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We study the mechanism of chiral symmetry breaking for fermionic systems in a gravitational
background with curvature and torsion. The analysis is based on a scale-dependent effective potential
derived from a bosonized version of the Nambu-Jona-Lasino model in a Riemann-Cartan background.
We have investigated the fate of chiral symmetry in two different regimes. First, to gain some intuition on
the combined effect of curvature and torsion, we investigate the regime of weak curvature and torsion.
However, this regime does not access the deep infrared limit, which is essential to answer questions related
to the mechanism of gravitational catalysis in fermionic systems. Second, we look at the regime of
vanishing curvature and homogeneous torsion. In this case, although we cannot probe the combined effects
of curvature and torsion, we can access the deep infrared contributions of the background torsion to the
mechanism of chiral symmetry breaking. Our main finding is that, in the scenario where only torsion is
present, there is no indication of a mechanism of gravitational catalysis.
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I. INTRODUCTION

One of the longstanding goals of modern high-energy
theoretical physics is the establishment of an ultraviolet-
complete theory of quantum gravity which must be internally
consistent with the matter degrees of freedom we exper-
imentally observe. In particular, internal consistency demands
this would-be quantum gravity theory to be compatible with
the observed lightness of Standard Model fermions.
The simple existence of light fermions (with masses

several orders of magnitude smaller than the Planck scale)
poses a nontrivial constraint on quantum gravity theories.
Since gravity is an attractive interaction, it is conceivable
that in a nonperturbative regime, graviton fluctuations
could induce the formation of fermionic bound states,
possibly inducing chiral symmetry breaking. If such a
scenario is realized, one can expect all fermions in nature to
have masses of the order of Planck mass, which is
incompatible with our Universe. This consistency condition

has been tested in the context of asymptotically safe
quantum gravity (ASQG) [1–13] which seems to be
compatible with the existence of light fermions [14–16].
Also, in the context of ASQG, the fate of chiral symmetry
was investigated under the impact of topology-changing
fluctuations induced by gravitational instantons in a QCD-
gravity system [17]. For further discussions on the accom-
modation of fermions in ASQG, see also [18–33].
A remarkable aspect of the interplay between gravity and

chiral symmetry breaking is the mechanism of gravita-
tional catalysis [34–62]. In this case, chiral symmetry
breaking happens thanks to the gravitational background
field encoded in spacetime curvature. The phenomenon
of gravitational catalysis occurs for fermionic systems in
spacetimes with negative curvature [34–62]. Physically,
gravitational catalysis is a consequence of an effective
dimensional reduction in the spectrum of the Dirac
operator in spacetimes with negative curvature [56]. For
example, the low-lying modes of a fermionic system in a
d-dimensional hyperbolic spacetime behaves effectively
as a (1þ 1)-dimensional system like, e.g., in Gross-Neveu
or Nambu-Jona-Lasino (NJL) models, which exhibit chiral
symmetry breaking [63–65]. A renormalization group
analysis of the NJL model in an external gravitational
field with torsion has been studied in [66]. Gravitational
catalysis is analogous to the mechanism of magnetic
catalysis occurring in (2þ 1)-dimensional fermionic sys-
tem in a magnetic background, see, e.g., [67–70].
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In [60], the mechanism of gravitational catalysis was
used in conjunction with the effects of metric fluctuations
in ASQG to establish a bound on the curvature of local
patches of spacetime by demanding long-range chiral
symmetry to remain intact. As pointed out in [60], the
mechanism of gravitational catalysis produces an upper
bound on the number of fermions that are compatible with
chiral symmetry. This result was later extended to include
thermal effects [61].
So far, studies of the phenomenon of gravitational

