable function,
we can perform integration by parts in Eq. (25). We obtain

ΩfΩðtÞ− iχðtÞe−iΩt¼−i
Z

t

−∞
dξe−iΩξχ0ðξÞ

¼−i
Z

∞

−∞
dξe−iΩξχ0ðξÞθðξ− tÞ: ð27Þ

Now notice that, for each fixed t ∈ R, we can apply
the Riemann-Lebesgue lemma to the right-hand side of
Eq. (27), which gives us the desired result. ▪
Notice that this result is in accordance with the fact

that nonsmooth compactly supported functions [such as
χðξÞθðξ − tÞ] have a Fourier transform that behaves
like 1=ω. Moreover, this can be used to impose an upper
bound to the rate of convergence of the limit of Eq. (27)
for large Ω,

ΩfΩðtÞ − iχðtÞe−iΩt ∼ c
Ω
; ð28Þ

where c is a constant that depends on the shape of χðtÞ.
Now, using Theorem 1 in Eq. (23), we find that, for large

values of the energy gap Ω,

χ̃ðτÞe−iθðτÞ ≈ i
Ω
χðτÞe−iΩτ: ð29Þ

The factor of i in the equation above corresponds to a mere
shift in the time of the interaction time τ ↦ τ − π=2Ω,
which does not influence any observable of the theory.
The equation above gives us the relationship between χ̃ðτÞ
and χðτÞ and the relationship between θðτÞ and Ω,

χ̃ðτÞ ≈ χðτÞ
Ω

; θðτÞ ¼ Ωτ þ π

2
⇒ Ω̃ðτÞ ¼ Ω: ð30Þ

That is, we find that, apart from a rescaling due to the
energy gap, we have the exact same behavior for χ̃ðτÞ and
χðτÞ, so that Eq. (20) holds in this case. We also find that, in
the limit of large energy gaps, the possibly time-dependent
energy gap Ω̃ is independent of τ and matches the constant

4Notice that, in order for the integration by parts to be
performed, it is enough to assume that the Wightman function
Wðx; x0Þ vanishes at infinite time separations (which is the case
for spacetime dimensions larger than 1þ 1), and that the
spacetime smearing function Λ̃ðxÞ is sufficiently well behaved.

5Notice that while we can choose any bottom limit for the
integral, the choice of −∞ is convenient, as it ensures that
limτ→−∞χ̃ðτÞ ¼ 0.

DUALITY BETWEEN AMPLITUDE AND DERIVATIVE COUPLED … PHYS. REV. D 108, 045017 (2023)

045017-5



gap of the amplitude coupled modelΩ. Also notice that this
matches our conventions for units in the spacetime smear-
ing function stated in Sec. II B, where Λ̃ðxÞ has one fewer
dimension of energy than ΛðxÞ.
The conclusion is that, in the limit of large gaps, the

following Hamiltonian density for a derivative coupled
theory

ˆ̃hIðxÞ ¼
1

Ω
λχðτÞðeiΩτσ̂þ þ e−iΩτσ̂−ÞfðxÞ∂τϕ̂ðxÞ ð31Þ

will produce exactly the same results as one would obtain
using the interaction Hamiltonian of Eq. (5). Intuitively,
this means that, for sufficiently large gaps, the effective
field probed by the detector is such that ∂τϕ̂ðxÞ ≈Ωϕ̂ðxÞ,
which is to say that the frequency of the field which would
be the most relevant for the detector is the frequency which
resonates with its energy gap Ω. Furthermore, one could
also say that in this limit the duality here presented has an
intimate connection with the single mode approximation
for scalar fields.
Overall, provided that the following three conditions

hold, we have shown that the amplitude and derivative
coupled UDW detectors will give the exact same results,
with the rescaling of the interaction: λ̃ΩΛ̃ðxÞ ¼ λΛðxÞ:
(1) Rigidity: ΛðxÞ ¼ χðτÞfðxÞ and Λ̃ðxÞ ¼ χ̃ðτÞf̃ðxÞ.
(2) Constant local spacetime volume: ∇μuμ ¼ 0.
(3) Large energy gaps: Ω → ∞.
The result of this section implies that there are localized

