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Inspired by the second law of thermodynamics, we study the change in subsystem entropy generated
by dynamical unitary evolution of a product state in a bipartite system. Working at leading order in
perturbative interactions, we prove that the quantum n-Tsallis entropy of a subsystem never decreases,
ΔSn ≥ 0, provided that subsystem is initialized as a statistical mixture of states of equal probability. This is
true for any choice of interactions and any initialization of the complementary subsystem. When this
condition on the initial state is violated, it is always possible to explicitly construct a “Maxwell’s demon”
process that decreases the subsystem entropy, ΔSn < 0. Remarkably, for the case of particle scattering,
the circuit diagrams corresponding to n-Tsallis entropy are the same as the on shell diagrams that have
appeared in the modern scattering amplitudes program, and ΔSn ≥ 0 is intimately related to the
nonnegativity of cross sections.
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I. INTRODUCTION

The second law of thermodynamics mandates the mon-
otonic growth of disorder in a closed system. It applies
whenever the microscopic dynamics have been reformu-
lated in terms of coarse-grained variables. Crucially, even
when these macroscopic degrees of freedom are exactly
specified, the microstate is not. We are instead left with
an ensemble of possible microstates consistent with the
coarse-grained properties. Assuming the configuration of
the system is suitably generic, as defined by this ensemble,
the second law asserts that it will typically evolve into
another generic state exhibiting equal or higher thermo-
dynamic entropy.
At the same time, it is logically impossible to construct a

quantity that depends solely on the microstate of a system
and is also nondecreasing in time for any choice of initial
microstate and dynamical evolution. Any such quantity
would also be nondecreasing for the time-reversed evolu-
tion of the final state, thus yielding a contradiction unless
the quantity is trivially constant. However, since the second
law pertains to generic states consistent with specified
coarse-grained properties, it actually encodes how our
ignorance about the details of a system propagates into
our future predictions.

Meanwhile, in the context of quantum mechanics,
subsystem entropy can be derived uniquely from the
knowledge of the complete wave function of the full
system after tracing out subsystem degrees of freedom.
Since the time evolution of the wave function is reversible
via the Schrodinger equation, subsystem entropy certainly
cannot be monotonically increasing for any choice of initial
wave function and Hamiltonian. It is then natural to ask: for
which states does subsystem entropy never decrease,
independently of the detailed dynamics of the system?
In this paper, we answer this question for a broad class of

quantum mechanical systems. In particular, we consider a
bipartite system A ⊗ B initialized as a product density
matrix, ρAB ¼ ρA ⊗ ρB, where ρA and ρB can in principle
be mixed, but have no quantum correlations between them.
Furthermore, we assume that the state evolves by a
“scattering” process implemented by a unitarity operator
U ¼ 1þ iT that is perturbatively close to the identity
matrix [1]. Throughout our analysis we will compute
perturbatively, order by order in the scattering matrix T.
Despite our focus on scattering, our analysis will also apply
to more general quantum systems.
Given that the initial state is a product state, the mutual

information of the bipartite system starts at zero and can
only grow under unitary evolution. However, the same is
not necessarily true of the subsystem entropy. Working at
leading nontrivial perturbative order, we derive a general
formula for ΔSnðAÞ, the change in the quantum n-Tsallis
entropy of subsystem A. We then determine the conditions
for which it is nonnegative. Because the perhaps more
familiar n-Renyi entropy is a monotonic function of the
n-Tsallis entropy, we stress that these conditions also
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dictate when the leading perturbative n-Renyi entropy is
nonnegative.
Remarkably, we find that ΔSnðAÞ ≥ 0 for any choice for