catalysis are mostly restricted to formulations of gravity
where the spacetime geometry is fully characterized by
the metric. However, there are other proposals of gravi-
tational theories that give rise to richer geometric struc-
tures. For example, the general class of metric-affine
theories [71–73] treats the spacetime metric and the affine
connection as independent objects. In contrast to the
metric formulation, where the spacetime geometry can
be entirely specified by the curvature tensor, in the metric-
affine formulation, the spacetime geometry also depends
on information about the nonmetricity and the torsion
tensors. The general class of metric-affine theories
includes Palatini [74–76] and teleparallel [77–79] theories
as special cases.
Within metric-affine theories, we can also describe

gravity in such a way that the metric and the affine
connection are built in terms of more fundamental (and
independent) objects, namely, the vierbein and the spin
connection. A particular case is the so-called Einstein-
Cartan theory, see [72,80–84]. In general, the spacetime
geometry encoded in the Einstein-Cartan formalism is
characterized by curvature and torsion. The Einstein-
Cartan formulation has the appealing feature of bringing
gravity to a language that is closer to the other fundamental
interactions. The spin connection is the gauge field asso-
ciated with local Lorentz symmetry, thus playing a similar
role to the gauge bosons in Yang-Mills theories.
The Einstein-Cartan formalism is naturally related to

some approaches to quantum gravity, such as loop quantum
gravity and spin foams [85,86]. In this context, spin foam
models formulated in terms of BF-theories exhibit a
correspondence to the Einstein-Cartan action augmented
with the Holst term. The Holst action was also investigated
in the context of ASQG, pointing toward the viability of an
asymptotically safe theory formulated in terms of Einstein-
Cartan formalism [87].
The Einstein-Cartan theory is classically equivalent to

the Einstein-Hilbert theory in the absence of fermions.
In the presence of fermions, torsion is naturally sourced
and metric and torsion (or more naturally, metric and
affine connection) are independent fundamental variables.
Indeed, in this case, torsion is, on-shell, expressed in terms
of fermionic bilinears. Once it is plugged back into the
original action, it gives rise to a metric theory with
additional dimension-six operators accounting for the

interaction of fermionic axial1 currents [90–92]. In this
scenario, phenomenological implications for inflation and
dark matter production were investigated in [89,93]. At the
quantum level, it is expected that the Einstein-Cartan theory
is not equivalent to the quantum Einstein-Hilbert formal-
ism. Thus, in the search for a theory of quantum gravity, it
would be helpful to have a classification of the degrees of
freedom we should account for in the quantization process.
In this paper, we explore the possibility of using the

interplay between chiral symmetry breaking and gravity to
gain some insights on the allowed geometric structures in a
gravitational theory due to its coupling to matter degrees of
freedom. We focus on the Einstein-Cartan theory, where
the spacetime geometry can exhibit nonvanishing torsion.
Focusing on a fermionic system coupled to a gravitational
background with nonvanishing torsion, we study the impact
of the background torsion on the dynamics of four-fermion
interactions. In particular, our goal is to understand whether
torsion acts in favor or against chiral symmetry breaking,
and whether torsion can also act as a gravitational catalyzer.
Our findings suggest that spacetime torsion acts in favor
of chiral symmetry breaking, but not enough to engender
gravitational catalysis.
The paper is organized as follows: In Sec. II, we present

the setup of our investigation. In Sec. III, we introduce
a flow equation for the effective potential, which we use
as a tool to investigate torsion effects on chiral symmetry
breaking. In Sec. IV, we present our main result, namely,
the impact of a background torsion on the mechanism
of chiral symmetry breaking. In Sec. V, we present our
conclusions and outlook. Technical aspects that are relevant
to the computations but not essential for the understanding
of the main content of this work are relegated to the
Appendix.

II. SETUP

In this section, we present the general setup for the
investigation performed in this paper. In this first part, we
review the main aspects of the Riemann-Cartan geometry,
which is the basis for the Einstein-Cartan theory. In the
second part, we introduce the fermionic system used to
study chiral symmetry breaking in the presence of curva-
ture and torsion.