and physically realizable switching functions for the
derivative coupling case which are dual to the amplitude
coupled theory. However, the exact condition that we found
so that these switchings can be defined is Ω → ∞. A
quantum system with an infinite energy gap is unphysical,
so the natural question to be asked is whether there are
finite values ofΩ that will allow the conditionΩχ̃ðτÞ ≈ χðτÞ
to hold. It turns out that there are relevant examples where
this is the case, and we will discuss these in Sec. IV.
In particular, we will see that, for a Gaussian switching
function with standard deviation T, values of Ω as small as
6=T are enough to make the duality approximately hold.
Notice that the duality presented in this section holds

for an arbitrary scalar quantum field in an arbitrary curved
spacetime of dimension nþ 1. This includes the case where
the field’s correlation function might require an IR regu-
lator. After the regulator is prescribed, and Wðx; x0Þ is well
defined, the duality presented in this section will be valid
for sufficiently6 localized probes.
Finally, notice that although we have carried on our

analysis with a specific choice of initial state for the

detector, it could have been carried on with any other
initial detector state, and the duality would also hold.
Indeed, the key point is that it is possible to integrate by
parts terms which are integrals of correlation functions of
the field. Given that all predictions from particle detector
models can be written in terms of these, the duality between
amplitude and derivative coupling holds for any choice of
initial state of the detector.

IV. EXAMPLES

In this section we will discuss specific examples of
switching functions and analyze whether there are physi-
cally realistic values of the energy gap that give localized
switching functions χ̃ðτÞ for finite values ofΩ. In particular,
we will analyze the result of Theorem 1 and check how
large Ω has to be in comparison to the other scales so that
Ωχ̃ðτÞ ≈ χðτÞ and Ω̃ðτÞ ≈Ω.
We will focus on three typical examples considered in

the literature for the study of finite switchings: the case
of Gaussian switchings and two different trigonometric
switching functions with compact support, defined by

χGðτÞ ¼
e−

τ2

2T2ffiffiffiffiffiffi
2π

p ; ð32Þ

χCðτÞ ¼

 π

2
cosðπτT Þ; jτj < T=2;

0; jτj ≥ T=2;
ð33Þ

χSðτÞ ¼


2cos2ðπτT Þ; jτj < T=2;

0; jτj ≥ T=2:
ð34Þ

Here T denotes the value of the integral over τ of each of
the functions above and is to be taken as a control of the
timescale of the interactions. We then define the dual
switching functions as described in Sec. III,

χ̃GðτÞ ¼
				
Z

τ

−∞
dtχGðtÞe−iΩt

				
¼ T

2
e−

Ω2T2
2

				1þ erf

�
τ=T þ iΩTffiffiffi

2
p

�				;
χ̃CðτÞ ¼

				
Z

τ

−∞
dtχCðtÞe−iΩt

				;
χ̃SðτÞ ¼

				
Z

τ

−∞
dtχSðtÞe−iΩt

				; ð35Þ

where we have omitted the analytical expressions for χ̃CðτÞ
and χ̃SðτÞ, as they are cumbersome and do not bring much
insight. In Figs. 1–3 we plot the functions Ωχ̃GðτÞ, Ωχ̃CðτÞ,
and Ωχ̃SðτÞ for different values of Ω, so that these can be
compared with χGðτÞ, χCðτÞ, and χSðτÞ.
In Fig. 1 we can see that, for small Ω (ΩT ¼ 1), the

