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We discuss the structure of nonlocal effective action generating the conformal anomaly in classically
Weyl invariant theories in curved spacetime. By the procedure of conformal gauge fixing, selecting the
metric representative on a conformal group orbit, we split the renormalized effective action into anomalous
and Weyl invariant parts. Awide family of thus obtained anomalous actions is shown to include two special
cases of Riegert–Fradkin–Tseytlin and Fradkin–Vilkovisky actions. Both actions are shown to be contained
in the first 3 orders of the curvature expansion for a generic one-loop effective action obtained by covariant
perturbation theory. The complementary Weyl invariant part of the action is given by the “conformization”
of the full effective action—restricting its argument to the conformally invariant representative of the orbit
of the conformal group. This is likely to resolve a long-standing debate between the proponents of the
Riegert action and adherents of the perturbation expansion for the effective action with typical nonlocal
logarithmic form factors. We derive the relation between quantum stress tensors on conformally related
metric backgrounds, which generalizes the known Brown-Cassidy equation to the case of nonzero Weyl
tensor, and discuss applications of this relation in the cosmological model driven by conformal field theory.
We also discuss the issue of renormalization group running for the cosmological and gravitational coupling
constants and show that it exhibits a kind of a metamorphosis to the nonlocal form factors of the so-called
partners of the cosmological and Einstein terms—nonlocal curvature squared terms of the effective action.
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I. INTRODUCTION

The status of local Weyl anomalies is widely considered
to be fully settled in current literature. However, the issue of
their relevance to concrete physical effects, as opposed to a
mere criterion of consistency at the quantum level of the
classically Weyl invariant theories, often remains a subject
of the debate. The manifestation of the conformal anomaly
in physical applications usually occurs within the effective
action formalism, and there is, extending over years, debate
on the structure of this action, taking place between the
pioneers of the conformal anomaly and adherents of
perturbation theory. The nature of this debate consists of
a seemingly contradictory difference between the known
expression for the anomaly action and the form of the

nonlocal effective action obtained by Feynman diagram-
matic technique.
As is well known, the one-loop conformal anomaly for

classically Weyl invariant four-dimensional theory having
in Euclidean curved spacetime the covariantly renormal-
ized effective action Γ½gμν� reads as [1–7]

hTμ
μi≡ 2gμνffiffiffi

g
p δΓ

δgμν
¼ 1

16π2
ðαC2 þ βEþ γ□RÞ; ð1:1Þ

E ¼ RμναγRμναγ − 4RμνRμν þ R2; ð1:2Þ

where
ffiffiffi
g

p
E denotes the Gauss–Bonnet density; Cμναβ is

the Weyl tensor; C2 ¼ CμναβCμναβ; and α, β, and γ are the
numerical coefficients depending on the spin of the
quantum field.1 The anomalous action ΓA½gμν� generating
this anomaly was first derived in the nonlocal form by*barvin@td.lpi.ru
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1We work in Euclidean signature spacetime, and our notations
are Rα

βμν ¼ ∂μΓα
νβ − � � �, Rμν ¼ Rα

μαν, □ ¼ gμν∇μ∇ν. For sim-
plicity we do not include in the anomaly the contribution F2

μν of
the vector gauge field and φ4 contribution of the self-interacting
conformal scalar field.
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Riegert [8] and by Fradkin and Tseytlin [9] in the local
form of the conformal Wess-Zumino action involving an
auxiliary scalar field—the dilaton responsible for intetwin-
ing two conformally related metrics. The nonlocal form of
the Riegert–Fradkin–Tseytlin (RFT) action reads as

ΓA½g� ¼
1

64π2

Z
d4x

ffiffiffi
g

p �
αC2 þ β

2
E4

�
1

Δ4

E4

−
1

32π2

�
γ

6
þ β

9

�Z
d4x

ffiffiffi
g

p
R2; ð1:3Þ

where

E4 ≡ E −
2

3
□R; ð1:4Þ

Δ4 denotes the so-called Paneitz operator [10]

Δ4 ¼ □2 þ 2Rμν∇μ∇ν −
2

3
R□þ 1

3
ð∇μRÞ∇μ; ð1:5Þ

and 1=Δ4 implies its inverse—the notation for the
operation of acting by its Green’s function Gðx; yÞ on a
generic test function ψðyÞ, Δ4Gðx; yÞ ¼ δðx; yÞ, 1

Δ4
ψðxÞ ¼R

d4yGðx; yÞψðyÞ.
Some time after the invention of the RFT action the

attention to it was drawn by Antoniadis, Mazur, and Mottola
due to several applications in gravity theory [11,12], but this
caused a serious criticism [13] of the expression (1.3) in view
of its drastic structural difference from the renormalized
effective action built within perturbation theory in powers of
spacetime curvature. This expansion begins with [3]

Γren ¼
1

32π2

Z
dx

ffiffiffi
g

p �
−αCμναβ ln

�
−
□

μ2

�
Cμναβ −

γ

6
R2

�

þOðℜ3Þ; ð1:6Þ

ℜ collectively denoting here the Riemann, Ricci, and scalar
curvature, and does not at all resemble the form of (1.3). This
criticismwas maintained by objections against short distance
behavior of stress-tensor correlation functions generated
by the RFT action, which were shown to contradict the
conformal Ward identities for these correlators [14]. Another
criticism was associated with the objections against the
double-pole structure of the Green’s function of the operator
(1.5), ∼1=□2 [15]. Although these objections were dis-
claimed in [16] by explicit calculations of hTTTi correlators,
the question might still be hovering unsettled in the
literature [17].
The goal of this paper will be to discuss the status of the

effective action responsible for the generation of the Weyl
anomaly. To begin with we will focus on a wide variety of
nonlocal anomalous actions by including the RFT action in
their functional family. The idea of this construction is

similar to gauge fixing applied to the ambiguity of the
conformal split of the metric argument of the action
functional, which was suggested rather long ago in [18].
The resulting class of anomaly actions will be parametrized
by the conformal gauge selecting the representative on the
orbit of the local conformal group. We will explicitly
demonstrate that the difference between the members of
this class is a Weyl invariant functional—a point of
departure between various suggestions for the anomalous
action. Two particular gauges will be considered, one of
them exactly corresponding to the RFT action (1.3) and
another associated with the Weyl invariant nonlocal rescal-
ing of the metric field suggested by Fradkin and Vilkovisky.
This rescaling, which is directly applicable in asymptoti-
cally flat spacetimes, was designed as a remedy against the
trace anomaly [19]—the analog of the Yamabe problem of
a local Weyl transformation to the metric with a vanishing
scalar curvature.
Then we show how the Fradkin–Vilkovisky (FV) version

of the anomaly action arises in the first 3 orders of the
covariant curvature expansion for a generic one-loop
effective action. We discuss the associated mechanism of
partial summation of scalar curvature terms of this expan-
sion [20] along with the double-pole problem for the Green
function of the Paneitz operator (1.5).
Lack of uniqueness of the anomaly action defined only

up to a Weyl invariant functional raises, of course, the
question of its incompleteness in concrete applications.
This also poses the question of whether the RFT action
or its modifications within the above class provides an
optimal description of the physical problem in question.
For example, it is well known that in two dimensions the
stress-tensor trace anomaly and the associated nonlocal
Polyakov action are fully responsible for the Hawking
radiation of the two-dimensional black holes [21]. On the
contrary, in higher dimensions the anomaly action is
insufficient to describe this phenomenon. Still there is a
strong belief [11,12,16] that at distances of the horizon
scale gravity theory is essentially modified due to large
infrared effects of the conformal mode described by the
action (1.3). These effects might dominate macroscopic
physics at such scales, like for instance the near black hole
horizon behavior of quantum stress tensor [22], the con-
tribution to the scalar sector of gravitational waves [23],
or dynamical vacuum energy in effective theory of
gravity [24]. Though it is not entirely clear how complete
is the setup in these problems, there are physical situations
when the conformal mode really runs the whole show, and
we consider as a direct application of (1.3) two examples of
such a situation. These are the calculation of the metric
stress tensor in a generic conformally flat spacetime [25]
and the Friedmann metric cosmology driven by the trace
anomaly of conformal invariant fields [26], the latter
playing an important role in the model of initial conditions
for inflationary cosmology [27,28].
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A related issue in the problem of nonlocal effective
action is the question of renormalization group (RG)
running of the cosmological and gravitational constants.
Though the issue of running scale and its relation to the
cosmological constant problem have already become a
byword in current literature, it becomes increasingly clearer
that this running should not be interpreted in the usual
sense of RG theory [29,30]. The notion of “scale” is so
ambiguous in physics that its running nature actually looses
universality when addressing various physical setups, like
for example associating cosmological inflation with RG
running [31]. Serious arguments against the running nature
of the cosmological and gravitational couplings in [29,30]
have led to the notion of cosmological constant partners
[32] interpreted in [33] in terms of separation of scales or
decoupling of heavy modes [34,35]. Still, it is customary to
have nontrivial solutions of RG equations in renormalizable
gravity models [36,37] with running scale dependent Λ
and G. Therefore a natural question arises regarding how
these solutions have to be interpreted when the tadpole
structure of the covariant cosmological and Einstein
terms preclude them from their actual dependence on the
momentum [30].
So one of the goals of this paper is an attempt to clarify

this issue within a special version of the notion of the
“scale.” Looking forward to the final conclusion, we might
formulate the suggestion for the notions of running Λ
and G couplings as their conversion or metamorphosis into
their nonlocal partners similar to those introduced by
J. Donoghue in [32]. Within the perturbation scheme the
cosmological and Einstein terms start manifesting them-
selves as nonlocal curvature squared terms very different
from their original form.
The paper is organized as follows. In Sec. II we

decompose the quantum effective action into anomalous
and Weyl invariant parts by imposing the conformal gauge
for the choice of the representative on the orbit of the
conformal group. This allows one to build the whole class
of nonlocal anomalous actions, functionally parametrized
by the choice of this gauge and including the RFT action
(1.3) and the Fradkin-Vilkovisky action suggested in [20].
Section III contains the discussion of the covariant curva-
ture expansion of [38–40] and the way it contains the
anomalous action in the lowest orders of this expansion. In
particular, it is shown that the Fradkin-Vilkovisky version
of this action performs a resummation of the covariant
curvature series in powers of the Ricci scalar [20]. In
Sec. IV we give a direct and, apparently, not very well-
known derivation from the RFT action of the vacuum
stress-tensor behavior at the orbit of the conformal group—
a good example of direct applicability of (1.3). Here we
also comment on the application of the anomalous con-
formal Wess-Zumino action to the a-theorem [41,42]
and present the generalization of the Brown-Cassidy
formula [25] for the stress tensor to the case of a nonzero

Weyl tensor; see Eq. (4.34). Applications of the anomaly
action in conformally flat spacetime are presented in Sec. V.
It is shown how this action underlies the construction of the
inflation scenario starting from the cosmological initial
state in the form of the mircocanonical density matrix
[27,28,43–45], recently reviewed in [46]. An important
feature of this application is the value of the Casimir
vacuum energy which is also determined by the coefficients
of the anomalous trace (1.1) [47–50].
In Sec. VI we discuss the problem of scale dependence

of the gravitational and cosmological constants related to
the ideas of [29,30,32] and [51,52]. Here we show that
in the UV regime the RG analysis of the cosmological and
Einstein terms strongly points to the conversion of their
scale dependence into the nonlocal form factors of their
UV partners represented by curvature squared terms with
dimensionless nonlocal coefficients. We call this phenome-
non a metamorphosis of the running scale, which we derive
by using a special scaling operator. In the IR domain the
same analysis leads to the low energy partners depending
on the mass scale of the theory. These nonlocal partners
were suggested in [32] by J. Donoghue for the cosmologi-
cal constant term and blueprinted for the Einstein term
in [51,52] in the form of the long distance modification of
Einstein gravity.
In the concluding section we briefly recapitulate the

above observations and dwell on related potential problems
and applications. We start by discussing the role of the
Weyl anomaly in the problem of cosmological initial
conditions for the inflation scenario driven by a conformal
field theory [46]. This scenario motivates an introduction of
numerous conformal higher spin (CHS) fields whose Weyl
anomaly is generated only in the one-loop approximation
and, thus, acquires a kind of nonperturbative status. Then
we discuss the uniqueness for the nonlocal scaling operator
used for the derivation of the above metamorphosis
phenomenon. In particular, we show that in the curvature
squared terms of the action it is nearly uniquely determined
due to general covariance of the theory, though in Lorentz
symmetry violating models like Hořava gravity [53] it may
be rather ambiguous.

II. CONFORMAL GAUGE FIXING

The splitting of the renormalized effective action of a
classically conformally invariant theory into the anomaly
part ΓA generating the trace anomaly (1.1) and the Weyl
invariant part Γconf , gμνδΓconf=δgμν ¼ 0,

Γren ¼ ΓA þ Γconf ; ð2:1Þ

is obviously not unique and admits the freedom

ΓA → ΓA þWconf ; Γconf → Γconf −Wconf ; ð2:2Þ

with an arbitrary conformally invariant functional Wconf ,
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gμν
δWconf

δgμν
¼ 0: ð2:3Þ

The freedom in the choice of Wconf ½gμν� arises as a func-
tional integration constant for the first order variational
equation that can be written down for ΓA½gμν� or for the
renormalized effective action Γ½gμν�≡ Γren½gμν�. At the
orbit of the conformal group passing through the metric
gμν—the argument of the effective action—and parame-
trized by the local conformal parameter σ ¼ σðxÞ,

gμν ¼ e2σ ḡμν; ð2:4Þ

the renormalized action Γren½eσ ḡ� satisfies the equation

δΓren½e2σ ḡ�
δσ

¼
ffiffiffi
g

p
16π2

ðαC2 þ βEþ γ□RÞ
���
gμν¼eσ ḡμν

; ð2:5Þ

which can be integrated to give conformal Wess-Zumino
action [9]

ΔΓ½ḡ;σ�≡ Γren½g�− Γren½ḡ�

¼ 1

16π2

Z
d4x

ffiffiffī
g

p f½αC̄2 þ βĒ4�σþ 2βσΔ̄4σg

−
1

32π2

�
γ

6
þ β

9

�Z
d4xð ffiffiffi

g
p

R2 −
ffiffiffī
g

p
R̄2Þ; ð2:6Þ

where the two metrics gμν and ḡμν are related by the
equation (2.4), all barred quantities are built in terms of ḡμν,
and Δ̄4 is the barred version of the fourth-order Paneitz
operator (1.5). This expression Γren − Γ̄ren ¼ ΓA − Γ̄A can
also be rewritten in the other form,

ΓA½g� − ΓA½ḡ� ¼
1

16π2

Z
d4x

ffiffiffi
g

p f½αC2 þ βE4�σ − 2βσΔ4σg

−
1

32π2

�
γ

6
þ β

9

�Z
d4xð ffiffiffi

g
p

R2 −
ffiffiffī
g

p
R̄2Þ;

ð2:7Þ

if one takes into account two important properties of the
Paneitz operator—Weyl invariance of its densitized form,

ffiffiffī
g

p
Δ̄4 ¼

ffiffiffi
g

p
Δ4; ð2:8Þ

and the finite conformal transformation of E4—the Gauss-
Bonnet density modified by the

ffiffiffi
g

p
□R term (1.4),

ffiffiffi
g

p
E4 ¼

ffiffiffī
g

p
Ē4 þ 4

ffiffiffī
g

p
Δ̄4σ: ð2:9Þ

These two properties are consistent with each other because
the last equation should obviously remain valid under the
interchange of gμν and ḡμν accompanied by flipping the
sign of σ.