ρB and U if and only if ρA is proportional to a projection
matrix in some basis, which we dub a “projector state.” In
physical terms, a projector state is a statistical mixture of
states which are of exactly equal probability. The space of
projector states contains as a subset the case where ρA is
pure, maximally mixed, and everything in between (max-
imally mixed in a subset of states). As we will show, if ρA
deviates even slightly from projector, then there exists a
“Maxwell’s demon” in the form of a ρB and U for which
ΔSnðAÞ decreases.
A physical interpretation of our result is that there is only

one way to guarantee that the entropy of subsystem A is
nondecreasing at OðT2Þ, independent of the state of
subsystem B and the underlying dynamics defined by U.
Subsystem A must be in a statistical mixture in which we
are democratically ignorant of its precise configuration.
Note that all of our results apply to ΔSnðAÞ at its leading

nontrivial perturbative order, which is OðT2Þ. In particular,
we make no claim about higher order corrections to
ΔSnðAÞ, which can be of either sign.
As a check of our general proof, we have verified that our

claims are true in several concrete examples, including
a bipartite system of qudits and particle scattering in
quantum field theory. In the latter, we note that quantum
n-Tsallis entropies are literally equal to the so-called “on
shell diagrams” that are commonly studied in the modern
amplitudes program [2–7]. Furthermore, when the only
quantum numbers labelling the particles are external
momenta, we find that ΔSnðAÞ for a projector state is
trivially nonnegative since it can be expressed as a positive
sum over scattering cross sections.

II. ENTROPY DIAGRAMS

To compute the n-Tsallis entropy, we employ a simple
circuit diagrammatic formalism for the algebraic manipu-
lation of states and operators. This approach will conven-
iently reduce the proliferation of indices and their
contractions. Furthermore, as we will discuss later, in the
context of quantum field theory, these diagrams are literally
the same as the on shell diagrams.
To begin, let us define the initial density matrix for the

A ⊗ B system by the diagrammatic element,

ð1Þ

where the lines with outgoing and incoming arrows denote
the uncontracted indices of kets and bras, respectively. The
reduced density matrix for subsystem A is

ð2Þ

while concatenating a pair of ρA diagrams and taking the
trace yields the initial purity of subsystem A,

ð3Þ

Next, we define the final state density matrix produced by
evolution under a unitary U, so

ð4Þ

To compute the final purity of subsystem A, we simply send
ρAB to ρ0AB in the diagram in Eq. (3), yielding

ð5Þ

By contracting more and more complicated diagrams of
this type we can mechanically compute any quantity built
from traces of products of density matrices.
The quantum n-Tsallis entropies for subsystem A in the

initial and final state are SnðAÞ ¼ 1
n−1 ð1 − trAðρnAÞÞ and

S0nðAÞ ¼ 1
n−1 ð1 − trAðρ0nA ÞÞ. For the entirety of our analysis,

we will assume that n ≥ 2 is an integer. The change in
n-Tsallis entropy is then

ΔSnðAÞ ¼ S0nðAÞ − SnðAÞ

¼ 1

n − 1
ðtrAðρnAÞ − trAðρ0nA ÞÞ: ð6Þ

At this point we have made no assumptions about the initial
state density matrix or the unitary evolution.
Next, we introduce two additional and nontrivial

assumptions. First, we assume that the initial state is a
product density matrix,

CHEUNG, HE, and SIVARAMAKRISHNAN PHYS. REV. D 108, 045013 (2023)

045013-2



ð7Þ

indicating that we start with no quantum correlation
between the subsystems. Second, we assume that the
scattering matrix T, defined by

ð8Þ

is proportional to a perturbative coupling constant. For our
analysis we will work to OðT2Þ, so it will be important to
enforce unitarity via the optical theorem,

iðT − T†Þ ¼ −TT†: ð9Þ

Substituting Eq. (7) and Eq. (8) into Eq. (6), we obtain a
general formula for the quantum n-Tsallis entropy atOðT2Þ
in the perturbative coupling,

ð10Þ

where in the derivation we have dropped the diagrams
where a single B loops on itself, since each such diagram
represents the multiplicative factor trBðρBÞ ¼ 1.
Let us elaborate briefly on the explicit derivation of

