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We discuss the structure of nonlocal effective action generating the conformal anomaly in classically
Weyl invariant theories in curved spacetime. By the procedure of conformal gauge fixing, selecting the
metric representative on a conformal group orbit, we split the renormalized effective action into anomalous
and Weyl invariant parts. A wide family of thus obtained anomalous actions is shown to include two special
cases of Riegert—Fradkin—Tseytlin and Fradkin—Vilkovisky actions. Both actions are shown to be contained
in the first 3 orders of the curvature expansion for a generic one-loop effective action obtained by covariant
perturbation theory. The complementary Weyl invariant part of the action is given by the “conformization”
of the full effective action—restricting its argument to the conformally invariant representative of the orbit
of the conformal group. This is likely to resolve a long-standing debate between the proponents of the
Riegert action and adherents of the perturbation expansion for the effective action with typical nonlocal
logarithmic form factors. We derive the relation between quantum stress tensors on conformally related
metric backgrounds, which generalizes the known Brown-Cassidy equation to the case of nonzero Weyl
tensor, and discuss applications of this relation in the cosmological model driven by conformal field theory.
We also discuss the issue of renormalization group running for the cosmological and gravitational coupling
constants and show that it exhibits a kind of a metamorphosis to the nonlocal form factors of the so-called
partners of the cosmological and Einstein terms—nonlocal curvature squared terms of the effective action.
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I. INTRODUCTION

The status of local Weyl anomalies is widely considered
to be fully settled in current literature. However, the issue of
their relevance to concrete physical effects, as opposed to a
mere criterion of consistency at the quantum level of the
classically Weyl invariant theories, often remains a subject
of the debate. The manifestation of the conformal anomaly
in physical applications usually occurs within the effective
action formalism, and there is, extending over years, debate
on the structure of this action, taking place between the
pioneers of the conformal anomaly and adherents of
perturbation theory. The nature of this debate consists of
a seemingly contradictory difference between the known
expression for the anomaly action and the form of the
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nonlocal effective action obtained by Feynman diagram-
matic technique.

As is well known, the one-loop conformal anomaly for
classically Weyl invariant four-dimensional theory having
in Euclidean curved spacetime the covariantly renormal-
ized effective action I'[g,,] reads as [1-7]

29, T 1
= e " o \@C* +PE+YOR),
v

(Th) (1.1)

E = Ry, R™* — 4R, R* + R?, (1.2)

uvay
where /gE denotes the Gauss—Bonnet density; C,,.p i8
the Weyl tensor; C* = C,,,sC**; and a, f, and y are the
numerical coefficients depending on the spin of the
quantum field." The anomalous action I'4[g,,] generating
this anomaly was first derived in the nonlocal form by

'"We work in Euclidean signature spacetime, and our notations
are R%,, = 0,175 =, Ry, = R, 0 = ¢V, V,. For sim-
plicity we do not include in the anomaly the contribution Ffw of

the vector gauge field and ¢* contribution of the self-interacting
conformal scalar field.
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Riegert [8] and by Fradkin and Tseytlin [9] in the local
form of the conformal Wess-Zumino action involving an
auxiliary scalar field—the dilaton responsible for intetwin-
ing two conformally related metrics. The nonlocal form of
the Riegert—Fradkin—Tseytlin (RFT) action reads as

1
FA [g] 64 d4x\/— (ac2 +ﬂ(€4> 754
L [y P /
d*x\/gR?, 1.3
"3 <6 * 9) W9 (13)
where
2
E,=E— 3 LR, (1.4)
A, denotes the so-called Paneitz operator [10]
2
=0?+2RrR*V,V, - RD += (V"R) (1.5)
and 1/A4

operation of acting by its Green’s function G(x,y) on a
generic test function y(y), A,G(x.y) = 8(x,y), 3, y(x) =
JdyG(x, y)y ().

Some time after the invention of the RFT action the
attention to it was drawn by Antoniadis, Mazur, and Mottola
due to several applications in gravity theory [11,12], but this
caused a serious criticism [13] of the expression (1.3) in view
of its drastic structural difference from the renormalized
effective action built within perturbation theory in powers of
spacetime curvature. This expansion begins with [3]

1 O y
| I d Cpopln( —— |C*# —ZR
ren 3 2.2 / x\/_ |: o uvaf Il( ,M > 6 :|
o), (1.6)

N collectively denoting here the Riemann, Ricci, and scalar
curvature, and does not at all resemble the form of (1.3). This
criticism was maintained by objections against short distance
behavior of stress-tensor correlation functions generated
by the RFT action, which were shown to contradict the
conformal Ward identities for these correlators [14]. Another
criticism was associated with the objections against the
double-pole structure of the Green’s function of the operator
(1.5), ~1/1% [15]. Although these objections were dis-
claimed in [16] by explicit calculations of (TTT) correlators,
the question might still be hovering unsettled in the
literature [17].

The goal of this paper will be to discuss the status of the
effective action responsible for the generation of the Weyl
anomaly. To begin with we will focus on a wide variety of
nonlocal anomalous actions by including the RFT action in
their functional family. The idea of this construction is

similar to gauge fixing applied to the ambiguity of the
conformal split of the metric argument of the action
functional, which was suggested rather long ago in [18].
The resulting class of anomaly actions will be parametrized
by the conformal gauge selecting the representative on the
orbit of the local conformal group. We will explicitly
demonstrate that the difference between the members of
this class is a Weyl invariant functional—a point of
departure between various suggestions for the anomalous
action. Two particular gauges will be considered, one of
them exactly corresponding to the RFT action (1.3) and
another associated with the Weyl invariant nonlocal rescal-
ing of the metric field suggested by Fradkin and Vilkovisky.
This rescaling, which is directly applicable in asymptoti-
cally flat spacetimes, was designed as a remedy against the
trace anomaly [19]—the analog of the Yamabe problem of
a local Weyl transformation to the metric with a vanishing
scalar curvature.

Then we show how the Fradkin—Vilkovisky (FV) version
of the anomaly action arises in the first 3 orders of the
covariant curvature expansion for a generic one-loop
effective action. We discuss the associated mechanism of
partial summation of scalar curvature terms of this expan-
sion [20] along with the double-pole problem for the Green
function of the Paneitz operator (1.5).

Lack of uniqueness of the anomaly action defined only
up to a Weyl invariant functional raises, of course, the
question of its incompleteness in concrete applications.
This also poses the question of whether the RFT action
or its modifications within the above class provides an
optimal description of the physical problem in question.
For example, it is well known that in two dimensions the
stress-tensor trace anomaly and the associated nonlocal
Polyakov action are fully responsible for the Hawking
radiation of the two-dimensional black holes [21]. On the
contrary, in higher dimensions the anomaly action is
insufficient to describe this phenomenon. Still there is a
strong belief [11,12,16] that at distances of the horizon
scale gravity theory is essentially modified due to large
infrared effects of the conformal mode described by the
action (1.3). These effects might dominate macroscopic
physics at such scales, like for instance the near black hole
horizon behavior of quantum stress tensor [22], the con-
tribution to the scalar sector of gravitational waves [23],
or dynamical vacuum energy in effective theory of
gravity [24]. Though it is not entirely clear how complete
is the setup in these problems, there are physical situations
when the conformal mode really runs the whole show, and
we consider as a direct application of (1.3) two examples of
such a situation. These are the calculation of the metric
stress tensor in a generic conformally flat spacetime [25]
and the Friedmann metric cosmology driven by the trace
anomaly of conformal invariant fields [26], the latter
playing an important role in the model of initial conditions
for inflationary cosmology [27,28].
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A related issue in the problem of nonlocal effective
action is the question of renormalization group (RG)
running of the cosmological and gravitational constants.
Though the issue of running scale and its relation to the
cosmological constant problem have already become a
byword in current literature, it becomes increasingly clearer
that this running should not be interpreted in the usual
sense of RG theory [29,30]. The notion of “scale” is so
ambiguous in physics that its running nature actually looses
universality when addressing various physical setups, like
for example associating cosmological inflation with RG
running [31]. Serious arguments against the running nature
of the cosmological and gravitational couplings in [29,30]
have led to the notion of cosmological constant partners
[32] interpreted in [33] in terms of separation of scales or
decoupling of heavy modes [34,35]. Still, it is customary to
have nontrivial solutions of RG equations in renormalizable
gravity models [36,37] with running scale dependent A
and G. Therefore a natural question arises regarding how
these solutions have to be interpreted when the tadpole
structure of the covariant cosmological and Einstein
terms preclude them from their actual dependence on the
momentum [30].

So one of the goals of this paper is an attempt to clarify
this issue within a special version of the notion of the
“scale.” Looking forward to the final conclusion, we might
formulate the suggestion for the notions of running A
and G couplings as their conversion or metamorphosis into
their nonlocal partners similar to those introduced by
J. Donoghue in [32]. Within the perturbation scheme the
cosmological and Einstein terms start manifesting them-
selves as nonlocal curvature squared terms very different
from their original form.

The paper is organized as follows. In Sec. I we
decompose the quantum effective action into anomalous
and Weyl invariant parts by imposing the conformal gauge
for the choice of the representative on the orbit of the
conformal group. This allows one to build the whole class
of nonlocal anomalous actions, functionally parametrized
by the choice of this gauge and including the RFT action
(1.3) and the Fradkin-Vilkovisky action suggested in [20].
Section III contains the discussion of the covariant curva-
ture expansion of [38—40] and the way it contains the
anomalous action in the lowest orders of this expansion. In
particular, it is shown that the Fradkin-Vilkovisky version
of this action performs a resummation of the covariant
curvature series in powers of the Ricci scalar [20]. In
Sec. IV we give a direct and, apparently, not very well-
known derivation from the RFT action of the vacuum
stress-tensor behavior at the orbit of the conformal group—
a good example of direct applicability of (1.3). Here we
also comment on the application of the anomalous con-
formal Wess-Zumino action to the a-theorem [41,42]
and present the generalization of the Brown-Cassidy
formula [25] for the stress tensor to the case of a nonzero

Weyl tensor; see Eq. (4.34). Applications of the anomaly
action in conformally flat spacetime are presented in Sec. V.
It is shown how this action underlies the construction of the
inflation scenario starting from the cosmological initial
state in the form of the mircocanonical density matrix
[27,28,43-45], recently reviewed in [46]. An important
feature of this application is the value of the Casimir
vacuum energy which is also determined by the coefficients
of the anomalous trace (1.1) [47-50].

In Sec. VI we discuss the problem of scale dependence
of the gravitational and cosmological constants related to
the ideas of [29,30,32] and [51,52]. Here we show that
in the UV regime the RG analysis of the cosmological and
Einstein terms strongly points to the conversion of their
scale dependence into the nonlocal form factors of their
UV partners represented by curvature squared terms with
dimensionless nonlocal coefficients. We call this phenome-
non a metamorphosis of the running scale, which we derive
by using a special scaling operator. In the IR domain the
same analysis leads to the low energy partners depending
on the mass scale of the theory. These nonlocal partners
were suggested in [32] by J. Donoghue for the cosmologi-
cal constant term and blueprinted for the Einstein term
in [51,52] in the form of the long distance modification of
Einstein gravity.

In the concluding section we briefly recapitulate the
above observations and dwell on related potential problems
and applications. We start by discussing the role of the
Weyl anomaly in the problem of cosmological initial
conditions for the inflation scenario driven by a conformal
field theory [46]. This scenario motivates an introduction of
numerous conformal higher spin (CHS) fields whose Weyl
anomaly is generated only in the one-loop approximation
and, thus, acquires a kind of nonperturbative status. Then
we discuss the uniqueness for the nonlocal scaling operator
used for the derivation of the above metamorphosis
phenomenon. In particular, we show that in the curvature
squared terms of the action it is nearly uniquely determined
due to general covariance of the theory, though in Lorentz
symmetry violating models like Hotfava gravity [53] it may
be rather ambiguous.

II. CONFORMAL GAUGE FIXING

The splitting of the renormalized effective action of a
classically conformally invariant theory into the anomaly
part ', generating the trace anomaly (1.1) and the Weyl
invariant part I, g I /5g,, =0,

Den =04 + Fconf’ (21)
is obviously not unique and admits the freedom
Iy —>T,+ Wweonf [eonf _, preonf _ yysconf (2.2)

with an arbitrary conformally invariant functional W<,
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9uw—— =0.

