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In this paper we analyze the problem of “apparent” superluminal signalling and retrocausation that can
appear for particle detector models when considering noncompactly supported field-detector interactions
in quantum field theory in curved spacetimes and in relativistic quantum information protocols. For this
purpose, we define a signalling estimator based on an adapted version of the quantum Fisher information to
perturbative regimes. This allows us to study how the internal dynamics of the detectors (for example the
gap between the detector energy levels) have an impact on the ability of particle detectors to communicate
with one another. Moreover, we show that, very generally, even for detectors with infinite tails in space and
time, if the tails decay exponentially, one can define an effective light cone, outside of which signalling is
negligible. This provides concrete evidence supporting the use of noncompact (but exponentially decaying)
detector smearings in protocols of relativistic quantum information.
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I. INTRODUCTION

Particle detector models, such as the Unruh-DeWitt
(UDW) detector [1,2], can be thought of as a framework
to model the measurement of quantum fields. As their name
suggests, these models were originally intended to tackle
the challenges associated to the notion of particle in
relativistic quantum field theory (QFT), that is, to deal
with the complications that a naive notion of particle
introduces in scenarios involving noninertial observers or
curved spacetimes. Particle detectors have provided physi-
cal insight in a wide range of scenarios, including black
hole evaporation [3] and the entanglement structure of
QFT [4-6] to more mundane descriptions of the light-
matter interaction in quantum optics experiments and
quantum communication [7].

The simplest formulation of a particle detector model is
perhaps the pointlike Unruh-DeWitt model. In this model
the localization of the detector is considered to be con-
strained to a particular worldline. The practice of smearing
the interaction of the detector with the field in spacetime
became popular in the particle detector literature as a way
to ameliorate the UV behavior of detector transition
rates [8,9]. Later on, it was shown that smeared detec-
tor-field interactions can better capture the physics of
light-matter interaction [6,10,11] or, for example, the
physics of superconducting qubits [12]. Despite these
advantages, smeared couplings are not devoid of their
own fundamental issues. In particular, the nonpointlike
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(extended) detector-field interaction can introduce friction
with relativistic causality and enable superluminal signal-
ling in some regimes [13,14].

As reported in Ref. [14], detector-field interactions that
are strictly bounded in spacetime (compactly smeared)
do not present problems with superluminal signalling in
bipartite detector scenarios (both perturbatively and non-
perturbatively). The reason (see [14] for further details) is
that if the interactions between each of the detectors and
the field are causally orderable (i.e., the regions can be
separated by a Cauchy surface), then the dynamics factor-
izes in a way that prevents faster than light signalling
or retrocausation. It was shown there that, therefore, the
problem of superluminal signalling facilitated by the
possibly nonrelativistic description of the detector models
at hand does not represent a problem in bipartite situations.
Furthermore, it was also shown that in multipartite scenar-
i0s (scenarios with many detectors) there is no incompat-
ibility with causality to leading order in perturbation
theory [14] (see also [15]).

However, in situations where the interactions are not
compactly supported (and, as a consequence, not causally
orderable), rigorously speaking, noncompact particle detec-
tors are always in some degree of causal contact no matter
how far away they are. Of course we know that in physical
scenarios (like modeling atomic probes interacting with the
electromagnetic field) the tails of the spacetime localization
of the atoms can be exponentially suppressed, so effectively
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there is perhaps a regime where two atoms interacting for a
finite amount of time and sufficiently far away will be
effectively causally disconnected. Moreover, it is common
to consider toy models where one abandons the compact
support of the interaction region in order to achieve
analytical results; e.g., it is common to make use of
Gaussian profiles for both smearing and switching func-
tions (adiabatic switchings) whose impact on signalling has
been studied to some extent in Ref. [13].

In this paper we are going go beyond the results in
Ref. [13] by building a signalling estimator that can
characterize what are the regimes where one can use non-
compact smearings and still be able to consider that two far
apart detectors are, for all intents and purposes, causally
disconnected. For this we will use the theory of optimal
parameter estimation to characterize the influence of a
particle detector localized to a regions of spacetime on
another detector in a different region. By doing so we will be
able to fully characterize the dependence on all the param-
eters of the detectors and show that even the internal energy
gap of the detectors can play a fundamental role in deciding
whether two smeared detectors are or not in effective spatial
separation, something that previous literature did not cover.

This work is divided in the following sections. In Sec. II
we review a selection of different UDW-type detector models
employed in the literature, with the purpose of clarifying
their differences and similarities. Further, we establish a
unifying language to analyze the causality issues of general
detector models in general globally hyperbolic spacetimes
and why noncompact smearings are sometimes introduced.
In Sec. III, we build toward a quantitative analysis of
signalling in general detector models. For weak couplings,
using perturbation theory, we show in which cases the
microcausality condition for the quantum field prevents the
signalling between noncompact detectors that are strongly
localized in regions in spacelike separation, generalizing the
result in Ref. [13]. In the same section, we will define a new
signalling estimator, based on the quantum Fisher informa-
tion, that can be used to quantify the impact that the
“overlap” of the tails of noncompact detectors influence
whether we can consider the detectors effectively spacelike
separated. In Sec. IV we provide formal expressions for this
signalling estimator for some of the models considered in
Sec. II. In Sec. V we perform an in-depth analysis of the
signalling estimator for the simple, yet relevant case of
UDW detectors interacting through a massless scalar field
in flat spacetime in 3 4 1 dimensions. Finally, in Sec. VI we
provide exponential bounds for signalling between UDW
detectors in flat spacetimes based solely on analyticity
properties. We conclude and summarize in Sec. VIL

II. PARTICLE DETECTOR MODELS AND
NONCOMPACT SMEARINGS

In this section we will review some of the most relevant
variations of particle detector models that have been used in

previous literature. Our goal is to establish a unifying
language that allows us to capture the relevant features of
each model and study their causal behavior. In particular,
we will review and motivate the different ways in which the
detector-field interactions can make use of noncompact
spacetime smearings.

Each detector model is prescribed by an interaction
Hamiltonian density that models when, where and how the
detector is coupled to the field. The locality properties of
each interaction Hamiltonian will encode the causal behav-
ior of each model. For simplicity, we will assume that the
detector couples to a real scalar field in all cases.'

Perhaps the best-known detector model that has been
considered in the literature is the UDW detector model. In
its most popular version, the localization of the detector is
considered to be constrained to a timelike trajectory. This is
prescribed by the interaction Hamiltonian that generates
translations with respect to the proper time 7 associated to
the detector’s trajectory. In the interaction picture, this
Hamiltonian is given by

A

Hy = 22(1)D(7) ® $(x(7)). (1)

Here 1 is the coupling strength, y(z) is the switching
function, which is usually assumed to be integrable, and
X(7) is the spacetime trajectory of the detector parametrized
by its proper time z. The Hamiltonian couples the field
along the worldline of the detector to an internal degree of
freedom of the detector D.

The pointlike model has been proven to not have any
problems with the covariance of its predictions, as well as
being completely causal [13,14,19]. Despite this, the point-
like model can exhibit ultraviolet divergences related to the
coincidence limit of the time-ordered n-point functions. For
the purpose of regularization, one can consider smearing
the detector with a family of test functions (e.g., Gaussian
or Lorentzian functions parametrized by their width R) to
properly define the pointlike limit as (R — 0).

The simplest generalization of the pointlike interaction
Hamiltonian (1) involves a spatially smeared field operator
which captures the spatial extension of the interaction:

Hon = i2(0D(1) ® / IFOME). ()

Here F(x) determines the interaction’s spatial profile in the
(t,x). If the smearing and switching functions are com-
pactly supported over a spacetime region O, the interaction
can be thought of as happening only over that spacetime
region, i.e., O = supp[F(x)y ()], which we will call the

'There is a wealth of literature that establishes in what regimes
a scalar field coupling captures the relevant features of the light-
matter interaction [6,11,16] or can model high-energy processes
involving spinor fields [17,18].
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interaction region. The spatial extension of the interaction
region can be typically motivated on physical grounds.
From a purely phenomenological point of view, we
advocate for the most conservative interpretation of Eq. (2);
the smearing just carries information about where in space
the interaction occurs and does not “belong” either to the
detector or the field, as was also pointed out in Ref. [12].
The interaction region can be significantly larger than the
actual size of the detector, as happens in superconducting
circuits where the detector (a superconducting flux or
transmon qubit) is of macroscopic size [12].

For calculational convenience, it is common to choose
noncompact smearing and switching functions. When one
does this, strictly speaking, the interaction is not localized
and analyzing the causal behavior of the model becomes
more subtle [13].

Regarding the choice of internal degree of freedom of the
detector, a common choice is to consider that the detector
is a two-level quantum system with an energy gap Q.
However, the model is not restricted to this case and the
moniker “Unruh-DeWitt detector” is nowadays used for
most linear couplings of the form (2). For instance, another
common detector model is the harmonic-oscillator Unruh-
DeWitt variant (e.g., Ref. [20])

HHO —/1)(

) / ExFE)(Lx), ()

where we substituted D(r) = %(¢) the position operator
(or any other quadrature) of a harmonic oscillator written
in the interaction picture. Using the terminology of von
Neumann-like measurements, the conjugate of %() can be
interpreted as a continuous pointer variable that is linearly
coupled to the field amplitude.2

An interaction Hamiltonian that is particularly designed
for coupling the position operator of the detector “center
of mass” to the quantum field was introduced by Unruh
and Wald in Ref. [21], where the field interacts with the
detector at the spatial points in the spectrum of the
detector’s position operator.3 The interaction Hamiltonian
in this case is

How = 27(1) / Ixd(ex) @Sk —1).  (4)

where we shortened notation ¥, = £(¢) for the interaction
picture operators. The Dirac delta distribution 6(x — %,) is
defined over an (interaction picture) orthonormal basis
{]i;)} of the Hilbert space of the detector:

In the pointer variable analysis it is typical to assume no
internal dynamics, i.e., a gapless continuous pointer variable (see
the example in Sec. IV C).

SAn extension of the Unruh-Wald model that includes a
coupling to a spinlike internal degree of freedom can be found
in Ref. [22].

8x = &,) = D {iil0c = &)|jn)lin) i
= Z / A (i, (e — &) e} (el i) |
_ZWI <.]t‘ (5)

If we define F;;(x)=wj(x)y;(x), the interaction
Hamiltonian (3) becomes

HUW_)“)( Z/danlj

which consists of multiple terms of smeared field operators
coupled to rank-one detector operators that correspond to
all possible transitions between the elements of the basis
{|i;)}, which we can understand as the eigenstates of a
chosen observable.

Note that the smearing function of the field operator is
not introduced by hand in Eq. (4), in contrast with Eq. (3).
The smearing functions F;;(x) are not a freedom of the
model, and instead they are determined by the kind of
transition we are interested in.

In fact, inspired by light-matter interaction models
(see, e.g., [6,11]), we can suggest yet a different interaction
Hamiltonian designed to capture the features of the electro-
magnetic dipole coupling of a hydrogenlike atom with the
electromagnetic field. The dipole interaction Hamiltonian
of an electron in an atom and the electric field is of the form
x - E(t,x). We can write a scalar version of this coupling
that still captures the same basic physics, by considering
the coupling to a component of the electric field. If we
introduce a polarization vector €, we can write a dipolelike
Hamiltonian like

P(1,%) @ [in) (il (6)

Hpp = (1) / d'xe - xp(t.x) @ 6(x —%,). (1)

If we bring this interaction Hamiltonian to the form (6), the
smearing functions become F;; = € - xy/j (x)y;(x). A care-
ful treatment of the modeling of light-matter interaction
with UDW-type detectors beyond the scalar approximation
can be found in Ref. [11].