Eq. (10). To clarify our discussion, it will be convenient
to split the diagrams in Eq. (10) according to their first
and second terms, so X ¼ X1 − X2 and Y ¼ Y1 − Y2.
Examining the diagrammatic representation of ΔSnðAÞ,
we see that X1Y1 corresponds to contributions that enter
linearly in T or T†. Since these terms all enter through the
combination T − T†, they can be rewritten in terms of TT†

by the optical theorem in Eq. (9). Meanwhile, X2Y1 comes

from TT† contributions in which a single T and a single T†

arise from the same factor of ρ0A. Last but not least, X1Y2

and X2Y2 come from terms of the form T2, T†2, and TT†,
where each T or T† originates from a distinct factor of ρ0A.
Crucially, since we are only working to OðT2Þ, Eq. (9)
implies that T is Hermitian up to higher order corrections.
This means to our order of interest, we can set T ∼ T† with
impunity.

III. PROOF OF CLAIM

Let us now derive the conditions under which
ΔSnðAÞ ≥ 0 at OðT2Þ. To begin, we note that since the
initial density matrix is a product state, Eq. (7), then
without loss of generality we can choose a basis that
simultaneously diagonalizes both ρA and ρB,

ðρAÞaa0 ¼ αaδaa0 and ðρBÞbb0 ¼ βbδbb0 ; ð11Þ

where 0 ≤ αa, βb ≤ 1 and
P

a αa ¼
P

b βb ¼ 1. Translating
Eq. (10) into explicit index notation, we obtain

ΔSnðAÞ ¼
n

n − 1

X
a;a0

αaðαn−1a − αn−1a0 ÞΓaa0

Γaa0 ¼
X
b;b0

½βbjTaa0bb0 j2 − βbβb0T�
aa0bbTaa0b0b0 �: ð12Þ

Here we have used the fact that because we are working
to OðT2Þ, we can treat T as effectively Hermitian, so
Taa0bb0 ¼ T�

a0ab0b. Meanwhile, Γaa0 is automatically non-
negative since it can be written as a sum of squares,

Γaa0 ¼
X
b

βb

�
ð1 − βbÞjTaa0bbj2

þ
X
b0≠b

ðjTaa0bb0 j2 − βb0T�
aa0bbTaa0b0b0 Þ

�

¼
X
b

X
b0≠b

�
βbjTaa0bb0 j2 þ

1

2
βbβb0 jTaa0bb − Taa0b0b0 j2

�

≥ 0; ð13Þ

where we have used the fact that
P

b βb ¼ 1.
We now derive the necessary and sufficient conditions

on ρA such that ΔSnðAÞ ≥ 0 for any choice of T and ρB. In
particular, this is achieved if ρA is a projector state,

ρA ¼ diagðα; α;…; α; 0; 0;…; 0Þ; ð14Þ

where every diagonal entry of ρA is either zero or the same
nonzero number α. Note that there always exists a basis
in which the projector state is written in the form given in
Eq. (14). If Eq. (14) holds then αaðαn−1a − αn−1a0 Þ ≥ 0, in
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which case Eqs. (12) and (13) imply thatΔSnðAÞ ≥ 0. Thus
Eq. (14) is a sufficient condition.
To show that Eq. (14) is also necessary, it suffices to

show that when it is not satisfied, there always exists a
choice for T and ρB corresponding to a “Maxwell’s demon”
system that produces ΔSnðAÞ < 0. In particular, if Eq. (14)
does not hold, then at least two nonzero diagonal entries
of ρA are not equal. We can take α1 < α2 without loss
of generality. Let us now choose T1212 ¼ T2121 ¼ 1 with
all other couplings vanishing, together with ρB ¼
diagð1; 0; 0;…; 0Þ being a pure state. Then according to
Eq. (12), we find that ΔSnðAÞ ¼ n

n−1 α1ðαn−11 − αn−12 Þ < 0.
This proves that Eq. (14) is also a necessary condition to
mandate ΔSnðAÞ ≥ 0 for any choice of T and ρB, and
proves the claim stated in our introductory remarks.
Interestingly, if we assume that Γaa0 is symmetric, then