2.3
53 (2.3)

The freedom in the choice of W'[g,, ] arises as a func-
tional integration constant for the first order variational
equation that can be written down for I'y[g,,] or for the
renormalized effective action I'[g,,] =T\en[g,]. At the
orbit of the conformal group passing through the metric
guw—the argument of the effective action—and parame-
trized by the local conformal parameter 6 = o(x),

9w = ezagﬂw (24)

the renormalized action I'.,[e“g] satisfies the equation

5Fren [626.@ ] \/_

5o T 167 (aC* + BE + yOR) ,

—p0 7
Juw=€" Yuv

(2.5)

which can be integrated to give conformal Wess-Zumino
action [9]

Ar[g’ ] Fren [g] - 1—‘ren [g]

=16 d*x/g{[aC? + BE4)o + 2poA 0}

321 2 (2 g)/d4 (VIR® = V/GR?), (2.6

where the two metrics g, and g, are related by the
equation (2.4), all barred quantities are built in terms of g,
and A, is the barred version of the fourth-order Paneitz
operator (1.5). This expression 'y — ey = 'y — 4 can
also be rewritten in the other form,

1612 d*x\/g{[aC* + BE4)o — 2o 40}
s (£+5) [ atstva - Vi),
(2.7)

Tulg] —Tulg) =

if one takes into account two important properties of the
Paneitz operator—Weyl invariance of its densitized form,

\/.554 = \/§A4 s

and the finite conformal transformation of £,—the Gauss-
Bonnet density modified by the \/gLIR term (1.4),

(2.8)

\/_654 = \/554 + 4\/5&46.

These two properties are consistent with each other because
the last equation should obviously remain valid under the
interchange of g,, and g,, accompanied by flipping the
sign of o.

(2.9)

There is also the third form of the Wess-Zumino action,
which will be given below in Eq. (4.24). It exists for a
special renormalization converting to zero the coefficient y
of the [JR term in (1.1), and underlies the proof of the
so-called a-theorem for the monotonic RG flow of the
coefficient a = /16x° of the topological term in the trace
anomaly [41,42].

Modulo a nonvanishing conformal anomaly all points
on the orbit of the conformal group (2.4) are physically
equivalent, and this typical situation of a broken local
gauge invariance can be managed by introducing the gauge
condition which uniquely selects g, as the representative
of the equivalence class of metrics (2.4). If we denote this
gauge condition as y[g] = O then this representative should
be uniquely selected by the solution of the equation for the
conformal parameter o,

X9 = xlge ] =0, (2.10)

this solution being a functional of the metric X, [g], labeled
by the gauge symbol y,

o =,[gl.

’ (2.11)

The representative of the conformal orbit g, [g] as a
functional of a given metric g,, (through which the orbit
is passing) becomes Weyl invariant,

-2%,(9) ’ e 5glw [g]

=0, (212)
/ 5g(1/f

Juwl9) = gue

because under any local Weyl rescaling g, — ez"g,w the
conformal parameter transforms as X,[g] = Z,[g] + o in

view of the identity y[ge~>19] =0, so that

8,%,[9] = o, (2.13)
where J, is the operator of the conformal variation

5
8, (%)

b, = 2/d4x0'(x)gw(x) (2.14)

For the uniqueness of such a conformal gauge fixing
procedure (in spacetime and at least in some finite domain
of the space of metrics) the Faddeev-Popov operator
Q, = 0,(x.y), corresponding to the gauge y|g], 5, (x) =
[ d*yQ,(x,y)w(y), should be nondegenerate.

Thus, the terms of (2.7)

W) =1l + 5 (L+5) [atsvaRe @as)

taken at g, [g] can be considered as an irrelevant Weyl
invariant integration “constant,” while the rest of the terms
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can be identified with the anomaly action after the sub-
stitution of ¢ = X, [g]. This set of anomaly actions I';[g] =
I, [g] parametrized and labeled by conformal gauge con-
ditions y reads as

1
Tlgl = 1o | dxVo{(aC? + BENE, - 2T, AT }

1 (v P 4 2
Ep <6+9>/d x\/gR".

The difference between various members of this set is,
of course, a Weyl invariant functional. For two arbitrary
conformal gauges one has

(2.16)

1

Ly =T, = 1622 d4x\/§(211 -Z,)

X [aC? + BE4 = 2pA4(Z,, +Z,,)].  (2.17)
Conformal variation of this expression is vanishing,
because of the transformation law (2.13) for Z;,, Weyl
invariance of the density \/§C2, and the relation (2.9) which
in the infinitesimal form reads as
85(V/9E4] = 4\/9M40, (2.18)
so that using all the above properties 6,(I",, —T,,) = 0.
Note that with our definition of the anomaly action

(2.16) the way it enters the full quantum action can be
represented as

[lg] =T, [g] + T(g] + 32—1”2 <2 +§> / d*x\/GR%, (2.19)

where ,,[g] = e 2%l G-

A. Riegert-Fradkin-Tseytlin gauge

An obvious choice of the conformal gauge associated
with the Gauss-Bonnet density and the Branson curvature
is the Riegert-Fradkin-Tseytlin gauge

Jrerlg] =&, = 0. (2.20)
It can be imposed for topologically simple spacetime
manifolds with a vanishing bulk part of the Euler character-
istics [see Eq. (2.38) and footnote below]. In particular, this
property holds for asymptotically flat spaces which are
mainly considered in the paper. The advantage of this
gauge is that it is exactly solvable due to the transformation
law for the Branson curvature (2.9). Applying this gauge
and using Eq. (2.8) we obtain a linear equation on Zgpy
which has a solution in terms of the inverse Paneitz operator

11
Xrer = —— &4
RFT = 277, 4

(2.21)
Formally substituting this expression to (2.16) we obtain
exactly the RFT action (1.3).

This RFT action and the inverse Paneitz operator are well
defined and exist in asymptotically flat spacetime under
Dirichlet boundary conditions at infinity when treated
within perturbation theory in powers of the curvatures
whose collection is denoted below as Jt. Indeed, in this case

1 1

and this operator works well when it is applied to the
functions of the Branson curvature type ~&,. Because of
the double-pole nature of the operator 1/[J* its action on
generic functions may be badly defined due to infrared
divergences, but when the function is represented by the
total-derivative structure it generates, when acted upon
by 1/[0%, well-defined multipole expansion valid in four
dimensions at spacetime infinity [39].> But the Gauss-
Bonnet density and /gLIR are both locally a total deriva-
tive which makes 1/A, well defined in the expression
(2.21) for Zgpr. This in fact implies the invertibility of the
Faddeev-Popov operator in this gauge, which up to co-
efficient coincides with the Paneitz operator, Qrpr = 44y,
and thus guarantees local uniqueness of the conformal
gauge fixing procedure.

Moreover, the above observation serves as a repudiation
of the harmful role of double poles in the RFT action that
was claimed in [15]. Absence of infrared dangerous double
poles is explicit in the lowest order of the curvature
expansion for Xgpr which reads as

1
ZRFT - ——R + O(mz),

= (2.23)

in view of the fact that the Gauss-Bonnet density is
quadratic in the curvature \/gE = O(0%?). Higher orders
of this expansion are also safe because of the total-
derivative nature of ,/gE. Regarding the lowest order
quadratic in curvature part, with the above approximation
for Zgpr it equals

Trerlg] = / d*x\/gR* + O(R?), (2.24)

19222

*As discussed in [39], the operator 1/[1" in D-dimensional
space with D < 2n is ill defined unless the functions it acts upon
are of the form 9, ...9, j(x), m =2n — D + 1 with the function
j(x) having an asymptotic behavior j(x) = O(1/|x|P), |x| — co.
This property can be explained by the fact that in the multipole
expansion of 49, ..., j(x) the first few multipoles vanish,
which improves the fall-off properties of the result at infinity and
makes possible a repeated action by 1/
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because all the terms depending on the parameter f
completely cancel out, and what remains coincides with the
last quadratic term of (1.6). This coincidence fully matches
with the linear in curvature part of the trace anomaly (1.1)
(its y term) generated by the quadratic action (1.6). Indeed,
the conformal transformation of its nonlocal Weyl term
contributes only to the O(N?) part of the anomaly due to
the fact that only its form factor In(—J/u?) is not Weyl
invariant, and the whole y term of the anomaly entirely
comes from the R? part of (1.6).

B. Fradkin-Vilkovisky gauge

Another conformal gauge arises in the context of
conformal off shell extension of Einstein gravity suggested
in [19] and corresponds to the four-dimensional version of
the Yamabe problem. The representative of the conformal
group orbit is chosen to be the metric with a vanishing
scalar curvature

xevld =R, (2.25)

which implies a nonlinear but still explicitly solvable
equation for Xgy,

R[e™mvg,, | = &*V(R — 60)e™> = 0. (2.26)
This solution reads as
ey = _1n<1 +1%R>, (2.27)
61—-R/6
lim e v = 1 (2.28)

|x|—>00

in terms of the inverse of the conformal second order
operator [] —%R subject to zero boundary conditions at
infinity. This inverse operator also admits covariant curva-
ture expansion and in the lowest order yields the function
Zry coinciding with that of the RFT gauge (2.23),
Tpy = Zger + O(NR?), (2.29)
and, therefore, generates in the quadratic order the same
expression for the anomaly action
Using Egs. (2.17) and (2.21) it is easy to see that the

difference between RFT and FV actions is given by the
exact expression

1
[rpr — Ty = 162 / d*x\/9(ZrFr — Zpv)

X [aC? + 2pA4 (Zgrr — Zpy)l, - (2.31)

bilinear in the local Weyl squared term and conformally
invariant nonlocal functional

11 1 1
ZRFT _ZFV = ZA_454 + ln<1 +ng> = 0(%2)

(2.32)

Therefore within perturbation theory these two actions
remain coinciding even in the cubic order and become
different only starting from the fourth order in the
curvature.

Perturbatively both terms of (2.32) produce similar
nonlocal structures of treelike nature, that is the terms
characteristic of the tree-level approximation in field
theory. Such terms are composed of the powers of inverse
d’ Alembertians acting on the curvature tensor structures or
on the products of similar nonlocal tensor structures built
according to the same pattern. However, taken separately
as exact entities they have essentially different types of
nonlocality. RFT action formalism involves the Green’s
function of the fourth order Paneitz operator, whereas the
FV version of the action is based on the Green’s function
of the second order operator [1— %R. Both operators are
conformally covariant, but the Weyl transformation of
L]- %R is different from (2.8)

1 1 )
O- ER =70 (D - 6R> e, G = € G (2.33)

Moreover, FV action formalism involves a special loga-
rithmic nonlinearity absent in RFT gauge fixing. The action
of the Paneitz operator derivatives in (2.16) can destroy
this logarithmic structure, but the gy C?-term in ['gy still
contains it intact.

A further comparison of the RFT and FV actions can be
done along the lines of their “naturalness.” RFT gauge
(2.20) is based on structures organically belonging to the
conformal anomaly formalism in the sense that it involves
the same fundamental objects—the Branson curvature £,
and the relevant Paneitz operator A, which are immanently
present in the flow of the anomalous action along the
conformal group orbit (2.6). One could even interpret this
gauge as the one providing the extremum of f terms in
this expression with respect to the variation of the orbit
parameter o. This interpretation is, however, erroneous
because g,,, g, and o cannot be treated as independent
variables in Eq. (2.6).

On the contrary, FV gauge (2.25) uses a somewhat
extraneous entity—the scalar curvature—which is singled
out only by the fact that it turns out to be the bearer of the
metric conformal mode. As the result the advantage of FV
gauge is that it does not involve higher than second order
derivatives and does not produce double-pole nonlocalities.
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Another advantage is that the equation (2.19) disentangling
the FV anomaly action from the full effective action
becomes in view of R = 0 much simpler

I'lgl = Try[g] +T[g ]|g}w R (2.34)

where g,,[g] = e72™ldg,, . which is obviously consistent

with the fact that T'py[g] = 0 because Zgy[g] = 0.

As compared with the FV version, among technical
disadvantages of the RFT gauge and the action is the
presence of fourth order derivatives of the Paneitz operator.
Owing to this the RFT version turns out to be vulnerable
from the viewpoint of possible generalizations. For exam-
ple, a modification of the gauge (2.20) by the additional
Weyl squared term, yrpr — yrer + @C? would not work,
because the relevant modification ZXgpp — Zppr +
a(2A,)7'C? is badly defined for the reasons described
above in footnote—the additional term should have a total-
derivative structure.

The generalization to spacetimes with nontrivial top-
ology is also not straightforward, because the condition
(2.20) should not contradict the nonvanishing Euler number
of the manifold, which for compact manifolds without
a boundary reads as ey = 32 = [ d4x\/_ E(x). Say, for a

compact manifold of a finite volume V = f d*x,/g the
gauge (2.20) can be chosen to be

2—_

x(§)=\f(E—§DR ~32z ZV), (2.35)

but this leads to a nonlinear integrodifferential equation for
the relevant
e e

4/gAE = \/§<E - % OR — 32722 o 7) . (2.36)

1
(e~4%) EV/d4x Ge 4z,

which apparently can be solved analytically only by
perturbations in eg/V.