More generally, one can consider couplings of the form

A

Hepw = / dxJ(t,x) ® O(t,x) (8)

as was proposed, e.g., in Ref. [23], where J(r,x) =
e'P*J (1)~ is a general current operator for the detector
system. There are a variety of quantum mechanical current
operators in the literature, whose expectation values are
thought of as defining the current of a moving charged
quantum-mechanical particle (e.g., Ref. [24]). In principle,
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the current operator can be derived from fundamental
interactions in an effective field theory approach (e.g., in
the case of neutrino detection [24,25]). J(z) is any detector

observable, and O(t,x) is any field operator’ in their
respective interaction pictures. In this formalism the smear-
ing function is motivated by the introduction of cross-
grained variables for the detector system. Also, there is
typically no switching function.

Note that the Unruh-Wald model can be considered a

special case of Eq. (8) for J(r) = &(%,). Indeed,

J(t,x) := €P*5(%,) e Px

= §(eP*3,e71%) = 5(x — 3,). (9)

The rest of the interaction Hamiltonians that we reviewed in
this section can also be brought in this form (8).

A. Detector models in curved spacetimes

The pointlike model is straightforwardly adaptable to the
case of curved spacetimes. In this case one could treat the
interaction to be given by the same Hamiltonian (1), but
the field amplitude satisfies the Klein-Gordon equation in
curved spacetimes and the trajectory is defined over this
spacetime background. In this way, the pointlike UDW
model has been extensively used to analyze aspects of
quantum fields in curved spacetimes, such as in cosmology
[3] and black-hole physics [28,29].

The definition of extended detectors becomes more subtle
in these situations. An extensive account of the impact of
spacetime curvature in the formulation of detector models was
done recently in Refs. [30,31]. To define extended detector
models in general relativistic setups, it is convenient to
introduce the interaction Hamiltonian defining the coupling
between detector and field in a covariant manner in terms of
Hamiltonian densities and Hamiltonian weights [19,30].

In particular, in Ref. [30] an extension of the smeared
UDW detector embedded in a general curved spacetime
is built. Concretely, the detector is coupled to the field
through the following Hamiltonian weight5 in the inter-
action picture:

h(x) = AN (X)A(z(x)) ® p(x), (10)

where A is a spacetime function of compact support, ji is
again the monopole operator associated with the two-level

*Here we will focus on the case of linear coupling to the field
amplitude. The treatment of nonlinear couplings has been studied
in the past, for instance to tackle particle detection protocols with
complex scalar fields as well as with fermionic fields [17,26]
and to model photodetection protocols with the Glauber
model [27]. R R

The Hamiltonian density § and the Hamiltonian weight £ are
related by multiplication by the square root of the determinant of

the metric § = 1/|g|h.

system, and 4 is a coupling constant. The idea is that the
spacetime smearing function “splits” into the spatial smear-
ing and time switching only in a fixed reference frame,
typically chosen to be the Fermi-Walker frame (7, ) asso-
ciated with the center of mass of the detector [10,30,31]. In
this frame we could write A(X) = F(€)y(z). Similarly, the
detector operator ji(7) depends only on the detector’s proper
time in that frame. Moving to another frame, the detector
operator inherits spatial dependence fi(z(xX)). The covariant
notation makes it explicit that the spacetime smearing A(X)
does not specifically belong to the detector alone or the field
alone and can only be attributed to their joint interaction.

From the Hamiltonian density, one can define a time-
dependent Hamiltonian for the joint system as

Mﬂ—émﬁMm (11)

where £(7) is a one-parameter family of spacelike surfaces.
The parameter 7 is a global function whose level curves
represent the planes of simultaneity of the center of mass
of the detector, which under some assumptions [30] will
represent the proper time of the detector. Finally, d&
denotes a shortcut for the family of induced measures:

dE(r) = dx (e — Vgl (12)

in the surfaces £(7).

B. Quantum fields as probes

Yet another type of detector interaction can be intro-
duced in a totally covariant manner through the introduc-
tion of quantum fields as detectors. Indeed, within the
literature of detector models we find that one of the two
approaches suggested by Unruh in his seminal paper [1]
consisted of the coupling of the scalar field to a pair of
massive complex scalar fields with different masses, a
model that has been used in other contexts [32]. In the spirit
of the previous subsection, these interactions can be
expressed in terms of a Hamiltonian weight

S

h(x) = 2085, () ¥u () + ¥ 0¥, () @ d(x).  (13)

Field-field couplings were also derived recently through the
effective field theory approach in implementations for the
experimental verification of the Unruh effect [33].

An extensive study of measurements with local interactions
through quantum fields was done recently in the context of
algebraic quantum field theory (see [34]). Implicitly, the
Hamiltonian weight they considered was given by

h(x) = AAX)P(X) ® (X). (14)

where A was an arbitrary compactly supported smooth
function.
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TABLE I. In this table are displayed some of the most popular
detector models in terms of their associated current operator J
and whether they enable superluminal propagation within their
respective interaction regions. Models (2) and (3) are defined for
inertial reference frames in Minkowski, while the rest can be
defined in any reference frame on any curved background since
they are explicitly coordinate-free.

Model J(x) Microcausality?
D)o —x()D(s) /
@) H(OF)D() X
) x(1)5(x — %) X
(10) A(X)D(z(x)) X
(3) W5, (0P (%) + P (), (x) v
(14) AX)P(x) v

C. Housekeeping

Finally, combining ideas from all the models described
above, it is possible to unify the description of all these
models in a general way, as done in Ref. [14]. Namely, in
what follows, we will be using the following general form
of the interaction Hamiltonian weight:

h(x) = 2J(X) ® (). (15)

Here J is an arbitrary operator acting over the Hilbert space
of the detector. For example, in the pointlike model of the
previous section J(x) = A(X)fi(z(x)). In Table I we sum-
marize what the detector current is in every variant that
we reviewed in this section. Detectors defined in this way
may correspond to microcausal as well as nonmicrocausal
detectors. Whether a detector model is microcausal or not
can be characterized by determining whether the dynamics
that its interaction Hamiltonian generates propagates infor-
mation causally. As we studied in Ref. [14], an equivalent
way of characterizing this behavior is to determine whether
the associated currents fulfill the microcausality condition;
i.e., we say that a detector is nonrelativistic if

[7(x).7(y)] #0 (16)

for all spacelike separated X, y within the extension of the
interaction region. While all the models studied are micro-
causal in the spatially pointlike limit, when considering
finite smearings this is not the case. Assuming some finite
spatial smearing, we analyze in Table I which Hamiltonian
weights satisfy the microcausality condition.

III. QUANTITATIVE ANALYSIS OF SIGNALLING
IN GENERAL DETECTOR MODELS

In this section we analyze quantitatively the ability of
pairs of detectors to signal to each other. This will set the
ground to study the notion of approximate spacelike

separation by assessing the impact of exponentially sup-
pressed detector smearing tails in signalling in later
sections. Concretely, we will derive, from ideas coming
from optimal parameter estimation, a general expression for
a signalling estimator between two detectors applicable to
all the particle detector variants discussed above.

Let us first set the motivation for this analysis. The
concepts of causality and signalling in science are usually
discussed in a qualitative way; that is, one does not usually
determine (with some explicit quantity) how much of a
cause some event is to some other. To begin this analysis,
it should be made clear that causality and signalling are
two different notions. Causality involves some notion of
agency; e.g., the light in a room went on because someone
turned on the switch. This is a difficult concept to grasp
from a statistical physics point of view. In statistics, one is
provided with a typically time-dependent probability dis-
tribution over a set of parties typically distributed over time,
and one can study the correlations between the observables
of these parties. In order to infer a causal relation, one needs
to be able to parametrize the probability distributions in
terms of some controllable variables. Then one can infer the
dependence of joint probability distributions (of multi-
partite systems) on a parameter that is local to only one
subsystem. The motto “correlation does not imply causa-
tion” tells us that the mere observation of correlations in
local observables of both parties does not imply a causal
relation between local events associated with each of them.
In fact if one does not have control over the value of a local
parameter associated with one party in a multipartite
system, one cannot infer causal relations between this
party and the rest of the system.

Signalling, on the other hand, is understood as a purely
statistical concept, related—but not equivalent—to causal-
ity. One associates with each party a set of possible
measurement outcomes and a set of “settings” or param-
eters (as is done, e.g., in the process matrix formalism [35]).
It is said that party A can signal another party B if the local
statistics of B depends on the local settings of A. The
relevant statistics for signalling is the local statistics
associated with each party. In particular, two parties can
be correlated and yet not be able to interchange signals. On
the other hand, it could be that there exist causal relations
that do not translate into signalling in the statistics, in the
presence of fine-tuning and feedback loops [36]. These
scenarios where causal relationships appear in the absence
of signalling are rather contrived. For the case of particle
detector models interacting in the ways specified in Sec. II,
the notion of signalling is tied to the notion of relativistic
causality and, as such, within this framework (without
modifying the model) the presence of signalling from
parameters of detector A to local observables of detector
B is sufficient (and very likely necessary) for detector A to
causally influence detector B. In this work, we will focus
primarily on signalling relations.
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One can wonder how the statistical notion of causality
relates with causality as defined in relativistic theories. In
relativity, one represents spacetime by a smooth manifold
with a Lorentzian metric. In this manifold one defines a
partial order relation: It is said that a point in a manifold
precedes another if they can be connected through a future-
directed causal (nonspacelike) curve. For a given point p,
the set of all such points is called the causal future of p,
denoted 7" (p). Relativistic causality generally involves a
set of parties embedded in the spacetime manifold. The
causal relations between parties should be compatible with
the partial order implied by the causal structure of the
manifold, in such a way that one party cannot causally
influence another if they are in spacelike separated regions.
It is common that, in practice, a less restrictive (but
physically relevant) constraint is imposed between the
parties, namely, that two parties in spacelike separation
cannot send signals to each other.

In the case of relativistic QFT, the compatibility of the
spacetime causal structure with the (statistical) signalling
relations between parties—which are associated with com-
pact regions of spacetime—is a consequence of the micro-

causality condition. For example, for a scalar field ¢ this is

[B(x). d(y)] =0 (17)

when X and y are spacelike separated points. Roughly
speaking, since all observables and operations are built from
the field operators, the microcausality condition would imply
the following: If p, is a local state built from operators
localizable in a region O and @ is a completely positive
trace-preserving map built from operators localizable in a
region O’ spacelike separated from region O, then

o [pol = Po- (18)

Therefore, the local operation @, cannot affect the local
statistics that are encoded in p,. In this sense, the micro-
causality condition can be read as a nonsignalling condition.

The simple link between signalling and microcausality in
QFT we just exposed becomes more subtle when tackling
QFT calculations more rigorously [37]. Indeed, relativistic
constraints preclude the existence of local states such as p.
Restrictions of global states, e.g., the vacuum state, to local
states typically result in states that are not trace class, and
therefore the picture of signalling in terms of maps acting
over local states breaks. These subtleties can be addressed,
for example, by restricting the ability of observers to act on
the field locally to the coupling of local probes modeled by
particle detectors [38].