ΔSnðAÞ ≥ 0 is ensured for arbitrary ρA, and so Eq. (14) is
not required. In this case, Eq. (12) becomes

ΔSnðAÞ ¼
1

2

n
n − 1

X
a;a0

ðαa − αa0 Þðαn−1a − αn−1a0 ÞΓaa0 ≥ 0:

ð15Þ

Meanwhile, from Eq. (12) we see that

Γaa0 − Γa0a ¼
X
b;b0

ðβb − βb0 ÞjTaa0bb0 j2; ð16Þ

where we used that at OðT2Þ the scattering matrix is
Hermitian. It is straightforward to construct simple scenar-
ios in which Γaa0 is automatically symmetric.
For example, Eq. (16) is zero if the scattering matrix is

itself symmetric up to a phase, Taa0bb0 ¼ Ta0abb0eiθ, corre-
sponding to a symmetry under swapping the in and out
states of the A system. In the context of a relativistic
quantum field theory, this might arise if the A particle
is a charge-neutral, time-reversal invariant degree of free-
dom. Another example is when ρB describes a maximally
mixed state, in which case all of its entries are equal, so
βb − βb0 ¼ 0 for all b, b0 in Eq. (16).
Last but not least, we emphasize that all of the above

results strictly apply to Tsallis entropy for integer n ≥ 2.
While it is tempting to try to analytically continue our
expressions via n → 1 to derive the von Neumann entropy,
this is not permitted here because our particular diagram-
matic approach implicitly assumes a regular series expan-
sion in the coupling constant whose leading term is OðT2Þ.
Since von Neumann entropy involves logarithms of the
density matrix, its series expansion includes nonanalytic
terms of the form OðT2 logTÞ.

IV. EXAMPLES

Our results apply directly to any quantum system which
undergoes perturbative unitary evolution. Recently, there

have been a surge of interest in the generation of entangle-
ment from dynamical processes, including black hole
scattering [8], perturbative particle scattering [9–18], infra-
red radiation [19,20], and nuclear physics [21]. However,
these works were not concerned with the specific question
of under what conditions will the subsystem entropy
increase or decrease. In this section, we consider the
implications of our results for two examples: a finite-
dimensional system of coupled qudits, and particle scatter-
ing in quantum field theory.
Qudit system. As a concrete application, let us consider a

system where A ⊗ B is a pair of coupled qudits. Such a
system arises naturally in the context of scattering if we
post-select on the external momenta of particles, keeping
track only of internal or spin labels [8].
For simplicity, we will first consider the case of qubits

before generalizing to qudits. The initial product density
matrix is defined in Eq. (7), with

ρA ¼
�
α 0

0 1 − α

�
and ρB ¼

�
β 0

0 1 − β

�
; ð17Þ

in a diagonal basis where 0 ≤ α, β ≤ 1=2 without loss of
generality. Next, we define an arbitrary unitary evolution
operator, U ¼ expðiλμνσμ ⊗ σνÞ, where σ0 ¼ 1 and σi for
i ¼ 1, 2, 3 are the Pauli matrices and λμν is a four-by-four
real matrix of perturbative couplings.
A short calculation yields the change in linear entropy,

ΔS2ðAÞ ¼
1

2
λiKijðα; βÞλj þOðλ3Þ; ð18Þ

where λi ¼ ðλ11; λ12; λ13; λ21; λ22; λ23Þ are the six nonzero
parameters defining the perturbative dynamics, which we
consider up to Oðλ2Þ. The six-by-six matrix Kijðα; βÞ has
three distinct eigenvalues,

8ð1 − 2αÞðβ − αÞ
8ð1 − 2αÞð1 − α − βÞ
16ð1 − 2αÞ2ð1 − βÞβ: ð19Þ

If we demand that ΔS2ðAÞ ≥ 0 for any choice of couplings,
then these eigenvalues must be nonnegative, so