There is also the third form of the Wess-Zumino action,
which will be given below in Eq. (4.24). It exists for a
special renormalization converting to zero the coefficient γ
of the □R term in (1.1), and underlies the proof of the
so-called a-theorem for the monotonic RG flow of the
coefficient a ¼ β=16π2 of the topological term in the trace
anomaly [41,42].
Modulo a nonvanishing conformal anomaly all points

on the orbit of the conformal group (2.4) are physically
equivalent, and this typical situation of a broken local
gauge invariance can be managed by introducing the gauge
condition which uniquely selects ḡμν as the representative
of the equivalence class of metrics (2.4). If we denote this
gauge condition as χ½ḡ� ¼ 0 then this representative should
be uniquely selected by the solution of the equation for the
conformal parameter σ,

χ½ḡ� ¼ χ½ge−2σ� ¼ 0; ð2:10Þ

this solution being a functional of the metric Σχ ½ḡ�, labeled
by the gauge symbol χ,

σ ¼ Σχ ½ḡ�: ð2:11Þ

The representative of the conformal orbit ḡμν½g� as a
functional of a given metric gμν (through which the orbit
is passing) becomes Weyl invariant,

ḡμν½g�≡ gμνe−2Σχ ½ḡ�; gαβ
δḡμν½ḡ�
δgαβ

¼ 0; ð2:12Þ

because under any local Weyl rescaling gμν → e2σgμν the
conformal parameter transforms as Σχ ½g� → Σχ ½g� þ σ in
view of the identity χ½ge−Σχ ½g��≡ 0, so that

δσΣχ ½ḡ� ¼ σ; ð2:13Þ

where δσ is the operator of the conformal variation

δσ ≡ 2

Z
d4xσðxÞgμνðxÞ

δ

δgμνðxÞ
: ð2:14Þ

For the uniqueness of such a conformal gauge fixing
procedure (in spacetime and at least in some finite domain
of the space of metrics) the Faddeev-Popov operator
Qχ ¼ Qχðx; yÞ, corresponding to the gauge χ½g�, δωχðxÞ ¼R
d4yQχðx; yÞωðyÞ, should be nondegenerate.
Thus, the terms of (2.7)

Wconf ½g� ¼ ΓA½ḡ� þ
1

32π2

�
γ

6
þ β

9

�Z
d4x

ffiffiffī
g

p
R̄2 ð2:15Þ

taken at ḡμν½g� can be considered as an irrelevant Weyl
invariant integration “constant,” while the rest of the terms
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can be identified with the anomaly action after the sub-
stitution of σ ¼ Σχ ½g�. This set of anomaly actions ΓA½g�≡
Γχ ½g� parametrized and labeled by conformal gauge con-
ditions χ reads as

Γχ ½g� ¼
1

16π2

Z
d4x

ffiffiffi
g

p fðαC2 þ βE4ÞΣχ − 2βΣχΔ4Σχg

−
1

32π2

�
γ

6
þ β

9

�Z
d4x

ffiffiffi
g

p
R2: ð2:16Þ

The difference between various members of this set is,
of course, a Weyl invariant functional. For two arbitrary
conformal gauges one has

Γχ1 − Γχ2 ¼
1

16π2

Z
d4x

ffiffiffi
g

p ðΣχ1 − Σχ2Þ

× ½αC2 þ βE4 − 2βΔ4ðΣχ1 þ Σχ2Þ�: ð2:17Þ

Conformal variation of this expression is vanishing,
because of the transformation law (2.13) for Σ1;2, Weyl
invariance of the density

ffiffiffi
g

p
C2, and the relation (2.9) which

in the infinitesimal form reads as

δσ½
ffiffiffi
g

p
E4� ¼ 4

ffiffiffi
g

p
Δ4σ; ð2:18Þ

so that using all the above properties δσðΓχ1 − Γχ2Þ ¼ 0.
Note that with our definition of the anomaly action

(2.16) the way it enters the full quantum action can be
represented as

Γ½g� ¼ Γχ ½g� þ Γ½ḡ� þ 1

32π2

�
γ

6
þ β

9

�Z
d4x

ffiffiffī
g

p
R̄2; ð2:19Þ

where ḡμν½g� ¼ e−2Σχ ½g�gμν.

A. Riegert-Fradkin-Tseytlin gauge

An obvious choice of the conformal gauge associated
with the Gauss-Bonnet density and the Branson curvature
is the Riegert-Fradkin-Tseytlin gauge

χRFT½ḡ�≡ Ē4 ¼ 0: ð2:20Þ

It can be imposed for topologically simple spacetime
manifolds with a vanishing bulk part of the Euler character-
istics [see Eq. (2.38) and footnote below]. In particular, this
property holds for asymptotically flat spaces which are
mainly considered in the paper. The advantage of this
gauge is that it is exactly solvable due to the transformation
law for the Branson curvature (2.9). Applying this gauge
and using Eq. (2.8) we obtain a linear equation on ΣRFT
which has a solution in terms of the inverse Paneitz operator

ΣRFT ¼ 1

4

1

Δ4

E4: ð2:21Þ

Formally substituting this expression to (2.16) we obtain
exactly the RFT action (1.3).
This RFTaction and the inverse Paneitz operator are well

defined and exist in asymptotically flat spacetime under
Dirichlet boundary conditions at infinity when treated
within perturbation theory in powers of the curvatures
whose collection is denoted below asℜ. Indeed, in this case

1

Δ4

¼ 1

□
2
þOðℜÞ; ð2:22Þ

and this operator works well when it is applied to the
functions of the Branson curvature type ∼E4. Because of
the double-pole nature of the operator 1=□2 its action on
generic functions may be badly defined due to infrared
divergences, but when the function is represented by the
total-derivative structure it generates, when acted upon
by 1=□2, well-defined multipole expansion valid in four
dimensions at spacetime infinity [39].2 But the Gauss-
Bonnet density and

ffiffiffi
g

p
□R are both locally a total deriva-

tive which makes 1=Δ4 well defined in the expression
(2.21) for ΣRFT. This in fact implies the invertibility of the
Faddeev-Popov operator in this gauge, which up to co-
efficient coincides with the Paneitz operator, QRFT ¼ 4Δ4,
and thus guarantees local uniqueness of the conformal
gauge fixing procedure.
Moreover, the above observation serves as a repudiation

of the harmful role of double poles in the RFT action that
was claimed in [15]. Absence of infrared dangerous double
poles is explicit in the lowest order of the curvature
expansion for ΣRFT which reads as

ΣRFT ¼ −
1

6□
RþOðℜ2Þ; ð2:23Þ

in view of the fact that the Gauss-Bonnet density is
quadratic in the curvature

ffiffiffi
g

p
E ¼ Oðℜ2Þ. Higher orders

of this expansion are also safe because of the total-
derivative nature of

ffiffiffi
g

p
E. Regarding the lowest order

quadratic in curvature part, with the above approximation
for ΣRFT it equals

ΓRFT½g� ¼ −
γ

192π2

Z
d4x

ffiffiffi
g

p
R2 þOðℜ3Þ; ð2:24Þ

2As discussed in [39], the operator 1=□n in D-dimensional
space with D < 2n is ill defined unless the functions it acts upon
are of the form ∂α1…∂αmjðxÞ, m ¼ 2n −Dþ 1 with the function
jðxÞ having an asymptotic behavior jðxÞ ¼ Oð1=jxjDÞ, jxj → ∞.
This property can be explained by the fact that in the multipole
expansion of 1

□
∂α1…∂αmjðxÞ the first few multipoles vanish,

which improves the fall-off properties of the result at infinity and
makes possible a repeated action by 1=□.
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because all the terms depending on the parameter β
completely cancel out, and what remains coincides with the
last quadratic term of (1.6). This coincidence fully matches
with the linear in curvature part of the trace anomaly (1.1)
(its γ term) generated by the quadratic action (1.6). Indeed,
the conformal transformation of its nonlocal Weyl term
contributes only to the Oðℜ2Þ part of the anomaly due to
the fact that only its form factor lnð−□=μ2Þ is not Weyl
invariant, and the whole γ term of the anomaly entirely
comes from the R2 part of (1.6).

B. Fradkin-Vilkovisky gauge

Another conformal gauge arises in the context of
conformal off shell extension of Einstein gravity suggested
in [19] and corresponds to the four-dimensional version of
the Yamabe problem. The representative of the conformal
group orbit is chosen to be the metric with a vanishing
scalar curvature

χFV½ḡ� ¼ R̄; ð2:25Þ

which implies a nonlinear but still explicitly solvable
equation for ΣFV,

R½e−2ΣFVgμν� ¼ e3ΣFVðR − 6□Þe−ΣFV ¼ 0: ð2:26Þ

This solution reads as

ΣFV ¼ − ln

�
1þ 1

6

1

□ − R=6
R

�
; ð2:27Þ

lim
jxj→∞

e−ΣFV ¼ 1 ð2:28Þ

in terms of the inverse of the conformal second order
operator □ − 1

6
R subject to zero boundary conditions at

infinity. This inverse operator also admits covariant curva-
ture expansion and in the lowest order yields the function
ΣFV coinciding with that of the RFT gauge (2.23),

ΣFV ¼ ΣRFT þOðℜ2Þ; ð2:29Þ

and, therefore, generates in the quadratic order the same
expression for the anomaly action

ΓFV ¼ ΓRFT þOðℜ3Þ: ð2:30Þ

Using Eqs. (2.17) and (2.21) it is easy to see that the
difference between RFT and FV actions is given by the
exact expression

ΓRFT − ΓFV ¼ 1

16π2

Z
d4x

ffiffiffi
g

p ðΣRFT − ΣFVÞ

× ½αC2 þ 2βΔ4ðΣRFT − ΣFVÞ�; ð2:31Þ

bilinear in the local Weyl squared term and conformally
invariant nonlocal functional

ΣRFT − ΣFV ¼ 1

4

1

Δ4

E4 þ ln

�
1þ 1

6

1

□ − R=6
R

�
¼ Oðℜ2Þ:

ð2:32Þ

Therefore within perturbation theory these two actions
remain coinciding even in the cubic order and become
different only starting from the fourth order in the
curvature.
Perturbatively both terms of (2.32) produce similar

nonlocal structures of treelike nature, that is the terms
characteristic of the tree-level approximation in field
theory. Such terms are composed of the powers of inverse
d’Alembertians acting on the curvature tensor structures or
on the products of similar nonlocal tensor structures built
according to the same pattern. However, taken separately
as exact entities they have essentially different types of
nonlocality. RFT action formalism involves the Green’s
function of the fourth order Paneitz operator, whereas the
FV version of the action is based on the Green’s function
of the second order operator □ − 1

6
R. Both operators are

conformally covariant, but the Weyl transformation of
□ − 1

6
R is different from (2.8)

□ −
1

6
R ¼ e−3σ

�
□ −

1

6
R̄

�
eσ; gμν ¼ e2σ ḡμν: ð2:33Þ

Moreover, FV action formalism involves a special loga-
rithmic nonlinearity absent in RFT gauge fixing. The action
of the Paneitz operator derivatives in (2.16) can destroy
this logarithmic structure, but the ΣFVC2-term in ΓFV still
contains it intact.
A further comparison of the RFT and FV actions can be

done along the lines of their “naturalness.” RFT gauge
(2.20) is based on structures organically belonging to the
conformal anomaly formalism in the sense that it involves
the same fundamental objects—the Branson curvature E4

and the relevant Paneitz operator Δ4 which are immanently
present in the flow of the anomalous action along the
conformal group orbit (2.6). One could even interpret this
gauge as the one providing the extremum of β terms in
this expression with respect to the variation of the orbit
parameter σ. This interpretation is, however, erroneous
because gμν, ḡμν, and σ cannot be treated as independent
variables in Eq. (2.6).
On the contrary, FV gauge (2.25) uses a somewhat

extraneous entity—the scalar curvature—which is singled
out only by the fact that it turns out to be the bearer of the
metric conformal mode. As the result the advantage of FV
gauge is that it does not involve higher than second order
derivatives and does not produce double-pole nonlocalities.
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Another advantage is that the equation (2.19) disentangling
the FV anomaly action from the full effective action
becomes in view of R̄ ¼ 0 much simpler

Γ½g� ¼ ΓFV½g� þ Γ½ḡ�jḡμν½g�; ð2:34Þ

where ḡμν½g� ¼ e−2ΣFV½g�gμν, which is obviously consistent
with the fact that ΓFV½ḡ� ¼ 0 because ΣFV½ḡ�≡ 0.
As compared with the FV version, among technical

disadvantages of the RFT gauge and the action is the
presence of fourth order derivatives of the Paneitz operator.
Owing to this the RFT version turns out to be vulnerable
from the viewpoint of possible generalizations. For exam-
ple, a modification of the gauge (2.20) by the additional
Weyl squared term, χRFT → χRFT þ aC2 would not work,
because the relevant modification ΣRFT → ΣRFT þ
að2Δ4Þ−1C2 is badly defined for the reasons described
above in footnote—the additional term should have a total-
derivative structure.
The generalization to spacetimes with nontrivial top-

ology is also not straightforward, because the condition
(2.20) should not contradict the nonvanishing Euler number
of the manifold, which for compact manifolds without
a boundary reads as eE ¼ 1

32π2

R
d4x

ffiffiffi
g

p
EðxÞ. Say, for a

compact manifold of a finite volume V ¼ R
d4x

ffiffiffi
g

p
the

gauge (2.20) can be chosen to be

χðḡÞ ¼ ffiffiffī
g

p �
Ē −

2

3
□ R̄−32π2

eE
V̄

�
; ð2:35Þ

but this leads to a nonlinear integrodifferential equation for
the relevant Σ

4
ffiffiffi
g

p
Δ4Σ ¼ ffiffiffi

g
p �

E −
2

3
□R − 32π2

e−4Σ

he−4Σi
eE
V

�
; ð2:36Þ

he−4Σi≡ 1

V

Z
d4x

ffiffiffi
g

p
e−4Σ; ð2:37Þ

which apparently can be solved analytically only by
perturbations in eE=V.
Unless stated otherwise, below we consider asymptoti-

cally flat spacetime with a trivial topology, whose Euler
characteristics should be modified by the boundary term.
For generic four-dimensional manifolds with a smooth
boundary it reads as

eE ¼ 1

32π2

�Z
M

d4x
ffiffiffi
g

p
EðxÞ þ

Z
∂M

d3x
ffiffiffi
γ

p
ΩðxÞ

�
; ð2:38Þ

where γ ¼ det γab and γab is the induced metric on ∂M.
For the asymptotically flat case due to the contribution of
∂M at infinity jxj → ∞ it equals 1, so that everywhere in

what follows the bulk part of the Euler characteristics
is 1

32π2

R
d4x

ffiffiffi
g

p
EðxÞ≡ e0E ¼ eE − 1 ¼ 0.3

III. CONFORMAL ANOMALY AND COVARIANT
CURVATURE EXPANSION

Despite the diversity of nonlocal structures of RFTand FV
versions of anomaly action, neither of them seem to appear in
conventional perturbation theory for quantum effective
action. The covariant form of this perturbation theory in
curved spacetime (1.6) was pioneered in [3], but its loga-
rithmic nonlocal form factor did not resemble the nonlocal
operators of the RFTaction (1.3). Herewe show how in spite
of these discrepancies the anomaly action originates from the
covariant perturbation theory of [38–40].
This perturbation theory arose as a concrete implementa-

tion of the ideas of [3] as an expansion in powers of covariant
tensors of spacetime and fiber bundle curvatures and other
covariant background field objects. This expansion is com-
pletely equivalent to standard Feynman diagrammatic tech-
nique and represents its resummation converting the original
perturbation series in noncovariant odjects, like matter and
metric field perturbations on top of flat and empty spacetime
background, into the series in powers of covariant field
strengths denoted collectively below by ℜ and including
spacetime and fiber bundle curvature.
To be more specific, consider the theory with the inverse

propagator on top of the nontrivial field background
F̂ð∇Þ ¼ FA

Bð∇Þ, the hat denoting the matrix structure of
the operator acting in the space of fields φ ¼ φAðxÞ with a
generic spin-tensor index A and ∇ ¼ ∇μ denoting the
covariant derivative with respect to the corresponding fiber
bundle connection,

F̂ð∇Þ ¼ □þ P̂ −
1̂

6
R; □ ¼ gμν∇μ∇ν: ð3:1Þ

This operator is characterized by the “curvatures”—metric
Riemann tensor with its Ricci contractions, fiber bundle
curvature R̂μν determining the commutator of covariant
derivatives, ½∇μ;∇ν�φ ¼ R̂μνφ, and the potential term P̂

(the term − 1̂
6
R is disentangled from the operator potential

for reasons of convenience),

ℜ ¼ ðRμ
ναβ; Rμν; R; R̂μν; P̂Þ: ð3:2Þ

In covariant perturbation theory the one-loop effective
action gets expanded in powers of the curvatures

3I am grateful to M. Duff for this observation. An explicit and
simple expression for the boundary term of the Euler character-
istics in the four-dimensional case can be found in [36],
Ω ¼ 1

4
Ra⊥b⊥Kab þ 16 detKa

b, where Kab ¼ ∇anb is the extrinsic
curvature of the boundary, and ⊥ denotes the projection on the
outward pointing normal vector nμ. The last term in Ω exactly
reproduces the value of the Euler number eE ¼ 1 for flat and
asymptotically flat spaces [54].