function χ̃GðτÞ is not localized and varies from 0 to a

6In this case the spacetime smearing functions have to decay
faster than the growth of the Wightman function with the
spacetime separation between the events. This is in order to
ensure that the excitation probability integrals are convergent.
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constant. This is because for ΩT ≪ 1, χ̃GðτÞ is simply the
integral of a positive function. This means that our duality
will not hold for such a small value of Ω. As Ω increases,
χ̃GðτÞ becomes closer to 0 for larger values of τ=T, and it
gets closer and closer to the function χGðτÞ, as Theorem 1
states. What is remarkable about the case of the Gaussian
switching is that for relatively small gaps (ΩT ≈ 5) we
already obtain a remarkable similarity between the dual
switching function χ̃GðτÞ and χGðτÞ. Indeed, we find that,
for ΩT ¼ 5, the relative L1 distance between the functions
is approximately 2.1%. This falls to 0.5% for ΩT ¼ 10.
Gaussian switching functions are also the most common
choice of switching function and are used,7 for instance, in
[21,30,36,49,55,57–65]. Specifically, Refs. [21,30] con-
sider ΩT > 5 in the parameter space studied with UDW
detectors linearly coupled to a quantum field. This implies
that their results directly carry on to the case of derivative
coupled detectors.
In Fig. 2 we plot the function χ̃CðτÞ for different values of

Ω. For small values of Ω we again see that the function
starts at 0 and becomes constant, as it is simply the integral
of a positive compactly supported function. However,
as Ω increases, χ̃CðτÞ converges to χCðτÞ, becoming
localized and being in the regime where the duality holds.
Nonetheless, notice the effect that the nonsmoothness of
χCðτÞ has in this case, which makes the convergence much
slower. In this case ΩT ¼ 100 still does not erase the tail of
χ̃CðτÞ completely, and one requires to go to ΩT ¼ 1000.
Overall, for nonsmooth switching functions the duality is
only expected to hold for ΩT ≫ 1, which is usually not
very physically relevant.
In Fig. 3 we plot the function χ̃SðτÞ for different values of

Ω. Our main goal with this example is to showcase that
the smoother the function, the lower value of the energy
gap required so that Ωχ̃ðτÞ ≈ χðτÞ. For instance, in Fig. 3
we see that the approximation holds for ΩT ¼ 50.

Notice that this is much smaller than the values found
for χ̃C, which has noncontinuous derivatives.
We have also checked that, for large Ω, the phase

functions θðτÞ in Eq. (30) behave as θðτÞ ≈Ωτ − π=2 for
all models. This convergence happens much faster than the
convergence Ωχ̃ðτÞ → χðτÞ.
Overall, the examples of this section are useful to check

under which conditions it is possible to extrapolate the
results obtained from detectors linearly coupled to the field
to the results of detectors coupled with the field’s deriva-
tive. We saw here that the exact values of detector gaps
that allow such duality to approximately hold depend
explicitly on the shape of the switching function, and we
can infer that smooth switchings will allow the duality to
hold for smaller gaps. In general, if a computation with
UDW detectors is performed with linearly coupled detec-
tors that satisfy conditions 1 and 2, these results will also be
valid for the derivative coupling using λ̃ ¼ λ and the same
switching and detector gap if

Ω
				
Z

τ

−∞
dt e−iΩtχðtÞ

				 − χðτÞ ≪ 1; ∀ τ: ð36Þ

That is, if Ωχ̃ðτÞ ≈ χðτÞ.

FIG. 2. Analysis of the convergence of Ωχ̃CðτÞ to χCðτÞwith the
choice of compact switching function of Eq. (33).FIG. 1. Analysis of the convergence ofΩχ̃GðτÞ to χGðτÞwith the

choice of Gaussian switching function of Eq. (32).

FIG. 3. Analysis of the convergence of Ωχ̃SðτÞ to χSðτÞwith the
choice of compact switching function with continuous derivatives
of Eq. (34).

7Notice that, in these examples, multiple detectors are used.
However, as we will see in Sec. VI, the duality also holds for
multiple detectors.
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V. ENTANGLEMENT HARVESTING

In this section, we are going to review the protocol of
entanglement harvesting, a notorious example of how
UDW-like models have opened the path for the exploration
of new phenomena within the framework of QFT in curved
spacetimes. Specifically, by coupling two local probes to a
quantum field, one can learn how the geometry and
topology of spacetime can affect the entanglement structure
that is present in the field correlations [22,49]. For
entanglement harvesting in its standard form, we need to
consider two detectors, A and B, following timelike
trajectories zAðτAÞ and zBðτBÞ in the spacetime M, which
we assume to be parametrized by their respective proper
times. The free Hamiltonians of both of the detectors take
the same form as before in their proper frames, i.e.,