Unless stated otherwise, below we consider asymptoti-
cally flat spacetime with a trivial topology, whose Euler
characteristics should be modified by the boundary term.
For generic four-dimensional manifolds with a smooth
boundary it reads as

(2.37)

oy = 32]ﬂ ( / dxJGE(x) + AMd3x\/77S2(x)>, (2.38)

where y = dety,;, and y,, is the induced metric on oM.
For the asymptotically flat case due to the contribution of
OM at infinity |x| - oo it equals 1, so that everywhere in

what follows the bulk part of the Euler characteristics
is o [d*xJGE(x) = ey = ep — 1 =0

III. CONFORMAL ANOMALY AND COVARIANT
CURVATURE EXPANSION

Despite the diversity of nonlocal structures of RFT and FV
versions of anomaly action, neither of them seem to appear in
conventional perturbation theory for quantum -effective
action. The covariant form of this perturbation theory in
curved spacetime (1.6) was pioneered in [3], but its loga-
rithmic nonlocal form factor did not resemble the nonlocal
operators of the RFT action (1.3). Here we show how in spite
of these discrepancies the anomaly action originates from the
covariant perturbation theory of [38—40].

This perturbation theory arose as a concrete implementa-
tion of the ideas of [3] as an expansion in powers of covariant
tensors of spacetime and fiber bundle curvatures and other
covariant background field objects. This expansion is com-
pletely equivalent to standard Feynman diagrammatic tech-
nique and represents its resummation converting the original
perturbation series in noncovariant odjects, like matter and
metric field perturbations on top of flat and empty spacetime
background, into the series in powers of covariant field
strengths denoted collectively below by 9 and including
spacetime and fiber bundle curvature.

To be more specific, consider the theory with the inverse
propagator on top of the nontrivial field background
F(V) = F}(V), the hat denoting the matrix structure of
the operator acting in the space of fields ¢ = ¢”(x) with a
generic spin-tensor index A and V =V, denoting the
covariant derivative with respect to the corresponding fiber
bundle connection,

~

" ~ 1
FV)=O+P-2R  O=g¢"V,V,. (1)

This operator is characterized by the “curvatures”—metric
Riemann tensor with its Ricci contractions, fiber bundle

curvature R, determining the commutator of covariant

derivatives, [V,.V, Jp = f\’,”y(p, and the potential term P

(the term — éR is disentangled from the operator potential
for reasons of convenience),

N = (R¥,gp. Rys R, R,WP)

(3.2)

In covariant perturbation theory the one-loop effective
action gets expanded in powers of the curvatures

*T am grateful to M. Duff for this observation. An explicit and
simple expression for the boundary term of the Euler character-
istics in the four-dimensional case can be found in [36],
Q= %RMMK‘”’ + 16det K7, where K, = V,n,, is the extrinsic
curvature of the boundary, and L denotes the projection on the
outward pointing normal vector n¥. The last term in Q exactly
reproduces the value of the Euler number e =1 for flat and
asymptotically flat spaces [54].
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local power div

1 ——
where I', ~M". Within dimensional regularization of
2w-dimensional spacetime, @ — 2, the zeroth and first
order terms of the expansion represent pure power
|

divergences (note that we consider the case of a massless
theory, or the theory where the mass matrix is included
in the potential term P and treated by perturbations),
so that these two terms are annihilated by the regulariza-
tion, while the second order term is given by the
expression [38]

® r2-o)(o+ )l o-1) , / { PO s
r; = - d tre R, (-1 R"%]l —— (4 - 1R(-U R1
dim reg 2(47)T2w+2) " Vg Ru(-0) g4 - @@+ DR=0)
2 D D 7 75 5 Uv
-3 (2 - )(2w + 1)P(-0)* 2R + 2(4w* — 1)P(-0)*2P + 2w + 1)R,, (-0)**R* } (3.4)
where w = ‘5’ — 2. Here tr denotes the matrix trace, and the ) — 1 O 16 3.7
concrete coefficients implement the originally conjectured y(-1) =In T (3.7)

structure of dimensionally regularized effective action
Lagrangian, R(—J)*2N, that was blueprinted in [3].
What is important and should be especially emphasized
is that [0=¢"*V,V, means here the full covariant
d’Alembertian acting on a respective scalar R, tensor R,
s and P objects.

For brevity we will consider the case of a single
conformal scalar field with 1 = 1, P = 0, 7A2M,, = 0 and the
following values of the trace anomaly coefficients®:

or spintensor R

(3.5)

for which the action (3.4) takes the form—a particular case
of (1.6),

) 1 1 L1
ré — dx\/gd — |R.,y(~O)R™ — = Ry(=))R
e [ axvi{ g [Rur-ORe - SRR

R2
* 1080}
1 1 R
— " aead = e -
3272 / x\@{m Chuapr (=0)C + 1080}
+ o). (3.6)

Here y(—[J) is the nonlocal form factor [in minimal
subtraction scheme with In(4z) and Euler constants
absorbed in ]

“The coefficients have the opposite sign to those of b =
—a/167% and b’ = —f/167” in [4], because in our case the stress
tensor is defined with respect to the Euclidean effective action
I' = —il'; in contrast to the definition of T# = 2¢~'/26T"; / Oy
in the Lorentzian signature spacetime of [4]. Comparison with [5]
should also take into account another sign of the stress tensor
defined by the variation with respect to the contravariant metric.

and the transition to the last line is valid up to the higher
order terms in curvature and based on the nonlocal
generalization of the identity

/ d*x\/gC* =2 / d*x\/g (RWR”” —%RZ) (3.8)

derived in [39,40] by integration by parts and use of the
nonlocal representation of the Riemann tensor in terms of
the Ricci one (see footnote below).

The first term of this action is obviously conformal
invariant in quadratic order, so that the linear in curvature
part of the anomaly originates from the last term which is
the RFT (or FV) action (2.24) in the quadratic approxi-
mation with y = —1/180. Thus, the RFT or FV action is
fully recovered in this approximation from perturbation
theory and, as expected, turns out to be local.

A. Cubic order

Quadratic order of the covariant curvature expansion is,
in fact, a trivial generalization of the flat space expressions
for self-energy operators of Feynman diagrammatic tech-
nique, because In(—J/u?) is just a straightforward replace-
ment of the typical momentum space form factor In(p?/u?)
by its position space version. At higher orders the situation
becomes much more complicated and usually represented
in terms of correlators of the stress tensor and other
observables, written down in momentum space represen-
tation; see Refs. [55-57] for the treatment of generic
conformal field theories. These correlators are, of course,
contained in the effective action expanded in curvatures
which, for reasons of general covariance, we prefer to
consider in coordinate representation.

In this representation the effective action becomes for
each order N in the curvature a sum of nonlocal monomials
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/d4x1 Ay F (s ek )V 0 () ) (3.9)

with nonlocal multiple-point coefficients and covariant
derivatives somehow acting on the product of curvatures
at their various points. The absence of convenient and
generally covariant momentum space representation makes
us work in coordinate representation and invent a special
language which would simplify the formalism and make
it manageable [38—40]. This language is based on the
operator representation of nonlocal form factors,

F(X], ...,)CN) = F(VI, ceey VN)5(x1,x2)5(x1,x2) s
x 8(xy, xy), (3.10)
where I'(V, ..., V) is the operator-valued function of N

independent covariant derivatives such that each V; is
acting on its own x;. This allows one to write the orders of
perturbation theory as

1 4
XIM<)C1,...,XN) {x}zx, (311)

where summation runs over all invariant monomials in
curvatures of a given nth order

IM(xl,...,xN)NV---Vm(xl)---f)'i(xN) (312)
and after the action of all independent derivatives on their
arguments all these arguments {x} = (x|, ...xy) have to be
identified.

In the cubic order for the full set of curvatures (3.2) there
are 29 such invariant structures built of these curvatures and
their covariant derivatives with all indices fully contracted
with each other. Moreover, in view of the scalar (no free
indices) nature of the form factors and the formal identity
V| + V, 4+ V3 = 0 (reflecting the possibility of integration
by parts without surface terms, which is a counterpart to the
momentum conservation in Feynman diagrams) the form
factors of I'®) can be written down as functions of three
d’Alembertians [1;, [l,, and [; independently acting
on three arguments of [,,(x;,x,,x3). Thus, cubic order
reads as

1 29
r<3>:—/d r,,(0,,0,,0d
2(4”)2 x\/ﬁMz:l (0, 0, 03)

XIM(xl’-XZ’x:i)’ (313)

{x}:x.

The list of cubic invariants and their form factors is
presented in [18,20,40]. It is very long and, as its details are
not necessary for our purposes, we will not fully present it

here. We only give the general structure of the nonlocal
form factors of these invariants. It reads as a sum of three
different groups of terms,

3 ik
D
[y (O, 0y, O3) = Ay (0, 0, 03) + —M
l;k (Di_Dk)
0.
In—=% + B,,. 3.14
X nDk+ M ( )

Here I'((J;, 0,, [03) is the fundamental cubic form factor
corresponding to the triangular Feynman graph of massless
theory with unit vertices [58],

r(0,.0,.04)
_/ Bad(l—a; — oy —a3)
a0 010 (=3) +aya3(=0,) + apa3(—0y)

which cannot be reduced to an elementary function. The
operator-valued coefficients A,;, By, and D are rational
functions of three [ arguments with a polynomial numer-
ator P(J,,0,,J;) and the denominator containing
together with the product [1,[J,0]; also the powers of a
special quadratic form of these arguments D,

. (3.15)

P(DI’D27D3) L<6

Ay, Dk B, ~ :
MM TM 0 0,0, DE =

(3.16)

D - Dlz + D22 + D32 - 2D1D2 - 2D1D3 - 2D2D3.
(3.17)

In this cubic order of the curvature expansion the
conformal anomaly (1.1), which is quadratic in curvatures,
was explicitly derived by the direct variation of the metric
in [59]. Though this derivation has demonstrated nontrivial
localization of the nonlocal terms under the straightforward
tracing of the metric variational derivative, it still remained
rather technical and not very illuminating because it has not
revealed the anomalous part of the action. It turns out,
however, that the transition to another basis of curvature
invariants, suggested in [18,20], explicitly disentangles
this part.

B. Conformal resummation: Fradkin-Vilkovisky
anomaly action

The recovery of the anomaly part of the action and its
conformal invariant part is based on a simple idea that the
latter should consist of the series of Weyl invariant
structures. The construction of Weyl invariants can be
done by the gauge fixing procedure of the above type—
choosing the representative metric on the group orbit by
imposing the conformal gauge. Obviously the set of
invariants surviving after imposing this gauge will be
minimal if the gauge would explicitly annihilate the
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maximum number of invariants in their original full set. For
this reason the FV gauge (2.25) is much easier to use for the
separation of the total set of invariants into the Weyl type
ones and those which vanish when the gauge is enforced.
As R is one of the curvatures in the set of i the FV gauge is
more useful for the purpose of such a separation than the
RFT gauge (2.20) which nonlinearly intertwines all the
curvatures. Intuitively it is also clear because R, in contrast
to C%,,, is a bearer of the conformal mode.
In the purely metric sector such a separation is attained
by the transition to the new curvature basis [20],
"= (R, R,.R) = 0=

vap N

(C%%u.R), (3.18)
via expressing the Ricci tensor in terms of the Weyl tensor
and the Ricci scalar.” This expression follows from the
contracted Bianchi identity which for the Weyl tensor
reads as

_lor iy vk g"”

VIV Cp, = 5OR, ~ £V, SOR + 0(2).

(3.19)

This equation can be solved by iterations for the Ricci
tensor in terms of nonlocal series in powers of two
objects—the Ricci scalar R and the new traceless (and
up to quadratic order transverse) tensor C,,, which is itself a
nonlocal derivative of Weyl,

2
C, = EVﬂV,,C“W,, (3.20)
The resulting series begins with
1
= Cu +3 v v, R +-g,R+0M?). (3.21)

6

Effective action re-expansion implies the transition from
Iy(xy,...,x,) to a new basis of invariants,

Ty(xy,..x,) ~ V.. . VR(x))...9%(x,). (3.22)

which can be separated in the set of monomials
I¢(xy. ..., x,) involving only C,, and the set of monomials
Ig(xy,...,x,) containing at least one scalar curvature
factor,

V..VC(x,)...C(x,),

Ie(xy,...x,) ~ (3.23)

’In fact, the original basis and the curvature expansion of
[38-40] consisted of R,, and R because in asymptotically flat
Euclidean spacetime the Riemann tensor can be expressed as
nonlocal power series in the Ricci tensor, Ry, = & (V,V,R,5—
V,V,R,5) — (a < B) + O(R?)—the corollary of contracted
Bianchi identity.