NOTES ON CONFORMAL ANOMALY, NONLOCAL EFFECTIVE … PHYS. REV. D 108, 045014 (2023)

045014-7



Γ¼ 1

2
Tr lnFð∇Þ ¼ Γ0 þΓ1

zfflfflfflffl}|fflfflfflffl{local power div

þ Γ2 þΓ3 þOðℜ4Þ; ð3:3Þ

where Γn ∼ℜn. Within dimensional regularization of
2ω-dimensional spacetime, ω → 2, the zeroth and first
order terms of the expansion represent pure power

divergences (note that we consider the case of a massless
theory, or the theory where the mass matrix is included
in the potential term P̂ and treated by perturbations),
so that these two terms are annihilated by the regulariza-
tion, while the second order term is given by the
expression [38]

Γð2Þ
dim reg ¼ −

Γð2 − ωÞΓðωþ 1ÞΓðω − 1Þ
2ð4πÞωΓð2ωþ 2Þ μ4−2ω

Z
dx

ffiffiffi
g

p
tr
n
Rμνð−□Þω−2Rμν1̂ −

1

18
ð4 − ωÞðωþ 1ÞRð−□Þω−2R1̂

−
2

3
ð2 − ωÞð2ωþ 1ÞP̂ð−□Þω−2Rþ 2ð4ω2 − 1ÞP̂ð−□Þω−2P̂þ ð2ωþ 1ÞR̂μνð−□Þω−2R̂μν

o
; ð3:4Þ

where ω ¼ d
2
→ 2. Here tr denotes the matrix trace, and the

concrete coefficients implement the originally conjectured
structure of dimensionally regularized effective action
Lagrangian, ℜð−□Þω−2ℜ, that was blueprinted in [3].
What is important and should be especially emphasized
is that □ ¼ gμν∇μ∇ν means here the full covariant
d’Alembertian acting on a respective scalar R, tensor Rμν

or spintensor R̂μν, and P̂ objects.
For brevity we will consider the case of a single

conformal scalar field with 1̂ ¼ 1, P̂ ¼ 0, R̂μν ¼ 0 and the
following values of the trace anomaly coefficients4:

α ¼ −
1

120
; β ¼ 1

360
; γ ¼ −

1

180
; ð3:5Þ

for which the action (3.4) takes the form—a particular case
of (1.6),

Γð2Þ
ren ¼ 1

32π2

Z
dx

ffiffiffi
g

p 	
1

60

�
Rμνγð−□ÞRμν −

1

3
Rγð−□ÞR

�

þ R2

1080




¼ 1

32π2

Z
dx

ffiffiffi
g

p 	
1

120
Cμναβγð−□ÞCμναβ þ R2

1080




þOðℜ3Þ: ð3:6Þ

Here γð−□Þ is the nonlocal form factor [in minimal
subtraction scheme with lnð4πÞ and Euler constants
absorbed in μ]

γð−□Þ ¼ ln

�
−
□

μ2

�
−
16

15
; ð3:7Þ

and the transition to the last line is valid up to the higher
order terms in curvature and based on the nonlocal
generalization of the identity

Z
d4x

ffiffiffi
g

p
C2 ¼ 2

Z
d4x

ffiffiffi
g

p �
RμνRμν −

1

3
R2

�
ð3:8Þ

derived in [39,40] by integration by parts and use of the
nonlocal representation of the Riemann tensor in terms of
the Ricci one (see footnote below).
The first term of this action is obviously conformal

invariant in quadratic order, so that the linear in curvature
part of the anomaly originates from the last term which is
the RFT (or FV) action (2.24) in the quadratic approxi-
mation with γ ¼ −1=180. Thus, the RFT or FV action is
fully recovered in this approximation from perturbation
theory and, as expected, turns out to be local.

A. Cubic order

Quadratic order of the covariant curvature expansion is,
in fact, a trivial generalization of the flat space expressions
for self-energy operators of Feynman diagrammatic tech-
nique, because lnð−□=μ2Þ is just a straightforward replace-
ment of the typical momentum space form factor lnðp2=μ2Þ
by its position space version. At higher orders the situation
becomes much more complicated and usually represented
in terms of correlators of the stress tensor and other
observables, written down in momentum space represen-
tation; see Refs. [55–57] for the treatment of generic
conformal field theories. These correlators are, of course,
contained in the effective action expanded in curvatures
which, for reasons of general covariance, we prefer to
consider in coordinate representation.
In this representation the effective action becomes for

each order N in the curvature a sum of nonlocal monomials

4The coefficients have the opposite sign to those of b ¼
−α=16π2 and b0 ¼ −β=16π2 in [4], because in our case the stress
tensor is defined with respect to the Euclidean effective action
Γ ¼ −iΓL in contrast to the definition of Tμν ¼ 2g−1=2δΓL=δgμν
in the Lorentzian signature spacetime of [4]. Comparison with [5]
should also take into account another sign of the stress tensor
defined by the variation with respect to the contravariant metric.
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Z
d4x1 � � � d4xNFðx1;…; xNÞ∇…∇ℜðx1Þ…ℜðxNÞ ð3:9Þ

with nonlocal multiple-point coefficients and covariant
derivatives somehow acting on the product of curvatures
at their various points. The absence of convenient and
generally covariant momentum space representation makes
us work in coordinate representation and invent a special
language which would simplify the formalism and make
it manageable [38–40]. This language is based on the
operator representation of nonlocal form factors,

Fðx1;…; xNÞ ¼ Γð∇1;…;∇NÞδðx1; x2Þδðx1; x2Þ � � �
× δðx1; xNÞ; ð3:10Þ

where Γð∇1;…;∇NÞ is the operator-valued function of N
independent covariant derivatives such that each ∇i is
acting on its own xi. This allows one to write the orders of
perturbation theory as

ΓðNÞ ¼ 1

2ð4πÞ2
Z

d4x
ffiffiffi
g

p X
M

ΓMð∇1;…;∇NÞ

× IMðx1;…; xNÞ
���
fxg¼x

; ð3:11Þ

where summation runs over all invariant monomials in
curvatures of a given nth order

IMðx1;…; xNÞ ∼∇ � � �∇ℜðx1Þ � � �ℜðxNÞ ð3:12Þ

and after the action of all independent derivatives on their
arguments all these arguments fxg ¼ ðx1;…xNÞ have to be
identified.
In the cubic order for the full set of curvatures (3.2) there

are 29 such invariant structures built of these curvatures and
their covariant derivatives with all indices fully contracted
with each other. Moreover, in view of the scalar (no free
indices) nature of the form factors and the formal identity
∇1 þ∇2 þ∇3 ¼ 0 (reflecting the possibility of integration
by parts without surface terms, which is a counterpart to the
momentum conservation in Feynman diagrams) the form
factors of Γð3Þ can be written down as functions of three
d’Alembertians □1, □2, and □3 independently acting
on three arguments of IMðx1; x2; x3Þ. Thus, cubic order
reads as

Γð3Þ ¼ 1

2ð4πÞ2
Z

dx
ffiffiffi
g

p X29
M¼1

ΓMð□1;□2;□3Þ

× IMðx1; x2; x3Þ
���
fxg¼x

: ð3:13Þ

The list of cubic invariants and their form factors is
presented in [18,20,40]. It is very long and, as its details are
not necessary for our purposes, we will not fully present it

here. We only give the general structure of the nonlocal
form factors of these invariants. It reads as a sum of three
different groups of terms,

ΓMð□1;□2;□3Þ ¼ AMΓð□1;□2;□3Þ þ
X3
1≤i<k

Dik
M

ð□i −□kÞ

× ln
□i

□k
þ BM: ð3:14Þ

Here Γð□1;□2;□3Þ is the fundamental cubic form factor
corresponding to the triangular Feynman graph of massless
theory with unit vertices [58],

Γð□1;□2;□3Þ

¼
Z
α≥0

d3αδð1−α1−α2−α3Þ
α1α2ð−□3Þþα1α3ð−□2Þþα2α3ð−□1Þ

; ð3:15Þ

which cannot be reduced to an elementary function. The
operator-valued coefficients AM, BM, and Dik

M are rational
functions of three □ arguments with a polynomial numer-
ator Pð□1;□2;□3Þ and the denominator containing
together with the product □1□2□3 also the powers of a
special quadratic form of these arguments D,

AM;Dik
M; BM ∼

Pð□1;□2;□3Þ
□1□2□3DL ; L ≤ 6; ð3:16Þ

D ¼ □1
2 þ□2

2 þ□3
2 − 2□1□2 − 2□1□3 − 2□2□3:

ð3:17Þ

In this cubic order of the curvature expansion the
conformal anomaly (1.1), which is quadratic in curvatures,
was explicitly derived by the direct variation of the metric
in [59]. Though this derivation has demonstrated nontrivial
localization of the nonlocal terms under the straightforward
tracing of the metric variational derivative, it still remained
rather technical and not very illuminating because it has not
revealed the anomalous part of the action. It turns out,
however, that the transition to another basis of curvature
invariants, suggested in [18,20], explicitly disentangles
this part.

B. Conformal resummation: Fradkin-Vilkovisky
anomaly action

The recovery of the anomaly part of the action and its
conformal invariant part is based on a simple idea that the
latter should consist of the series of Weyl invariant
structures. The construction of Weyl invariants can be
done by the gauge fixing procedure of the above type—
choosing the representative metric on the group orbit by
imposing the conformal gauge. Obviously the set of
invariants surviving after imposing this gauge will be
minimal if the gauge would explicitly annihilate the
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maximum number of invariants in their original full set. For
this reason the FV gauge (2.25) is much easier to use for the
separation of the total set of invariants into the Weyl type
ones and those which vanish when the gauge is enforced.
As R is one of the curvatures in the set ofℜ the FV gauge is
more useful for the purpose of such a separation than the
RFT gauge (2.20) which nonlinearly intertwines all the
curvatures. Intuitively it is also clear because R, in contrast
to Cα

βμν, is a bearer of the conformal mode.
In the purely metric sector such a separation is attained

by the transition to the new curvature basis [20],

ℜ ¼ ðRμ
ναβ; Rμν; RÞ → ℜ̃ ¼ ðCα

βμν; RÞ; ð3:18Þ

via expressing the Ricci tensor in terms of the Weyl tensor
and the Ricci scalar.5 This expression follows from the
contracted Bianchi identity which for the Weyl tensor
reads as

∇β∇αCαμβν ¼
1

2
□Rμν −

1

6
∇μ∇νR −

gμν
12

□RþOðℜ2Þ:
ð3:19Þ

This equation can be solved by iterations for the Ricci
tensor in terms of nonlocal series in powers of two
objects—the Ricci scalar R and the new traceless (and
up to quadratic order transverse) tensor Cμν which is itself a
nonlocal derivative of Weyl,

Cμν ¼
2

□
∇β∇αCα

μβν: ð3:20Þ

The resulting series begins with

Rμν ¼ Cμν þ
1

3
∇μ∇ν

1

□
Rþ 1

6
gμνRþOðℜ̃2Þ: ð3:21Þ

Effective action re-expansion implies the transition from
IMðx1;…; xnÞ to a new basis of invariants,

ĨMðx1;…xnÞ ∼∇…∇ℜ̃ðx1Þ…ℜ̃ðxnÞ; ð3:22Þ

which can be separated in the set of monomials
ICðx1;…; xnÞ involving only Cμν and the set of monomials
IRðx1;…; xnÞ containing at least one scalar curvature
factor,

ICðx1;…xnÞ ∼∇…∇Cðx1Þ…CðxnÞ; ð3:23Þ

IRðx1;…xnÞ ∼∇…∇Rðx1ÞCðx2Þ…CðxnÞ;
∇…∇Rðx1ÞRðx2ÞCðx3Þ…CðxnÞ;… ð3:24Þ

Expansion in the new basis of invariants implies, of
course, the transition to a new set of their relevant form
factors

ΓMð∇1;…∇nÞ → ΓCð∇1;…∇nÞ;ΓRð∇1;…∇nÞ; ð3:25Þ

and the new expansion takes the form

Γ ¼ W þ ΓR; ð3:26Þ

whereW is the Weyl and ΓR is the mixed Weyl-Ricci scalar
parts of the whole expansion, which wewrite in abbreviated
form (omitting multiple spacetime arguments and the
operation of equating them),

W ¼ 1

32π2

Z
d4x

ffiffiffi
g

p X
n;C

ΓðnÞ
C IðnÞC ; ð3:27Þ

ΓR ¼ 1

32π2

Z
d4x

ffiffiffi
g

p X
n;R

ΓðnÞ
R IðnÞR : ð3:28Þ

Note that W and its Weyl basis invariants are not Weyl
invariant, because apart from Weyl tensors they contain
covariant derivatives and nontrivial form factors which do
not possess conformal invariance properties.
The main statement on the conformal decomposition of

the effective action of [20] is that

Γ½g� ¼ ΓFV½g� þW½ḡ�jḡμν¼e−2ΣFV ½g�gμν ; ð3:29Þ

where ΓFV½g� is exactly the FV anomaly action introduced
above.6 The conformally invariant part is obtained by the
“conformization” ofW, while the rest of the effective action
is exhausted by the Fradkin-Vilkovisky anomaly action.
The invariant meaning of this representation is that the
Ricci part of the full action is not independent, but fully
determined by the anomaly and Weyl parts of the action.
This is the realization of Eq. (2.34) within the perturbation
theory in curvatures. This result is likely to resolve a long-
standing debate between the proponents of the Riegert
action and adherents of the flat space perturbation expan-
sion for the effective action with typical nonlocal loga-
rithmic form factors of the form (3.7). Note that these form
factors do not contribute to the anomaly even though their
coefficients are directly related to its expression (1.1).5In fact, the original basis and the curvature expansion of

[38–40] consisted of Rμν and R because in asymptotically flat
Euclidean spacetime the Riemann tensor can be expressed as
nonlocal power series in the Ricci tensor, Rαβμν ¼ 1

□
ð∇μ∇αRνβ−

∇ν∇αRμβÞ − ðα ↔ βÞ þOðℜ2Þ—the corollary of contracted
Bianchi identity.