A. Signalling between two particle detectors
coupled to the field

To characterize signalling between two particle detectors
and discuss its compatibility with relativistic causality, we

first consider the time evolution operator / A+p generated
by the interaction Hamiltonian of two detectors A and B
and the field. We say that detector A can signal detector B if
the reduced state of B after the interaction,

P = trA.zﬁ(U A+BPinitial UjHB) (19)

(where try 4, denotes trace over the degrees of freedom of
detector A and the field), depends on any parameter of
detector A. One can say that the model is compatible with
relativistic causality if the signalling allowed by the model
is compatible with the relativistic causal relations associ-
ated with the respective interaction regions.

So far, these are all qualitative notions. Based on the
definition of signalling given above, we can determine
whether a detector can or cannot signal another detector,
but we have not introduced a way of determining “how
much.” Such analysis is important on its own (to assess the
causal behavior of detector models as a whole), but it
becomes crucial in situations where interactions are not
strictly localized in spacetime (which as discussed in Sec. 11
are also physically relevant), and one therefore has no way
of imposing relativistic causality because the detectors are
not associated with compact regions. The quantitative
analysis of signalling between noncompact detectors was
first discussed in Ref. [13]. Let us outline the ideas and
results in that reference. In Ref. [13] the analysis was
restricted to the case of interaction Hamiltonians of the
form (2), that is, smeared UDW detectors. More concretely,
it was considered that two detectors are coupled to the field
through the following interaction Hamiltonian:

=3 hn 00 @ [ &F, @), (20

where v = A, B. The overall picture is the following: The
two detectors interact with the quantum field, initially being
in an uncorrelated state. After the interaction, the detectors
will be correlated, and the goal is to distill the influence that
one of the detectors (the sender) has over the local statistics
of the other (the receiver) at leading order in perturbation
theory. In Ref. [13] there were some extra assumptions
made. The switching functions y,(¢f) and yg(¢) were
considered to be compactly supported over disjoint time
intervals, so that one detector was set to interact with the
field strictly after the other in the particular reference
frame in which the global interaction was defined. The
smearing functions, however, were not necessarily com-
pactly supported.

Calculating the effect of the interaction at leading order
in perturbation theory, the perturbed dynamics of the
density operator of the receiver B could be split into two
terms: one of them carrying the parameters associated
with the sender A (dubbed the signalling part) and another
independent of these (dubbed the noise part). More
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concretely, the leading-order correction to the density
matrix of the receiver was found to be

A2 ~(2 ~(2
p](3> = AAABP](S,)signal + /1]23:0](3,310ise’ (21)

where the noise term is local on detector B and all the
influence of the presence of detector A on detector B’s
density matrix is captured by the term

ﬁ%m=/w/mmmeﬂWMmmMn
< [in(). o] (22)

with

cuoa/m/wmwawm%w@mww
(23)

First, note that if the two interaction regions are not
causally connected, the smeared field commutator vanishes

due to the microcausality condition, and thus so does

~(2) . .
PB signa- I other words, microcausality guarantees no

faster-than-light (FTL) signalling at leading order.’® Of
course, if the interaction regions are not bounded in
spacetime, the two detectors can be in causal contact even
if the centers of the interaction regions are spacelike
separated. This does not imply faster-than-light signalling,
since the signal exchanges between the detectors will come
from the causal interactions between the respective tails.
We will denote the information carried by these signals as
“apparent” FTL signalling. For example, if two detectors
are Gaussian localized and their centers of mass are
spacelike separated by a proper length of more than,
say, 7 times their standard deviation, it is often considered
in the literature that the detectors are effectively spacelike
separated. Here we will analyze quantitatively how accurate
that kind of statements are.

Second, note that the state of the field does not affect the
signalling term in the perturbed dynamics (for free quantum
fields). This is because the distribution C(z, ¢’) is indepen-
dent of the field’s state, and therefore, at leading order, the
state of the field does not play a relevant role in signalling.

In what follows we are going to generalize the results in
Ref. [13] for the general detector model (15). We will also
introduce a novel definition of a signalling estimator based
on quantum informational notions and optimal parameter
estimation. This will allow us to discriminate whether the
effects of exponential tails are relevant enough to break the

6Moreover, it can be shown nonperturbatively that if the
interactions are causally disjoint, there is no faster-than-light
signalling between pairs of detectors [14].

“apparent” localization of the detectors in spacetime on a
case-by-case basis.

B. Joint dynamics of pairs of detectors

In order to analyze signalling relations between pairs of
detectors in the most general setup described in Sec. II, we
will calculate the general leading-order behavior of the state
of detector B (again, the receiver) interacting weakly with a
quantum field that has previously interacted with another
detector A (the sender).

Consider the case of two general detectors A and B,
which interact with the field according to the interaction
Hamiltonian

S H(@) = /5 . d€h,(x), (24)

v=AB v=AB

where in this case the corresponding Hamiltonian weights
will be given by’

ha(X) = AaJA(X) ® 1 ® H(X) (25)

and

h(X) = 2515 ® J5(X) ® $(X). (26)

The joint evolution in the interaction picture of the
detectors and the field can be described as a unitary
operator acting over the joint initial state of the field-
detector system piiia- Then the state in the asymptotic
future will be given by the transformation

,ﬁﬁnal = UAJrB,ainitial 0Z+B’ (27)
where U 5,5, is the evolution generated by the detector-field

interaction Hamiltonian (see Appendix A). The local
statistics of detector B will be given by the partial trace

P = tra 4 (Un ppiniia U 15)- (28)
and the signalling term can be defined as

o &

pB,signal - m trA,(,b ( UA+Bpinitia.l Uj\—&-B ) |/1A =1g=0" (29)

similarly to Eq. (21) above. Using the Dyson expansion, in
Appendix A we derive that

A2 . ~
pl(?.,?gign = _1[27 pB}? (30)

"Recall that, for convenience, we have absorbed the spacetime
smearing function in the definition of the detector current
operator, e.g., J,(X) == A, (X)2,(X(1)).
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where we have defined the operator
$— / / AVAV' (T (X)) G (% X) T (%)
— [ 4G 0780 G1)
Here Gy(x,X') is the retarded Green function

Gr(x.X) = =if(z(x) = 7(x)([$(x). $(x)]). (32)

dV denotes the invariant element of volume with respect to
the background metric

dv = dx**'/|g|. (33)

where |g| is the (absolute value of the) determinant of the
metric.

The operator £ can be understood as the current
associated with detector B smeared by the propagated
expectation value of the current associated with detector A,
which we defined as

Grl(T)](x) == / V(T (X)) Gr(x.X).  (34)

In the case of the massless Klein-Gordon field in a 3 + 1-
dimensional flat spacetime, for instance, the propagator
takes the familiar form of the Liénard-Wiechert potentials

Gr(X,X') = 6(xo — x5)8[(x = X)?] (35)
and

<jA>(tR»x/)

2k —x'| (36)

Grl(T)](1.x) = / av

where tg = ¢ — |x'| is the retarded time.

The above results (30)—(34) generalize Eq. (22). In
Ref. [13] it was assumed that the switching functions were
compactly supported and nonoverlapping, so one interac-
tion happens “after” the other in some reference frame. By
dropping this assumption, for general detector models, the
role of the field commutator is played by the field’s retarded
Green’s function (32).

C. Quantum Fisher information and a generalized
signalling estimator

At this point we are ready to generalize the signalling
estimator defined in Ref. [13] for general detector models,
beyond the assumption of compact support for the inter-
action and for general globally hyperbolic spacetimes. The
definition of the operator 3 in Eq. (31), without further
assumptions, should be regarded as merely formal. Indeed,

note that, given an arbitrary globally hyperbolic spacetime,
the retarded Green’s function Gy is guaranteed to exist as
an ordinary distribution acting over compactly supported
functions [39]. Therefore, it is not a priori guaranteed that
the expression (31) makes sense if, e.g., the mean value of
Jo(X') is not compactly supported. However, it is known
that this is not a problem in many of the common cases
studied in the literature whenever there are no infrared
ambiguities in the theory.

In the spirit of Ref. [13] one could be tempted to define
a signalling estimator as the norm of the operator £ in
Eq. (31). While this would be always well defined for
finite-dimensional particle detectors, this may not be well
defined for more general models. In particular the operator
3 involves the smearing of the operator Jp (x), which does
not have well-defined support as an operator in general. To
build a meaningful signalling estimator for the general case,
we are forced therefore to specify the particular configu-
ration of the state of the detectors.

To build a signalling estimator we will analyze the issue
of signalling in detector models from the perspective of
quantum metrology [40], which is precisely concerned with
the estimation of a parameter that is (dynamically) encoded
in the state of a quantum system. Namely, we will claim that
there is no signalling if B cannot access the parametric
information that is encoded in the state of detector A after
its interaction with the field. To make it more concrete, we
will establish that there will be no signalling if B cannot
infer the value of the coupling constant 1, through its local
statistics.

A core concept in parameter estimation in quantum
metrology is the so-called quantum Fisher information
[40,41]. Given a family of density matrices that are
dependent on some parameter, say 4, the quantum Fisher
information yields lower bounds on the variance of the
distribution of possible values of 1 given some certain
measurement statistics on the system. When the quantum
Fisher information is close to zero the statistical variance of
the optimal parameter estimation grows to infinity, which is
a consequence of the Cramer-Rao bound [40]. In our case,
we are going to consider the dependence of the partial state
of detector B on 1, so that the quantum Fisher information
estimates how much the information about whether A
coupled to the field or not (and how strongly) is accessible
to B. Note that the whole influence of any parameter of
A on B is conditional to the coupling constant 1, being
nonzero.

Given a one-parametric family of density matrices
p(A) =5 pi(A)]i(2))(i(4)], the quantum Fisher informa-
tion at 1 is given by [40]

H0p()lm)

F(A)=2
pl+pm

{pl+[]m>0}

(37)
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Since our parameter will be the coupling strength of
detector A and our signalling estimation will be defined
around the regime of weak couplings, we can expand the
Fisher information at the lowest orders in the coupling
constants and compute the Fisher information around the
value 1, = 0. To be more explicit, we are interested in the
estimation of the parameter 4, (close to zero) from the local
statistics of B after the interaction, at leading order in
perturbation theory. From Egs. (21) and (30), we find that

03,PB(Aa)]1,—0 = —ilB £, pp] + O(23). (38)

It is easy to see by direct substitution of Eq. (38) in Eq. (37)
that the expression for the Fisher information of detector B
with respect to the parameter 4, is given by

=23 )

{p1+pm>0}

(Pl ) -+ 00

Fyl2a)liyeo o

(39)

Note that at leading order the change on pg(1) with 14 is
given by taking the commutator with the self-adjoint
operator %, which means that at leading order the depend-
ence on 4, is given by the action of a unitary with generator
2. When the family of density matrices is generated by the
action of a unitary group over a pure state, it holds that
the quantum Fisher information coincides with 4 times the
variance of the generator of the unitary [41]. This means
that, at leading order,
Fs(0) = 425 (ws[£lws) — (walZlws)®) + O(23).  (40)
When the unitary group acts over general mixed states, the
variance gives an upper bound for the quantum Fisher
information [41]

N

Fp(0) <423((£7),, = (£)3,) + O(R).  (41)

Therefore, we can define the following signalling
estimator:

5= (), - (&3, (42)
generalizing the estimator defined in Ref. [13] to

unbounded operators. in our case, the Fisher information
estimates signalling by bounding the information that one
detector can “learn” about the coupling of other detectors
to the same quantum field. Note that Eq. (42) is exact
(at leading order) for initially pure detector states and
provides an upper bound if the initial states are nonpure,
as in Eq. (41).