ĤD;j ¼ Ωjσ̂
þ
j σ̂

−
j ; ð37Þ

for j ¼ A, B.
Then, we couple the detectors with a scalar, real quantum

field ϕ̂ðxÞ. This way, the interaction Hamiltonian density
takes the form

ĥIðxÞ ¼ λðΛAðxÞμ̂AðτAÞ þ ΛBðxÞμ̂BðτBÞÞϕ̂ðxÞ; ð38Þ

where

μ̂jðτjÞ ¼ eiΩjτj σ̂þj þ e−iΩjτj σ̂−j : ð39Þ

Moreover, we will assume here that the spacetime
smearing functions ΛAðxÞ and ΛBðxÞ have nonoverlap-
ping support. Under this assumptions, the FNC times
τAðxÞ and τBðxÞ locally defined around each curve can be
written unambiguously in Eq. (38). Also notice that the
results of [53] allow any notion of time ordering to be
picked when computing the time evolution operator to
second order in λ.
For the initial state of the full system, we can set both

detectors to their ground state, and again assume that the
field starts in any Gaussian state ρ̂ϕ;0. So, we write the
initial state as

ρ̂0 ¼ jgAihgAj ⊗ jgBihgBj ⊗ ρ̂ϕ;0: ð40Þ

Notice that, with the choice above, the detectors’ initial
state ρ̂AB;0 ¼ jgAihgAj ⊗ jgBihgBj is a nonentangled state.
However, this might change after they interact with the
field. Indeed, using the time evolution operator (7) with the
Hamiltonian density displayed in Eq. (38), we can write
the final state of the detectors as ρ̂AB ¼ Trϕ½ÛI ρ̂0Û

†
I �, or, in

matrix form,

ρ̂AB ¼

2
6664
1 − LAA − LBB 0 0 M�

0 LBB LBA 0

0 LAB LAA 0

M 0 0 0

3
7775þOðλ4Þ;

ð41Þ

where

Lij ¼ λ2
Z

dVdV 0e−iðΩiτi−Ωjτ
0
jÞΛiðxÞΛjðx0ÞWðx; x0Þ; ð42Þ

M ¼ −λ2
Z

dVdV 0eiðΩAτAþΩBτ
0
BÞΛAðxÞΛBðx0ÞGFðx; x0Þ:

ð43Þ

In the last equation, GFðx; x0Þ stands for the “Feynman
propagator,” which can be written as

GFðx; x0Þ ¼ Tr
h
T ϕ̂ðxÞϕ̂ðx0Þρ̂ϕ;0

i
¼ θðt − t0ÞWðx; x0Þ þ θðt0 − tÞWðx0; xÞ; ð44Þ

where θðtÞ stands for the Heaviside step function, and t
denotes any time coordinate.
In order to measure the amount of entanglement between

the two detectors, we can use the negativity, an entangle-
ment quantifier for quantum systems [66]. Such a measure
has also been a standard choice among works that explore
entanglement harvesting (e.g., [21,30,31,34]), mainly
because it is an entanglement measure that works even
for mixed states in systems of two qubits, besides being an
easy-to-compute and well-defined entanglement witness
for higher-dimensional quantum systems. For a density
operator ρ̂, which describes the state of a bipartite system
HA ⊗ HB, the negativity N ðρ̂Þ of the quantum state ρ̂ is
given by the absolute sum of the negative eigenvalues
of ρ̂tA , where ρ̂tA denotes the partial transpose of ρ̂ with
respect toHA. In particular, for ρ̂AB we obtain the following
result for the negativity:

N ðρ̂ABÞ ¼ maxf0;Vg; ð45Þ

where

V ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jMj2 þ

�
LAA − LBB

2

�
2

s
−
LAA þ LBB

2
: ð46Þ

Notice that, in general, the negativity will be a competition
between the nonlocal term M and the terms that depend
only on each detector separately (LAA and LBB). For the
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special case where LAA ¼ LBB ¼ L (such as identical
inertial detectors in Minkowski spacetime), the negativity
reduces to