6One can check that the last four lines of Eq. (24) in [20] form
an exact expression for ΓFV½g� by taking into account that the
function Z in this equation coincides with −ΣFV and satisfies the
equation □Z þ 1

2
ð∇ZÞ2 ¼ 1

3
R.
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Rather they become Weyl invariant under the substitution
of ḡμν as their functional argument.
Validity of the representation (3.29) was checked in the

cubic order approximation for the effective action in [20].
The transition to the new basis of invariants in the second
order leads to [see the second line of Eq. (3.6)]

Wð2Þ½g� ¼ 1

32π2

Z
dx

ffiffiffi
g

p 1

120
Cμναβγð−□ÞCμναβ; ð3:30Þ

Γð2Þ
R ½g� ¼ 1

32π2

Z
dx

ffiffiffi
g

p 1

1080
R2; ð3:31Þ

whereas in the third order it results in a great simplification

of the “Ricci scalar” form factors Γð3Þ
R as compared to the

original ones—they become much simpler and, moreover,
in their expressions of the form (3.14) the coefficients
A;Dik

M; BM of (3.16) completely lose powers of the function
D in the denominator. Thus, modulo the contributions of

lnð□i=□kÞ=ð□i −□kÞ the form factors Γð3Þ
R acquire the

tree-level structure. The terms with these factors get,
however, completely absorbed with accuracy Oðℜ4Þ by
the replacement Wð2Þ½gμν� → Wð2Þ½ḡμν� in view of the
following relation [40]:

Wð2Þ½g�−Wð2Þ½ḡ�∼
Z

dx
ffiffiffi
g

p
Cμναβ½lnð−□Þ− lnð−□Þ�Cμναβ

¼
Z

dx
ffiffiffi
g

p lnð□1=□2Þ
□1 −□2

½□2 −□2�C1μναβC
μναβ
2 þOðℜ4Þ;

□2 −□2 ∼ℜ3 þOðℜ2Þ; ð3:32Þ

where the right-hand side is the set of relevant cubic order terms with the above factor acting on two Weyl tensors out of

three curvatures in RCC-type invariants. What remains in the sector of cubic Ið3ÞR invariants is the set of treelike nonlocal
form factors which comprise the curvature expansion of FV action up to ℜ̃3 order inclusive. This observation done in [20]
can be formalized as the following sequence of identical transformations:

Γ½g� ¼ Wð2þ3Þ½g� þ Γð2þ3Þ
R ½g� þOðℜ4Þ

¼ Wð2þ3Þ½ḡ� þ Γð2þ3Þ
R ½g� þ ðWð2Þ½g� −Wð2Þ½ḡ�Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Γð2þ3Þ
FV þOðℜ4Þ

þOðℜ4Þ; ð3:33Þ

where the group of the last three terms forms a Fradkin-Vilkovisky anomaly action expanded with ℜ̃3 accuracy. Explicitly
the cubic part of ΓFV for the model of a single conformal scalar field with (3.5) reads as [20]

Γð3Þ
FV ¼ −

1

32π2

Z
dx

ffiffiffi
g

p 	
1

19440

�
2

□3
−

□1

□2□3

�
R1R2R3 þ

1

1620□2□3

Cαβ
1 ∇αR2∇βR3

þ 1

540

�
4

□2
−

1

□3
−

2□1

□2□3

−
□3

□1□2

�
Cμν
1 C2μνR3 þ

1

135

�
1

□1□2

−
2

□2□3

�
∇μCνα

1 ∇νC2μαR3

−
1

135□1□2□3

∇α∇βC
μν
1 ∇μ∇νC

αβ
2 R3


����
fxg¼x

; ð3:34Þ

whereCμν is the “Weyl” part (3.20) of the Ricci tensor (3.21).

C. The problem of double poles and global
conformal transformations

The expression (3.34) shows that in the cubic order the
anomalous effective action is free from double-pole non-
local terms. For the FV action this is obviously true to all
orders of the curvature expansion, since all its tree type
nonlocalities originate from Green’s function of the con-
formal scalar operator □ − 1

6
R. However, for the RFT

action double poles formally appear starting from the
fourth order in the curvature because the metric variation
of Σχ ¼ ΣRTF in (2.16) leads to the action of the inverse
Paneitz operator upon the square of the Weyl tensor C2 ¼
CμναβCμναβ due to a formal variational rule,Z

d4x
ffiffiffi
g

p
C2δΣRFT ¼

Z
d4x

ffiffiffi
g

p ðΔ−1
4 C2Þδð…Þ: ð3:35Þ

This operation is not well defined, because C2 is not a total
derivative and the repeated action of 1=□ upon generic
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test functions in four dimensions leads to IR divergent
integrals—see footnote 2. In the cubic order of ΓRFT this
problem does not arise because of the extra□ factor in□R,
as it was checked in [16] by explicit calculations of hTTTi
correlators, but one is not allowed to be free from this
difficulty for higher order correlators.
In fact this is a typical situation for IR divergences in two

dimensions, where the kernel of 1=□ has a logarithmic
dependence at infinity, and the correlators of undifferen-
tiated conformal fields ϕ are UV divergent, while the
correlators h∂ϕðxÞ∂ϕðyÞ � � �i stay well defined. Apparently,
the same property in four dimensions also underlies the
absence of unitarity in dipole theories with 1=□2-type
propagators recently discussed in [60]. The mechanism of
transition from operators to their derivatives in shift
symmetric theories actually helps to justify the RFT action
as a source of well-defined stress-tensor correlators and
extends the validity of results in [16] to all higher orders.
This follows from the observation that the Paneitz

operator reads as

ffiffiffi
g

p
Δ4 ¼ ∂μ

� ffiffiffi
g

p �
∇μ∇ν þ 2Rμν −

2

3
Rgμν

��
∂ν ð3:36Þ

and, therefore, perturbatively on the flat space background
can be represented as

ffiffiffi
g

p
Δ4 ¼ □̃

2 þ V; □̃ ¼ δμν∂μ∂ν; V ¼ ∂μVμν
∂ν

����!
;

ð3:37Þ

where the perturbation V ¼ OðℜÞ has a special form—
another differential operator Vμν sandwiched between two
derivatives with all derivatives acting to the right (which is
indicated by the arrow). Within perturbation theory in
powers of V the action of the inverse operator on a generic
test function ψ—scalar density—could have been under-
stood as the expansion

ϕ ¼ 1ffiffiffi
g

p Δ4

ψ ¼
X∞
n¼0

ð−1Þn
□̃

2

�
V

1

□̃
2

�
n
ψ

¼
X∞
n¼0

ð−1Þn
□̃

2

�
∂μVμν���! 1

□̃
2
∂ν

�
n
ψ ; ð3:38Þ

where we deliberately permuted the factors of ∂ν and 1=□̃
2

using their formal commutativity in order to provide the
action of 1=□̃2 on the total-derivative function. Thus all
terms of this expansion except the first one become infrared
finite. The first term ð1=□̃2Þψ , however, makes this
function ϕ ill defined. On the contrary, its derivative ∂αϕ
becomes consistent if one understands the first term of the
expansion as ð1=□̃2Þ∂αψ , so that the prescription for the
operation of ∂αð1= ffiffiffi

g
p Δ4Þ on a generic nonderivative type

test function reads as

∂α
1ffiffiffi
g

p Δ4

ψ ¼
X∞
n¼0

ð−1Þn
□̃

2
∂α

�
∂μVμν���! 1

□̃
2
∂ν

�
n
ψ : ð3:39Þ

With this prescription the term C2ΣRFT in the RFT action
becomes perturbatively well defined to all orders of
expansion. Indeed, this term with ΣRFT given by (2.21) and
on account of total-derivative structure

ffiffiffi
g

p ðE − 2
3
□RÞ ¼

∂αEα can be rewritten by integration by parts as

4

Z
d4x

ffiffiffi
g

p
C2ΣRFT ¼ −

Z
d4x

ffiffiffi
g

p
Eα

∂α
1ffiffiffi
g

p Δ4

ð ffiffiffi
g

p
C2Þ

ð3:40Þ

with the above prescription (3.39). This confirms a well-
defined nature of all multiple-point correlators of stress
tensor generated by RFT action.
Finally, it is worth discussing the effective action

behavior under global conformal transformations with
σ0 ¼ const. Higher order curvature terms of the effective
action scale as negative powers of eσ0 and therefore are
irrelevant in the IR limit. In [61] this was a main argument
in favor of a dominant role of the Wess-Zumino action (2.6)
in this limit because ΔΓ½g; σ� behaves linearly in σ0 (or
logarithmically in the distance). Indeed,

ΔΓ½g; σ þ σ0� ¼ ΔΓ½g; σ� þ σ0

�
γ

32π2

Z
d4x

ffiffiffi
g

p
C2 þ βe0E

�
;

ð3:41Þ

where e0E is the Euler characteristics of the manifold
modulo its boundary contribution (see footnote 3). Note,
however, that this behavior cannot be captured within the
nonlocal RTF form of the anomaly action (1.3) because it is
valid only under Dirichlet boundary conditions for Green’s
function of Δ4 (which would be violated by the σ0 shift).
In other words, the expression (1.3) lacks the contribution
of the zero mode of the Paneitz operator, which on the
contrary is explicitly featuring in (3.41). For compact
manifolds with possibly nontrivial topology global Weyl
transformations would not contradict boundary conditions,
and these transformations will obviously show up in the
generalized RFT gauge (2.35) as an ambiguity of the
solution for Eq. (2.37), Σ → Σþ σ0.

IV. STRESS TENSOR IN CONFORMALLY
RELATED SPACETIMES

Equations (2.19) and (2.34) show that the anomalous
action makes sense as an object specifying the difference of
effective actions on conformally related metrics and other
fields. Outside of this context this action, being a subject
of shifting by an arbitrary conformal invariant functional
Wconf ½g�, as in Eq. (2.2), is not very instructive because
such a shift can include essential physical information on
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conformally invariant degrees of freedom. Anomaly action
Γχ , or it would be better to say, the Wess-Zumino type
action (2.6)—the generating functional of Γχ—is really
useful in situations when the physics of a conformally
related spacetime with the metric ḡμν is fully known. Then
the effective action at gμν can be completely recovered from
the knowledge of the Weyl anomaly.
The simplest situation belongs to the class of confor-

mally flat spacetimes when ḡμν can be associated with flat
metric for which all the metric field invariants are vanishing
and Γ½ḡ� is either exactly zero or calculable for quantum
matter fields in flat spacetime. In particular, the funda-
mental observable which can then be obtained is the UV
renormalized expectation value of the stress tensor of
classically conformally invariant fields,

ffiffiffi
g

p hTαβi ¼ 2
δΓren

δgαβ
; ð4:1Þ

provided hT̄αβi ¼ 0 or is known from flat space physics.
Here we derive from (2.6) the expression for the difference
of (densitized) stress tensors

ffiffiffi
g

p hTα
βi −

ffiffiffī
g

p hT̄α
βi, which for

a conformally flat spacetime coincides with a well-known
Brown-Cassidy expression [25] and generalizes it to the
case of a nonvanishing Weyl tensor.

A. Conformal anomaly from the divergent
part of the effective action

To derive the behavior of the renormalized stress tensor
on the conformal group orbit we, first, have to trace the
origin of conformal anomaly as the result of subtracting UV
divergences from covariantly regularized effective action,
Γren ¼ Γreg−Γ∞. In dimensional regularization, Γreg ¼ðdÞ Γ,
these divergences are given by

Γ∞ ¼ −
1

16π2ϵ

Z
ddx

ffiffiffi
g

p
a2

¼ 1

16π2ϵ

Z
ddx

ffiffiffi
g

p ðαð4ÞC2 þ βð4ÞEÞ; ð4:2Þ

where ϵ ¼ 4 − d, ð4ÞC2 and ð4ÞE are the four-dimensional
invariants formally continued to d-dimensions and a2 is the
relevant second Schwinger-DeWitt coefficient of the cor-
responding heat kernel expansion for the inverse propaga-
tor of the theory [62–64]

a2 ¼ −ðαð4ÞC2 þ βð4ÞEþ γ□RÞ; ð4:3Þ

ð4ÞC2 ¼ R2
μναβ − 2R2

μν þ
1

3
R2; ð4:4Þ

ð4ÞE ¼ R2
μναβ − 4R2

μν þ R2: ð4:5Þ

This structure of a2 follows from the local conformal
invariance of the pole residue of Γ∞ at d ¼ 4 and is

associated with the integrability (or conformal Wess-
Zumino) condition for a conformal anomaly. It includes
the topological Gauss-Bonnet density

ffiffiffi
g

p
E, Weyl tensor

squared, and the total-derivative □R terms.
Conformal anomaly arises as a contribution of the

conformal transformation of the one-loop counterterm
(4.2) subtracted from the regularized effective action

ffiffiffi
g

p hTα
αi ¼ −2gαβ

δΓ∞

δgαβ
; ð4:6Þ

because the regularized (but not yet renormalized by
counterterm subtracting) action Γreg is assumed to be
conformally invariant.7 The □R term does not contribute
to the divergences, but it appears in the conformal anomaly
in view of the conformal transformation of the Weyl
squared term continued to d dimensions. Moreover,
within the above subtraction scheme its coefficient γ in
the anomaly turns out to be determined by the coefficient α
of the Weyl term [4].
Indeed, let us introduce conformally covariant Weyl

tensor in d dimensions

ðdÞCμναβ ¼ Rμναβ þ 2Pβ½μgν�α − 2Pα½μgν�β; ð4:7Þ
ðdÞCμ

ναβ ¼ðdÞ C̄μ
ναβ; ð4:8Þ

which is written down in terms of the Schouten tensor

Pμν ≡ 1

d − 2

�
Rμν −

Rgμν
2ðd − 1Þ

�
: ð4:9Þ

In view of the relation between the square of Weyl tensors
ðdÞC2 ≡ ðdÞC2

μναβ and C2 ≡ ð4ÞC2
μναβ (both formally contin-

ued to d dimensions) [25]

ð4ÞC2 ¼ ðdÞC2 −
ϵ

2

�
E − C2 −

1

9
R2

�
þOðϵ2Þ ð4:10Þ

one has

δ

δgμν

Z
ddx

ffiffiffi
g

p
C2 ¼ δ

δgμν

Z
ddx

ffiffiffi
g

p ðdÞC2 þ ϵ

2

δ

δgμν

Z
d4x

ffiffiffi
g

p

×

�
C2 þ 1

9
R2

�
þOðϵ2Þ: ð4:11Þ

Then, since the tensor ðdÞCμναβ is conformally covariant in
any dimension, gμνðδ=δgμνÞ

R
ddx

ffiffiffi
g

p ðdÞC2 ¼ − ϵ
2

ffiffiffi
g

p ðdÞC2,
we have

7Or the Weyl invariance violation of dimensionally regularized
Γreg is proportional to ðd − 4Þ2 as it happens for the spin one
case [4], so that it does not contribute to the residue of the simple
pole in dimensionality.
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1

ϵ
gμν

δ

δgμν

Z
ddx

ffiffiffi
g

p
C2 ¼ −

1

2

ffiffiffi
g

p �
C2 þ 2

3
□R

�
þOðϵÞ:

ð4:12Þ

Using this in (4.6) one recovers the C2 and the□R terms in
the expression for the anomaly

ffiffiffi
g

p hTα
αi ¼ −

1

16π2
ffiffiffi
g

p
a2; ð4:13Þ

with the parameter γ related to the coefficient α of the Weyl
squared term [4]

γ ¼ 2

3
α: ð4:14Þ

This simple expression for the trace anomaly in terms of the
second Schwinger-DeWitt coefficient also follows from the
zeta-function regularization [65].
The Gauss-Bonnet part of the anomaly follows from the

conformal variation of the ð4ÞE term in the divergent part of
the action. Just like□R, as the residue of the pole in Γ∞ the
integral of

ffiffiffi
g

p ð4ÞE at least naively does not contribute to the
stress tensor, because in four dimensions this integral is a
constant Euler characteristics of the manifold. But in a
covariant renormalization procedure the coefficient of 1=ϵ
in Γ∞ cannot be treated other than as a d-dimensional
object, so that

R
ddx

ffiffiffi
g

p ð4ÞE is no longer a topological
invariant, and its metric variation is nontrivial. Therefore,
rewriting, similarly to (4.10), the dimensionally continued
Gauss-Bonnet density in terms of ðdÞC2,

ð4ÞE ¼ R2
μναβ − 4R2

μν þ R2

¼ ðdÞC2 − ð2 − 3ϵÞ
�
R2
μν −

1

3
R2

�
þOðϵ2Þ; ð4:15Þ

one has

1

ϵ

δ

δgαβ

Z
ddx

ffiffiffi
g

p ð4ÞE¼−
ffiffiffi
g

p �
1

2
Wαβ þð3ÞHαβ þ 2RμνCμανβ

�

þOðϵÞ; ð4:16Þ

where the two new tensors arise:

ð3ÞHαβ ¼ RαμRβ
μ −

2

3
RRαβ −

1

2
gαβR2

μν þ
1

4
gαβR2; ð4:17Þ

Wαβ ¼ lim
ϵ→0

1

ϵ
ð4ðdÞCα

μνλ
ðdÞCβμνλ − gαβðdÞC2Þ: ð4:18Þ

The limit to d ¼ 4 for the tensor Wαβ is regular here
because at d ¼ 4 there is the important identity

4ð4ÞCα
μνλ

ð4ÞCβμνλ ¼ gαβð4ÞC2 ð4:19Þ

—it can be proven by antisymmetrization over five indices
in the four-dimensional spacetime [66]. Tensors ð3ÞHαβ and
Wαβ have the following traces:

ð3ÞHα
α ¼

1

3
R2 − R2

μν ¼
1

2
ðE − C2Þ; Wα

α ¼ C2: ð4:20Þ

Thus from (4.16) and (4.20) we have the relation

2

ϵ
gαβ

δ

δgαβ

Z
ddx

ffiffiffi
g

p ð4ÞE ¼ −
ffiffiffi
g

p ð4ÞEþOðϵÞ; ð4:21Þ

which recovers the contribution of the E term in the
conformal anomaly (4.13) with the expression (4.3) for a2.

B. Minimal form of Wess-Zumino action and a-theorem

Of course there is a big ambiguity in the above analytic
continuation of the coefficients relating four-dimensional
objects to their d-dimensional counterparts. This ambiguity
reduces to the renormalization by finite four-dimensional
counterterms

R
d4x

ffiffiffi
g

p
R2
μναβ,

R
d4x

ffiffiffi
g

p
R2
μν, and

R
d4x

ffiffiffi
g

p
R2

among which in view of the total-derivative nature of the
Gauss-Bonnet density only one counterterm can addition-
ally break Weyl invariance and change the coefficient γ of
the□R term in the conformal anomaly. This is because the
combination

R
d4x

ffiffiffi
g

p ðC2 − EÞ ¼ 2
R
d4x

ffiffiffi
g

p ðR2
μν − 1

3
R2Þ

is Weyl invariant, and such a counterterm can be chosen
as the square of the curvature scalar, satisfying

gμν
δ

δgμν

Z
d4x

ffiffiffi
g

p
R2 ¼ −6

ffiffiffi
g

p
□R: ð4:22Þ

Therefore this finite local counterterm can be used to alter
the coefficient γ and, in particular, put it to zero by a special
finite renormalization which we will denote by a subscript
Ren:

Γren½g� → ΓRen½g�≡ Γren½g� þ
γ

192π2

Z
d4x

ffiffiffi
g

p
R2: ð4:23Þ

Regularization and subtraction scheme dependence of
the γ coefficient manifests itself in the violation of the
relation (4.14) for the dimensionally regularized electro-
magnetic vector field [5], but ultimately does not change
the physics of the theory because of the locality of the
covariant counterterm

R
d4x

ffiffiffi
g

p
R2, whose subtraction point

should be determined from the comparison with the
observable value of its coupling constant. In the cosmo-
logical example considered below the above renormaliza-
tion (4.23) corresponds to fixing the coupling constant in
the Starobinsky R2-model [43].
The renormalization (4.23) has an important

consequence—with γ ¼ 0 the terms with quartic derivatives
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of σ, contained in the combination β
16π2

R
d4xð4 ffiffiffī

g
p

σΔ̄4σ −
1
9

ffiffiffi
g

p
R2Þ of (2.6), completely cancel out, and the resulting

minimal Wess-Zumino action does not acquire extra higher-
derivative degrees of freedom:

ΓRen½g� − ΓRen½ḡ�

¼ α

16π2

Z
d4x

ffiffiffī
g

p
C̄2
μναβσ þ β

16π2

Z
d4x

ffiffiffī
g

p

×

	
Ēσ − 4

�
R̄μν −

1

2
ḡμνR̄

�
∂μσ∂νσ

− 4□σð∇μσ∇μσÞ − 2ð∇μσ∇μσÞ2


: ð4:24Þ

This minimal version of the action for the dilaton field σ
was discussed in [41] and used in the derivation of the a-
theorem in [42,67]—monotonically decreasing the coef-
ficient a ¼ β=16π2 in the RG flow of the theory fromUV to
IR domains. This theorem is based on the sign of the last
quartic interaction term for this field, related to the cross
section of the forward 2 → 2 dilaton scattering which
should be positive in unitary theory, its unitarity being
related to the absence of higher-derivative ghosts in (4.24).

C. Renormalized stress tensors

The behavior of the stress tensor on the orbit of the
conformal group can be obtained by using the commuta-
tivity of the following functional variations:

�
gμνðyÞ

δ

δgμνðyÞ
; gβγðxÞ

δ

δgαγðxÞ
�
¼ 0; ð4:25Þ

which allows one to write

δ

δσðyÞ
ffiffiffi
g

p hTα
βðxÞi ¼ 2gβγðxÞ

δ

δgαγðxÞ
δΓren

δσðyÞ
����
gμν¼e2σ ḡμν

¼ gβγðxÞ
δ

δgαγðxÞ
ffiffiffi
g

p ðyÞhTμ
μðyÞi

����
gμν¼e2σ ḡμν

:

ð4:26Þ

Bearing in mind that gβγδ=δgαγ ¼ ḡβγδ=δḡαγ at fixed σ and
functionally integrating this relation over σ one has

ffiffiffi
g

p hTα
βi −

ffiffiffī
g

p hT̄α
βi ¼ 2ḡβγ

δ

δḡαγ
ΔΓ½ḡ; σ�; ð4:27Þ

where ΔΓ½ḡ; σ� ¼ Γren − Γ̄ren is given by (2.6).
Before calculating this difference by the metric variation

of ΔΓ½ḡ; σ� it is instructive to obtain it directly from the
divergent part of the action as it was done in [25]. Note that
Γren − Γ̄ren ¼ −ðΓ∞ − Γ̄∞Þ because Γreg does not contribute
to the anomaly (see footnote 7). Therefore,

ffiffiffi
g

p hTα
βi
���g
ḡ
¼ −2gβγ

δΓ∞

δgαγ

����g
ḡ
: ð4:28Þ

To calculate the contribution of the ð4ÞC2 term in Γ∞ we
rewrite it in terms of ðdÞC2 and use Eq. (4.11). This leads to
the contribution of the first term of this equation:

δ

δgμν

Z
ddx

ffiffiffi
g

p ðdÞC2 ¼ −
ϵ

2

ffiffiffi
g

p
Wμν − 4

ffiffiffi
g

p ðdÞBμν; ð4:29Þ

ðdÞBμν ¼
�

1

d − 2
Rαβ þ∇ðα∇βÞ

�
Cμανβ; ð4:30Þ

where the tensor Wμν is defined by Eq. (4.18) and ðdÞBμν is
the d-dimensional Bach tensor. Assembling this with the
second term of Eq. (4.11) we get on the orbit of the
conformal group,

1

ϵ
gβγ

δ

δgαγ

Z
ddx

ffiffiffi
g

p ð4ÞC2
���g
ḡ
¼ −

ffiffiffi
g

p �
4

ϵ
ðdÞBα

β þ
1

18
ð1ÞHα

β

�
g

ḡ

þOðϵÞ; ð4:31Þ

where the tensor ð1ÞHα
β is given by the equation

ð1ÞHα
β ¼

1ffiffiffi
g

p gαγ
δ

δgβγ

Z
d4x

ffiffiffi
g

p
R2

¼ −
1

2
δαβR

2 þ 2RRα
β þ 2δαβ□R − 2∇α∇βR; ð4:32Þ

and we took into account that both the tensor densitiesffiffiffi
g

p
Wα

β and
ffiffiffi
g

p
Bα
β in four dimensions are invariant on the

conformal orbit. Outside of four dimensions the Bach
tensor density transforms on this orbit as (here as above
gμν ¼ e2σ ḡμν)

ffiffiffi
g

p ðdÞBα
β

���g
ḡ
¼ −

ϵ

2

ffiffiffī
g

p ðR̄μν þ 2∇ðμ∇νÞÞðσC̄α
μβνÞ þOðϵ2Þ;

ð4:33Þ

which makes the first term on the right-hand side of (4.31)
well defined at d → 4. Note that the expression

ffiffiffī
g

p ðR̄μν þ
2∇ðμ∇νÞÞðσC̄α

μβνÞ treated as a functional of independent
ḡμν and σ is Weyl invariant under local conformal trans-
formations of the barred metric. This can be easily inferred
from the invariance of Eq. (4.33) under the interchange
gμν ↔ ḡμν and σ → −σ or directly checking the conformal
transformation of ḡμν (with a fixed scalar σ).
The contribution of the Gauss-Bonnet term to the stress-

tensor behavior on the conformal orbit is obtained from
using (4.16)–(4.17). Collecting this contribution with the
contribution (4.31) of the Weyl tensor squared part we
finally have
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ffiffiffi
g

p hTα
βi
���g
ḡ
¼ −

α

4π2
ffiffiffī
g

p ðR̄μν þ 2∇ðμ∇νÞÞðσC̄α
μβνÞ

þ 1

8π2
ffiffiffi
g

p �
βð3ÞHα

β þ
α

18
ð1ÞHα

β þ 2βRμνCα
μβν

�
g

ḡ
:

ð4:34Þ

This is a generalization of the Brown-Cassidy formula to
the case of a nonzero Weyl tensor. The first term of this
expression is Weyl invariant in view of the above remark
and can be represented by its unbarred version.
The check of consistency of this formula with the

original expression for the conformal anomaly is trivial
in view of ð3ÞHα

α ¼ ðE − C2Þ=2, ð1ÞHα
α ¼ 6□R and trace-

lessness of the Weyl tensor,

ffiffiffi
g

p hTα
αi
���g
ḡ
¼

ffiffiffi
g

p
16π2

�
βE − βC2 þ 2α

3
□R

�
g

ḡ
¼ −

ffiffiffi
g

p
a2

16π2

����g
ḡ
;

ð4:35Þ

where the last equality follows from the conformal invari-
ance of the density

ffiffiffi
g

p
C2 and from the relation (4.14)

between the coefficients γ and α, α ¼ 3
2
γ.

The recovery of (4.34) from the direct variation of the
Wess–Zumino action (4.27) goes as follows. We use metric
variational formulas

δ

δgαβ

Z
d4x

ffiffiffi
g

p
C2σ ¼ −2

ffiffiffi
g

p ðRμν þ 2∇ðμ∇νÞÞðσCαμβνÞ;

ð4:36Þ

δ

δgαβ

Z
d4x

ffiffiffi
g

p
E4σ ¼ ffiffiffi

g
p

Δαβσ; ð4:37Þ

δ

δgαβ

Z
d4x

ffiffiffi
g

p
φΔ4σ ¼ −

ffiffiffi
g

p
2

Dαβ½φ; σ�; ð4:38Þ

which hold for generic scalar test functions σ and φwith the
differential operator Δαβ acting on σ,

Δαβ ¼
1

3
ðgαβ□−∇α∇βÞ□þ

�
2ðgαβPμν − gαμPβν − gανPβμÞ

þ 8

3
gμνPαβ þ 2Pgαμgβν −

5

3
Pgαβgμν − 2Wαμβν

�
∇μ∇ν

þ ðgαβgμν − gαμgβν − gανgβμÞð∇μPÞ∇ν; ð4:39Þ

and the bilinear form Dαβðφ; σÞ,

Dαβ½φ; σ� ¼ −
1

2
gαβ□φ□σ − 2σαβ□φ

þ 2σα□φβ −
1

3
gαβσμ□φμ −

2

3
φμðαβÞσμ

þ
�
2Wαμβν þ

1

3
ðgμνRαβ − gαμgβνRÞ

�
φðμσνÞ

þ 1

3
ð4φαμσ

μ
β − gαβφμνσ

μνÞ þ ðφ ⇔ σÞ; ð4:40Þ

where φα ≡∇αφ, σαβ ≡∇β∇ασ, φαβγ ≡∇γ∇β∇αφ, etc.
Note that the trace of Δαβ coincides with the Paneitz
operator, gαβΔαβ ¼ Δ4, which matches with the conformal
variation (2.9), and the bilinear form Dαβðφ; σÞ is traceless
in view of the conformal invariance of

ffiffiffi
g

p Δ4.
Using these relations we get from (4.27) and (2.6)

ffiffiffi
g

p hTα
βi
���g
ḡ
¼−

α

4π2
ffiffiffi
g

p ðRμνþ2∇ðμ∇νÞÞðσCα
μβνÞþ

ffiffiffi
g

p
8π2

× ð2βΔα
βσþβDα

β½σ;σ�Þþ
ffiffiffi
g

p �
γ

12
þ β

18

�
ð1ÞHα

β

���g
ḡ
:

ð4:41Þ

The term in the first line here coincides with its barred
version in (4.34)—this easily follows from the relation
(4.36) where the integrand can be identically replaced by
the barred one. The γ

12
ð1ÞHα

β term here matches with the
α
18

ð1ÞHα
β term of (4.34) in view of the relation α ¼ 3

2
γ. And

finally, the identity holds:

ffiffiffi
g

p �
ð3ÞHα

β þ
1

18
ð1ÞHα

β þ 2RμνCα
μβν

�
g

ḡ

¼ ffiffiffi
g

p ð2Δα
βσ þDα

β½σ; σ�Þ; ð4:42Þ

which completely reconciles the two expressions (4.34) and
(4.41) for the stress-tensor behavior on the orbit of the
conformal group.