For the purposes of quantifying whether the setup is
devoid of apparent superluminal signalling, having an upper
bound to the Fisher information is enough. Concretely, the

predictions of a given model are reliable if the upper bound is
sufficiently “small” given the initial states of the detectors
and the choice of background spacetime. In this sense, this
estimator defines the regime of validity of each model.
Nevertheless, this estimator may not be faithfully estimating
the amount of signalling that the sender can transmit to the
receiver, if simultaneously the variance is large, the detec-
tors’ operators are not bounded and the initial states are
mixed. In that case, to obtain a faithful measure of signalling
one would have to calculate the actual Fisher information
(i.e., not only its upper bound) which can be involved
depending on the model under consideration.

Substituting Eq. (31) into the signalling estimator (42),
we get

// AVAV'Gr[(T0)] ()G [(Ta)](X)
X ({75(x). 75 ()}) = (Grl(Ta). T2 (43)

where {-,-} denotes the anticommutator and

Grl(J8). (Ja)] Z/dVGRWAH(X)UB(X)) (44)

is the overlap of the expectation values of the currents,
convolved with the retarded Green’s function.

This estimator captures the main features outlined in
Ref. [13] to quantify signalling. A first consistency check
is that, indeed, if the functions (J,)(x), (Jg)(x), and
({Jg(x),J(X)}) are compactly supported, and if the
supports of these functions are spacelike separated with
respect to each other, then the estimator is zero; i.e., there is
no signalling between strictly spacelike separated detectors.

The signalling estimator will not be zero if these
functions are not compactly supported, but one would
expect that detectors that are, in some sense, “centered”
around a region cannot significantly influence events out-
side the future light cone of this region. Therefore, for any
notion of effective localization of a detector, we can define
a notion of effective light cone based on the signalling
estimator (43). Roughly speaking, two detector interactions
centered in spacelike separation can be considered to be
effectively spacelike separated if the estimator is negligible.

To make sense of this definition, a more elaborate
definition of an interaction centered at a point in spacetime
is required. The estimator (43) involves the mean values
and the fluctuations of the current operators J A.B> Which are
the only values that can affect the detectors’ statistics at
quadratic order in perturbations. Therefore, these are the
relevant functions that determine the localization of the
detectors at that order. We can define these functions to be
centered in a region if, e.g., these functions decay rapidly
away from any point belonging to this region. We shall
discuss these effective notions of localization in the next
section.
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IV. EXPRESSION OF THE SIGNALLING
ESTIMATOR IN SOME PARTICULAR CASES

In this section we provide expressions for our signalling
estimator (42) in some cases of interest, to gain some
intuition about the physics that it captures in each case. In
principle, for every detector model one must consider the
dependence of the signalling estimator on all parameters of
the interactions, the initial states of the detectors, and the
different dynamics of the field (for each possibly curved
spacetime background). Such an exhaustive analysis for all
types of detector models in curved spacetimes, and the
impact that effective localization has on causality in each
case, is outside the scope of this work. We will simply
comment on some aspects of the signalling estimator in the
examples below. In the next section, we will perform a
more in-depth analysis of the simplest case (signalling
between two-level systems).

A. Signalling between two two-level systems

Consider the case of two Unruh-DeWitt detectors that
interact with a quantum field in a curved spacetime back-
ground. In the case of Unruh-DeWitt detectors, the currents
can always be written covariantly as

J,=) N8, (45)

s==+1

where the detector index v € {A,B} and where we have
defined

A (7,.%,) = 2,(3, ) F o (x, )b (46)

for two different set of coordinates (z,,x,) for v € {A,B}.

The operators &' = 6 represent the ladder operators

associated with each two-level system.

Given this decomposition, the operator $ can be
written as

=) 65(60)GrlAy. AL
5.8’ ==+1

= ) (605 sQp). (47)
5.8 ==+1
where we have defined

1(s'Qn, 5Qp) = Gr[Ag, AXL (48)

Then, from the definition (42), the signalling estimator

for this model is given by the variance of the operator )
in Eq. (47):

S= > (&)%) {I(SQA,QB)I(S’QA,—QB)

= > (B8 (GE)(sQn uQp)I(5'Qy. uQp) | (49)
wu'==+1

Note that, in the case of two-level systems, one can
maximize the signalling between the detectors for all
possible states (the optimal value S, will play a funda-
mental role in later sections). Indeed, we notice that the
second term is negative and vanishes for (63) = 0. Then, if
we write the expectation value of the ladder operators
associated with detector A in polar form, i.e., (6%) = re*i«
with 0 <r <1, we realize that the first term can be
written as

S = Ple*l(Qp, ~Qp) + e (Q, Q)

r([1(Qa. —Qp)[* + [1(Q4. Qp)[?
+2Reei2”I(QA, QB)I* (QA, _QB)) (50)

We see that in the signalling estimator there is a contri-
bution coming from an interference term. If we write this
interference term in polar form, that is,

1(Qa. Qp)I"(Q4. —Qp) = eV [1(Q4. Qp)[|1(Q4. —Qp)].
(51)

where S is just the principal argument of the complex
number (51), the signalling estimator can be written then as

S = r2([1(Qa. —Qp)|* + [1(Q4. Qp)?
+2cos(a — B)[1(Qa, Qp)[[1(Q4, —QB)[),  (52)

which is maximum when setting r = 1 and a = f.

Therefore, the maximum value for the signalling esti-
mator is achieved when the state of detector B is diagonal in
the basis of its free Hamiltonian and the state of detector A
is such that (%) = €. For these states, the maximum
value of the signalling estimator takes the form

Simax = ([1(Qa. —Qp)| + [1(Q4.Qp)])*. (53)

B. Signalling between two quantum particles

One can also consider models of the Unruh-Wald type,
which describes the interaction between two spinless
charged particles through a scalar field and is modeled
by Hamiltonians like

How= Y Anl) [ axiiense -2, (54

ve{A,B}
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In that case,

which leads to

~

(Ja) (%) = 2a(1)(8(x = £a(1)))
= xa(D)lwalt.x)P, (56)

where w4 (2,x) is A’s wave function, and

(T(x)T5(x')) = x5 (t)xs (1) (5(x — %5(1))5(x' — 2p()))
= (s (! )yg(t,x)yp(r,x')
X Gg(t—1,x,x"), (57)

where
Gn(t = 1,2,%) = (¥ Up et = )W), (58)

lA]B‘free is the unitary operator associated with the internal
(uncoupled) dynamical evolution of B, and therefore G is
the uncoupled propagator of detector B. In contrast to the
previous case, unless there are further constraints, there is
no optimization with respect to the states that will set the
second term of Eq. (43) to zero, since

Grl(Ts). ()] = / dedeyy (1) (1.) 2 / drdr' e
X (15 (Al ) (59)

is nonzero in general for valid normalized states of A and B.
We can still derive a bound from the first term of Eq. (43);
we derive the bound

S< / drdx / dr'de' Gy [(T3)](1,x)Gr [(TA)] (1. %)
x Gy (1 — 1,3, X )y (D5 (s (1. X)ws (£, %), (60)
where

A

Grl(Ja)(t,x) = /dt’dx’GR(tax, X A () lwat 2%

(61)

We see that in this case Gg[(J,)] is a convolution of the
field’s retarded propagator, detector A’s switching function
and the probability density of A. If A’s wave function at
t =0 is compactly supported on a spatial region A and
detector A interacts with the field only at t = 0 with a delta
switching function y,(7) = 6(¢), then

Grl(7)](1.x) = / A/ G (1,2.0.%) [wa (0.X) (62)

is compactly supported in the causal future of A. On the
other hand, if the switching function has a nonzero
extension in time, e.g., a finite time extension € > 0,
Gr[(J)](.x) is supported on the whole 7 > 0 plane due
to the instantaneous spreading of A’s wave function [42],
i.e., the fact that w,(e,x’) has support everywhere for all
€ > 0. The upper bound of Eq. (60) can be written as

Ss/dtdx/dt’dx’y/AB(t’,x’)gB(t—t’,x,x’)y/ng(t,x),
(63)

where

wap(1.%) = Gr[(J))(t.x)xa (s (r.x).  (64)

This is the overlap of the propagated current of A (56) with
B’s wave function and switching function. Due to the
nonrelativistic internal dynamics of A and B this overlap
will generally be nonzero; i.e., there is no valid choice of
the states of A and B such that the upper bound vanishes,
and, in fact, there is always some signalling. This is a major
difference with respect to the previous example of the two-
level system, where one could choose valid states such that
S =0 (e.g., for {ix) = 0). In this sense, the influence of
the tails is more pernicious in the Unruh-Wald model than it
is for the usual Unruh-DeWitt detector.

C. Signalling between a spin and a continuous
pointer variable

Here we consider a setup similar to the thought experi-
ments in Ref. [43] which investigate the interplay between
complementarity and relativistic causality. The “sender” is
a spin system locally coupled to the field in a spacetime
region and the “receiver” is a continuous pointer variable
linearly coupled to the field in another spacetime region.
Namely,

~

T, 1) = xa()FA(x¥)EA(2), (65)

S A~

Jp(x, 1) = yp (1) Fp(x)k(2) (66)

in the Hamiltonian densities (25) and (26), where 64 is the
internal degree of freedom of the sender that couples to
the field and kg is the conjugate to the pointer variable
of the receiver g, ie., [fg.kg] = iA1. We consider for
simplicity that the pointer variable does not have internal
dynamics, i.e., lAcB(t) = lAcB, so that it only “shifts” based on
its interaction with the field and the influence of A. Taking
into account the definitions (42) and (44)
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S= VarGR[ij <‘7A>] (67)

and that in this case

GrlTg, (Ja)] = ksGrlrsFels. (74)], (68)

we get that

S-— ( [ axttns Ry @GN r))zka)Z, (69)

where (Akg)? = (k3) — (kg)? and assuming for conven-
ience that the conjugate pointer variable is centered around
zero ((kg) = 0). We see that the initial variance of the
conjugate pointer variable modulates the amount of signal-
ling from A to B, times the integral prefactor in Eq. (69) that
quantifies the causal overlap of the sender and the receiver.
Notice that if the pointer variable conjugate momentum
starts in an eigenstate of IACB, then Akg = 0 and there is no
signalling. This is expected since in that case the state of the
receiver is an eigenstate of the local interaction Hamiltonian
and there is no internal dynamics, so time evolution on the
partial system of the receiver is trivial.

Notice that if we were to consider that the sender is
coupled to the field for all times (adiabatic switching) even
if the sender and receiver are fixed at two distant spatial
locations x, and xp, they are not spacelike separated if the
interaction of A is always “on.” In this case, the prefactor of
Eq. (69) is given by

/dtdt’;(B(t)GﬁB(t, ?)xa(t)(6A(1)), (70)

where GRB(1,7) = Ggr(t,xp,7,x,). In Ref. [43] it was
shown that the distinguishability of B (i.e., the ability of B
to distinguish between the up and down states of the spin
A) depends on the overlap [dedsyg(1)GRE(1,1 )xa(7).
Comparing with the prefactor (70) that goes into our
signalling estimator, we see that the distinguishability
ignores the effect of the internal dynamics of the spin
and the choice of initial state. This suggests that there might
be cases where the ability of A to signal to B is different
than, e.g., the distinguishability. Thus, it would be inter-
esting to investigate the effect of the internal dynamics
and choice of initial state on the causality of the setup. As
we will see explicitly in Sec. V, considering the internal
dynamics of the sender and receiver is fundamental to
deciding if localized (but not compactly supported) systems
can or cannot signal to each other (even with strongly
decaying tails).