Ig(xy,..x,) ~V...VR(x])C(xp)...
V...VR(x{)R(x,)C(x3)...C(x,), ...

C(xy),
(3.24)
Expansion in the new basis of invariants implies, of

course, the transition to a new set of their relevant form
factors

FM(V], Vn) d Fc(V], ...V,Z),FR(VI, ...V,,), (325)
and the new expansion takes the form
I'=W+T%, (3.26)

where W is the Weyl and I'; is the mixed Weyl-Ricci scalar
parts of the whole expansion, which we write in abbreviated
form (omitting multiple spacetime arguments and the
operation of equating them),

4 n)
W=2 dfoF (3.27)

4
I = 32 — dfor (3.28)

Note that W and its Weyl basis invariants are not Weyl
invariant, because apart from Weyl tensors they contain
covariant derivatives and nontrivial form factors which do
not possess conformal invariance properties.

The main statement on the conformal decomposition of
the effective action of [20] is that

F[g] - FFV [g] + W[g]|g’w:e*221:v[_q]g#h, (329)

where ['ry[g] is exactly the FV anomaly action introduced
above.® The conformally invariant part is obtained by the
“conformization” of W, while the rest of the effective action
is exhausted by the Fradkin-Vilkovisky anomaly action.
The invariant meaning of this representation is that the
Ricci part of the full action is not independent, but fully
determined by the anomaly and Weyl parts of the action.
This is the realization of Eq. (2.34) within the perturbation
theory in curvatures. This result is likely to resolve a long-
standing debate between the proponents of the Riegert
action and adherents of the flat space perturbation expan-
sion for the effective action with typical nonlocal loga-
rithmic form factors of the form (3.7). Note that these form
factors do not contribute to the anomaly even though their
coefficients are directly related to its expression (1.1).

®One can check that the last four lines of Eq. (24) in [20] form
an exact expression for I'gy[g] by taking into account that the
function Z in this equation coincides with —Xry and satisfies the
equation 0Z +1(VZ)? = 1R,
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Rather they become Weyl invariant under the substitution
of g,, as their functional argument.

Validity of the representation (3.29) was checked in the
cubic order approximation for the effective action in [20].
The transition to the new basis of invariants in the second
order leads to [see the second line of Eq. (3.6)]

1 1
w1g] —ﬁ/dx\/ﬁm Couapy () O (3.30)
2
FSe>[9] T 2/ \/_@R2 (3.31)

whereas in the third order it results in a great simplification
of the “Ricci scalar” form factors Fg) as compared to the
original ones—they become much simpler and, moreover,
in their expressions of the form (3.14) the coefficients
A, D% By of (3.16) completely lose powers of the function
D in the denominator. Thus, modulo the contributions of
In(0;/00,)/(0; = O;) the form factors rﬁ? acquire the
tree-level structure. The terms with these factors get,
however, completely absorbed with accuracy O(*) by
the replacement W?)[g,] - W@[g,,] in view of the
following relation [40]:

W@M—Wmmgﬁn@qwmem—MJWWM

- [arr Y

~913+0(§)‘i ),

[0y = 5] CruapCi™ + O(R*),

0, -0, (3.32)

where the right-hand side is the set of relevant cubic order terms with the above factor acting on two Weyl tensors out of

(3)

three curvatures in RCC-type invariants. What remains in the sector of cubic I

form factors which comprise the curvature expansion of FV action up to M3 order inclusive. This observation done in [20]
can be formalized as the following sequence of identical transformations:

invariants is the set of treelike nonlocal

Ty = W) [g] + T V[g] + O(91*)

= We[g + I [yl + (W[g] - W [g)) + O(91), (3.33)

re o)

where the group of the last three terms forms a Fradkin-Vilkovisky anomaly action expanded with 9t* accuracy. Explicitly

the cubic part of I'ry for the model of a single conformal scalar field with (3.5) reads as [20]

(3) 1 1 2 Dl 1 aﬂ
I =-——- [ d = - R\RR;y +————— C’V R, V4R
v 32n2/ x‘@{19440 <D3 0,0,/ 2 3+1620D2EI3 L TaT2 AT

N 1 /4 1 20 O,
sa0\: Os 0.0, 0,0,
1
- V.V,C"V,V,C’R
1350,0,0,  * /-1 Teie2 3}

where C,,, is the “Weyl” part (3.20) of the Ricci tensor (3.21).

C. The problem of double poles and global
conformal transformations

The expression (3.34) shows that in the cubic order the
anomalous effective action is free from double-pole non-
local terms. For the FV action this is obviously true to all
orders of the curvature expansion, since all its tree type
nonlocalities originate from Green’s function of the con-
formal scalar operator [ —%R. However, for the RFT

)C’“’CZWR3 +—

{x}=x

1 1 2
VECHV, CyyuR
135 (D1D2 D2D3> a3

, (3.34)

action double poles formally appear starting from the
fourth order in the curvature because the metric variation
of X, = Xgrr in (2.16) leads to the action of the inverse

Paneitz operator upon the square of the Weyl tensor C? =

CruapC** due to a formal variational rule,

/ d*x\/GC*OErpr = / d*x\/g(A7'C?)5(...).  (3.35)

This operation is not well defined, because C? is not a total
derivative and the repeated action of 1/[J upon generic
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test functions in four dimensions leads to IR divergent
integrals—see footnote 2. In the cubic order of I'gpy this
problem does not arise because of the extra [ factor in LIR,
as it was checked in [16] by explicit calculations of (TTT)
correlators, but one is not allowed to be free from this
difficulty for higher order correlators.

In fact this is a typical situation for IR divergences in two
dimensions, where the kernel of 1/[0] has a logarithmic
dependence at infinity, and the correlators of undifferen-
tiated conformal fields ¢ are UV divergent, while the
correlators (dgh(x)dp(y) - - -) stay well defined. Apparently,
the same property in four dimensions also underlies the
absence of unitarity in dipole theories with 1/[1-type
propagators recently discussed in [60]. The mechanism of
transition from operators to their derivatives in shift
symmetric theories actually helps to justify the RFT action
as a source of well-defined stress-tensor correlators and
extends the validity of results in [16] to all higher orders.

This follows from the observation that the Paneitz
operator reads as

Vs =0, Va9, 2me SR o, (336

and, therefore, perturbatively on the flat space background
can be represented as

—_—

V =0,V"9,,

VIh, =P+, )
(3.37)

0 = 89,0,

where the perturbation V = O(N) has a special form—
another differential operator V#* sandwiched between two
derivatives with all derivatives acting to the right (which is
indicated by the arrow). Within perturbation theory in
powers of V the action of the inverse operator on a generic
test function y—scalar density—could have been under-
stood as the expansion

b= 9A4l// ni"; 12)'1( )nl//
—y 12)" (a va—a>"y/, (3.38)

n=0

where we deliberately permuted the factors of 9, and 1/[1?
using their formal commutativity in order to provide the
action of 1/[J* on the total-derivative function. Thus all
terms of this expansion except the first one become infrared
finite. The first term (1/0J?)y, however, makes this
function ¢ ill defined. On the contrary, its derivative d,¢
becomes consistent if one understands the first term of the
expansion as (1/ Elz)dal;/, so that the prescription for the
operation of d,(1/,/gA4) on a generic nonderivative type
test function reads as

(3.39)

| O (C1) (s 1\
= o, (o, v —a,) v
N ; = a<,, = y> w

With this prescription the term C?>Zggy in the RFT action
becomes perturbatively well defined to all orders of
expansion. Indeed, this term with Xgpr given by (2.21) and
on account of total-derivative structure ,/g(E —3R) =
d,E* can be rewritten by integration by parts as

4/d4x\/§C22RFT = —/d“x\/—E"’a \[—A(\/gcz)

(3.40)

with the above prescription (3.39). This confirms a well-
defined nature of all multiple-point correlators of stress
tensor generated by RFT action.

Finally, it is worth discussing the effective action
behavior under global conformal transformations with
oy = const. Higher order curvature terms of the effective
action scale as negative powers of ¢’ and therefore are
irrelevant in the IR limit. In [61] this was a main argument
in favor of a dominant role of the Wess-Zumino action (2.6)
in this limit because AI'[g, o] behaves linearly in o, (or
logarithmically in the distance). Indeed,

ATlg, o + 6o) = AT[g, 6] + o <32y”2 / d*x\/5C? + ﬂeg) ,
(3.41)

where ¢ is the Euler characteristics of the manifold
modulo its boundary contribution (see footnote 3). Note,
however, that this behavior cannot be captured within the
nonlocal RTF form of the anomaly action (1.3) because it is
valid only under Dirichlet boundary conditions for Green’s
function of A, (which would be violated by the o shift).
In other words, the expression (1.3) lacks the contribution
of the zero mode of the Paneitz operator, which on the
contrary is explicitly featuring in (3.41). For compact
manifolds with possibly nontrivial topology global Weyl
transformations would not contradict boundary conditions,
and these transformations will obviously show up in the
generalized RFT gauge (2.35) as an ambiguity of the
solution for Eq. (2.37), £ - X + oy.

IV. STRESS TENSOR IN CONFORMALLY
RELATED SPACETIMES

Equations (2.19) and (2.34) show that the anomalous
action makes sense as an object specifying the difference of
effective actions on conformally related metrics and other
fields. Outside of this context this action, being a subject
of shifting by an arbitrary conformal invariant functional
weent[g]as in Eq. (2.2), is not very instructive because
such a shift can include essential physical information on
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conformally invariant degrees of freedom. Anomaly action
I',, or it would be better to say, the Wess-Zumino type
action (2.6)—the generating functional of I',—is really
useful in situations when the physics of a conformally
related spacetime with the metric gy, is fully known. Then
the effective action at g, can be completely recovered from
the knowledge of the Weyl anomaly.

The simplest situation belongs to the class of confor-
mally flat spacetimes when g,, can be associated with flat
metric for which all the metric field invariants are vanishing
and I'[g] is either exactly zero or calculable for quantum
matter fields in flat spacetime. In particular, the funda-
mental observable which can then be obtained is the UV
renormalized expectation value of the stress tensor of
classically conformally invariant fields,

5Fren

: 4.1
590 (4.1)

ATy =2

provided (T%) = 0 or is known from flat space physics.
Here we derive from (2.6) the expression for the difference
of (densitized) stress tensors \/g(T'§) — \/g(T'5), which for
a conformally flat spacetime coincides with a well-known
Brown-Cassidy expression [25] and generalizes it to the
case of a nonvanishing Weyl tensor.

A. Conformal anomaly from the divergent
part of the effective action

To derive the behavior of the renormalized stress tensor
on the conformal group orbit we, first, have to trace the

origin of conformal anomaly as the result of subtracting UV
divergences from covariantly regularized effective action,

[en =g — - In dimensional regularization, I, =T,
these divergences are given by

1
_167z2€/ddx g2

/ dix\/g(a¥C* + BUE),  (4.2)

Ty =

~ l6n2e

where ¢ =4 — d, WC? and WE are the four-dimensional
invariants formally continued to d-dimensions and a, is the
relevant second Schwinger-DeWitt coefficient of the cor-
responding heat kernel expansion for the inverse propaga-
tor of the theory [62-64]

a, = —(a¥C? + BYE + yOR), (4.3)
1
2 __
We? =R, —2R%, + §R2, (4.4)
WE = R2, ;s — 4R}, + R*. (4.5)

This structure of a, follows from the local conformal
invariance of the pole residue of I'yy at d =4 and is

associated with the integrability (or conformal Wess-
Zumino) condition for a conformal anomaly. It includes
the topological Gauss-Bonnet density |/gE, Weyl tensor
squared, and the total-derivative (1R terms.

Conformal anomaly arises as a contribution of the
conformal transformation of the one-loop counterterm
(4.2) subtracted from the regularized effective action

o,

T = =205 —=. 4.6
VATE) = =205 (46)

because the regularized (but not yet renormalized by
counterterm subtracting) action Iy, is assumed to be
conformally invariant.” The CIR term does not contribute
to the divergences, but it appears in the conformal anomaly
in view of the conformal transformation of the Weyl
squared term continued to d dimensions. Moreover,
within the above subtraction scheme its coefficient y in
the anomaly turns out to be determined by the coefficient
of the Weyl term [4].