α ¼ 1

2
or α ≤ β: ð20Þ

We have checked that enforcing ΔSnðAÞ ≥ 0 for n ≥ 2
imposes the same conditions.
When the first condition in Eq. (20) is satisfied, ρA is

maximally mixed, so Eq. (12) implies that ΔSnðAÞ ¼ 0 at
leading perturbative order. The higher order contributions
to ΔSnðAÞ can only be negative, since A is maximally
mixed. Meanwhile, the second condition Eq. (20) is a
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mutual relation between ρA and ρB. If we demand that
ΔSnðAÞ ≥ 0 for any choice of ρB, then this includes the
case β ¼ 0, in which case α ¼ 0, so ρA is a pure state.
We have also considered a bipartite system of three- or

four-level states, and verified that ΔSnðAÞ ≥ 0 is ensured at
Oðλ2Þ for arbitrary U and ρB if and only if ρA is propor-
tional to a projector. For example, in the three-level system
this corresponds to ρA ¼ diagð1; 0; 0Þ; diagð1

2
; 1
2
; 0Þ, or

diagð1
3
; 1
3
; 1
3
Þ. Thus, an important difference from the two-

level system is that there now exists a choice for ρA which is
neither pure not maximally mixed. In the special case that
ρA is maximally mixed, the entropy inequality is always
saturated, at least at leading perturbative order.
Note that the inequalityΔSnðAÞ ≥ 0will not be saturated

in general. However, when it is saturated, the corrections at
higher order in perturbation theory can be negative [22].
Particle scattering. Our results also apply to particle

scattering in relativistic quantum field theory. In this case,
the space of states is infinite-dimensional and parametrized
by external momenta. As we will see, in this context the
change in the quantum n-Tsallis entropy and its non-
negativity follow directly from the fact that differential
cross sections are nonnegative.
For example, consider a quantum field theory describing

a pair of perturbatively interacting scalar fields, A and B. As
in the finite-dimensional case, we assume without loss of
generality that the initial density matrices are diagonal, so

ρA ¼ R
p αpjpihpj and ρB ¼ R

q βqjqihqj, where
R
p ¼ R d3p

2ωp

and ωp is the free particle energy corresponding to
momentum p, and similarly for q. Here,

R
d3pαp ¼R

d3qβq ¼ 1, and our normalization for the density matri-
ces implies that trAðρAÞ ¼ trBðρBÞ ¼ δ3ð0Þ ¼ V, which is
equal to the formally divergent volume of space.
Meanwhile, the unitary evolution is controlled by the
scattering matrix T, which encodes the amplitude for
elastic scattering between A and B.
To compute ΔSnðAÞ, we can use our diagrammatic

formula in Eq. (10), properly generalized to the case of
particle scattering. Concretely, the A and B lines denote the
Fock space identity operators,

ð21Þ

where hpjp0i ¼ 2ωpδ
3ðp − p0Þ, and likewise for q.

Furthermore, we note that closed loops of a single B
particle now yield the normalization factor trBðρBÞ ¼ V,
which for finite-dimensional systems would normally be
one. Thus, we should modify the Y diagram in Eq. (10) by
multiplying the first term by Vn−1 and the second term
by Vn−2. After we properly include these factors, Eq. (12)
becomes

ΔSnðAÞ ¼
n

n − 1

Z
p;p0

αpðαn−1p − αn−1p0 ÞΓp;p0

Γp;p0 ¼ Vn−2
Z
q;q0

h
βqjTp;q→p0;q0 j2V

− βqβq0T�
p;q→p0qTp;q0→p0q0

i
; ð22Þ

where Tp;q→p0;q0 ¼ δ4ðpþ q − p0 − q0ÞAp;q→p0;q0 only has
support on kinematic configurations that conserve energy
and momentum. As a result, the second term in Γp;p0 is
proportional to δ4ðp − p0Þ, so it zeros out when inserted
back into ΔSnðAÞ [23].
In summary, the change in subsystem entropy is