N ðρ̂ABÞ ¼ maxf0; jMj − Lg: ð47Þ
There will be entanglement between the detectors A

and B whenever the physical configuration is such that
V > 0. However, it is important to acknowledge that there
are two possible sources for the entanglement [34,67]:
communication-mediated entanglement (“signaling”) or
extraction of entanglement from preexisting correlations
of the field (“harvesting”). When the detectors are causally
connected, N ðρ̂ABÞ will have contribution from both
sources. Nonetheless, if we consider the detectors to be
spacelike separated, then we can be sure that all acquired
entanglement is due to true entanglement harvesting, as
there cannot be communication between them in this case.
We refer the reader to [34,67] for more details.

VI. DUALITY BETWEEN LINEAR COUPLING
AND DERIVATIVE COUPLING IN
ENTANGLEMENT HARVESTING

In this section, we are going to discuss how our results
about duality between the amplitude and the derivative
coupling translate to the case where two detectors interact
with the field. This case is relevant for different commu-
nication protocols, as well as for entanglement harvesting.
Consider two timelike trajectories zAðτAÞ and zBðτBÞ

parametrized by proper time, and consider two particle
detectors which interact with a quantum field according to
the model described in Sec. V. We wish to compare this
case with the case in which the detectors couple according
to the derivative coupling. In the derivative coupling case
we write the scalar interaction Hamiltonian density as

ˆ̃hIðxÞ ¼ ˆ̃hI;AðxÞ þ ˆ̃hI;BðxÞ; ð48Þ
with

ˆ̃hI;jðτÞ ¼ λΛ̃jðxÞðeiθjðτjÞσ̂þj þ e−iθjðτjÞσ̂−j Þ∂τj ϕ̂ðxÞ; ð49Þ

where we once again consider time varying gaps Ω̃jðτjÞ for
the detectors, such that d

dτj
θjðτjÞ ¼ Ω̃jðτjÞ. Notice that, in

this scenario, each detector couples to the derivative of the
field with respect to its own proper time, and that the
interaction Hamiltonian densities above are only defined
locally around each detector.
Now, provided that we prepare our system in the ground

state (ρ̂AB;0 ¼ jgAihgAj ⊗ jgBihgBj) and evolve it similar to
what was done in Sec. V, the reduced state ρ̂AB of the local
probes will have the same form as Eq. (41) for both choices
of coupling (amplitude or derivative). For the case of the
amplitude coupling, the terms of the density matrix ρ̂AB are
given by Eqs. (42) and (43), while in the case of the

derivative coupling, the final density matrix is still given by
Eq. (41) with the replacements Lij ↦ L̃ij and M ↦ M̃,
which can be written as

L̃ij ¼ λ̃2
Z

dVdV 0Λ̃iðxÞΛ̃jðx0Þe−iðθi−θ
0
jÞW̃ijðx; x0Þ;

M̃ ¼ −λ̃2
Z

dVdV 0Λ̃AðxÞΛ̃Bðx0ÞeiðθAþθ0BÞG̃Fðx; x0Þ; ð50Þ

and we define

W̃ijðx; x0Þ ¼ h∂τi ϕ̂ðxÞ∂τ0j ϕ̂ðxÞi ¼ ∂τi∂τ
0
j
Wðx; x0Þ; ð51Þ

G̃Fðx; x0Þ ¼ hT ∂τA ϕ̂ðxÞ∂τ0B ϕ̂ðx0Þi
¼ θðt − t0ÞW̃ABðx; x0Þ þ θðt0 − tÞW̃BAðx0; xÞ:

ð52Þ
The definition above makes it so that the relevant proper
time parameter (τA or τB) is used to differentiate the field
in the region corresponding to each spacetime smearing
function (ΛA or ΛB). In particular, with this convention
we can perform integration by parts in the L̃ij terms by
following exactly the same method described in Sec. III.
That is, if conditions 1–3 are satisfied both for detector A
and for detector B, we have Lij ¼ L̃ij.
The next step is to check how M and M̃ relate in this

case and whether it is possible to integrate M̃ by parts
without picking up extra terms. In the Appendix, we show
that, under the assumption that the vector fields ∂τA and ∂τB
are incompressible [∇μð∂τIÞμ ¼ 0�, it is possible to perform
a similar integration by parts for the M̃ term, so that it is
given by