Indeed, let us introduce conformally covariant Weyl
tensor in d dimensions

(d)C/wrx[f = R/waﬁ + 2Pﬂ[/491/]a - 2Pa[ﬂgv]/f’ (47)

(d)CMvaﬁ =) Cﬂyaﬁ7 (48)

which is written down in terms of the Schouten tensor

1 Rg,,
P,=——|R,——"—|.
o= ams (B )

In view of the relation between the square of Weyl tensors
@C? = c?, 5 and C? =W, ., (both formally contin-
ued to d dimensions) [25]

(4.9)

1
#c? = [@c? —g <E -C2 - 5R2> +0(e*)  (4.10)

one has

) / ) € d
dx\/gC? = — / dx\/q\IC? + - — / d*x
59 v m v 269, v

x <c2 —|—%R2) + O(€?). (4.11)

Then, since the tensor (YC wwap 18 conformally covariant in

any dimension, g,,(8/3g,,) [d’x,/gYC* = -£,/g\C?,
we have

"Or the Weyl invariance violation of dimensionally regularized
Ty is proportional to (d — 4)? as it happens for the spin one
case [4], so that it does not contribute to the residue of the simple
pole in dimensionality.
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1 o 1 2
— G — [ dx\/gC* = —= C*+=0R | + O(e).
Fng [ A€ =~ i+ 50R) + 000

(4.12)

Using this in (4.6) one recovers the C? and the (IR terms in
the expression for the anomaly

VATE) = =5 Vo @13)

with the parameter y related to the coefficient a of the Weyl
squared term [4]

y==a. (4.14)

3

This simple expression for the trace anomaly in terms of the
second Schwinger-DeWitt coefficient also follows from the
zeta-function regularization [65].

The Gauss-Bonnet part of the anomaly follows from the
conformal variation of the (E term in the divergent part of
the action. Just like LR, as the residue of the pole in Iy, the
integral of \/5(4)E at least naively does not contribute to the
stress tensor, because in four dimensions this integral is a
constant Euler characteristics of the manifold. But in a
covariant renormalization procedure the coefficient of 1/¢
in 'y, cannot be treated other than as a d-dimensional
object, so that [dx,/gE is no longer a topological
invariant, and its metric variation is nontrivial. Therefore,
rewriting, similarly to (4.10), the dimensionally continued
Gauss-Bonnet density in terms of @2,

@WE = R?

b —4R;, + R?

1
= @2 — (2 = 3¢) (Rf,b - gR2> +0(e?), (4.15)

one has
16 d 4 1 3
Z dix\/gqWE = —\/g| W +(~)Haﬂ+2chuwfﬂ
€ 0Gap 2
+O0(e), (4.16)

where the two new tensors arise:

p_ b 2 1 2 1 2
C)HY = R™ Rl — §RR“/’ 5 ~g*"R2, + ZgaﬁR . (4.17)

1
W = lim— (4(Ce,,, DCPmt — P D). (4.18)

e—=0¢€

The limit to d =4 for the tensor W* is regular here
because at d = 4 there is the important identity

49ce,,, P = g aC?

(4.19)
—it can be proven by antisymmetrization over five indices
in the four-dimensional spacetime [66]. Tensors G)H and
W% have the following traces:

1 1
CHE = R -R,=35(E-C).  Wi=C (420)
Thus from (4.16) and (4.20) we have the relation
2 5 J 3
a/

which recovers the contribution of the E term in the
conformal anomaly (4.13) with the expression (4.3) for a,.

B. Minimal form of Wess-Zumino action and a-theorem

Of course there is a big ambiguity in the above analytic
continuation of the coefficients relating four-dimensional
objects to their d-dimensional counterparts. This ambiguity
reduces to the renormalization by finite four-dimensional
counterterms [ d*x,/g Rﬂmﬂ, [d*x\/gRz,, and [ d*x,/gR?
among which in view of the total-derivative nature of the
Gauss-Bonnet density only one counterterm can addition-
ally break Weyl invariance and change the coefficient y of
the LJR term in the conformal anomaly. This is because the
combination [ d*x,/g(C* — E) =2 [d*x,/g(R2, — 1 R?)
is Weyl invariant, and such a counterterm can be chosen
as the square of the curvature scalar, satisfying

o
g””ég/ d*x\/gR*> = —6,/gR. (4.22)
v

Therefore this finite local counterterm can be used to alter
the coefficient y and, in particular, put it to zero by a special
finite renormalization which we will denote by a subscript
Ren:

=enlg] +

(4.23)

l—‘ren [g] - FRen [g] d4x\/§R2'

14
1927°

Regularization and subtraction scheme dependence of
the y coefficient manifests itself in the violation of the
relation (4.14) for the dimensionally regularized electro-
magnetic vector field [5], but ultimately does not change
the physics of the theory because of the locality of the
covariant counterterm | d*x,/gR?, whose subtraction point
should be determined from the comparison with the
observable value of its coupling constant. In the cosmo-
logical example considered below the above renormaliza-
tion (4.23) corresponds to fixing the coupling constant in
the Starobinsky R*>-model [43].

The renormalization (4.23) has an important
consequence—with y = 0 the terms with quartic derivatives
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of o, contained in the combination 1 6 £ f d4 4\/§aA40 -
é\/ijz) of (2.6), completely cancel out, and the resulting

minimal Wess-Zumino action does not acquire extra higher-
derivative degrees of freedom:

l—‘Ren [g ] - IﬂRen [f_]}

d*x\/qC> d*x\/g

uaﬂg t>

T 1622 1677

_ _ 1 _
X {EO’ -4 (R”” - EQ””R) 0,00,0

—406(V*6V 0) - Z(W”JVFJ)Z}. (4.24)

This minimal version of the action for the dilaton field ¢
was discussed in [41] and used in the derivation of the a-
theorem in [42,67]—monotonically decreasing the coef-
ficient @ = 8/162? in the RG flow of the theory from UV to
IR domains. This theorem is based on the sign of the last
quartic interaction term for this field, related to the cross
section of the forward 2 — 2 dilaton scattering which
should be positive in unitary theory, its unitarity being
related to the absence of higher-derivative ghosts in (4.24).

C. Renormalized stress tensors

The behavior of the stress tensor on the orbit of the
conformal group can be obtained by using the commuta-
tivity of the following functional variations:

0 é

g,w(y)m,g,;,(x) m} =0, (4.25)

which allows one to write

5 5 5F1’Cl’1
m@@%( )> 29/1;/( )5gay(x) 56()7) =i
= 0y () 5o VIONTEOD|
(4.26)

Bearing in mind that gg,5/89,, = 95,0/ 094, at fixed o and
functionally integrating this relation over ¢ one has

VTS = V/5(TS) = 2gﬁy§mg, o (427)

where AI[g, 6] = [y — [ren is given by (2.6).

Before calculating this difference by the metric variation
of ATl'[g, 0] it is instructive to obtain it directly from the
divergent part of the action as it was done in [25]. Note that

Fen — Dien = —(Feo — I because Iy, does not contribute
to the anomaly (see footnote 7). Therefore,

ST

ay

Vil = -

g

To calculate the contribution of the )C? term in I', we
rewrite it in terms of (Y)C? and use Eq. (4.11). This leads to
the contribution of the first term of this equation:

/ dix, /g C? = —g\/gww — 4GB, (4.29)

am
v 1 av
) - (mRaﬂJrv(avﬂ))Cﬂ P, (4.30)

where the tensor W** is defined by Eq. (4.18) and (B* is
the d-dimensional Bach tensor. Assembling this with the
second term of Eq. (4.11) we get on the orbit of the
conformal group,

g

1
2 a
gﬂy&g /ddxf C‘ { ()B/’+18()H4
ay

+ O(e), (4.31)
where the tensor “)H}}’ is given by the equation
1 )
OHS = — g7 — /d4 R?
N g 5g’ o
1
— a P2 a et a
= —56/3R + 2RRj + 265L1R — 2VeV4R,  (4.32)

and we took into account that both the tensor densities
VW5 and \/gBj in four dimensions are invariant on the
conformal orbit. Outside of four dimensions the Bach
tensor density transforms on this orbit as (here as above

G = ezggﬂl/)

€ - = vy o
VEB]|! = =S VAR 4+ 299 (0C, ) + O().
(4.33)

which makes the first term on the right-hand side of (4.31)
well defined at d — 4. Note that the expression /g(R* +

ZW(”W”))(GC"M;D) treated as a functional of independent
9w and o is Weyl invariant under local conformal trans-
formations of the barred metric. This can be easily inferred
from the invariance of Eq. (4.33) under the interchange
9w <> Gu and 6 — —o or directly checking the conformal
transformation of g, (with a fixed scalar o).

The contribution of the Gauss-Bonnet term to the stress-
tensor behavior on the conformal orbit is obtained from
using (4.16)—(4.17). Collecting this contribution with the
contribution (4.31) of the Weyl tensor squared part we
finally have
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a\ |9 a = DPuv \viViviZ o
V(TS = _W‘/Mﬂ +2VEV)) (6C? )
1 (3)Ha a (o 28R C* J
+g\/§ﬂ /;’+E /}+ p ﬂﬂl/g
(4.34)

This is a generalization of the Brown-Cassidy formula to
the case of a nonzero Weyl tensor. The first term of this
expression is Weyl invariant in view of the above remark
and can be represented by its unbarred version.

The check of consistency of this formula with the
original expression for the conformal anomaly is trivial
in view of BJH% = (E - C?)/2, WH? = 60JR and trace-
lessness of the Weyl tensor,

il
1672 |-

(4.35)

\/§<Tg>y— v {ﬁE pC* +— DR}

1672

g

where the last equality follows from the conformal invari-
ance of the density \/§C2 and from the relation (4.14)
between the coefficients y and a, a = %y.

The recovery of (4.34) from the direct variation of the
Wess—Zumino action (4.27) goes as follows. We use metric
variational formulas

0 /d4xfC26——2\f( w2V, V) (6CHY),

59(1/)’

(4.36)
o
5 /d4x\/§540 = /9AYq, (4.37)
gaﬂ
0
/d4x\/§(pA46 = —ﬁD“ﬂ[(p, o], (4.38)
59(1/3 2

which hold for generic scalar test functions ¢ and ¢ with the
differential operator A% acting on o,

1
Aaﬂ = g (gaﬂlj - vavﬁ)D + |:2(gaﬂp/,w - gaypﬂv - gm/P[iﬂ)

8
+ ggﬂypaﬂ + 2Pgaﬂgﬁv -

+ (gaﬂg;w ~ YGau9py — g(wgﬁ”)(V”P)vy,

5
ngaﬂgm/ aﬂﬂb A%

(4.39)

and the bilinear form D% (¢, ),

1
D(l/}[(p’ 0] = _EgaﬁD(PDU - 20(1/3|:|¢
1 2
+ 20,Ugps — 3 > Japo, " — Pu(ap)®”
1
+ 2Wa/4 y + 5 (g;wRaﬂ - gaﬂgﬁyR) (p(ll(; )

1
+ 5 (404,05 = Gupp0) + (¢ & 0), (4.40)

3
where ¢, =V,p, 6,5 =VsV,0, @5 =V,V;V,0, etc.
Note that the trace of A% coincides with the Paneitz
operator, gaﬂA“ﬁ A4, which matches with the conformal
variation (2.9), and the bilinear form D® (¢, 6) is traceless
in view of the conformal invariance of /gA,.

Using these relations we get from (4.27) and (2.6)

VATD]! =z VAR +299) (o) 328
X(ZﬁA O'+ﬂDa[G G])—l—f( {;)(I)H;jx ;
(4.41)

The term in the first line here coincides with its barred
version in (4.34)—this easily follows from the relation
(4.36) where the integrand can be identically replaced by
the barred one. The 5 (1 )H“ term here matches with the
& (H§ term of (4.34) in view of the relation a =3y. And
finally, the identity holds:

1
€ )Ha
VI T 18

= \/g_](ZAgo + D%[a, o)),

HG + 2R C?, 5,
g

(4.42)

which completely reconciles the two expressions (4.34) and
(4.41) for the stress-tensor behavior on the orbit of the
conformal group.