D. Signalling between quantum field probes

Finally, we can consider signalling between two quan-
tum fields that act as probes for a third quantum field, as in

Ref. [34]. In this case, one can consider a linear coupling
given by detector operators of the form

A A

u =Ny (71)

where ‘i’A,B are quantum fields defined on the same
spacetime background, possibly with different dynamics
from the one from the mediating field (} and Ay g are the
coupling functions associated with each interaction.

In this case, the signalling estimator will be the variance
of the following operator:

_ / AVAG ()W (X)Gr AL (FA) (%), (72)

This variance, and therefore the signalling estimator, is

given by
S= // dvav'T(

— (Gr[As(¥g), Ax(PA)])%, (73)

(X)W (x,x)

where we have defined the function

Ap(X)Gr[Ar(4)] (%) (74)

and W(x,x’) is the Wightman function of probe B in its
initial state, that is,

r'x) =

W(x,X) = (P (x) ¥ (X)) (75)

There are several aspects of this expression that merit at
least some qualitative discussion. Note that if probe B is
prepared in a coherent state (of a linear field), then the two-
point function takes the form

(Fp(0)(¥p(X)).  (76)

where W (X, X’) is the vacuum two-point function. Then for
any coherent state of detector B, the signalling received
from A (at leading order) is identical and is given by

W(x,X") = Wy(x,x') +

S= // AVAV'T(X)T (X)W (X, X'). (77)

The intuition behind this is that linear fields obey the
superposition principle, in such a way that if the field B is
prepared in a coherent state, the fluctuations around the
mean value are the same as in the vacuum state.

Second, one could be alarmed when observing that, given
that it is known that for thermal states the self-correlations,
given by the Wightman function, increase with the temper-
ature, so would the signalling estimator. This would lead one
to conclude, mistakenly, that signalling is somehow aided by
thermal fluctuations. In that case, however, the signalling
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estimator is just a loose bound given that thermal states are
mixed, and our signalling estimator does not capture the
efficiency of the signalling process as well as in pure states,
for which our signalling estimator gives exactly the quantum
Fisher information at leading order. This observation exem-
plifies the fact that one cannot use this signalling estimator
for comparing signalling in situations where a mixed state is
prepared with situations where a pure state is prepared.

V. SIGNALLING ESTIMATOR FOR SMEARED
UDW DETECTORS: GAP DEPENDENCE
AND RESONANT PHENOMENA

In this section we will analyze of the signalling estimator
for the more familiar case of the usual smeared Unruh-
DeWitt detector (2). Namely, the interaction Hamiltonian of
two inertial comoving two-level systems interacting with a

scalar field is given by
® / d"xF,(x

a m — Z ly)(va)ﬁu(t)
v=AB
where fi,(f) = a'2(e%'8] + e %157), 6 and o} are the
operators that take the ground state to the excited state, Q,
is the energy gap between the two levels, and « is a scale
with dimensions of energy so that the coupling constant 4,
is dimensionless.® We wish to specify which features of
the interaction are relevant to determine the signalling
estimator (42).

To particularize the general expression for the signalling
estimator (49) to the two-level Unruh-DeWitt detector in
flat spacetime of n + 1 dimensions, we make the following
identification:

)b(t.x), (78)

~

T, (%) = 2, (D F, (x)i, (1), (79)

where v = A, B. In flat spacetime, the field propagators are
translationally invariant, meaning that they only depend on
the difference of spacetime points. This allows us to write
the expression for the functions 7(Q, Q') appearing in the
expression for the optimal signalling estimator defined in
Eq. (49) as

1(Q,Q) :/dtdeR(t,x)/dyFA(y)FB(x +y)

x / dsza(s)0% g (1 + 5)e®), (80)

®The reason we enforce the coupling strength to be dimen-
sionless is so that the Fisher information is dimensionless. In
3 + 1 spacetime dimensions « is dimensionless and can be set to
1 for our purposes. For other spacetime dimensions a will be
given by one of the problem’s reference scales.

which is derived by simply substituting Gg(X,X') =
Ggr(x —X') and performing a change of variables.

Further, the propagators in flat spacetime are tempered
distributions, which in particular implies that they admit a
Fourier transform. In terms of the Fourier transform the
integral takes the form

1(Q,Q) = / dkdk®Gy (k, ko) Fy (k) F A (K)
X Ji (ko + Q)7 a (ko + Q). (81)

where F 4 g is the n-dimensional Fourier transforms of F g
and 7 p is the one-dimensional Fourier transforms of y g:

1

"8 = Gy

/ d'xe " F(x), (82)

1 )
7(ko) = ——— [ dte*oly(r). 83
Hho) = o [ e, s)
For the Klein-Gordon field the Fourier transform of the

retarded propagator is given by

1 1
(27)+D/2 —(KY —ie)? + o

Gk, k%) = . (84)

where wf = m* + k* and € is a regulator that will have to

be taken to go to zero after the integrals are performed.
Therefore, the integral in Eq. (81) is given by

1(Q,Q) = eli%{/dkFB VF o (k)
KO+ QV7a (K0 +Q

) / Tk + QA+ )

—(k” —i€e)* + wy,

We are interested in analyzing (a) the dependence of
the estimator on the frequencies 2, and Qg and (b) the
behavior of the estimator as we vary the smearing and
switching functions of the detectors.

Within this section we will study the dependence of the
signalling estimator in the particular case of two UDW
detectors that interchange signals through a massless scalar
field in a flat spacetime of 3 4+ 1 dimensions. In order to
simplify the explicit evaluation we recall that the two
detectors are comoving and at rest in some inertial frame
and further assume that the switching and smearing
functions are given by Gaussian functions. The centers
of the Gaussians that define the detectors’ spacetime
smearing will be separated by a constant spacetime vector,
which in the comoving coordinate frame takes the explicit
components Z = (zy,z). We call z; :== A the time distance
and |z| == L the spatial distance. Both smearing functions
have spatial width R and temporal width T [see Egs. (C4)
and (C10)].

(85)
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Since we are in 3 4+ 1 dimensions we take a = 1 and
the signalling estimator is dimensionless. Recall that the
maximum signalling between the two detectors [Eq. (53)] is
given by

Smax = (|I<QA’ _QB>| + |I(QA’QB)D2' (86)

Through simple analysis (see Appendix C), particularizing
the Green function in expression (80) to the case of a
massless scalar field in 3 4+ 1 dimensions [i.e., Eq. (35)]
we get

2

R 2 [ o w
1(Q,,Qp) = 2 dune (% — %
( A B) \/7_rLe 4R A uue s (ezx e ZR)
2 Ip(Ru»QA, QB)y (87)
where
T _12(Qp-04)? _(L+a)?
IP(L7QA7QB) = _me B_2°A e a2 el(QB+QA>L
(88)

happens to be the value of I(Q4,Qp) for two pointlike
detectors with identical switching separated by a spatial
distance L. In other words, we can express 1(4, Q) as a
spatial integral of the expression for pointlike detectors.

Regarding the behavior of the signalling estimator with
respect to the detector’s energy gap, in general, we would
expect that signalling decreases in the limit of very large
gap of either detector. The fact that the signalling estimator
vanishes in the large gap limit is clear from Eq. (85), since
in this case the signalling estimator is given by an integral
of smooth functions and the dependence on the internal
frequencies of the detectors is just a translation in momen-
tum space. For smooth, integrable smearing profiles
and switching functions the limit of the integral when
Q, or Qp goes to infinity can be taken inside the integral,
and this limit vanishes. We would also expect the signalling
estimator to be the largest in resonance (that is, when
Q4] = Q8]

It is interesting to consider the pointlike limit. In this case
(see Fig. 1) the signalling does not vanish when Q — o
while in resonance |Q,| = |Qg| = Q. This is expected
since in the pointlike limit the smearing function becomes a
delta which is not a smooth function and the arguments
given above do not apply. Furthermore, in the pointlike
limit, the signalling estimator reaches an asymptote as the
resonant frequency € grows (with every other parameter
fixed) independently of the initial state of detector A if
the state is of the form p5 = 3 (1 + cosaé, + sinas,). The
value of the upper bound for the signalling estimator (53)
behaves, as expected, as an enveloping curve for different
values of the initial state of A. Whereas the behavior of
the maximum signalling is monotonic, the behavior of the

S
3.10710
a=0
—10 —
2.10 w1
a =2
110710[ Smaa:
0 1 2 3 4 5 @

FIG. 1. The three oscillatory curves (blue, orange, and green)
give the signalling estimator for different states of detector A as
parametrized by a phase a (¢ =0,1,2) as a function of the
detectors’ gap Q, = Qp = Q. The red curve that is decreasing
monotonically is the S,,,,. This is for pointlike detectors that are
separated by L and both switchings are picked around zero with
temporal width 7 and such that L/T =5. Notice that the
signalling estimator at this spatial separation is S < 1, so the
detectors are effectively out of causal contact.

particular signalling estimator for a fixed state of detector A
[Eq. (49)] becomes oscillating. We relate this phenomenon,
already observed in Ref. [44], with the fact that, for a fixed
state and an interaction duration long enough, the detector
interacts mostly with some frequencies of the field around
its internal frequency €,. Therefore, if the detectors are
separated by a fixed spatial distance, it is to be expected that
signalling will be maximum when they are separated by
one of these wavelengths. This can be seen directly from
Eq. (88), where we see that the signalling estimator will
oscillate in Q exactly with frequency L.

We also observe a resonance phenomenon in Fig. 2
where both detectors are pointlike separated by spatial
distance L and both switchings are Gaussian functions of
width T'. Detector B (the receiver) is centered around zero.
As expected, we see that the signalling is higher when A is
centered on the (smeared) past light cone of B and when the
two frequencies match.

Finally, in Fig. 3 we see the effect of the spatial smearing
on signalling when the centers of the two detector-field
interactions are in spacelike separation. To see how much
the Gaussian smearing affects signalling and when we stop
being in effective spacelike separation as we increase the
smearing width R, we study the worst-case scenario: In
order to maximize the signalling estimator, we choose the
frequencies such that the detectors are in resonance, and we
plot the signalling as a function of the spatial width R of the
smearing for constant L/T = 4. One would expect that the
bigger the width the causal connection between the tails
of the two smearings grows which would lead to more
signalling. Indeed, this is what happens until some critical
value, after which the signalling decreases (see Fig. 3). This
might seem counterintuitive, but since the smearing func-
tion is a normalized density, the interaction overall vanishes
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FIG. 2. Signalling estimator between two pointlike detectors
that are separated by a spatial distance L and with a time lapse A.
The picks of the switchings are separated by time A with temporal
width 7. Detector B (the receiver) has internal gap Qp = 2 and is
centered around zero. The color bar quantifies how much signal it
can receive from A depending on where A is in space and time,
for different values of Q, (Q, = 1,2,3,4 from up left to down
right).