V. CONFORMALLY FLAT SPACETIME

The generalization (4.34) of the Brown-Cassidy formula
to the case of a nonvanishing Weyl tensor might be not very
useful, because in the general case not much can be said
about hTα

βijḡ. Therefore we will restrict ourselves with
the case of the conformally flat spacetime for which the
conformal transformation of the metric can lead to the
metric ḡμν of flat spacetime, where hT̄α

βi is either zero or can
be obtained from flat space physics. Interestingly, in this
case the parameter of the conformal transformation σ
making this transition satisfies the equation

Δ4σ ¼ 1

4
E4 ð5:1Þ
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and in the asymptotically flat case with Dirichlet boundary
conditions has a unique solution (2.21), σ ¼ ΣRFT. This,
apparently not very well-known fact, can be proven by
using the equation for the conformal transformation of the
four-dimensional Schouten tensor (4.8) (gμν ¼ e2σ ḡμν)

Pμν − P̄μν ¼ −σμν − σμσν þ
1

2
σασ

αgμν; ð5:2Þ

where σμ ≡∇μσ and σμν ≡∇ν∇μσ. Assuming that ḡμν is a
flat space metric with P̄μν ¼ 0, differentiating twice and
again using this relation to express Pμν in terms of the
derivatives of σ one has

∇μ∇ν

�
Pμν þ σμν þ σμσν −

1

2
σασ

αgμν

�
¼ Δ4σ −

1

4
E4 ¼ 0;

ð5:3Þ
whence it follows that the conformal invariant metric (2.12)
in the RFT gauge (2.20) is actually the flat space one when
the Weyl tensor is zero:

R̄α
βμν ¼ 0; ḡμν ¼ e−2ΣRFT½g�gμνjCαβμν¼0: ð5:4Þ

Note that ḡμν here is not automatically a diagonal unit
matrix δμν, because this is the invariant statement which is
valid in any coordinate system.

A. Anomaly driven cosmology

Applications of the conformal anomaly in the cosmo-
logical context have a long history; see for example
[9,26,68–72]. In particular, cosmology with the Friedman-
Robertson-Walker (FRW) metric represents the situation
when the anomalous action ΔΓ½ḡ; σ� entirely determines
the physics of the field model and via effective equations of
motion produces a nontrivial back reaction of quantum
matter on the dynamical metric background. The most
interesting example is, perhaps, the case when Γ½ḡ� in
(2.6) nontrivially contributes to this back reaction effect
rather than just serves as an inert flat space background.
This is the spatially closed cosmology driven by a

conformal field theory (CFT) from the initial state in the
form of a special microcanonical density matrix, which was
orginally suggested in [27] and recently reviewed in [46].
With the density matrix defined as the projector on the
space of solutions of the Wheeler-DeWitt equations [28,73]
the statistical sum in this model has a representation of the
Euclidean quantum gravity path integral

Z ¼
Z

D½gμν;ϕ�e−S½gμν;ϕ�; ð5:5Þ

where integration runs over the metric gμν and matter fields ϕ
which are periodic on the Euclidean spacetime of topology
S1 × S3 with the time τ compactified to a circle S1.

When the classical action S½gμν;ϕ� is dominated by
numerous CFT fields Φ with their action SCFT½gμν;Φ�, the
statistical sum can be approximated by the contribution of
the saddle point of this integral. This is the extremum of the
total action including the tree-level gravitational Einstein-
Hilbert action SEH½gμν� and the effective action Γ½gμν� of
these CFT fields,8

Γtot½gμν� ¼ SEH½gμν� þ Γ½gμν�; ð5:6Þ

e−Γ½gμν� ¼
Z

DΦe−SCFT½gμν;Φ�: ð5:7Þ

Choosing as gμν the FRW metric with the scale factor
aðτÞ and the lapse function N (Ω2

ð3Þ is the metric of the
three-dimensional sphere of a unit radius),

ds2 ¼ N2dτ2 þ a2dΩ2
ð3Þ ¼ a2ðτÞðdη2 þ dΩ2

ð3ÞÞ; ð5:8Þ

one immediately finds that in terms of the conformal time
variable η, related to the Euclidean time τ by the relation
dη ¼ dτ=aðτÞ, this metric is conformally equivalent to the
metric ḡμν ≡ gEUμν of the Einstein static universe with spatial
sections—the three-dimensional spheres of some constant
radius a0,

ds̄2 ¼ a20ðdη2 þ dΩ2
ð3ÞÞ≡ gEUμν dxμdxν; ð5:9Þ

ds2 ¼ e2σds̄2; gμν ¼ e2σgEUμν ; σ ¼ ln
a
a0

: ð5:10Þ

Therefore the CFT effective action expresses in terms of the
same action on a static Einstein universe Γ½gEUμν �≡ ΓEU and
Wess-Zumino action (2.6) with the above conformal
parameter σ

Γ½gμν� ¼ ΔΓ½gEUμν ; σ� þ ΓEU: ð5:11Þ

The calculation of ΓEU is strongly facilitated by the static
nature of the background, but it still yields a nontrivial
result in view of compactification of time on S1. To begin
with, note that although gEUμν explicitly depends on the size
a0 of S3, the value of ΓEU is a0 independent for a fixed
period of the conformal time η ¼ H

dη. This follows from
the invariance of the effective action under global con-
formal transformations (3.41) for conformally flat space-
times with zero bulk part of the Euler characteristics (which
is the case of S1 × S3). This also can be confirmed by using
scaling properties of the conformal fields. Indeed, the

8Disregarding the graviton loops can be justified by the
domination of conformal fields outnumbering the metric, and
retaining the Einstein-Hilbert term obviously follows from the
fact that this term with renormalized gravitational and cosmo-
logical constants is induced from the quantum conformal sector.

NOTES ON CONFORMAL ANOMALY, NONLOCAL EFFECTIVE … PHYS. REV. D 108, 045014 (2023)

045014-17



energies of conformal quanta on a static spacetime scale as
1=a0 and their Hamiltonian reads as

Ĥ ¼
X
ω

ω

a0

�
â†ωâω � 1

2

�
; ð5:12Þ

where summation runs over all quantum numbers (and
spins) of the energies ω=a0 of all field oscillator modes on a
static three-dimensional sphere of the radius a0 and â†ω and
âω are the relevant creation-annihilation operators (� signs
correspond to bosons or fermions). The path integral over
(anti)periodic conformal (fermion) boson fields with a
period T ¼ H

dτN on a static metric background is exactly
calculable and equals the equilibrium statistical sum at the
temperature 1=T which expresses as a function of the
conformal time period η ¼ T =a0

e−ΓEU ¼
Z

DΦe−SCFT½gEUμν ;Φ�

¼ Tre−T Ĥ ¼ expð−ηEvac − FðηÞÞ: ð5:13Þ

Here FðηÞ is the free energy of the gas of conformal
particles and Evac is a UV divergent Casimir energy which
should be covariantly renormalized:

FðηÞ ¼
X
ω

½� lnð1 ∓ e−ωηÞ�; ð5:14Þ

Evac ¼
�X

ω

�ω

2

�
ren
: ð5:15Þ

Thus, the dependence on a0 is absorbed into the depend-
ence on η which should be fixed under the rescaling of a0.
Note that it is η that should be kept fixed under the global
conformal transformation which simultaneously rescales
the lapse function N and a0 in the definition of the
conformally invariant η ¼ H

dτN=a0.
Remarkably, the covariant renormalization of the vac-

uum Casimir energy Evac also follows from the behavior of
the effective action on the orbit of the conformal group. The
Einstein universe extending from −∞ to þ∞ in η is
mapped to flat space by the transition to the radial
coordinate ρ,

η ↦ ρ ¼ a0eη; −∞ < η < þ∞; 0 ≤ ρ < ∞;

ð5:16Þ

with the conformal relation between the two metrics

ds2EU ¼ e2σds2flat; σ ¼ −η ¼ ln
a0
ρ
; ð5:17Þ

ds2flat ¼ dρ2 þ ρ2dΩ2
ð3Þ: ð5:18Þ

For the vacuum state [the limit η → ∞ and FðηÞ → 0 in
Eq. (5.13)] ΓEU → Evacη. On the other hand, from Eq. (2.6)
with the above expression for σ,

ΔΓ½gflat; σ� ¼
β

8π2

Z
d4x

ffiffiffiffiffiffiffi
gflat

p ð□flatσÞ2

−
1

32π2

�
γ

6
þ β

9

�Z
d4x

ffiffiffiffiffiffiffiffi
gEU

p
R2
EU: ð5:19Þ

Bearing in mind that □flatσ ¼ −2=ρ2,
R
d4x

ffiffiffiffiffiffiffi
gflat

p
↦

2π2
R
dρ ρ3, REU ¼ 6=a20, and

R
d4x

ffiffiffiffiffiffiffiffi
gEU

p
↦ 2π2a40

R
dη,

one has

ΓEU − Γflat ¼ ΔΓ½gflat; σ� ¼ β

Z
dρ
ρ
−
�
3

8
γ þ β

4

�Z
dη

¼ 3

4

�
β −

γ

2

�Z
dη: ð5:20Þ

Therefore, under an obvious assumption that Γflat ¼ 0
one has

Evac ¼
3

4

�
β −

γ

2

�
: ð5:21Þ

In other words, after covariant renormalization by covariant
counterterms the Casimir energy gets the value compatible
with the behavior of the renormalized effective action on
the conformal group orbit (or with the Brown-Cassidy
formula for the vacuum stress tensor). This compatibility
was indeed checked by direct renormalization of the UV
divergent sum over field modes in (5.15) [47–50].
Let us now turn to the contribution of the conformal

transformation from the generic FRW metric to that of the
static Einstein universe in (5.11). To begin with we use the
freedom of finite renormalization (4.23) which reduces
the theory to the case of anomaly (1.1) with γ ¼ 0 and, in
particular, renders Evac ¼ 3

4
β. In the cosmological context

this freedom corresponds to the adjustment of the coupling
constant of the Starobinsky R2 action [68] which plays an
important role in inflation theory and the dark energy
model. Then, with γ ¼ 0 and σ given by (5.17) the Wess-
Zumino term in (5.11) takes the form [27]

ΓRen½g� − ΓRen½gEU� ¼
3β

2

I
dτN

�
a02

a
−
a04

6a

�
; ð5:22Þ

when written down in terms of the original FRW coor-
dinates with the notation for the invariant time derivative
a0 ¼ da=Ndτ. Note that the result is again independent of
the constant a0 because it contains only differentiated σ,
and, moreover, it does not involve higher order derivatives
of aðτÞ. The last property is entirely due to the fact of γ
being renormalized to zero and due to the cancellation of
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higher-derivative terms in the minimal form of Wess-
Zumino action (4.24).
Now we assemble together the Einstein-Hilbert action

(with the reduced Planck mass MP ¼ 1=
ffiffiffiffiffiffiffiffiffi
8πG

p
and the

cosmological constant Λ), the action on the Einstein
universe space (5.13) and (5.22). This leads to the total
effective action on the generic Euclidean FRW background
periodic in Euclidean time with the period η measured in
units of the conformal time

Γtot½a;N� ¼ 6π2M2
P

I
dτN

	
−aa02 − aþ Λ

3
a3 þ β

4π2M2
P

×

�
a02

a
−
a04

6a
þ 1

2a

�

þ FðηÞ; ð5:23Þ

η ¼
I

dτN
a

: ð5:24Þ

Here the contribution of the conformal anomaly and
Casimir energy (5.21) (with γ ¼ 0) are both weighted by
the parameter β of the topological term in the conformal
anomaly. The free energy of the gas of conformal particles
FðηÞ is a function of the effective (“comoving”) temper-
ature of this gas—the inverse of the circumference η of
the cosmological instanton (5.24). Despite an essentially
nonstationary metric background this gas stays in equilib-
rium state because of scaling properties of its particles
and produces back reaction on the Friedmann metric
background.
Applications of the action (5.23) have been considered

in a number of papers [27,43,44] and recently reviewed
in [46]. Physics of the CFT driven cosmology is entirely
determined by this effective action and the effective
(Euclidean) Friedmann equation. The latter follows from
the action by varying the lapse NðτÞ and expressing the
Hubble factor in terms of the energy density. In cosmic type
gauge N ¼ 1, ȧ ¼ da=dτ, it reads as

1

a2
−
ȧ2

a2
¼ ε

3M2
�ðεÞ

; ð5:25Þ

ε ¼ M2
PΛþ 1

2π2a4
X
ω

ω

eηω − 1
; ð5:26Þ

M2
�ðεÞ ¼

M2
P

2

�
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − βε=6π2M4

P

q 

; ð5:27Þ

where the total energy density ε includes the cosmological
constant contribution and the radiation density of con-
formal field modes distributed over Planckian spectrum
with the comoving temperature 1=η. The nonlinear effect of
the Weyl anomaly manifests itself in the effective Planck
mass squared explicitly depending on ε which takes two

possible values M2
�ðεÞ.9 These equations should be

amended by the expression for the conformal time period
that interpolates between the turning points of the solution
with ȧðτÞ ¼ 0. Note that the right-hand side of the
Friedmann equation does not contain Casimir energy
density—it turns out to be fully screened due to the
dynamical effect of the Weyl anomaly. This is the result
of the finite renormalization (4.23) leading to a particular
value of the anomaly coefficient of □R, γ ¼ 0.
For the choice of þ sign in M2

� the solutions of this
quantum Friedmann equation turn out to be the so-called
garlands—the cosmological instantons of S1 × S3 topol-
ogy, which have the periodic scale factor aðτÞ oscillating on
S1 between maximal and minimal values a� [27]. These
instantons serve as initial conditions for the cosmological
evolution in the physical Lorentzian spacetime. This
evolution follows from aðτÞ by the analytic continuation
aLðtÞ ¼ aðτþ þ itÞ, ðdaL=dtÞ2 ¼ −ȧ2, to the complex
plane of Euclidean time at the turning point with the
maximal scale factor aþ ¼ aðτþÞ. It can incorporate a finite
inflationary stage if the model is generalized to the case
when a primordial cosmological constant is replaced by the
potential of the inflaton field ϕ, Λ → VðϕÞ=M2

P, staying
in the slow-roll regime during the inflationary stage10 and
decaying in the end of inflation by a usual exit
scenario [43,44]. The energy scale of inflation—its
Hubble parameter H ∼

ffiffiffiffiffiffiffiffiffi
Λ=3

p
turns out to be bounded

from above by
ffiffiffi
2

p
πMP=

ffiffiffi
β

p
, so that to solve the problem of

hierarchy between the Planck and inflation scales one needs
β ≫ 1 which matches with the previously adopted
assumption that numerous conformal fields drastically
outnumber all other fields and dominate over their loop
corrections.
For the negative sign in M2

� the solutions represent
vacuum S4 instantons of the no-boundary type with the
vanishing minimal value of the scale factor a− ¼ 0. They
correspond to the diverging η ∼

R aþ
0 da=aȧ → ∞ or zero

temperature. These solutions, however, do not contribute
to the statistical sum because of their infinitely positive
action Γtot → þ∞—the quantum effect of the trace
anomaly which flips the sign of the negative tree-level
action of the Hartle-Hawking instantons [74] and sends it to
þ∞ [27]. Thus the CFT cosmology scenario is free from
the infrared catastrophe of the no-boundary quantum state
which would imply that the origin of an infinitely big
Universe is infinitely more probable than that of a finite
one.

9To avoid mixup of the signs inM2
� and sign factors associated

with the statistics of conformal ω modes we present here the
radiation spectrum only for the bosonic case.