V. CONFORMALLY FLAT SPACETIME

The generalization (4.34) of the Brown-Cassidy formula
to the case of a nonvanishing Weyl tensor might be not very
useful, because in the general case not much can be said

about (7%)|;. Therefore we will restrict ourselves with

the case of the conformally flat spacetime for which the
conformal transformation of the metric can lead to the
metric gy, of flat spacetime, where (T; ) is either zero or can
be obtained from flat space physics. Interestingly, in this
case the parameter of the conformal transformation o
making this transition satisfies the equation

1
Ajo=-& 5.1
40 4 4 ( )
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and in the asymptotically flat case with Dirichlet boundary
conditions has a unique solution (2.21), 6 = Xgpr. This,
apparently not very well-known fact, can be proven by
using the equation for the conformal transformation of the
four-dimensional Schouten tensor (4.8) (g,, = ez"glw)

_ 1
P, —-P, =-06,—0,0,+ Eaaa"gﬂb, (5.2)
where 6, =V 0 and 6,, = V,V 6. Assuming that j,, is a

flat space metric with P, = 0, differentiating twice and
again using this relation to express P,, in terms of the
derivatives of ¢ one has

1 1
\VZAvid (P/“, + Ouy + 6,0, — Eaaaag/w> = A46 - 154 =0,

(5.3)

whence it follows that the conformal invariant metric (2.12)
in the RFT gauge (2.20) is actually the flat space one when
the Weyl tensor is zero:

Ra

Puv 0,

PO ) J

Gu = € RI‘T[g]gﬂv|CaﬂM=0' (54)
Note that g,, here is not automatically a diagonal unit
matrix 6”,,, because this is the invariant statement which is
valid in any coordinate system.

A. Anomaly driven cosmology

Applications of the conformal anomaly in the cosmo-
logical context have a long history; see for example
[9,26,68-72]. In particular, cosmology with the Friedman-
Robertson-Walker (FRW) metric represents the situation
when the anomalous action AI'[g, o] entirely determines
the physics of the field model and via effective equations of
motion produces a nontrivial back reaction of quantum
matter on the dynamical metric background. The most
interesting example is, perhaps, the case when I'[g] in
(2.6) nontrivially contributes to this back reaction effect
rather than just serves as an inert flat space background.

This is the spatially closed cosmology driven by a
conformal field theory (CFT) from the initial state in the
form of a special microcanonical density matrix, which was
orginally suggested in [27] and recently reviewed in [46].
With the density matrix defined as the projector on the
space of solutions of the Wheeler-DeWitt equations [28,73]
the statistical sum in this model has a representation of the
Euclidean quantum gravity path integral

2= [ Dlgu. e, 53

where integration runs over the metric g, and matter fields ¢
which are periodic on the Euclidean spacetime of topology
S x §3 with the time 7 compactified to a circle S'.

When the classical action S[g,,.¢] is dominated by
numerous CFT fields @ with their action Scgr[g,,. @], the
statistical sum can be approximated by the contribution of
the saddle point of this integral. This is the extremum of the
total action including the tree-level gravitational Einstein-
Hilbert action Sgylg,,| and the effective action I'[g,,] of
these CFT ﬁelds,8

Flot[gﬁw} = SEH [gﬂv] + F[g;w]’ (56)

e_r[gyy] :/D@e_SCFl'[gqu)]' (5'7)

Choosing as g,, the FRW metric with the scale factor
a(z) and the lapse function N (Q%” is the metric of the
three-dimensional sphere of a unit radius),

ds* = N?d7* + a?dQ2%,, = a*(7)(dy? + dQ2,),

3 = &) (5:8)

one immediately finds that in terms of the conformal time
variable 7, related to the Euclidean time 7 by the relation
dn = dr/a(r), this metric is conformally equivalent to the
metric §,, = g of the Einstein static universe with spatial
sections—the three-dimensional spheres of some constant

radius ay,

ds? = a3(dn* + dﬂé)) = gr/ dxtdx", (5.9)
A = &°d, g, =gV, o= maio. (5.10)

Therefore the CFT effective action expresses in terms of the
same action on a static Einstein universe I'[g5"”] = I'zyy and
Wess-Zumino action (2.6) with the above conformal
parameter ¢
Ilg.] = AT[ghY . 6] + Tgy. (5.11)
The calculation of I'; is strongly facilitated by the static
nature of the background, but it still yields a nontrivial
result in view of compactification of time on S'. To begin
with, note that although gff,f/ explicitly depends on the size
ay of $°, the value of I'yy is a, independent for a fixed
period of the conformal time 7 = ff dn. This follows from
the invariance of the effective action under global con-
formal transformations (3.41) for conformally flat space-
times with zero bulk part of the Euler characteristics (which
is the case of S! x $%). This also can be confirmed by using
scaling properties of the conformal fields. Indeed, the

8Disregarding the graviton loops can be justified by the
domination of conformal fields outnumbering the metric, and
retaining the Einstein-Hilbert term obviously follows from the
fact that this term with renormalized gravitational and cosmo-
logical constants is induced from the quantum conformal sector.

045014-17



A.O. BARVINSKY and W. WACHOWSKI

PHYS. REV. D 108, 045014 (2023)

energies of conformal quanta on a static spacetime scale as
1/a, and their Hamiltonian reads as

A o (., 1
H_;ao (awaa,i2>, (5.12)
where summation runs over all quantum numbers (and
spins) of the energies w/ a, of all field oscillator modes on a
static three-dimensional sphere of the radius a, and &, and
a,, are the relevant creation-annihilation operators (+ signs
correspond to bosons or fermions). The path integral over
(anti)periodic conformal (fermion) boson fields with a
period 7 = ¢ dzN on a static metric background is exactly
calculable and equals the equilibrium statistical sum at the
temperature 1/7 which expresses as a function of the
conformal time period n = 7 /a,

e Tev — /D(I)e—SCFT[gffj@]

= Tre_TH = exp(_nEvac

- F(n)).

Here F(n) is the free energy of the gas of conformal
particles and E,,. is a UV divergent Casimir energy which
should be covariantly renormalized:

F(g) =) _[£In(l F em)],

[0

Evac B (Z ?) ren'

[0

(5.13)

(5.14)

(5.15)

Thus, the dependence on ay is absorbed into the depend-
ence on 1 which should be fixed under the rescaling of a.
Note that it is # that should be kept fixed under the global
conformal transformation which simultaneously rescales
the lapse function N and a, in the definition of the
conformally invariant 7 = ¢ dzN/ay.

Remarkably, the covariant renormalization of the vac-
uum Casimir energy E,,. also follows from the behavior of
the effective action on the orbit of the conformal group. The
Einstein universe extending from —oco to +oco in 7 is
mapped to flat space by the transition to the radial
coordinate p,
n=p=ayel,

—o0 <1 < 400, 0<p < o,

(5.16)
with the conformal relation between the two metrics
c=—-n= ln@,

dst, = e*°ds?,,, (5.17)

dsfy = dp® + p*dQp,. (5.18)

For the vacuum state [the limit # = oo and F(n) — 0 in
Eq. (5.13)] I'gy — E,,n- On the other hand, from Eq. (2.6)
with the above expression for o,

p
Ar[gﬂau 0] = g d“x\/ gﬂat(Dﬂato)z

L (r B
—32712<6+9>/d4x\/gEUR%U. (519)

Bearing in mind that U0 = -2/p?, [d*x\/ma —

22* [dpp®, Rpy = 6/ag, and [ d*x\/ggy = 2% [ dn,
one has

dp 3 p
FEU - Fﬂm - Ar[gﬂal’g] = ﬁ/_ - <§]/ + Z) /d}/]
P
3

~3(-5) [

Therefore, under an obvious assumption that 'y, =0

one has
3 y
vae g4 (‘ 2>'

In other words, after covariant renormalization by covariant
counterterms the Casimir energy gets the value compatible
with the behavior of the renormalized effective action on
the conformal group orbit (or with the Brown-Cassidy
formula for the vacuum stress tensor). This compatibility
was indeed checked by direct renormalization of the UV
divergent sum over field modes in (5.15) [47-50].

Let us now turn to the contribution of the conformal
transformation from the generic FRW metric to that of the
static Einstein universe in (5.11). To begin with we use the
freedom of finite renormalization (4.23) which reduces
the theory to the case of anomaly (1.1) with y = 0 and, in
particular, renders E,,. = % p. In the cosmological context
this freedom corresponds to the adjustment of the coupling
constant of the Starobinsky R? action [68] which plays an
important role in inflation theory and the dark energy
model. Then, with y = 0 and ¢ given by (5.17) the Wess-
Zumino term in (5.11) takes the form [27]

(5.20)

(5.21)

3 2] 4
l—‘Ren [g] - l—‘Ren [gEU} = _ﬁf dzN (a_ - (61_> ’ (522)

2 a a

when written down in terms of the original FRW coor-
dinates with the notation for the invariant time derivative
a’ = da/Ndrz. Note that the result is again independent of
the constant a, because it contains only differentiated o,
and, moreover, it does not involve higher order derivatives
of a(z). The last property is entirely due to the fact of y
being renormalized to zero and due to the cancellation of
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higher-derivative terms in the minimal form of Wess-
Zumino action (4.24).
Now we assemble together the Einstein-Hilbert action

(with the reduced Planck mass Mp = 1/v/8zG and the
cosmological constant A), the action on the FEinstein
universe space (5.13) and (5.22). This leads to the total
effective action on the generic Euclidean FRW background
periodic in Euclidean time with the period # measured in
units of the conformal time

A b
Tola, N = 6z*M3% ]{ a’TN{—cwz’2 —a+ §a3 + prCy
a/2 a/4 1
) V). 5.23
(-t ) o (5.23)
N
0= de. (5.24)
a

Here the contribution of the conformal anomaly and
Casimir energy (5.21) (with y = 0) are both weighted by
the parameter  of the topological term in the conformal
anomaly. The free energy of the gas of conformal particles
F(n) is a function of the effective (“comoving”) temper-
ature of this gas—the inverse of the circumference # of
the cosmological instanton (5.24). Despite an essentially
nonstationary metric background this gas stays in equilib-
rium state because of scaling properties of its particles
and produces back reaction on the Friedmann metric
background.

Applications of the action (5.23) have been considered
in a number of papers [27,43,44] and recently reviewed
in [46]. Physics of the CFT driven cosmology is entirely
determined by this effective action and the effective
(Euclidean) Friedmann equation. The latter follows from
the action by varying the lapse N(z) and expressing the
Hubble factor in terms of the energy density. In cosmic type
gauge N = 1, a = da/dx, it reads as

[\S}

“3ee (5.25)

QN| Qe

1
a2

1 0]
— 2
e_MPA+2n2a4 E ot (5.26)
@

M2 (e) = MT%’ (1 +4/1- ﬁe/6n2M‘,‘)), (5.27)

where the total energy density ¢ includes the cosmological
constant contribution and the radiation density of con-
formal field modes distributed over Planckian spectrum
with the comoving temperature 1/#. The nonlinear effect of
the Weyl anomaly manifests itself in the effective Planck
mass squared explicitly depending on ¢ which takes two

possible values M2 (e).” These equations should be
amended by the expression for the conformal time period
that interpolates between the turning points of the solution
with a(z) =0. Note that the right-hand side of the
Friedmann equation does not contain Casimir energy
density—it turns out to be fully screened due to the
dynamical effect of the Weyl anomaly. This is the result
of the finite renormalization (4.23) leading to a particular
value of the anomaly coefficient of [IR, y = 0.

For the choice of + sign in M2 the solutions of this
quantum Friedmann equation turn out to be the so-called
garlands—the cosmological instantons of S!' x §* topol-
ogy, which have the periodic scale factor a(z) oscillating on
S between maximal and minimal values a. [27]. These
instantons serve as initial conditions for the cosmological
evolution in the physical Lorentzian spacetime. This
evolution follows from a(z) by the analytic continuation
a (t) = a(ry +it), (day/dt)* = —a?, to the complex
plane of Euclidean time at the turning point with the
maximal scale factor a, = a(z, ). It can incorporate a finite
inflationary stage if the model is generalized to the case
when a primordial cosmological constant is replaced by the
potential of the inflaton field ¢, A — V(¢)/M3, staying
in the slow-roll regime during the inflationary stage'® and
decaying in the end of inflation by a usual exit
scenario [43,44]. The energy scale of inflation—its

Hubble parameter H ~ /A/3 turns out to be bounded

from above by V2xM p/+/P, so that to solve the problem of
hierarchy between the Planck and inflation scales one needs
f>1 which matches with the previously adopted
assumption that numerous conformal fields drastically
outnumber all other fields and dominate over their loop
corrections.

For the negative sign in M2 the solutions represent
vacuum S* instantons of the no-boundary type with the
vanishing minimal value of the scale factor a_ = 0. They
correspond to the diverging 5 ~ f(f “da/aa — oo or zero
temperature. These solutions, however, do not contribute
to the statistical sum because of their infinitely positive
action I, = +oco—the quantum effect of the trace
anomaly which flips the sign of the negative tree-level
action of the Hartle-Hawking instantons [74] and sends it to
400 [27]. Thus the CFT cosmology scenario is free from
the infrared catastrophe of the no-boundary quantum state
which would imply that the origin of an infinitely big
Universe is infinitely more probable than that of a finite
one.