1.5-107% |
1-1076 |
%)
0.5-1076 |
1 2 3 4

R/T

FIG. 3. Signalling estimator for two smeared detectors with
spatial smearings of width R and whose centers are separated
by a spatial distance L. The spatial separation L is such that
L/T =4 (where T is the duration of the interaction). Both
switching functions are peaked around ¢ = 0, so the two detectors
are effectively spacelike separated (S < 1). We have set
Q) =Qp =Q.

in the limit of R/T — oo. In this sense, even though we
would expect that the tails are indeed enabling signalling
between the detectors, we also observe a “dilution” effect.
Similar behavior was also observed previously in Ref. [13].

VI. EXPONENTIAL BOUNDS ON SIGNALLING
FOR UDW DETECTORS IN FLAT SPACETIMES

In this section we will take advantage of the analytic
structure of the retarded propagators in flat spacetime for
deriving frequency-independent, exponential bounds on the
signalling estimator between two UDW detectors.

A. Bounds for smooth spacetime smearings

To analyze the dependence of signalling on the switching
and smearing functions it is technically useful to make
some assumptions. Let us recover the spacetime smearing
notation

Apag(X) = Fap(x)xag(?). (89)

Recall that, conventionally, y, g(#) is considered to be a
dimensionless function that just modulates the coupling
strength in time,9 unlike the smearing function which is
a density over space with dimensions of [length|™. First,
let us assume that the smearings and switchings of the
detectors A and B only differ by a spacetime translation
of (n+ 1)-vector z. Without loss of generality we set
Ag(X) = A(X), Ax(X) = A(X —Zz), where A is a function
localized'"” at around zero.

Second, we consider that the spacetime decays with
some given dimensional length and timescales. We can then
write the spacetime smearing in terms of a dimensionless
smearing function = as follows:

A(X) = |—T|E(L‘1x), (90)

where L is a strictly positive matrix whose entries have
units of length, |L| is its determinant and 7 is a “duration”
timescale associated with the interaction. Since we assumed
by construction that in the coordinate frame (z,x) the
spacetime smearing is a product of the temporal and spatial
smearing [Eq. (89)] the matrix L in those coordinates has

the form
T 0
L= . (91)
0 RT,

This means that |L| = TR" and we can rewrite Eq. (90)
as A(X) = 2:E(L7"'x). In this situation T represents the
timescale associated with the switching and R the spatial
scale associated with the smearing.

We say that the dimensionless function E is exponen-

tially localized at zero if
E(y)e'™ € L*(R"), (92)

where ny represents the contraction of the (n + 1)-vector y
and the covector 7, y = L' for all covectors Ly with
ILn]|, <1, where ||-||, is the Euclidian norm in the
reference frame with coordinates y°,y. This notion of

This is the most common convention although sometimes
nascent delta switching functions are employed.
'We will clarify more rigorously what we mean with the word
localized later on, but for now one can think of a function that
decays fast enough far away from the origin.

045015-15



DE RAMON, PAPAGEORGIOU, and MARTIN-MARTINEZ

PHYS. REV. D 108, 045015 (2023)

localization, of course, depends on the reference frame.
However, given that there is a preferred class of reference
frames, which is the one where spacetime smearings
factorize as a function of time and a function of the spatial
coordinates, it is natural to demand exponential localization
in these frames. Note that if we define u* = (1,0) in
coordinates (z,x), then the Euclidian norm can be written

Yy 200w, )
Finally, we will assume that

covariantly as |y||, =

=eln
EeE = o), 93)
=ll2

for ||Ln||, < 1, where the notation e represents a function

over spacetime vectors and the dot represents its argument.11
This condition represents mathematically the idea that the
function takes values significantly different from zero only in
a region around the unit ball in dimensionless coordinates.
An example of such a function would be a Gaussian:

- 1 _lyi?

E(y) = We 2, (94)
Belw Ly

B¢l _ e (95)

=
1]l

The expression for the integral in Eq. (81) now takes the
covariant form

1(Q.Q) =T / d"'kGr (K)Z* (LK + QLU)
x E(Lk + Q' Lu)e*?, (96)

where we have defined the dimensionless Fourier transform

[11x

() = s [ YR, (07

(27z)(n+1

We are interested in the behavior of this expression as the
separation between the center of the spacetime smearings,
z, varies. We will use analytic properties of the function =
and the propagator G. On the one hand, the exponential
localization of Z implies that = admits an analytic exten-
sion, Z(k —iLy) with ||Ly||, < 1. This is a classic result

that can be easily checked from the expression

= : 1 n —i(k—1 =
.:(K—ILW) :(2”)(ﬂ+1)/2/d +1ye ( Lﬂ)yd(y)

1

_ n+1y, ,—iky ,—Lny=
_(211)(”“)/2/(1 ye We lVE(y).  (98)

"Basically, f = e/ means that f(z) = .

Since e “WE(y) is square integrable, its Fourier transform
exists and it is also square integrable. This Fourier trans-
form then gives the unique analytic extension of Z.

On the other hand, by a known result in distribution
theory (see [45]) the Fourier transform of a distribution
whose support is contained in a cone V is the boundary
value of an analytic function in the complex region
R” —iV*, where V* is the dual cone. Further, this function
is also polynomially bounded in k. This means in particular
that Gg(K) can be analytically extended to Gg(k — in)
where # is an arbitrary future-oriented timelike vector.'”

In our case, we are considering that the distribution Gy
acts over test functions that also admit an analytic exten-
sion. This means that one can define the action of the
distribution over the functions by shifting the contour of
integration in Eq. (96):

1(Q,Q) =T?e? / d"+ kG (k — in)e K

x E*(Lk + QLU —iLn)
x E(LK + Q'Lu —iLn), (99)

for any timelike covector # such that ||Ly||, < 1. The value
of the integral is independent of 7. However, for any
contour where 7 is not the zero covector, the value of
I1(Q,Q)) is given by an integral of a smooth, complex-
valued function. Therefore, one can apply bounds to the
modulus of the integral in the usual way. Indeed, by taking
the modulus of the integral one arrives at the following
bound:

H@.@) < 7e [ a ik G(k—in)

x |E*(Lk + QLu —iLn)

x B(Lk + Q'Lu —iLn)|. (100)
Recall that the value of the integral is independent of 7,
and it is well defined even when 7 is the zero covector.
However, the bound is not independent of #: Every value
of 5 provides a different bound. We will choose particular
values of 5 that lead to exponentially decaying bounds
with the distance and the time lapse between the
interactions.

2In QFT it is common to consider the analytic extension of the
distribution Gy as a way of defining the action of the distribution
over arbitrary smooth functions. In this sense, the covector 7 is
considered to be a small regulator. However, this is not what we
are doing here. Recall that we use the analytic extension of both
the propagator and the smearing to the complex plane in order to
establish bounds for the signalling estimator; thus, for us the
magnitude of # will not be a small value.
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The bound given by Eq. (100) is valid for any propagator
that has support only in the future light cone. In order to
provide a bound which is independent of the detector gaps
{Q4,Qp}, we need to use properties of Klein-Gordon field
propagator.

In covariant form, the expression for the analytic
continuation of the retarded propagator is given by

1 1
(27)+D/2 (k —in)* + m?”

Cr(k—in) = (101)

This is a regular function of k whose modulus squared is

Grlk— )2 = :
R n (277)("+1)/2 (k2 + m2 _ ,72)2 + 4(k1’])2 .

(102)

This expression has a global maximum dependent on 7
and m. When |?| > m?, the maximum is given by

- . 1 1
max(’GR<k_1’7)|) = (Zﬂ)("+l)/2 |7’]2| T m2
1 1
< (zﬂ)(r1+1)/2MT’ (103)
and when |?| < m?,
o . 1 1
max (|Gr(k —in)|) (104)

~ 2 2 Sl

Under our assumptions about exponential localization
the factors dependent on = are just form factors that
are mostly independent of » provided that ||Ly||, < 1.

Therefore, we can bound the integral as (see Appendix B)

Te™
1(Q,Q)] < C———=, when [*| > m? (105)
R"(|n7])
and
1Q.2) <O when Iy <m?, (106
) —_ - = 7] =m )
R"2m+/ |n?

for a dimensionless constant C ~ 1 independent of 7,
together with the constraint ||Ln||, < 1.

Therefore, the optimal signalling estimator in Eq. (49)
can be bounded by

4C?T% 212

Smax < TR (107)

when [?| > m?,

and

C2T2 —2nz
S < S

max — R2nm2 |I’]2

when [7?| <m?.  (108)

Recall that these bounds are valid for all timelike # such
that ||Ln||, < 1. Whether the bound is useful or not will
depend on whether the exponential is a decreasing expo-
nential or not. Indeed, if the exponent is positive, e.g., if
n«z and z is in the future light cone, the bound just
implies that the signalling estimator is less than infinity as z
grows in a timelike direction.

Recall that if z is a past timelike (n + 1) vector, detector
A is mostly localized in the past of B, whereas if z is
spacelike, detector A is mostly localized in spacelike
separation from B.

Consider first the massless case, given by the bound in
Eq. (107). If z is past-time-like, then a natural choice for 7
is given by 7 = 1 u, since in this case Ly = u and ||Ly||, =
|lu]|, = 1. In this case, nz = ‘Z—Tol and the optimal signalling

(which upper bounds any apparent retrocausation in the
model) is given by

4TOC2e 27

Srnax < R2n

(109)

In this case there is an exponential decay in the signalling
estimator as the time difference |z°| goes to infinity, with a
scale given by the typical scale of the switching function 7.

In the case where z is spacelike, one can use the ansatz

_ <cos((p) sin(¢) > _ cos(¢) J sin(g) z—(uz)u
T ' Rf T R /7% + (uz)?
(110)

which satisfies ||Ln|| =1 by construction. For 5 to be
timelike, one has to impose conditions over ¢:

1 1 .
Fcosz((p) - Fsmz((p) > 0,

2 = (111)

which implies

ltan(p)| < ? (112)

For 7 to be future directed, one imposes cos ¢ > 0, which
implies that ¢ € (—-z/2,7/2).
On the other hand, the exponent in Eq. (107) is given by

cos(¢)
—nz = .
n T 20

_sin(g) 2l

o (113)

For the exponent to be negative, the angle ¢ has to further
fulfill
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RZO

T| i (114)

tan(g) >

For every value of ¢ satisfying these conditions, the
maximum signalling is bounded by

4T6C2 e2—°°5T(¢)zo osin ¢ R

Sm x < .
TR (cos? () — Lsin?(e))?

(115)

In the case where the detectors are situated in the same
plane of simultaneity in the preferred reference frame,
namely when z, =0, the angle ¢ can take any value
compatible with condition (112) and with ¢ > 0, implying
that ¢ € (0, 7/2) and the decay in the signalling estimator
is dominated by

4T6C2 e—ZWIZI
Smax £ 3, 5 e (116)
R™ (cos?(¢p) — g sin*(g))

Given our bound, the scale of decay with the spatial
separation of the detectors is given by 29111 TSy If the ratio

T (the light-crossing time of the detector size length scale) is
very large, the tangent of ¢ is forced to be small, implying
that the bound for S,,,, in those regimes would cease to be
helpful, 13 as the actual decay will be faster. If T ~ R, one
can choose, e.g., ¢ = Z, which gives the bound

_K

S < 4C? (117)

R2(n—3) ’

which shows that signalling indeed decays exponentially
with the separation of the detectors.