A. Overview of Riemann-Cartan geometry

In Riemann-Cartan geometry, the basic field variables
characterizing the spacetime geometry are the tetrad/
vierbein 1-form eaðxÞ ¼ eaμðxÞdxμ and the spin connection
1-form ωabðxÞ ¼ ωab

μðxÞdxμ, with x being a generic

1The presence of torsion allows for nonminimal Dirac kinetic
terms (see, e.g., [88,89]), which then generate interactions of
parity-violating axial-vector currents and vector-vector currents.
In this work, we leave out the possibility of considering these
nonminimal interactions.
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spacetime point over a manifoldM. Here and hereafter, the
Latin frame indices a; b; c;… refer to coordinates in the
tangent space TxðMÞ, while Greek world indices μ; ν;α;…
refer to local spacetime coordinates in a given chart.
Throughout this paper we work with quantum fields within
Euclidean signature,2 thus TxðMÞ correspond to Euclidean
flat space. Despite working with Euclidean signature, we
will use the term spacetime to refer to the background space
where quantum fields are defined.
For every spacetime point x ∈ M, a coordinate system

xμ is related to a local inertial frame xa in the tangent
space by means of the isomorphism dxa ¼ eaμðxÞdxμ and
dxμ ¼ eaμðxÞdxa, with eaμðxÞ being the inverse of the
vierbein field [103,104]. Thus, the metric field arises
as a composite field built from the vierbein as gμνðxÞ ¼
eaμðxÞebνðxÞδab, where δab is a flat metric, with Euclidean
signature ðþ;þ;þ;þÞ.
The covariant derivative acting on objects with frame

(implicit) and world indices is defined by the following rule

DμAν1…νk ¼ ð∂μ þ ωμÞAν1…νk −
Xk
i¼1

Γλ
μνiAν1…νi−1λνiþ1…νk ;

ð1Þ

where ωμ ¼ 1
2
ωab

μΣab, with Σab being the generators of the
orthogonal group. Both ωab

μ and Σab are antisymmetric
in the tangent space indices, i.e., ωab

μ ¼ −ωba
μ and

Σab ¼ −Σba. We assume the compatibility conditions on
the vierbein and the metric, which are expressed by
Dμeaν ¼ 0 and Dμgνλ ¼ ∇μgνλ ¼ 0, where ∇μ is the usual
covariant derivative that acts on objects containing only
world indices, thus depending only on the affine connection
Γα
μν. These relations ultimately ensure that the nonmetricity

tensor vanishes and allow us to establish a relation between
the affine connection and the spin connection, namely

Γλ
μν ¼ eaλð∂νeaμ þ ωa

bνebμÞ: ð2Þ

Equation (2) implies that the affine connection Γα
μν is not

necessarily symmetric in its lower indices. The antisym-
metric part of the connection Γα

μν defines the torsion tensor
Tλ

μν ¼ eaλTa
μν ¼ Γλ

μν − Γλ
νμ, which can be expressed as the

field strength of the vierbein, i.e.,

Ta
μν ¼ ∂μeaν − ∂νeaμ þ ωa

cμecν − ωa
cνecμ: ð3Þ

Additionally, the components of the field strength of the
spin connection in the dual basis define the Riemann-
Cartan curvature given by

Rab
μν ¼ ∂μω

ab
ν − ∂νω

ab
μ þ ωa

cμω
cb

ν − ωa
cνω

cb
μ: ð4Þ

Using the vierbein to recast local indices in terms of world
indices, we can write Rα

βμν ¼ eαaeβbRab
μν, which is the

usual Riemann tensor associated with the affine connec-
tion Γα

μν.
Manipulating Eq. (3), one can solve it for the spin

connection, resulting in the following expression

ωab
μ ¼ ω

∘ ab
μðeÞ þ Kab

μðe; TÞ: ð5Þ

The first term is the Levi-Civita spin connection, which
encodes the torsion-independent part ofωab

μ. One can fully
express the Levi-Civita spin connection in terms of the
vierbein, namely