To avoid mixup of the signs in M2 and sign factors associated
with the statistics of conformal @ modes we present here the
radiation spectrum only for the bosonic case.

'Alternatively, the role of inflaton can be played by Ricci
curvature in the Starobinsky R?> model, the coupling of the R?
term being subject to the renormalization respecting the zero
value of « in the total Weyl anomaly [43].
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VI. RENORMALIZATION GROUP
AND THE METAMORPHOSIS OF THE
RUNNING SCALE

This section has essentially a discussion nature and is
associated with the covariant perturbation theory of the
above type. One of the motivations for this discussion is
that, in spite of a widespread concept of running cosmo-
logical and gravitational constants, which is especially
popular within the asymptotic safety approach, there is a
very profound and persuading criticism of this concept
[30]. It is based on numerous arguments of the tadpole
structure of the cosmological and Einstein terms, on
concrete results for graviton scattering amplitudes [29]
which cannot be interpreted in terms of a universal scaling
of A and G, etc.

At the same time in renormalizable gravity models with
multiple couplings the solution of the full set of RG
equations includes running cosmological and gravitational
constants [36]. So the question arises of how to interpret
their running scale. Here is the attempt to do this in terms of
the covariant curvature expansion developed in [38—40].

We start with the classical action which is the sum
of local curvature invariants of growing dimensionality
(4 4+ m) in units of the mass

Slgu] = S AV / d*x /gy (x). (6.1)
m,N

They are monomials of Nth order in curvature tensors
which are acted upon by covariant derivatives,

r—iv%
R (x) = V...VRG)...N(x), (6.2)
m—2N
dim R\ (x) = R0 ()] = m. (6.3)

The curvature monomials enter the action with coupling

constants A\

sionality

of the decreasing (with growing m) dimen-

(6.4)

Summation in (6.1) can run over a finite set of terms
providing the renormalizability of the theory, or be formally

extended to the infinite set in the framework of generalized

RG theory with an infinite set of couplings {A} = AI(J").

Within covariant perturbation theory the full metric is
decomposed as a sum of the flat spacetime metric g,, and
the perturbation 4,

9 = g;w + h;wv (65)

so that each curvature invariant becomes expanded as an
infinite series in powers of 4, forming a new set of &
monomials on the flat space background

/ dx gy =3 / d*x\/g10" (h),
M=N

1" (h) « V..V h(x)...h(x).

(6.6)

Then in the notations of the covariant perturbation
theory the calculation of the renormalized effective action
leads to the same sequence of monomials acted upon

by the operator form factors Ff,l)({/\},@l, ...V,) which
make them nonlocal, {A} denoting the full set of couplings
(6.4). Within dimensional regularization these renormal-
ized coupling constants get rescaled by the normalization
parameter u and expressed in terms of their dimensionless

analogs /15\',") (u)
AY) = g (). (6.7)

and the perturbation theory form factors also express as the
functions of dimensionless arguments

FU (AL 1 V) = ety ({W)},%, %)
(6.8)

Correspondingly the effective action becomes

Flgu] = S Mi [y ({um},%, @)

u

< I (hy. hy. ... hy)

: (6.9)
{x}=x

where Ij(&") (hy, hy, ...hy) is the analog of the invariant (6.6)
with split spacetime arguments. A typical assumption of the
RG theory that the renormalized action is independent of
the running scale then leads to the set of equations for

ﬂx") (1) with the beta functions following from the residues
of spacetime dimension poles in the form factors

Iy ({2} AV /u)).

d d o (m)
ﬂaf[g,w] =0 pg Ay (1) =By (w)({A(w)}). (6.10)

A critical step now consists of the choice of the running
scale which could probe the high-energy limit of the theory
and embrace a simultaneous scaling of all form factors and
invariant monomials of (6.9). Then the replacement of the
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parameter p by this scale will identically bring the effective
action to the form explicitly revealing its UV limit. The
choice of this scaling object can be very different depend-
ing on the concrete physical setup. If the theory has a
dimensional scalar field ¢ with a nonvanishing and slowly
varying mean value it would be natural to identify RG
normalization y with ¢. This would lead to the nontrivially
“running” in ¢ of the cosmological and Einstein terms,
A — A(¢p) and G — G(¢), (amended of course by a
gradient expansion series in derivatives of ¢), but of course
these terms acquire the interpretation of the Coleman-
Weinberg type potential and nonminimal coupling of ¢ to
the scalar curvature.

We, however, are interested in the UV scaling of all
derivatives V — oo, which in momentum space represen-
tation of scattering amplitudes is conventionally repre-
sented by the high-energy Mandelstam invariants or
some other combinations of external momenta. In the
coordinate representation of the covariant perturbation
theory of [38—40] the role of this scale should be played
by some operator. So we suggest as a candidate for this
object the following nonlocal operator D which also
formally tends to infinity in the limit of V - o and in
fact embraces a simultaneous scaling of all invariant
monomials in (6.9),

(6.11)

N=1

Though being very formal, this operator is well defined in
each Nth monomial order because it becomes truncated
to the finite sum when acting on the monomial of N
perturbations Ay, ...hy, and for N =0 it is just zero
because of its action on an independent of x constant,

N

Dy = (— > GM> 1/2, Dy=0. (6.12)

M=1

In the UV domain V, — oo, when V,/Dy = O(1),
n < N, the form factors in each Nth order become after
the replacement u — D the functions of a single operator
variable Dy,

" vV, V
=y (ﬂ(u)l 71 —N>

K ) |u=by
— (D)7 (A(Dy)|0(1)) = (Dy)*"23" (D),
(6.13)

and the expansion of the formally independent of 4 action
takes the form

g, , = 0 [ /3Dy D1y
N=0
X (b by, )| (6.14)

The next step consists of the recovery of the covariant
form of the expansion in terms of the original spacetime
curvature. Curiously, despite the fact that the covariant
perturbation theory of [38—40] is rather often being referred
to in literature, subtle details of this step are usually
disregarded which leads to confusing statements on the
ambiguity of this procedure, dependence on the gauge
by which the metric perturbation h,, is related to the
curvature [33], etc. At the same time, this procedure is
unique, provided that one does not treat g,, and v,, as
Cartesian 9, and d,, but rather proceeds in a generic
coordinate system and uses the only invariant statements
that the curvature of the tilded metric is vanishing Rgﬂy =0.
This is the covariant equation for g, in terms of the curved
metric g,, and its curvature Ly whose solution exists as
perturbation expansion in R7, and also requires imposing
the gauge [38,39]. But the result of substituting this
solution back into manifestly noncovariant (double field)
series (6.6) is gauge independent because of the implicit
invariance of the left-hand side of (6.6).

In the convenient DeWitt type gauge @”hﬂy - %Vﬂh =
O[h?], h = §®h,p, the solution for &, and V, in terms of
g and V, reads in the lowest order as [38,39]

2
R,, + O[R?],

hﬂl/ — —E

V,=V,+0[MR]. (6.15)
Using this in (6.14) we get the replacement of 4 monomials
by the covariant curvature monomials along with the

replacement of Dy by Dy,

m 1 n
Iz(v J(hy, by, o hy) = ﬁgﬁz(v N ()
Y N
+ O[RVH), (6.16)
Dy — Dy + O[], (6.17)

where Dy is obviously defined by (6.12) in terms of full-
fledged covariant d’Alembertians [1 = ¢*V,V,, and we
reabsorb the coefficient (—2)" into the symbolic definition
of the Nth order covariant monomial—the analog of the
local SRE\,’") (x) [see Eq. (6.2)], with split N spacetime
arguments

R (xy.oxy) = Vo VR (x). R(xy). N> L
m—2N

(6.18)
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For N = 0O this monomial can be defined as an irrelevant
constant bringing no contribution in the UV limit.
Thus the UV limit of the effective action takes the form

DN)(DN)4 "

(6.19)

where we recall that the dimensionless form factors
(D
theory A"
tor Dy.

Let us consider an application of this result to the
cosmological constant sector involving the metric invari-

ants of dimensionality m = 0 and A(()4) = A/16zG. This
classical cosmological term gives rise to the infinite set of
zero dimension invariants

n) follow from the running RG couplings of the
)(u) by the replacement of u with the opera-

/ d*x /g = i / d*x\/31Y (5. h),  (6.20)
n=0

o - 1
1@ =1 17@h)=-3h

1 @) = e =512

S M (6.21)

(indices are contracted by the flat metric and h = §*h,,),
whereas at the quantum level they generate the sequence
of high energy m = 0 structures of (6.19)

{x}:x’
(6.22)

[ o0 AL, )
2 0,0y

where the zeroth order term is zero in view of Dy = 0 [see
Eq. (6.11)] and the first order term is also absent due to its
tadpole (total derivative) nature—remember that D; =

(=00,)"/% and D/00; = O, is acting on m?)(xl)'”

"An important caveat is necessary here concerning the
annihilation of the total derivative terms. The surface terms at
infinity should be vanishing, which i i equlvalent to a good IR
behavior of the nonlocal form factor /1 (D;) at 0 - 0. We will
assume this property based on the max1mum logarithmic singu-

larity of /1§0> (D) which is a function of log(—J) solving the RG
equation. The same also applies to integrations by parts consid-
ered in what follows. Otherwise, the procedure of subtracting the
boundary terms, like the Gibbons-Hawking surface action at
asymptotically flat infinity, will be needed, which we briefly
discuss below.

The expansion starts at N = 2 with the term which has
the following structure:

4y / d*x /g (x)A0 (V=20)R @) (x)

/ d*x\/g(R,,F(O)R* + RF,(C)R) + O[R3].

(6.23)

Here we took into account that the set of invariants

L (4
Eh<2 ) (x1,x,) can be represented as a sum of terms factored
out into the products of Ricci tensors and Ricci scalars with
some coefficients.'> ¢ and b,

Ry (x1, %) = ARy, (3 )R (%) + BR(x)R(x2),  (6.24)

and also used an obvious corollary of integration by parts,

/d4X\/§F(D17D2)m(x1)m<x2) {x)}=x

- / d*x\/gR (x)F(O, O)R(x). (6.25)

A remarkable feature of the expression (6.23) is that the
power-law operator factors in (Dy)*/0J;...y at N =2
completely canceled out to give the dimensionless form
factors F(J) and F,(0J) which originate as linear combi-

nations of relevant running /Ig))(\/ —2[0) obtained by
solving the RG equation. Even more remarkable is the
fact that this is a nonlocal term which is quadratic in the
curvature even though it has originated from the sector of
the cosmological term expanded in the series of zero
dimension invariants. This is what can be called meta-
morphosis to high-energy partners of the cosmological
constant suggested by J. Donoghue in [32]. Their structure
is a direct corollary of the dimensionality arguments within
the RG approach. The arising form factors of the curvature
squared terms are the descendants of RG running couplings
of the zero-dimension invariants which participate in the
decomposition of the cosmological constant term.

In fact, the same structure (6.23) gets reproduced
for the contribution of any dimension m in the
expansion (6.19). For even dimensionality,13 m — 2m,

Bilinear in Riemann curvature terms under the integration
sign also reduce to bilinear combinations of R,, and R by using
the expression for Riemann tensor in terms of the Ricci one
[38 39] see footnote 5.

BFor the set of two-dimensional curvatures 9 only even
dimensions m enter the expansion (6.19), but this can always be
generalized to the case of odd-dimensional “curvatures,” like for
example the extrinsic curvature in Horava gravity models.
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this can be easily demonstrated by decomposing any (2m -+ 4)-dimensional quadratic invariant as this was done

above:

5}1(2m+4 (x1,X) =

my+my=

Using this in (6.19) one has complete cancellation of the dimensional factor (D,)*~2" /[1* ~

(2m) —my—ny
o 3 B RO g [,

my+my=2m

m

—
Noting that with %\" "> =T ... Vi !?

Bianchi identity (V*R,, = %V,,R, etc.),

/d“x\/_ Y v Vo URWF(O)Y - Ui()

my+my= 2m m ny

Here the operators F;((J) and F,([J) have the same
dimension as F([J) and originate from F([J) by the algebra
of contracting the indices of covariant derivatives. Using
this relation in the left-hand side of (6.27) one gets the
right-hand side with completely canceled powers of [l.

Thus, Eq. (6.27) with m = 2 implies the conversion of the
gravitational coupling constant into the dimensionless form
factors of the Einstein term partners. These partners have the
same structure as the cosmological term partners quadratic in
curvatures. This is again the metamorphosis of the RG
running of the form 1/162G(u) = /42/1%2) (1) = Fi,(0O).