B. The pointlike limit

As was noted in last subsection, the signalling bounds as
defined by Eqgs. (109) and (116) do not behave well in the
limit in which the timescale regulating the interactions, 7,
is much larger than the scale R regulating the spatial profile
of the detectors. This is the pointlike limit, in which one
assumes that the detector is effectively localized along a
single worldline. The reason why our bounds do not behave
well is that, as shown in Appendix B, we assume that the
dimensionful spacetime smearing A is an L? function of the
dimensionful coordinates. Clearly, in the pointlike limit,
this will not be the case anymore, since the spacetime
smearing will behave like a Dirac delta.

However, it is interesting to slightly extend the analysis
performed in the last section to the pointlike case. The
pointlike limit plays an important role when considering

In other words, the bound in Eq. (116) is always going to be a
very conservative upper bound for S, as the detectors approach
the pointlike limit.

relativistic causality, as shown in Refs. [14,19,30]. Indeed,
this is the limit in which one can safely consider particle
detector models without running into any problems with
causality, because the full Hamiltonian density of the joint
interacting system of detectors and field will commute in
spacelike separation. Moreover, physically, it is important
to gain some intuition as to whether the bounds found
before are just too conservative, or if there is a real problem
regarding signalling because of the (in principle) non-
compact support of the switching function. Let us consider
two pointlike UDW detectors following static trajectories
and coupled to a massless scalar field in 3 4+ 1 dimensions
as a case study.
For two static detectors in flat spacetime the spacetime
smearings are given by
Aap =xap(t)0(x —xap), (118)
and, following the last subsection, the maximum possible
signalling is a function of the integral

I(Q,Ql) = /dtGR(t,xB —xA)

x [ dsta(s)e @ + )80, (119)

The reason why we consider the case of a massless scalar
field in 3 4+ 1 is that in that case the retarded propagator
admits a simple expression, since it fulfills the strong
Huygens principle (it does not have any support in timelike
events). Namely,

1

A 8(t— g —xal). (120

Therefore, the expression (119) can be evaluated right
away:

1Q [xp—xa|

1.0 =5 / dsya(s)rn (x5 — x| + 5)

Q+Q')s

2|xB

x el (121)
The expression is then proportional to the convolution of
¥ a With yg and, therefore, has a simple expression in terms
of the Fourier transforms:

1
1(Q,Q)=——— [ doys(— Q
( ’ ) 47t|xB—xA|/ w)(A( @ + )

x yp(@ — Q) el (122)

Mimicking the calculation made before in this section,
we further assume that the switching functions are expo-
nentially localized with a timescale 7 and identical up to a
shift in time, that is,
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annls) =(F52). (123

These assumptions imply that

T2eizAQeitBQ’

1(Q.Q) = dwé(~Tw + TQ)é(Tw — T

drlxg — x4l
X e—io(tp—ta—|xp—xsl)
i, Q ,itg QY
= TR [ E =k + TQ)E(k — TOY)
drlxg — x|
X e—i§(tB—fA—\xB—xAD, (124)
where we have defined the dimensionless integration vari-
able k = Tw. By assuming exponential localization we have
assumed that the function & admits an analytic extension into
the strip [Im(x)| < 1 whose sections Im(k) = const are L2,
as explained in Sec. V. Therefore, we can shift the contour of
integration by an imaginary amount i:

TeitAQeitBQ’ e%(tB —ta—|xg—x4l)
1(Q,9Q) =

drlxg — x4
y / e (—k — i + TQ)E(x + i — TQY)

x e~ iF(tB—ta=|xp—x4l)

(125)

and, taking the complex modulus, we can bound the value of
the integral by

Te%(fB—IA—\xB—xA\)

[1(Q,Q)] <

prP— /dK|§(—K—i+ TQ)|
x |E(k +i—-TQ)|

CTe%(tB—tA—\xB—xA\)

, 126
4rlxg — x4 (126)

where C is a constant independent of Q and €', which is
determined by the specific form factor of the dimensionless
switching function &.

We conclude that the maximum value of the signalling
estimator is bounded by

4C2T2 o712~ x5 —x4))

Smax < (127)

87T2|xB _xA|2

From this example, we learn that the signalling between
pointlike detectors can still be bounded exponentially as
|xg —x4| goes to infinity, with a scale given by the
switching scale 7. Recall that as |xg —x,| grows for a
fixed value of t5 — 1, we are estimating the amount of
information that detector A can signal to detector B that is
mostly in spacelike separation and only communicates with
A through the switching “tails.” Therefore, this shows that

this “apparent” faster-than-light signalling in this scenario
is exponentially bounded.

Similarly, the signalling estimator is exponentially
bounded as tg — 7, goes to minus infinity with a scale
given by 7, thus bounding the apparent retrocausal effects
present when detector A is exponentially localized in the
causal future of detector B.

We conclude that the bounds presented for extended
detectors are in general too conservative as one approaches
the pointlike limit, as far as the detectors are separated in
space. We conclude that the pointlike limit does not
necessarily present problems with any apparent faster-
than-light signalling or retrocausation.

However, we also observe, e.g., from expression (125),
that in the pointlike limit the (exact) expression for our
signalling estimator diverges as |xg — x, |72 as the detectors
get closer in space, regardless of the localization in time of
the detectors. Of course, if the switchings have disjoint
supports, there is no problem, since in the massless case
in four spacetime dimensions the retarded propagator is
strictly localized on (the boundary of) the future light cone,
and, since the switchings are strictly timelike, the signalling
estimator is identically zero as the propagator evaluates to
strictly zero.

However, if the detectors’ worldlines are identical (one
follows the other) and the switching functions are not
compactly supported—and therefore they overlap—the
signalling estimator is divergent or at least cannot be
calculated or estimated within perturbation theory. The
physical picture is the following: Consider two detectors A
and B that are approximately located at the same position
and are both such that they interact with the quantum field
for much longer than both the light-crossing time of their
characteristic size or their separation. If the detectors are
switched on in such a way that they are both interacting
with the field at the same time, no matter how weak this
overlap is, then the pointlike limit is not well defined.

The ill-definiteness of timelike signalling in the case of
detectors that interact through the same worldline in our
example implies that one has three options: (a) Either one
regularizes the expressions through some sort of renorm-
alization procedure, (b) one needs to account for the finite
spatial extension of the detector at the level of the
interaction Hamiltonian, or (c) one has to restrict the
analysis to disjoint switching functions. There are good
reasons to believe that the same problems will appear in the
case of other pointlike detector models in general space-
times. Indeed, the reason why the signalling estimator
diverges is that it involves the coincidence limit of the
pullback of the retarded propagator into a worldline.
Although we will not discuss this here in much detail, it
is known that, while the pullback into a one-dimensional
timelike curve of some distributions like the Wightman
function is well defined as a distribution over switching
functions, the pullback of the retarded propagator is ill
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defined. This is a fairly general fact, and although the
character of the divergence may depend on the character-
istics of the spacetime background, there is no Klein-
Gordon field whose propagator admits a well-defined
pointlike limit. Given this, it is easy to argue that the
rationale applied to the UDW model applies to more
complex models describing pointlike interactions. In real-
istic scenarios, pointlike detectors are, after all, idealiza-
tions used to model finite-sized systems so a regularization
via a spatial profile would be a good cure for these issues
whenever they appear.

C. More general trajectories

In the analysis we have performed we have made
assumptions about the detectors’ trajectories in spacetime.
In particular, we assumed that the spacetime smearings
factorize in a particular coordinate system for both detec-
tors. This is certainly the case if both detectors do not move
relativistically with respect to each other in this reference
frame. However, this assumption was not especially rel-
evant at any point in the calculation. This is because, at
leading order, the signalling estimator does not explicitly
depend on which reference frame each of the detectors is at
rest. Indeed, the signalling estimator is given by the formula

S = VarGg[J, (J4)], (128)
which is a frame-independent covariant expression, and,
more importantly, it does not depend on whether the
detectors’ smearings and switchings factorize in the same
reference frame.

Let us further clarify this point. If one were taking into
account higher-order contributions to signalling, these may
very well depend on the choice of foliation given the
nonmicrocausal character of the interaction when it is not
pointlike (see [19] for details). However, as far as we
restrict our analysis to leading order, there is nothing
preventing us from defining each of the detectors’ space-
time smearings to factorize in different reference frames.
Indeed, the joint dynamics of the detectors and the field can
be defined with respect to different reference frames, and,
while technically that may give different predictions, only a
subset of these reference frames will, depending on the
situation, capture the essence of real physical interactions
(this is thoroughly discussed in Ref. [19]). However, and
remarkably, the signalling between pairs of detectors will
remain unaffected by this choice, so as far as the approxi-
mation of Fermi-Walker rigidity [30] holds, it makes sense
to define each of the detectors in their own reference frames
as internally nonrelativistic; the predictions of the model
will, therefore, be reliable concerning signalling.

Let us analyze the case where the detectors are identical
in the respective reference frames, but the reference frame
of detector A is related not only by a simple spacetime
translation, but also by a fixed Lorentz transformation,

implying that it follows a relativistic trajectory from the
point of view of detector B. Thus we set the smearing of
detector B to be of the form'*

T .
Af(X) = = E(L1X) el

I (129)

and for detector A

T

A0 =1

E(L™'L(x = 2))eEx=2) - (130)

where now L is a matrix representing a (proper orthochro-
nous) Lorentz transformation. Note that we are expressing
both smearings in terms of the coordinates for which
the switching and smearing of detector B (the receiver)
factorize in space and time.

The expression for the integral (48) can be again written
in terms of Fourier transforms, exploiting the fact that the
retarded propagator is translationally invariant:

1(Q.Q) =T / d"'kGr (K)Z* (LK + QLU)
x E(LLK + Q'Lu)e 2, (131)

where we have used the fact that

- T . .
AX(k) _ Z”nTH L| /d"+1XE(L_IE(X _ Z)>e1£2u£(x—z)e—1kx
T|L]e k2 A .
_ |2ﬂ|;2+] /dnJrlyE(X)elQuLye—lk,C 'Ly

= E(LLK + Q'Lu)e ™, (132)

which in turn is true because for proper Lorentz trans-
formations |£| = 1 and

XL~y = (£x)y (133)

for all spacetime vectors X and y. Now, remember that the
dimensionless function Z(x) admits an analytic extension for
complex values of its argument fulfilling that the Euclidean
norm ||Imk||, <1, which means that we can shift the
contour of integration in the complex plane by a vector #:

1(Q,Q) =T?? / d"+'kGg (k — in)

x E*(Lk + QLU —iLn)
x E(LLK + Q' Lu—iLLy)e ®2,  (134)

for 5 future-directed timelike, with ||Ln||, <1 and
ILLnll, < 1.

“The notation follows the definition in Eq. (46).
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We again find that, by bounding the expression in
modulus and restricting our analysis to the massless case,
we can bound the maximum signalling by

202?212
Smax < RT’?“’ (135)
but in this case # has to fulfill the extra condition of
[ILLn||, < 1. In Sec. V, we studied whether apparent
retrocausal effects were important by setting # = %, and we
learned that apparent retrocausal signalling decayed expo-
nentially in the time lapse between the detectors with a
scale given by the typical interaction time 7. In the case in
which detector A follows a trajectory with constant velocity
v we will not be able to choose 1 = % since, for that choice,

1 Y
ILLn|, = T |LLull, = TV T? + R*|v|?

21y,]2
_ L@

: (136)

11—y

However, if we fix L7 to have unit Euclidean norm instead,
namely

1—p? u
Y B Sl d .. 137
T=\ T ¥ R/TPPET (137)

then ||LLy||, = 1 and

11— 2
ey (138)

Lyll, = /s < 1,

so all conditions are fulfilled. In this case, considering z to
be past timelike, the signalling estimator is bounded by

1+ (R/T)*v|\24TC* _,
Smaxs< 1—|v|)2’ | g € T, (139)

with a scale given by

L+ (R/T)’pf?