M̃ ¼ −λ̃2
Z

dVdV 0
∂τðΛ̃AðxÞeiθAÞ∂τ0 ðΛ̃Bðx0Þeiθ0BÞGFðx; x0Þ:

ð53Þ
It might, in principle, look like the Heaviside thetas in
Eq. (52) add extra terms when integrating the term M̃ by
parts. However, the extra terms evaluate to integrals of
equal time commutator of field observables, which vanish
under the assumption of microcausality for the field. The
details can be found in the Appendix.
Overall, we conclude that the duality we stated in Sec. III

also holds for multiple detectors coupled to the field. That
is, for sufficiently large gaps, derivative coupled detectors
with switching functions χ̃jðτÞ ¼ χjðτÞ=Ωj will give the
exact same result as an amplitude coupled field would. This
implies that any study considered in the literature of
quantum communication protocols using multiple localized
particle detectors coupled to the field amplitude directly
generalize to derivative coupled detectors, provided that
conditions 1–3 are satisfied for both detectors.
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VII. CONCLUSIONS

We have studied particle detectors linearly coupled to the
amplitude of a quantum field ϕ̂ðxÞ and to its derivative
∂τϕ̂ðxÞ in a curved background spacetime. We established a
duality between the amplitude coupling and the derivative
coupling under the assumptions of (1) rigidity, (2) constant
local spacetime volume around the trajectories, and (3) the
limit of large energy gaps. We have shown that, in this case,
a mere rescaling of the coupling constant (or, equivalently,
of the spacetime smearing function) makes it so that both
models yield the exact same results.
We have also shown that the duality holds in the case

where two detectors are coupled to the quantum field. This
makes it so that any conclusion that can be made for
detectors with sufficiently large energy gaps coupled to the
field amplitude are also valid for detectors coupled to the
field’s momentum, with a mere rescaling of the results
by the energy gap. This result points toward an universality
in particle detector models, allowing for the conjecture that,
in the limit of large gaps, particle detectors will share
the same behavior, regardless of which field operator they
are coupled to.
We also studied explicit examples in order to determine

how large the detector’s gap has to be in order for the
duality to approximately hold. We found that the smoother
the switching function, the smaller the detector gap has to
be so that the derivative coupling shares the same behavior
as the amplitude coupling model.
Overall, our results represent a universal behavior of

particle detectors in the regime of large gaps, where the
final state of the detector is independent of whether it is

coupled to the field or to its conjugate momentum. The
duality presented here can then be used to extrapolate
future and past results of entanglement harvesting using
amplitude coupled detectors to the case where the detectors
are instead coupled to the field’s momentum.
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APPENDIX: INTEGRATION OF THE
NONLOCAL TERM M

In this appendix, we show in detail how Eq. (53) can be
obtained from Eq. (50). In the calculations below, we
employ the following definition:

fjðxÞ ¼
∂tðxÞ
∂τj

; j ¼ A;B: ðA1Þ

First of all, from the definition of the Feynman propagator the M̃ term in Eq. (50) can be written as

M̃ ¼ −λ2
Z

dVdV 0Λ̃AðxÞΛ̃Bðx0Þðθðt − t0Þ∂τA∂τ0BWðx; x0Þ þ θðt0 − tÞ∂τA∂τ0BWðx0; xÞÞ: ðA2Þ

Then, we perform integration by parts on the variable τA. Since ∂τAθðt − t0Þ ¼ fAðxÞδðt − t0Þ, we have

M̃ ¼ λ2
Z

dVdV 0
∂τAΛ̃AðxÞΛ̃Bðx0Þθðt − t0Þ∂τ0BWðx; x0Þ þ Λ̃AðxÞΛ̃Bðx0ÞfAðxÞδðt − t0Þ∂τ0BWðx; x0Þ