ΔSnðAÞ ¼
n

n− 1
Vn−1

Z
p;p0;q;q0

αpðαn−1p − αn−1p0 ÞβqjTp;q→p0;q0 j2:

ð23Þ

Since the differential cross section, jTp;q→p0;q0 j2, is non-
negative, we can straightforwardly deduce the conditions
under which ΔSnðAÞ is nonnegative. In particular, the
analog of the necessary and sufficient condition for
ΔSnðAÞ ≥ 0 in Eq. (14) is that αp ⊆ ð0; αÞ is a function
whose only values are either zero or a single positive
constant. Assuming this condition, we see that αpðαn−1p −
αn−1p0 Þ in Eq. (23) is nonnegative. Consequently, ΔSnðAÞ
is literally a nonnegative integral over the differential
cross section, and hence automatically nonnegative.
Second, exactly following our general analysis above,
we see that if βq is a constant, or if the scattering matrix
satisfies Tp;q→p0;q0 ¼ Tp0;q→p;q0eiθ, thenΔSnðAÞ ≥ 0 for any
choice of αp.
Amusingly, a corollary of our above discussion is that

the diagram in Eq. (10) is literally equal to sum of
multiloop, perturbative Feynman diagrams with all legs
localized onto unitary cuts. Such objects, known as on
shell diagrams, have appeared ubiquitously in the study of
generalized unitarity [24–26], which is a highly efficient
approach to building perturbative higher-loop integrands
from tree amplitudes. Furthermore, on shell diagrams
have appeared in the study of gauge theories in twistor
space [2–6] and have been instrumental in new formulations
of scattering amplitudes as volumes of polyhedra [27,28].
In all of these applications, the utility of on shell diagrams
follows from the fact that all off shell redundancy is
eliminated by the unitarity cuts, which is also why
ΔSnðAÞ is a gauge invariant quantity.
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V. DISCUSSION

We have calculated the perturbative change in n-Tsallis
entropy ΔSnðAÞ, generated by a unitary operator U ¼
1þ iT acting on a product state ρAB ¼ ρA ⊗ ρB.
Working to OðT2Þ in the scattering matrix, we have proven
that ΔSnðAÞ ≥ 0 for any choice of U and ρB if and only if
ρA is initialized in a statistical mixture of states whose
nonzero probabilities are all equal. For even the slightest
perturbation away from this choice, there exist U and ρB
that will decrease the subsystem entropy.
We emphasize that our results were obtained without

making any detailed assumptions beyond the perturbativity
of U, and that our setup encapsulates an enormous range
of phenomena, including all scattering processes at weak
coupling. However, the technical manipulations in this
work rely heavily on the assumption that our initial state is
a product state, and it would be interesting to see if there
exists a wider class of states where ΔSnðAÞ ≥ 0 under
suitable conditions. Imposing restrictions on U or ρB may
broaden the set of allowed ρA as well.
Our analysis leaves several promising avenues for future

inquiry. First, while we have treated U as an operator
characterizing dynamical unitary evolution in time, it can
be interpreted far more broadly. In particular, it would
be interesting to consider systems in which U instead
describes an adiabatic perturbation relating two different
physical systems. For example, consider a system with a
product ground state, ρA ⊗ ρB. If we now add a

perturbative and adiabatically small correction to the
dynamics, the ground state shifts to ρ0AB. Our calculation
of ΔSnðAÞ also characterizes the difference in ground state
subsystem entropy in these two scenarios.
Second, it would be interesting to explore explicit

physical scenarios in which nature realizes a product initial
state. For instance, this will happen for any setup where two
subsystems are initially decoupled but then brought into
causal contact. A joining quench is one well-studied
example of this process [29,30]. As more speculative
examples, one might imagine a system of black holes
or baby universes which is initialized as a product state
before becoming entangled through some dynamical
process [31–33]. It would be intriguing to explore the
possible ramifications, if any, our results might have in
these very different scenarios.
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