Note that all this takes place in the UV limit where all
curvatures in their monomials are rapidly varying in
spacetime with their derivatives V — oo. At intermediate
energies, when the mass scale M surfaces up, the scaling
(6.13) ceases to make sense and roughly should be replaced
with D ~ M, and instead of (6.23) one gets exactly the
cosmological constant partners of Donoghue [32] which
have the structure of

M* / d4x\/§<Rﬂ

. . rt
The dimensionless form factors F}5 (CJ) here are accumu-

lating loop corrections with nonlocal logarithmic structures
of the form

F ga;(zm) R). (6.29)

Frl’an(D) R/u_/ +R
DZ

M? -

Fr(0) ~n =

(6.30)
Note that these partners are still in the high-energy domain
—[ > M?, but they are subdominant as compared to the

leading contribution (6.23) with dimensionless form factors
which incorporate the logarithmically running solutions of

Z E}l m]+2

DR (1), (6.26)

17" in the expression

Fi(O)R* +RF,(L)R) +O[R%]. (6.27)

this follows from integration by parts and the use of various corollaries of contracted

= / d*x\/g(R,,O"F (O)R™ + RO"F,(C)R) + O[R%].  (6.28)

|
RG equations. This is because the partners (6.29) are sup-
pressed by power law factors M* /[0, The exact form of these
form factors at intermediate scales was derived at one-loop
order in [33] for a rather generic theory of massive fields by
using the heat kernel technique of [38,39]. In the IR domain
—[0 < M? they are of course expandable in the local gradient
series reflecting the decoupling phenomenon [33-35].
Similarly, the gravitational constant partner in IR reads as

/ d4xf< éD)R’“’JrR (DD)R), (631)

which reminds the construction of the nonlocal action for
long-distance modifications of gravity theory in [51,52].
This differs from the cosmological constant partner by
another power of M and the power of [ in the denominator.
One should be more careful at this point—while the
case of (6.31) is well defined in asymptotically flat
spacetime, the cosmological constant partner (6.29) is IR
divergent for the reasons discussed above. The action of é
is not well defined in four dimensions (or, equivalently,
[ d*x\/g(5M)* is IR divergent), so that the perturbation
expansion in the dimension zero sector should be critically
reconsidered. To trace the origin of this difficulty note
that the first three terms of the cosmological term
expansion (6.20) are divergent, whereas a similar expan-
sion for the Einstein term becomes well defined only after
the subtraction of the Gibbons-Hawking surface term
[ d*c"(0,h — 0”h,,) at the infinity of asymptotically flat
spacetime. Owing to this subtraction we can write for the
(x) = —R(x), weighted in the

(2)

Einstein action by A~ = 1/16zG, a legitimate expansion
(6.6) starting with the quadratic order in 4,

integral of the invariant g)t
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/ dx/G(=R) - / P (I,h— Phy)
_ i/dﬁ\@lgﬁ)(g, h),
M=2

1

o

1 ~ 1 - 1/~ - .
0.h) = —= - ——(V*h, —=
(5.h) = = a0 + 2 HOA 2(v b =5V h).
6.3

Then the above calculational strategy leads to the effective
action (6.31) whose tree-level IR limit should match low
energy physics with the Planck mass cutoff M? and the
form factors F;(0) =1 and F,(0) = 1/2. This tree-level

answer up to N’ corrections directly corresponds to the
above expression for Igz) (g. h) with h,, given by Eq. (6.15)
in terms of the curved space metric g, [51,52].

To the best of our knowledge, no such subtraction is
known for cosmological term expansion (6.20), so that its
rigorous treatment is still to be done. It is interesting if new
structures can be generated by the regularization of this IR
behavior. Apparently, this should be based on the analog of
the Graham-Fefferman construction for asymptotically
anti—de Sitter (AdS) spaces [75,76] and deserves further
studies.

In any case, the UV behavior of both cosmological and
gravitational constant partners, which should be not sensi-
tive to IR problems, is determined by curvature squared
terms (6.23) with running dimensionless “couplings.” Their
form factors F;(0J) and F,(OJ) follow from the RG running

of the relevant constants /léo) () and /1&2) (u), but the

transition 220’2) (n) = F1,(0) is not straightforward and
is mediated by Egs. (6.23), (6.27), and (6.28).

VII. CONCLUSIONS

To summarize our notes on conformal anomaly, nonlocal
effective action, and running scales let us briefly dwell on
possible applications of our results and related issues.

As it is clear from the above considerations, the
conformal anomaly action is a carrier of the effective
rather than fundamental conformal degree of freedom.
Either in the nonlocal or the Wess-Zumino form, it is
the difference of action functionals of two configurations
belonging to the orbit of the conformal group. So unless
one of these actions is known the corresponding physical
setup is not complete. In this respect, our approach is very
different from the works which endow the conformal factor
e the nature of the fundamental field [77] or, for example,
ready to sacrifice the Higgs boson in favor of 36 funda-
mental scalars [78,79] (which is done for the sake of a
complete eradication of Weyl anomaly and justification of
the cosmological perturbation spectra).

The CFT driven cosmology of Sec. V A seems to present
such an example where the physical setup is complete

within a certain approximation scheme. This approxima-
tion is associated with the dominance of conformal invari-
ant matter fields over the loop effects of gravity and other
types of matter and simultaneously puts the model in the
sub-Planckian domain of energies below the cutoff M /+/B
when the coefficient of the topological conformal anomaly
$ > 1 [43]. To match with the widely accepted bounds on
the energy scale of inflation ~10~°M » one needs 8 ~ 10'3,
which cannot be attained by a contribution of low spin
conformal fields # = (1/360)(Ny + 11N, +62N ) unless
the numbers N of fields of spin s are tremendously high.

On the contrary, this bound can be reached by appealing
to the idea of CHS fields [45]. A relatively low tower of
higher spins will be needed, because a partial contribution
of spin s to /3 grows as s°. These partial contributions f3, for
CHS totally symmetric tensors and Dirac spin tensors read
in terms of v,—their respective numbers of polarizations
(negative for fermions) [80,81]:

Cu(3+ 14y)

P =20 vy=s(s+1), s=12,3,..,
(7.1)
P, vy (124450, + 1413)
S 1440 ’
1\2 135
) -\, —— 2. (12
Vs <S+2> Y7222 (7.2)

The solution of hierarchy problem thus becomes a
playground of 1/N-expansion theory for large number N
of conformal species. Moreover, with the inclusion of CHS
fields the status of conformal anomaly essentially changes
and becomes similar to that of the chiral anomaly. Chiral
anomaly has phenomenological confirmation within chiral
symmetry breaking theory; it also has important implica-
tions in lepton physics, physics of the early Universe, its
baryon asymmetry theory, etc. It has a topological nature
and is generated in virtue of the Adler-Bardeen theorem
only at the one-loop level. Local Weyl anomaly also has a
topological (a-type) contribution [13], but for low spins it is
contributed by all orders of loop expansion. CHS spins,
however, have their inverse propagators ~[1° + ... and,
therefore, for high s are UV finite beyond one-loop
approximation. So their Weyl anomaly is also exhausted
by the one-loop contribution, and there is a hope that their
effect in the CFT driven cosmology is nonperturbative.
As this effect intrinsically, by a dynamical mechanism
of effective equations of motion [27,43,44,46], provides
the upper bound on the energy range of inflation
Mp/\/B < Mp, this also justifies omission of graviton
loops and quantum effects of other (nonconformal) types
of matter.

There are, however, serious problems on the road to the
realization of this model. To begin with, CHS fields in
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curved spacetime are not explicitly known yet, except
conformal graviton with s = 3/2 and Weyl graviton with
s = 2. Recent progress in generalizing these models to
arbitrary s on the Einstein-space background allowed one
to compute their one-loop Weyl anomaly coefficients (7.1)
and (7.2) (by indirect AdS/CFT method in [80] and
directly in [81]). This result, however, leaves the issue
of unitarity violation caused by inevitable higher deriva-
tives in wave operators of these fields. Moreover, these
fields should form a hidden sector not observable at
present, which implies the necessity of their eradication
in the course of cosmological expansion. What might be
useful for this purpose is the idea of renormalization group
flow from UV to IR decreasing the value of f (the so-called
a-theorem of [41,42,67]) or Weyl symmetry breaking
which would generate masses of CHS fields and thus
shorten their massless tower. Finally and most importantly,
the fundamental theory of these interacting CHS fields
should necessarily be organized within a special higher spin
symmetry [82,83]. A complete version of this theory is still
missing, not to mention its constructive extension to curved
spacetime. Thus, the progress here strongly depends on
advancing the theory of CHS fields [84-88].

The issue of RG running constants A and G has, as it is
shown, a rather unexpected resolution. The manifestation
of this UV running actually takes place in the nonlocal form
factors of the quadratic curvature (dimension four) terms
rather than in the sector of low-dimension operators. This
metamorphosis originates from establishing a rather non-
trivial scaling operator (6.11) embracing all powers of the
curvature expansion and exploiting a conventional RG
assumption that the renormalized theory does not depend
on the choice of the normalization (or subtraction) point.
Then simple, though somewhat tedious, dimensionality
considerations lead to this result. Dimension zero and
dimension two cosmological and Einstein terms do not
run themselves but still contribute to the running of the
dimension four terms which can be considered as UV
partners of A and G. This metamorphosis of RG running
couplings into the form factors of the curvature squared
terms sounds important, because it is the quadratic term in
the effective action that mainly determines either the
asymptotic freedom of the model or its cutoff beyond
which effective field theory breaks down.

In the IR domain these partners, due to the presence of
mass scale M, also start from the quadratic order in the
curvature, but they have essential nonlocality—of the type
M* [ d*x,/g(L 9M)? coming from the cosmological constant
sector [32] and of the form M? [ d*x,/gh 59 originating
from the gravitational constant one. While the latter is well
defined in the IR limit due to the subtraction from the IR
divergent bulk Einstein action of the Gibbons-Hawking
surface term [51,52], for the IR cosmological partner [32]
the situation is trickier—in view of IR divergences it
requires an additional subtraction procedure. Perhaps

even more radical changes will be needed to circumvent
this problem like the curvature expansion on top of the
homogeneous (dS or AdS) background with nonzero
curvature.

Of course, there can be other choices of the running scale
D different from (6.11). Nothing prevents one from
replacing it, say, with (3, (=Cy)¥)/?% or other combi-
nations of contracted derivatives. However, for curvature
squared terms of the action all such choices (satisfying the
homogeneity property with respect to derivative rescalings)
lead to one and the same operator ~(—[1)!/? because for the
second order of the curvature expansion all d’ Alembertians
reduce to the single one, [J; = [,, in view of integration
by parts (6.25). The only ambiguity is the choice of the
d’ Alembertian itself, but it is fixed by the requirement of
general covariance. Alterations in the choice of D certainly
affect higher orders in the curvature, but the curvature
squared part, which is most important for UV asymptotic
freedom or determination of the effective field theory
cutoff, stays uniquely defined.

Ambiguity in the choice of D can arise in the class of
theories which have a more or less conventional RG
running of the gravitational coupling G—renormalizable
Horava gravity models [53,89]. In these Lorentz symmetry
violating models a possible covariant curvature expansion
undergoes (3 + 1) splitting—the set of basic curvatures
includes the extrinsic curvature K;;, i, j = 1, 2, 3, of spatial
slices of constant time 7. The Einstein term of general
relativity is replaced by the sum of the kinetic term
~(162G)™" [d*x,/gK;; and the potential term built as a
polynomial in 3-dimensional curvature and its spatial
derivatives. The RG running of G in the kinetic term
proceeds as the insertion of the form factor G~!(D)
between two factors of K;;(x),

é/d“x\/g—]K%j - /d“x\/ﬁK,»j(x) G(ID) K" (x).

(7.3)

Thus no tadpole problem for the RG running of G takes
place here—just like in Yang-Mills type theories this occurs
without forming a total derivative structure.

However the relevant scaling operator D of a unit
anisotropic scaling dimension, which replaces the space-
time covariant square root of (—[J), turns out to be
ambiguous. The point is that in Lorentz violating models
the notion of a physical scaling dimension is replaced by
the anisotropic one which in (3 + 1)-dimensional Horava
gravity is —3 for the time coordinate and —1 for spatial
coordinates. Correspondingly the dimension six wave
operator of the theory is of the second order in time
derivatives and of the sixth order in spatial derivatives.
Therefore, D ~ (=02 — A3/M*)'/¢ where A is the spatial
covariant Laplacian and M is a physical mass scale
parameter. This parameter may be different in various
(scalar and transverse-traceless) sectors of the metric
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field [89], and this is a source of ambiguity in the running
scale of Horava models. Modulo this problem RG running
in renormalizable nonprojectable Horava gravity is well
defined and in the (3 + 1)-dimensional case has a legiti-
mate interpretation of asymptotic freedom [89].
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