10Alternatively, the role of inflaton can be played by Ricci
curvature in the Starobinsky R2 model, the coupling of the R2

term being subject to the renormalization respecting the zero
value of α in the total Weyl anomaly [43].
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VI. RENORMALIZATION GROUP
AND THE METAMORPHOSIS OF THE

RUNNING SCALE

This section has essentially a discussion nature and is
associated with the covariant perturbation theory of the
above type. One of the motivations for this discussion is
that, in spite of a widespread concept of running cosmo-
logical and gravitational constants, which is especially
popular within the asymptotic safety approach, there is a
very profound and persuading criticism of this concept
[30]. It is based on numerous arguments of the tadpole
structure of the cosmological and Einstein terms, on
concrete results for graviton scattering amplitudes [29]
which cannot be interpreted in terms of a universal scaling
of Λ and G, etc.
At the same time in renormalizable gravity models with

multiple couplings the solution of the full set of RG
equations includes running cosmological and gravitational
constants [36]. So the question arises of how to interpret
their running scale. Here is the attempt to do this in terms of
the covariant curvature expansion developed in [38–40].
We start with the classical action which is the sum

of local curvature invariants of growing dimensionality
(4þm) in units of the mass

S½gμν� ¼
X
m;N

ΛðmÞ
N

Z
d4x

ffiffiffi
g

p
ℜð4þmÞ

N ðxÞ: ð6:1Þ

They are monomials of Nth order in curvature tensors
which are acted upon by covariant derivatives,

ℜðmÞ
N ðxÞ ¼ ∇…∇|fflffl{zfflffl}

m−2N

ℜðxÞ…ℜðxÞ
zfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflffl{N

; ð6:2Þ

dimℜðmÞ
N ðxÞ≡ ½ℜðmÞ

N ðxÞ� ¼ m: ð6:3Þ

The curvature monomials enter the action with coupling

constants ΛðmÞ
N of the decreasing (with growing m) dimen-

sionality

½ΛðmÞ
N � ¼ d −m; m ¼ 0; 1;…: ð6:4Þ

Summation in (6.1) can run over a finite set of terms
providing the renormalizability of the theory, or be formally
extended to the infinite set in the framework of generalized

RG theory with an infinite set of couplings fΛg ¼ ΛðmÞ
N .

Within covariant perturbation theory the full metric is
decomposed as a sum of the flat spacetime metric g̃μν and
the perturbation hμν,

gμν ¼ g̃μν þ hμν; ð6:5Þ

so that each curvature invariant becomes expanded as an
infinite series in powers of hμν forming a new set of h
monomials on the flat space background

Z
d4x

ffiffiffi
g

p
ℜðmÞ

N ¼
X∞
M¼N

Z
d4x

ffiffiffĩ
g

p
IðmÞ
M ðhÞ;

IðmÞ
M ðhÞ ∝ ∇̃…∇̃|fflffl{zfflffl}

m

hðxÞ…hðxÞ
zfflfflfflfflfflfflffl}|fflfflfflfflfflfflffl{M

: ð6:6Þ

Then in the notations of the covariant perturbation
theory the calculation of the renormalized effective action
leads to the same sequence of monomials acted upon

by the operator form factors ΓðiÞ
n ðfΛg; ∇̃1;…∇̃1Þ which

make them nonlocal, fΛg denoting the full set of couplings
(6.4). Within dimensional regularization these renormal-
ized coupling constants get rescaled by the normalization
parameter μ and expressed in terms of their dimensionless

analogs λðmÞ
N ðμÞ

ΛðmÞ
N ¼ μd−mλðmÞ

N ðμÞ; ð6:7Þ

and the perturbation theory form factors also express as the
functions of dimensionless arguments

ΓðmÞ
M ðfΛg; ∇̃1;…∇̃MÞ ¼ μd−mγðmÞ

M

�
fλðμÞg; ∇̃1

μ
;…

∇̃M

μ

�
:

ð6:8Þ

Correspondingly the effective action becomes

Γ½gμν� ¼
X
ðmÞ

μd−m
X∞
M¼0

Z
ddx

ffiffiffĩ
g

p
γðmÞ
M

�
fλðμÞg; ∇̃1

μ
;…

∇̃M

μ

�

× IðmÞ
M ðh1; h2;…hMÞ

����
fxg¼x

; ð6:9Þ

where IðmÞ
M ðh1; h2;…hMÞ is the analog of the invariant (6.6)

with split spacetime arguments. A typical assumption of the
RG theory that the renormalized action is independent of
the running scale then leads to the set of equations for

λðmÞ
N ðμÞ with the beta functions following from the residues
of spacetime dimension poles in the form factors

ΓðmÞ
M ðfλðμÞg; f∇̃=μgÞ,

μ
d
dμ

Γ½gμν� ¼ 0 → μ
d
dμ

λðmÞ
N ðμÞ ¼ βðmÞ

N ðμÞðfλðμÞgÞ: ð6:10Þ

A critical step now consists of the choice of the running
scale which could probe the high-energy limit of the theory
and embrace a simultaneous scaling of all form factors and
invariant monomials of (6.9). Then the replacement of the
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parameter μ by this scale will identically bring the effective
action to the form explicitly revealing its UV limit. The
choice of this scaling object can be very different depend-
ing on the concrete physical setup. If the theory has a
dimensional scalar field ϕ with a nonvanishing and slowly
varying mean value it would be natural to identify RG
normalization μ with ϕ. This would lead to the nontrivially
“running” in ϕ of the cosmological and Einstein terms,
Λ → ΛðϕÞ and G → GðϕÞ, (amended of course by a
gradient expansion series in derivatives of ϕ), but of course
these terms acquire the interpretation of the Coleman-
Weinberg type potential and nonminimal coupling of ϕ to
the scalar curvature.
We, however, are interested in the UV scaling of all

derivatives ∇̃ → ∞, which in momentum space represen-
tation of scattering amplitudes is conventionally repre-
sented by the high-energy Mandelstam invariants or
some other combinations of external momenta. In the
coordinate representation of the covariant perturbation
theory of [38–40] the role of this scale should be played
by some operator. So we suggest as a candidate for this
object the following nonlocal operator D̃ which also
formally tends to infinity in the limit of ∇̃ → ∞ and in
fact embraces a simultaneous scaling of all invariant
monomials in (6.9),

D̃≡
�
−
X∞
N¼1

□̃N

�
1=2

; □̃N ≡ g̃μν∇̃μ∇̃ν: ð6:11Þ

Though being very formal, this operator is well defined in
each Nth monomial order because it becomes truncated
to the finite sum when acting on the monomial of N
perturbations h1;…hN , and for N ¼ 0 it is just zero
because of its action on an independent of x constant,

D̃N ≡
�
−
XN
M¼1

□̃M

�
1=2

; D̃0 ¼ 0: ð6:12Þ

In the UV domain ∇̃n → ∞, when ∇̃n=D̃N ¼ Oð1Þ,
n ≤ N, the form factors in each Nth order become after
the replacement μ → D̃ the functions of a single operator
variable D̃N ,

μ4−mγðmÞ
N

�
λðμÞj ∇̃1

μ
;…

∇̃N

μ

�����
μ→D̃N

→ ðD̃NÞ4−mγðmÞ
N ðλðD̃NÞjOð1ÞÞ≡ ðD̃NÞ4−mλðmÞ

N ðD̃NÞ;
ð6:13Þ

and the expansion of the formally independent of μ action
takes the form

Γ½gμν�
���
μ→D̃

→
X
m

X∞
N¼0

Z
d4x

ffiffiffĩ
g

p
ðD̃NÞ4−mλðmÞ

N ðD̃NÞIðmÞ
N

× ðh1; h2;…hNÞ
���
fxg¼x

: ð6:14Þ

The next step consists of the recovery of the covariant
form of the expansion in terms of the original spacetime
curvature. Curiously, despite the fact that the covariant
perturbation theory of [38–40] is rather often being referred
to in literature, subtle details of this step are usually
disregarded which leads to confusing statements on the
ambiguity of this procedure, dependence on the gauge
by which the metric perturbation hμν is related to the
curvature [33], etc. At the same time, this procedure is
unique, provided that one does not treat g̃μν and ∇̃μ as
Cartesian δμν and ∂μ, but rather proceeds in a generic
coordinate system and uses the only invariant statements
that the curvature of the tilded metric is vanishing R̃α

βμν ¼ 0.
This is the covariant equation for g̃μν in terms of the curved
metric gμν and its curvature Rα

βμν, whose solution exists as
perturbation expansion in Rα

βμν and also requires imposing
the gauge [38,39]. But the result of substituting this
solution back into manifestly noncovariant (double field)
series (6.6) is gauge independent because of the implicit
invariance of the left-hand side of (6.6).
In the convenient DeWitt type gauge ∇̃νhμν − 1

2
∇μh ¼

O½h2�, h≡ g̃αβhαβ, the solution for hμν and ∇̃μ in terms of
gμν and ∇μ reads in the lowest order as [38,39]

hμν ¼ −
2

□
Rμν þO½ℜ2�; ∇̃μ ¼ ∇μ þO½ℜ�: ð6:15Þ

Using this in (6.14) we get the replacement of hmonomials
by the covariant curvature monomials along with the
replacement of D̃N by DN,

IðmÞ
N ðh1; h2;…hNÞ →

1

□1…□N
ℜðmþ2NÞ

N ðx1;…xNÞ

þO½ℜNþ1�; ð6:16Þ

D̃N → DN þO½ℜ�; ð6:17Þ

where DN is obviously defined by (6.12) in terms of full-
fledged covariant d’Alembertians □ ¼ gμν∇μ∇ν, and we
reabsorb the coefficient ð−2Þn into the symbolic definition
of the Nth order covariant monomial—the analog of the

local ℜðmÞ
N ðxÞ [see Eq. (6.2)], with split N spacetime

arguments

ℜðmÞ
N ðx1;…xNÞ ¼ ∇…∇|fflffl{zfflffl}

m−2N

ℜðx1Þ…ℜðxNÞ; N ≥ 1:

ð6:18Þ
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For N ¼ 0 this monomial can be defined as an irrelevant
constant bringing no contribution in the UV limit.
Thus the UV limit of the effective action takes the form

Γ½gμν� →
Z

d4x
ffiffiffi
g

p X∞
m;N≥0

λðmÞ
N ðDNÞðDNÞ4−m

□1…□N

×ℜðmþ2NÞ
N ðx1; � � � xNÞ

���
fxg¼x

; ð6:19Þ

where we recall that the dimensionless form factors

λðmÞ
N ðDNÞ follow from the running RG couplings of the

theory λðmÞ
N ðμÞ by the replacement of μ with the opera-

tor DN.
Let us consider an application of this result to the

cosmological constant sector involving the metric invari-

ants of dimensionality m ¼ 0 and Λð4Þ
0 ¼ Λ=16πG. This

classical cosmological term gives rise to the infinite set of
zero dimension invariants

Z
d4x

ffiffiffi
g

p ¼
X∞
n¼0

Z
d4x

ffiffiffĩ
g

p
Ið0Þn ðg̃; hÞ; ð6:20Þ

Ið0Þ0 ðg̃; hÞ ¼ 1; Ið0Þ1 ðg̃; hÞ ¼ −
1

2
h;

Ið0Þ2 ðg̃; hÞ ¼ 1

4
h2 −

1

2
h2μν;… ð6:21Þ

(indices are contracted by the flat metric and h ¼ g̃μνhμν),
whereas at the quantum level they generate the sequence
of high energy m ¼ 0 structures of (6.19)

Z
d4x

ffiffiffi
g

p X∞
N¼2

λð0ÞN ðDNÞ
ðDNÞ4

□1…□N
ℜð2NÞ

N ðx1;…xNÞ
���
fxg¼x

;

ð6:22Þ

where the zeroth order term is zero in view of D0 ¼ 0 [see
Eq. (6.11)] and the first order term is also absent due to its
tadpole (total derivative) nature—remember that D1 ¼
ð−□1Þ1=2 and D4

1=□1 ¼ □1 is acting on ℜð2Þ
1 ðx1Þ.11

The expansion starts at N ¼ 2 with the term which has
the following structure:

4
XZ

d4x
ffiffiffi
g

p
ℜð2ÞðxÞλð0Þ2 ð

ffiffiffiffiffiffiffiffiffiffi
−2□

p
Þℜð2ÞðxÞ

¼
Z

d4x
ffiffiffi
g

p ðRμνF1ð□ÞRμν þ RF2ð□ÞRÞ þO½ℜ3�:

ð6:23Þ

Here we took into account that the set of invariants

ℜð4Þ
2 ðx1; x2Þ can be represented as a sum of terms factored

out into the products of Ricci tensors and Ricci scalars with
some coefficients.12 a and b,

ℜð4Þ
2 ðx1; x2Þ ¼ aRμνðx1ÞRμνðx2Þ þ bRðx1ÞRðx2Þ; ð6:24Þ

and also used an obvious corollary of integration by parts,

Z
d4x

ffiffiffi
g

p
Fð□1;□2Þℜðx1Þℜðx2Þ

���
fxg¼x

¼
Z

d4x
ffiffiffi
g

p
ℜðxÞFð□;□ÞℜðxÞ: ð6:25Þ

A remarkable feature of the expression (6.23) is that the
power-law operator factors in ðDNÞ4=□1…□N at N ¼ 2
completely canceled out to give the dimensionless form
factors F1ð□Þ and F2ð□Þ which originate as linear combi-

nations of relevant running λð0Þ2 ð ffiffiffiffiffiffiffiffiffiffi
−2□

p Þ obtained by
solving the RG equation. Even more remarkable is the
fact that this is a nonlocal term which is quadratic in the
curvature even though it has originated from the sector of
the cosmological term expanded in the series of zero
dimension invariants. This is what can be called meta-
morphosis to high-energy partners of the cosmological
constant suggested by J. Donoghue in [32]. Their structure
is a direct corollary of the dimensionality arguments within
the RG approach. The arising form factors of the curvature
squared terms are the descendants of RG running couplings
of the zero-dimension invariants which participate in the
decomposition of the cosmological constant term.
In fact, the same structure (6.23) gets reproduced

for the contribution of any dimension m in the
expansion (6.19). For even dimensionality,13 m → 2m,11An important caveat is necessary here concerning the

annihilation of the total derivative terms. The surface terms at
infinity should be vanishing, which is equivalent to a good IR
behavior of the nonlocal form factor λð0Þ1 ðD1Þ at □ → 0. We will
assume this property based on the maximum logarithmic singu-
larity of λð0Þ1 ðD1Þ which is a function of logð−□Þ solving the RG
equation. The same also applies to integrations by parts consid-
ered in what follows. Otherwise, the procedure of subtracting the
boundary terms, like the Gibbons-Hawking surface action at
asymptotically flat infinity, will be needed, which we briefly
discuss below.

12Bilinear in Riemann curvature terms under the integration
sign also reduce to bilinear combinations of Rμν and R by using
the expression for Riemann tensor in terms of the Ricci one
[38,39]; see footnote 5.