þ ∂τAΛ̃AðxÞΛ̃Bðx0Þθðt0 − tÞ∂τ0BWðx0; xÞ − Λ̃AðxÞΛ̃Bðx0ÞfAðxÞδðt0 − tÞ∂τ0BWðx0; xÞ:

Following the same procedure with the variable τ0B, it follows that

M̃ ¼ −λ2
Z

dVdV 0
∂τAΛ̃AðxÞ∂τ0BΛ̃Bðx0Þθðt − t0ÞWðx; x0Þ − ∂τAΛ̃AðxÞΛ̃Bðx0ÞfBðx0Þδðt − t0ÞWðx; x0Þ

þ Λ̃AðxÞ∂τ0BΛ̃Bðx0ÞfAðxÞδðt − t0ÞWðx; x0Þ þ Λ̃AðxÞΛ̃Bðx0ÞfAðxÞfBðx0Þ∂t0δðt − t0ÞWðx; x0Þ
þ ∂τAΛ̃AðxÞ∂τ0BΛ̃Bðx0Þθðt0 − tÞWðx0; xÞ þ ∂τAΛ̃AðxÞΛ̃Bðx0ÞfBðx0Þδðt0 − tÞWðx0; xÞ
− Λ̃AðxÞ∂τ0BΛ̃Bðx0ÞfAðxÞδðt0 − tÞWðx0; xÞ − Λ̃AðxÞΛ̃Bðx0ÞfAðxÞfBðx0Þ∂t0δðt0 − tÞWðx0; xÞ: ðA3Þ
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Next, we organize the terms and simplify the full expression by using δðt − t0Þ ¼ δðt0 − tÞ, ∂t0δðt − t0Þ ¼ −δ0ðt − t0Þ, and
∂t0δðt0 − tÞ ¼ δ0ðt0 − tÞ ¼ −δ0ðt − t0Þ. This way, the expression can be cast into

M̃ ¼ −λ2
Z

dVdV 0
∂τAΛ̃AðxÞ∂τ0BΛ̃Bðx0ÞGFðx; x0Þ

þ δðt − t0ÞðfAðxÞΛ̃AðxÞ∂τ0BΛ̃Bðx0Þ − fBðx0Þ∂τAΛ̃AðxÞΛ̃Bðx0ÞÞðWðx; x0Þ −Wðx0; xÞÞ
þ δ0ðt − t0ÞfAðxÞfBðx0ÞΛ̃AðxÞΛ̃Bðx0ÞðWðx0; xÞ −Wðx; x0ÞÞ: ðA4Þ

Finally, notice that the remaining Wightman function terms are equivalent to the average value of the commutator
½ϕ̂ðxÞ; ϕ̂ðx0Þ� evaluated over the initial state of the field ρ̂ϕ;0. Writing this average simply as h½ϕ̂ðxÞ; ϕ̂ðx0Þ�i, we have

M̃ ¼ −λ2
Z

dVdV 0
∂τAΛ̃AðxÞ∂τ0BΛ̃Bðx0ÞGFðx; x0Þ

þ fAðxÞfBðx0ÞΛ̃AðxÞΛ̃Bðx0Þ
�
δðt − t0Þ

�
∂τ0BΛ̃Bðx0Þ

fBðx0ÞΛ̃Bðx0Þ
−

∂τAΛ̃AðxÞ
fAðxÞΛ̃AðxÞ

�
− δ0ðt − t0Þ

�
h½ϕ̂ðxÞ; ϕ̂ðx0Þ�i:

Notice that the terms which are integrals of the commutator all have deltas or derivatives of deltas evaluating them. This
means that each of these terms will evaluate to integrals of the equal time commutator of observables, which are zero under
the assumption of microcausality (observables evaluated at spacelike separated points vanish). Therefore, we find

M̃ ¼ −λ2
Z

dVdV 0
∂τAΛ̃AðxÞ∂τ0BΛ̃Bðx0ÞGFðx; x0Þ; ðA5Þ

as stated in Eq. (53).
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