ω
∘ ab

μðeÞ ¼
1

2
ecμðΩabc þ Ωbca −ΩcabÞ; ð6Þ

where Ωabc ¼ eaνebλð∂νecλ − ∂λecνÞ. Throughout this
paper, we use the circle on top of geometrical objects to
indicate that they are associatedwith the torsion-independent
part of the underlying geometry. The second term in (5) is the
contorsion tensor, defined by

Kab
ν ¼

1

2
ðeaλebμ − ebλeaμÞðTλμν − Tμνλ þ TνλμÞ: ð7Þ

Furthermore, using Eqs. (4) and (5), we canwrite the relation

Rα
βμν ¼R

∘
α
βμνþ∇∘ μKα

βν−∇∘ νKα
βμþKα

λμKλ
βν−Kα

λνKλ
βμ;

ð8Þ

where ∇∘ μ and R
∘
λ
ρμν denote, respectively, the covariant

derivative and Riemann curvature associated with the

(torsionless) Levi-Civita connection Γ
∘
α
μν.

B. Four-fermion interactions in a Riemann-Cartan
framework

To study the impact of torsion on the mechanism of
chiral symmetry breaking, we consider the NJL [64,105]
for a system with Dirac fermions in a curved background
with (nonvanishing) torsion. We start from a chirally
symmetric (Euclidean) action containing the ðV þAÞ-
channel of four-fermion interactions

2The use of Euclidean signature is a general limitation of
renormalization group methods based on the Wilsonian philoso-
phy that defines a coarse-graining procedure in terms of mass
shells, which is an Euclidean concept. See [94–102] for recent
developments on Lorentzian formulation of the Wilsonian re-
normalization group with a direct or indirect focus toward
quantum gravity or quantum fields on curved backgrounds.
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S½ψ ; ψ̄ ; g� ¼
Z
x

�
i
2
ðψ̄ iγμDμψ

i −Dμψ̄
iγμψ iÞ− λ

4
ðV þAÞ

�
;

ð9Þ

with local four-fermion operators of the form

V ¼ ðψ̄ iγμψ
iÞðψ̄ jγμψ jÞ; ð10Þ

A ¼ ðψ̄ iiγμγ5ψ iÞðψ̄ jiγμγ5ψ jÞ; ð11Þ

where i; j ∈ f1;…; Nfg, where Nf is the number of Dirac
fermions and the sum over the indices i; j; � � � is implied.3

Herein, we use
R
x ¼

R
d4xjej as a shorthand notation for

the integral over the four-dimensional spacetime with
jej ¼ detðeaμÞ. The Dirac gamma matrices in a curved
background are related to their tangent/flat space counter-
parts through the vierbein, i.e., γμ ¼ eaμγa, and satisfy the
Clifford algebra fγμ; γνg ¼ 2gμν14 and γ5 ¼ γ0γ1γ2γ3. The
covariant derivative acts on Dirac fermions as follows

Dμψ ¼ ∂μψ þ 1

8
ωab

μ½γa; γb�ψ ; ð12Þ

Dμψ̄ ¼ ∂μψ̄ −
1

8
ωab

μψ̄ ½γa; γb�: ð13Þ

Self-consistency requires that Euclidean dual spinors
are constructed with an extra imaginary factor, namely
ψ̄ ¼ ðiψÞ†γ0.
The system (9) is symmetric under the global chiral

group UðNfÞL ⊗ UðNfÞR, corresponding to transforma-
tions of the form

ψ i ↦ ψ 0
i ¼ ðURÞijPRψ j þ ðULÞijPLψ j; ð14Þ

ψ̄ i ↦ ψ̄ 0
i ¼ ψ̄ jPLðU†

RÞji þ ψ̄ jPRðU†
LÞji; ð15Þ

where U†
R;LUR;L ¼ UR;LU

†
R;L ¼ 1 with PR;L ¼ 1

2
ð1� γ5Þ.