13For the set of two-dimensional curvatures ℜ only even
dimensions m enter the expansion (6.19), but this can always be
generalized to the case of odd-dimensional “curvatures,” like for
example the extrinsic curvature in Hořava gravity models.
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this can be easily demonstrated by decomposing any (2mþ 4)-dimensional quadratic invariant as this was done
above:

ℜð2mþ4Þ
2 ðx1; x2Þ ¼

X
m1þm2¼2m

ℜðm1þ2Þ
1 ðx1Þℜðm2þ2Þ

1 ðx2Þ: ð6:26Þ

Using this in (6.19) one has complete cancellation of the dimensional factor ðD2Þ4−2m=□2 ∼□
−m in the expression

Z
d4x

ffiffiffi
g

p X
m1þm2¼2m

ℜðm1þ2Þ
1 ðxÞλ

ð2mÞ
2 ðD2ÞðD2Þ4−m1−m2

□2
ℜðm2þ2Þ

1 ðxÞ¼
Z

d4x
ffiffiffi
g

p ðRμνF1ð□ÞRμνþRF2ð□ÞRÞþO½ℜ3�: ð6:27Þ

Noting that withℜðmþ2Þ
1 ¼ ∇ � � �∇zfflfflffl}|fflfflffl{m

ℜð2Þ
1 this follows from integration by parts and the use of various corollaries of contracted

Bianchi identity (∇νRμν ¼ 1
2
∇μR, etc.),

Z
d4x

ffiffiffi
g

p X
m1þm2¼2m

∇ � � �∇|fflfflffl{zfflfflffl}
m1

ℜðxÞFð□Þ∇ � � �∇|fflfflffl{zfflfflffl}
m2

ℜðxÞ ¼
Z

d4x
ffiffiffi
g

p ðRμν□
mF1ð□ÞRμν þ R□mF2ð□ÞRÞ þO½ℜ3�: ð6:28Þ

Here the operators F1ð□Þ and F2ð□Þ have the same
dimension as Fð□Þ and originate from Fð□Þ by the algebra
of contracting the indices of covariant derivatives. Using
this relation in the left-hand side of (6.27) one gets the
right-hand side with completely canceled powers of □.
Thus, Eq. (6.27) withm ¼ 2 implies the conversion of the

gravitational coupling constant into the dimensionless form
factors of the Einstein term partners. These partners have the
same structure as the cosmological term partners quadratic in
curvatures. This is again the metamorphosis of the RG

running of the form 1=16πGðμÞ ¼ μ2λð2Þ2 ðμÞ → F1;2ð□Þ.
Note that all this takes place in the UV limit where all

curvatures in their monomials are rapidly varying in
spacetime with their derivatives ∇ → ∞. At intermediate
energies, when the mass scale M surfaces up, the scaling
(6.13) ceases to make sense and roughly should be replaced
with D ∼M, and instead of (6.23) one gets exactly the
cosmological constant partners of Donoghue [32] which
have the structure of

M4

Z
d4x

ffiffiffi
g

p �
Rμν

Fpart
1 ð□Þ
□

2
Rμν þ R

Fpart
2 ð□Þ
□

2
R

�
: ð6:29Þ

The dimensionless form factors Fpart
1;2 ð□Þ here are accumu-

lating loop corrections with nonlocal logarithmic structures
of the form

Fpartð□Þ ∼ ln
M2 −□

M2
: ð6:30Þ

Note that these partners are still in the high-energy domain
−□ ≥ M2, but they are subdominant as compared to the
leading contribution (6.23) with dimensionless form factors
which incorporate the logarithmically running solutions of

RG equations. This is because the partners (6.29) are sup-
pressed bypower law factorsM4=□2. The exact formof these
form factors at intermediate scales was derived at one-loop
order in [33] for a rather generic theory of massive fields by
using the heat kernel technique of [38,39]. In the IR domain
−□ ≪ M2 they are of course expandable in the local gradient
series reflecting the decoupling phenomenon [33–35].
Similarly, the gravitational constant partner in IR reads as

M2

Z
d4x

ffiffiffi
g

p �
Rμν

F1ð□Þ
□

Rμν þ R
F2ð□Þ
□

R

�
; ð6:31Þ

which reminds the construction of the nonlocal action for
long-distance modifications of gravity theory in [51,52].
This differs from the cosmological constant partner by
another power ofM and the power of□ in the denominator.
One should be more careful at this point—while the

case of (6.31) is well defined in asymptotically flat
spacetime, the cosmological constant partner (6.29) is IR
divergent for the reasons discussed above. The action of 1

□
2

is not well defined in four dimensions (or, equivalently,R
d4x

ffiffiffi
g

p ð 1
□
ℜÞ2 is IR divergent), so that the perturbation

expansion in the dimension zero sector should be critically
reconsidered. To trace the origin of this difficulty note
that the first three terms of the cosmological term
expansion (6.20) are divergent, whereas a similar expan-
sion for the Einstein term becomes well defined only after
the subtraction of the Gibbons-Hawking surface termR
∞ d3σμð∂μh − ∂

νhμνÞ at the infinity of asymptotically flat
spacetime. Owing to this subtraction we can write for the

integral of the invariant ℜð2Þ
1 ðxÞ ¼ −RðxÞ, weighted in the

Einstein action by Λð2Þ
1 ¼ 1=16πG, a legitimate expansion

(6.6) starting with the quadratic order in hμν,
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Z
d4x

ffiffiffi
g

p ð−RÞ −
Z
∞
d3σμð∂μh − ∂

νhμνÞ

¼
X∞
M¼2

Z
d4x

ffiffiffĩ
g

p
Ið2ÞM ðg̃; hÞ; ð6:32Þ

Ið2Þ2 ðg̃; hÞ ¼ −
1

4
hμν□̃hμν þ 1

8
h□̃h −

1

2

�
∇̃νhμν −

1

2
∇̃μh̃



2
:

ð6:33Þ

Then the above calculational strategy leads to the effective
action (6.31) whose tree-level IR limit should match low
energy physics with the Planck mass cutoff M2 and the
form factors F1ð0Þ ¼ 1 and F2ð0Þ ¼ 1=2. This tree-level
answer up to ℜ3 corrections directly corresponds to the

above expression for Ið2Þ2 ðg̃; hÞ with hμν given by Eq. (6.15)
in terms of the curved space metric gμν [51,52].
To the best of our knowledge, no such subtraction is

known for cosmological term expansion (6.20), so that its
rigorous treatment is still to be done. It is interesting if new
structures can be generated by the regularization of this IR
behavior. Apparently, this should be based on the analog of
the Graham-Fefferman construction for asymptotically
anti–de Sitter (AdS) spaces [75,76] and deserves further
studies.
In any case, the UV behavior of both cosmological and

gravitational constant partners, which should be not sensi-
tive to IR problems, is determined by curvature squared
terms (6.23) with running dimensionless “couplings.” Their
form factors F1ð□Þ and F2ð□Þ follow from the RG running

of the relevant constants λð0Þ2 ðμÞ and λð2Þ2 ðμÞ, but the

transition λð0;2Þ2 ðμÞ → F1;2ð□Þ is not straightforward and
is mediated by Eqs. (6.23), (6.27), and (6.28).

VII. CONCLUSIONS

To summarize our notes on conformal anomaly, nonlocal
effective action, and running scales let us briefly dwell on
possible applications of our results and related issues.
As it is clear from the above considerations, the

conformal anomaly action is a carrier of the effective
rather than fundamental conformal degree of freedom.
Either in the nonlocal or the Wess-Zumino form, it is
the difference of action functionals of two configurations
belonging to the orbit of the conformal group. So unless
one of these actions is known the corresponding physical
setup is not complete. In this respect, our approach is very
different from the works which endow the conformal factor
e2s the nature of the fundamental field [77] or, for example,
ready to sacrifice the Higgs boson in favor of 36 funda-
mental scalars [78,79] (which is done for the sake of a
complete eradication of Weyl anomaly and justification of
the cosmological perturbation spectra).
The CFT driven cosmology of Sec. VA seems to present

such an example where the physical setup is complete

within a certain approximation scheme. This approxima-
tion is associated with the dominance of conformal invari-
ant matter fields over the loop effects of gravity and other
types of matter and simultaneously puts the model in the
sub-Planckian domain of energies below the cutoffMP=

ffiffiffi
β

p
when the coefficient of the topological conformal anomaly
β ≫ 1 [43]. To match with the widely accepted bounds on
the energy scale of inflation ∼10−6MP one needs β ∼ 1013,
which cannot be attained by a contribution of low spin
conformal fields β¼ ð1=360ÞðN0þ 11N1=2þ 62N1Þ unless
the numbers Ns of fields of spin s are tremendously high.
On the contrary, this bound can be reached by appealing

to the idea of CHS fields [45]. A relatively low tower of
higher spins will be needed, because a partial contribution
of spin s to β grows as s6. These partial contributions βs for
CHS totally symmetric tensors and Dirac spin tensors read
in terms of νs—their respective numbers of polarizations
(negative for fermions) [80,81]:

βs ¼
ν2sð3þ 14νsÞ

720
; νs ¼ sðsþ 1Þ; s ¼ 1; 2; 3;…;

ð7:1Þ

βs ¼
νsð12þ 45νs þ 14ν2sÞ

1440
;

νs ¼ −2
�
sþ 1

2

�
2

; s ¼ 1

2
;
3

2
;
5

2
;…: ð7:2Þ

The solution of hierarchy problem thus becomes a
playground of 1=N-expansion theory for large number N
of conformal species. Moreover, with the inclusion of CHS
fields the status of conformal anomaly essentially changes
and becomes similar to that of the chiral anomaly. Chiral
anomaly has phenomenological confirmation within chiral
symmetry breaking theory; it also has important implica-
tions in lepton physics, physics of the early Universe, its
baryon asymmetry theory, etc. It has a topological nature
and is generated in virtue of the Adler-Bardeen theorem
only at the one-loop level. Local Weyl anomaly also has a
topological (a-type) contribution [13], but for low spins it is
contributed by all orders of loop expansion. CHS spins,
however, have their inverse propagators ∼□s þ… and,
therefore, for high s are UV finite beyond one-loop
approximation. So their Weyl anomaly is also exhausted
by the one-loop contribution, and there is a hope that their
effect in the CFT driven cosmology is nonperturbative.
As this effect intrinsically, by a dynamical mechanism
of effective equations of motion [27,43,44,46], provides
the upper bound on the energy range of inflation
MP=

ffiffiffi
β

p
≪ MP, this also justifies omission of graviton

loops and quantum effects of other (nonconformal) types
of matter.
There are, however, serious problems on the road to the

realization of this model. To begin with, CHS fields in
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curved spacetime are not explicitly known yet, except
conformal graviton with s ¼ 3=2 and Weyl graviton with
s ¼ 2. Recent progress in generalizing these models to
arbitrary s on the Einstein-space background allowed one
to compute their one-loop Weyl anomaly coefficients (7.1)
and (7.2) (by indirect AdS=CFT method in [80] and
directly in [81]). This result, however, leaves the issue
of unitarity violation caused by inevitable higher deriva-
tives in wave operators of these fields. Moreover, these
fields should form a hidden sector not observable at
present, which implies the necessity of their eradication
in the course of cosmological expansion. What might be
useful for this purpose is the idea of renormalization group
flow from UV to IR decreasing the value of β (the so-called
a-theorem of [41,42,67]) or Weyl symmetry breaking
which would generate masses of CHS fields and thus
shorten their massless tower. Finally and most importantly,
the fundamental theory of these interacting CHS fields
should necessarily be organized within a special higher spin
symmetry [82,83]. A complete version of this theory is still
missing, not to mention its constructive extension to curved
spacetime. Thus, the progress here strongly depends on
advancing the theory of CHS fields [84–88].
The issue of RG running constants Λ and G has, as it is

shown, a rather unexpected resolution. The manifestation
of this UV running actually takes place in the nonlocal form
factors of the quadratic curvature (dimension four) terms
rather than in the sector of low-dimension operators. This
metamorphosis originates from establishing a rather non-
trivial scaling operator (6.11) embracing all powers of the
curvature expansion and exploiting a conventional RG
assumption that the renormalized theory does not depend
on the choice of the normalization (or subtraction) point.
Then simple, though somewhat tedious, dimensionality
considerations lead to this result. Dimension zero and
dimension two cosmological and Einstein terms do not
run themselves but still contribute to the running of the
dimension four terms which can be considered as UV
partners of Λ and G. This metamorphosis of RG running
couplings into the form factors of the curvature squared
terms sounds important, because it is the quadratic term in
the effective action that mainly determines either the
asymptotic freedom of the model or its cutoff beyond
which effective field theory breaks down.
In the IR domain these partners, due to the presence of

mass scale M, also start from the quadratic order in the
curvature, but they have essential nonlocality—of the type
M4

R
d4x

ffiffiffi
g

p ð 1
□
ℜÞ2 coming from the cosmological constant

sector [32] and of the form M2
R
d4x

ffiffiffi
g

p
ℜ 1

□
ℜ originating

from the gravitational constant one. While the latter is well
defined in the IR limit due to the subtraction from the IR
divergent bulk Einstein action of the Gibbons-Hawking
surface term [51,52], for the IR cosmological partner [32]
the situation is trickier—in view of IR divergences it
requires an additional subtraction procedure. Perhaps

even more radical changes will be needed to circumvent
this problem like the curvature expansion on top of the
homogeneous (dS or AdS) background with nonzero
curvature.
Of course, there can be other choices of the running scale

D different from (6.11). Nothing prevents one from
replacing it, say, with ðPNð−□NÞkÞ1=2k or other combi-
nations of contracted derivatives. However, for curvature
squared terms of the action all such choices (satisfying the
homogeneity property with respect to derivative rescalings)
lead to one and the same operator∼ð−□Þ1=2 because for the
second order of the curvature expansion all d’Alembertians
reduce to the single one, □1 ¼ □2, in view of integration
by parts (6.25). The only ambiguity is the choice of the
d’Alembertian itself, but it is fixed by the requirement of
general covariance. Alterations in the choice of D certainly
affect higher orders in the curvature, but the curvature
squared part, which is most important for UV asymptotic
freedom or determination of the effective field theory
cutoff, stays uniquely defined.
Ambiguity in the choice of D can arise in the class of

theories which have a more or less conventional RG
running of the gravitational coupling G—renormalizable
Hořava gravity models [53,89]. In these Lorentz symmetry
violating models a possible covariant curvature expansion
undergoes (3þ 1) splitting—the set of basic curvatures
includes the extrinsic curvature Kij, i, j ¼ 1, 2, 3, of spatial
slices of constant time τ. The Einstein term of general
relativity is replaced by the sum of the kinetic term
∼ð16πGÞ−1 R d4x

ffiffiffi
g

p
K2

ij and the potential term built as a
polynomial in 3-dimensional curvature and its spatial
derivatives. The RG running of G in the kinetic term
proceeds as the insertion of the form factor G−1ðDÞ
between two factors of KijðxÞ,

1

G

Z
d4x

ffiffiffi
g

p
K2

ij →
Z

d4x
ffiffiffi
g

p
KijðxÞ

1

GðDÞK
ijðxÞ: ð7:3Þ

Thus no tadpole problem for the RG running of G takes
place here—just like in Yang-Mills type theories this occurs
without forming a total derivative structure.
However the relevant scaling operator D of a unit

anisotropic scaling dimension, which replaces the space-
time covariant square root of (−□), turns out to be
ambiguous. The point is that in Lorentz violating models
the notion of a physical scaling dimension is replaced by
the anisotropic one which in (3þ 1)-dimensional Hořava
gravity is −3 for the time coordinate and −1 for spatial
coordinates. Correspondingly the dimension six wave
operator of the theory is of the second order in time
derivatives and of the sixth order in spatial derivatives.
Therefore, D ∼ ð−∂2τ − Δ3=M4Þ1=6 where Δ is the spatial
covariant Laplacian and M is a physical mass scale
parameter. This parameter may be different in various
(scalar and transverse-traceless) sectors of the metric
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field [89], and this is a source of ambiguity in the running
scale of Hořava models. Modulo this problem RG running
in renormalizable nonprojectable Hořava gravity is well
defined and in the (3þ 1)-dimensional case has a legiti-
mate interpretation of asymptotic freedom [89].
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