T =T .
L=

(140)

This scale depends on the typical interaction time of the
detectors 7" as well as on the typical size of their spatial
profile. This is an intuitive result, given that the overlap of
the detectors is not only regulated by the switching scale,
but also by the spatial smearing scale for detectors that do
not factorize in the same reference frame. It is interesting to
note that when (R/T)[v| < 1 (i.e., in the pointlike limit for
a fixed v) the decay scale is given by

T ~yT, (141)
independent of R (where y is the Lorentz factor associated
to the boost relating the two detectors’ trajectories).
Conversely, for (R/T)|v| > 1, the decay scale is given by

T' ~y|v|R, (142)
independent of 7'. Basically, we see how the intuition from

studying comoving detectors actually carries to more
general trajectories relatively straightforwardly.

VII. CONCLUSIONS

In the context of particle detector models, in this work
we have analyzed the effect of the infinite tails of non-
compact detector-field interactions on signalling. We ana-
lyzed the apparent signalling and retrocausation that the
tails of noncompact detectors can enable when two detec-
tors couple to the same field. Concretely, we have derived a
signalling estimator inspired by optimal parameter estima-
tion. By analyzing the joint dynamics of pairs of detectors
coupled to the field we show explicitly how the signalling
between the detectors is governed by the field’s Green’s
function and the internal parameters of the detectors and
their interaction with the field. In particular, we extended
previous results [13] showing that the Fisher information
related with the estimation of parameters of A by local
measurements on B can be bounded by the variance of an
operator built out of the field’s Green’s function and
specific degrees of freedom of the detectors.

Armed with this knowledge, we found that the signalling
between noncompactly supported detectors enabled by the
tails of the smearing and switching functions depends on
the internal dynamics of the detectors. This means that, in
scenarios with two noncompactly supported detectors (in
space or time), one may need to assess case by case whether
the detectors are effectively spacelike separated or not
based on the specific parameters characterizing the dynam-
ics of the detectors. However, at least in the case of flat
spacetime, we have shown that signalling always obeys the
intuition that if the localization of the detectors decays at
least exponentially, two detectors with infinite tails can
indeed be made to be effectively spacelike separated (or
more in general, causally orderable, so that the results in
Ref. [14] apply at the level of perturbation theory). This
provides further evidence that with smeared particle detec-
tors (even with noncompact smearing and switching) one
can still make statements about the causality of the model
or model scenarios where two detectors are (to all intent
and purposes) causally disconnected.

Most of the expressions that we derived for signalling
are general enough to be applied in general globally
hyperbolic spacetimes. It would be interesting to explicitly
study the decay properties of our signalling estimator in
some particular cases, e.g., Friedmann-Robertson-Walker
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spacetimes, or in the presence of horizons, where smeared
detector models may introduce “information leakage”
between causally disconnected parts of spacetime.
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APPENDIX A: DERIVATION
OF THE OPERATOR X

Consider the case of two general detectors A and B,
which interact with the field according to the interaction
Hamiltonian

(A1)

ILACED | 400

v=AB v=AB

where in this case the corresponding Hamiltonian densities
will be given by

~

ha(X) = 24TA(%) ® 15 ® §(x) (A2)

and

hig (X) = 2315 ® Jp(X) ® B(x). (A3)
The joint evolution in the interaction picture of the
detectors and the field can be described as a unitary
operator acting over the joint initial state of the field-
detector system pj.;i,- Lhen the state in the asymptotic
future will be given by the transformation

Pfinal = 0A+Bﬁinitia.l 0;+B' (A4)
The unitary implementing the time evolution can be
formally written in terms of the Dyson series

Onn =S [ [TaeT iy + y(e).

x (H(z,) + Hg(1,)). (A5)
This means that we can rewrite Eq. (27) as
U s snPinitia U LJFB
= [T lite,). . ().l ) (40

n

If the couplings are weak, we can truncate the series at next
to leading order:

UnspPiniia U L+B
— D =1 [ del(0) + Hy (). Pl
——/ / ded? T [H(7) + Hg(7),
[AA(7) + Hg (7). Pinisal] + O(2), (A7)
where the time-ordering operator is defined as follows:
TA()B(1) =

O(t—1)A()B()+0(r —1)B(F)A(r) (AS8)

for two time-dependent operators A(r) and B(t). The local
statistics of detector B will be given by the partial trace

B = UA,¢(U A+BPinitial U j\+B)’ (A9)
and the signalling term can be defined as
0 . .
A2 N
pi},iign = m%,qﬁ(l] arsPiniia Uk i)l —ip—o-  (A10)
Note that, given any operator O, it follows that
tra ¢([A (7). 0]) =0, (A11)

since A A(7) only depends on operators of detector A and
the field and thereby can be permuted within the partial
trace. This allows us to disregard multiple terms in
Eq. (A11), thereby leading to

P = A (Pinita) = / detra g [Hp (7). Pinial]
1 00 00 ~ A A~
— —/ / deT/tI'A7¢T[HB (T), [HB (T/>»pinitia.l]]

__/ / drdt'try 47 [Hy (7). [HA (7). Pinitial]

+0(2), (A12)

or, more conveniently, we can use the Jacobi identity in the
last commutator and again the cyclic property of the partial
trace acting over H A (7):

Cd A
PB = A pPinitial — 1 / drtrp 4 [Hg(7), Pinitial

—0o0

1 0 0 N N .
! / / dede'tey Ty (2). (o (2). ]

- / / dedr'try 4 [T [Hg (). HA(7)]. Pinitial

+O(2). (A13)
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Note that the first three terms do not contribute to the
signalling estimator (29), since they do not depend on A,.
Therefore the signalling term will be given by

/ / dzd?’ / d& d&’

&)
X tI'qug[]A(X) ® Jp(X) ® T[h(X). p(X)]. Pinicial-
(A14)

B slgn -

Now, consider that the state is initially uncorrelated, i.e.,

Pinitial = Pa @ Py ® Py- This gives the following compact
expression:
A2 PN
pl(_’?,)sign = _1[2,,0]3}, (AIS)
where we have defined the operator
$ - / / AVaV (7, (X)) G (%, X')J5 ()
— [ VGG 050 (A16)
Here Gy(x,X') is the retarded Green function
Gr(x.X) = =i0(z(x) = () ([H(). JO)]).  (AL7)

whereas dV denotes the element of volume with respect to
the background metric:

dV = dx"*1y/]gl,

and where +/|g| is the determinant of the metric. Note that
we have used the fact that

/ dr / dé(7) = / dx*1/|g| / dzs(z(x) —

= /dx"H\/@: /dV.

(A18)

(A19)

APPENDIX B: FREQUENCY-INDEPENDENT
BOUND

The bounds (103) and (104) on the propagator give the
following maximum values of the integral (100):
1 e '*
(2”)(n+1) ,7
x E(LK + Q'Lu —iLy)|

1(Q.Q)] < / d"HK|E* (LK + QLu — iLy)
(B1)

for fields with small enough mass (in particular massless
fields) and

1 e
(27)" 2m /=i

y / A IK|E (LK + QLU —iLn)

[1(Q.Q)| <

x B(Lk + Q'Lu —iLn)| (B2)

for very massive fields.
Now, the factor under the integral sign is of the form

[

for two L? functions. We can use the Cauchy-Schwarz

(B3)

inequality:
2
( / If*g|> < [ue [1a8 (B4)
to conclude that
/ QK|S (LK + QLU —iLy)E(Lk + Q'Lu—iLy)|
< ||&(L - +QLu +iLy)|,||E(L - +Lu —iLy)||,
= HE(L - HLn)|,|E(L - =iLn) |,
|L| (- +iLn) L ||E(- = iLn)||
= m [Ze=27||,]|Zetr ). (BS)

In addition to the Cauchy-Schwarz inequality, in this
derivation we have used the following property of the L?
norm:

IF(L - +a)ll, = (B6)

and the fact that
IF(-=iLn)lly = [Ife“" . (B7)

Altogether, we have derived a frequency-independent
bound:

1 ez
1(Q, QN < Be~Lr||,||Belr B8
[1(€2, Q)| 2n) 0D |L|(_’72)II B [, (BY)
for fields with low mass and
Q@) < —— et e
(271. n+ |L|2 /_
(B9)

for fields with high mass.
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APPENDIX C: SIGNALLING ESTIMATOR FOR
GAUSSIAN SMEARINGS AND SWITCHINGS IN
3+ 1-DIMENSIONAL MINKOWSKI SPACETIME

In 3 + 1 dimensions the Green’s function is

18(t—7 —|x—=x|)

Gr(t—r,x—x)=—-—
R( *-x) 4r lx —x'|

(C1)

We will consider Gaussian smearing and switching func-
tions to evaluate the expression

I(QA,QB)—/dZdZ’)(B(t) €ty (e 'C(t—1), (C2)

where

s(t—17 —x —x)

Clt—1) = —i / ddx' Fi (x)F o (x')

e — x|
(C3)
We consider that B is centered around zero, i.e.,
Folx) = — 70 (c4)
= ——¢ 2°,
? (V27R)?

and A is centered around z with the same width R. Let us
introduce the following nonorthogonal change of variables:
We keep the variable x and we define a new integration
variable y = x —x’ (the Jacobian is 1). We then first
perform the integral with respect to x in Eq. (C3) which
is a convolution of the two Gaussian smearings:

1 _+2)?
/dXFB(x)FA(x—J’) N (C5)
Then
Clr—1) :——/ e m%fw (C6)

Calling r =r— ¢ and |z| :== L,

12

et == [ btyie BT (e - oo - )
T)=— y ye4R (eZR —€2R2> T—Y)-
2 Lly|
(C7)
Altogether,
1@, 05) = /MMMW(W—NQ
A+2B 2\/_)3LR Y
X 1, ([y[, 4, Qp), (CB)

where 1 ,( Qp) is the expression of [ for two
pointlike detectors with identical switchings separated by
a distance |y|:

1,(Iy], Q4,Q5)
S(r—1 =y

:__/ e g (1) (1) 2 bl

: i0,:0(t =)
— ded t i(Qp—Qnp)t t— iQur 2N VI
471_/ TZB( )e )(A( T)e |y|

= a7l diyg(Hxalt = ly|)e!

i(Qp—Qp)1

(C9)

Now we evaluate this for Gaussian switching functions

1 2
1) =—=¢e 217 C10
xlt) = 5= (C10)
and A displaced by A we have
eiRabl 2 (i)

(120 Q) =~y [ dretemienre e

(C11)
which is a Gaussian integral that gives
T\/_ QA+QB bl iQg-Q4)A
1 ,Qa, Qp —7
(b1, @. @) = g Y £
2 2
X e_(QB_%A)ZT e—”‘;ﬁ) . (C12)
Finally, changing variables u := |y|/R we get
R —‘—2 i —u u. u.
[(QA’ QB) = \/EL e 4[R2 /) duue%(@ﬁ - e_ﬁ)
X I,(Ru,Q,.Qp), (C13)
where
T 120502 _(LiA?
1,(L,Q,,Qp) = g B0~ it QL
(C14)
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