Such symmetry can be spontaneously broken if there is a
finite condensate formation hψ̄ψi. Chiral symmetry also
allows a four-fermion operator of the form ðV −AÞ.
However, we restrict our analysis to the ðV þAÞ-channel,
which is the channel associated with chiral symmetry
breaking. The ðV −AÞ-channel might give rise to a vector
condensate [106] and is left out in the present analysis.
Using Fierz rearrangements, one can recast the ðV þAÞ-

channel in terms of scalar and pseudoscalar channels, as
follows

V þA ¼ −2½ðψ̄ iψ jÞðψ̄ jψ iÞ − ðψ̄ iγ5ψ
jÞðψ̄ jγ5ψ

iÞ�: ð16Þ

Decomposing ψ i in terms of its chiral components, ψ i ¼
ψ i
R þ ψ i

L (with ψ i
R;L ¼ PR;Lψ

i), we can recast (16) as

V þA ¼ −8ðψ̄ i
Lψ

j
RÞðψ̄ j

Rψ
i
LÞ: ð17Þ

Thus, the action (9) turns into

S½ψ ; ψ̄ ; g� ¼
Z
x

�
i
2
ðψ̄ iγμDμψ

i −Dμψ̄
iγμψ iÞ

þ 2λðψ̄ i
Lψ

j
RÞðψ̄ j

Rψ
i
LÞ
�
: ð18Þ

To investigate chiral symmetry breaking, it is convenient
to consider a partially bosonized version of the four-
fermion model in (18), which can be obtained by
Hubbard-Stratonovich transformation [48,106]. The boson-
ized action corresponding to (18) can be written as

SB ¼
Z
x

�
i
2
ðψ̄ iγμDμψ

i −Dμψ̄
iγμψ iÞ þ 1

2λ
trðϕ†ϕÞ

þ iψ̄ i½PLðϕ†Þij þ PRϕij�ψ j

�
; ð19Þ

where we have introduced a conjugate pair of matrix-
valued fields ϕ and ϕ†, which are scalars under Lorentz
transformations. We can recover the action (18) by inte-
grating out ϕ and ϕ†. The Yukawa-like interaction now
forces ϕ to transform according to

ϕ ↦ ϕ0 ¼ URϕU
†
L; ð20Þ

ϕ† ↦ ϕ0† ¼ ULϕ
†U†

R; ð21Þ

so that the partially bosonized action continues to be
chirally symmetric [106].
In this scenario, the spontaneous breaking of chiral

symmetry translates into a finite and positive expectation
value hϕi, leading to a mass term for the fermion. Thus,
the expectation value of the field ϕ can be seen as an order
parameter. To determine whether or not ϕ has a non-
vanishing expectation value, we analyze the structure of
minima of the effective potential Veffðϕ;ϕ†Þ obtained by
integrating out fermionic fluctuations.
Since we are interested in the effects of the background

torsion on the mechanism of chiral symmetry breaking, it is
useful to rewrite (19) in such a way that we can make the
torsion contribution explicit. Using Eqs. (5) and (12), one
can write

Dμψ ¼ D
∘
μψ þ Kμψ ; ð22Þ

3The reader should be careful with the use of Latin indices for
both tangent space indices and internal labels for fermionic fields.
We use letters from the beginning of the alphabet to denote
tangent space indices while for internal labels of Dirac fermions,
we take letters from the middle of the alphabet.
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Dμψ̄ ¼ D
∘
μψ̄ − ψ̄Kμ; ð23Þ

with D
∘
μ being the Dirac covariant derivative built with the

torsionless spin connection and Kμ ¼ 1
8
Kab

μ½γa; γb� is the
so(4)-valued contorsion, which, using the relation (7), reads

Kμ ¼
1

16
½γα; γβ�ðTαβμ − Tβαμ − TμαβÞ: ð24Þ

Upon integration by parts, the Dirac term can be
expressed as

SDirac ¼
Z
x

i
2
ðψ̄ iγμDμψ

i −Dμψ̄
iγμψ iÞ

¼
Z
x

�
iψ̄ i=D

∘
ψ i þ i

2
ψ̄ ifγμ; Kμgψ i

�
: ð25Þ

At this point, it is convenient to decompose the torsion
tensor in terms of its irreducible components Tμ (vector
component), Aμ (axial-vector component) and qμνρ (irre-
ducible rank-3 component) [88,107,108]. Explicitly,

Tλ
μν ¼

1

3
ðδλνTμ − δλμTνÞ þ

1

6
ϵλμνσAσ þ qλμν; ð26Þ

with qλμλ ¼ 0, ϵμνρσqνρσ ¼ 0 and qλμν ¼ −qλνμ. Further-
more, Tμ ¼ Tλ

μλ is the trace of the torsion tensor and Aρ ¼
ϵλ

μνρTλ
μν is the axial-trace vector. Using Eqs. (24) and (26),

together with the identity fγμ; ½γα; γβ�g ¼ 4ϵμαβργ5γρ, yields

fγμ; Kμg ¼ 1

4
γ5=A: ð27Þ

Thus, the Dirac action finally turns into

SDirac ¼
Z
x

�
iψ̄ i=D

∘
ψ i þ i

8
ψ̄ iγ5=Aψ i

�
¼

Z
x
iψ̄ i =Dψ i; ð28Þ

where we have introduced a new derivative operator
defined by

Dμψ ¼ D
∘
μψ −

1

8
γ5Aμψ ; ð29Þ

Dμψ̄ ¼ D
∘
μψ̄ þ 1

8
ψ̄γ5Aμ: ð30Þ

Thus, the minimal coupling of Dirac fermions with gravity
in the presence of nonvanishing torsion is equivalent to
fermions minimally coupled to a torsionless curved back-
ground, plus an axial interaction through Aμ [109,110].
The torsion-dependent term ψ̄ iγ5=Aψ i has certain similar-
ities with parity-violating terms investigated in the
context of theories with Lorentz- and CPT-symmetry
violations [111–113].

Finally, assuming an homogeneous breaking pattern
ϕij ¼ ϕ0δij, with ϕ0 being a constant, the bosonized action
(19) can be expressed as

SB½ψ ; ψ̄ ;ϕ0� ¼
Z
x

�
iψ̄ i =Dψ i þ iϕ0ψ̄

iψ i þ Nf

2λ
ϕ2
0

�
: ð31Þ

We are now ready to analyze the effective potential
associated with (31).

III. EFFECTIVE POTENTIAL
AND ITS FLOW EQUATION

The fermions appear as bilinears in the bosonized action
(31) and, once inserted in the Boltzmann weight of the
generating functional, they can be readily integrated out.
This ultimately provides an expression for a purely bosonic
quantum effective action. The associated effective potential
Ṽeffðϕ0Þ is given by

Ṽeffðϕ0Þ ¼
Nf

2λ
ϕ2
0 −

Nf

v4
log½Detð =D þ ϕ0Þ�

¼ Nf

2λ
ϕ2
0 −

Nf

2v4
Tr½logð− =D2 þ ϕ2

0Þ�: ð32Þ

The factor v4 stands for the 4-dimensional spacetime
volume.4

Our goal is to explore how local patches of the spacetime
geometry influence the mechanism of chiral symmetry
breaking. Therefore, instead of computing the effective
potential taking into account all modes of the fermionic
field, we perform a coarse-grained analysis in terms of a
scale-dependent effective potential. The idea is to introduce
a momentum scale k that acts as an infrared regulator,
such that the effective potential associated with a scale k
[denoted as Ṽkðϕ0Þ] only includes effects of fermionic
modes with “momentum”5 larger than k. In this sense,
the scale-dependent effective potential Ṽkðϕ0Þ probes the
effects of local patches of geometry with a characteristic
length scale of order ∼1=k.
To define the scale-dependent effective potential we

follow a strategy inspired by the regularization scheme
used in the functional renormalization group (FRG)
[11,114].6 Here, we regularize (32) by the replacement

4In the case of a noncompact manifold, an appropriate
regularization must be employed.

5More precisely, we define the coarse-graining procedure in
terms of the differential operator − =D2. Thus, the scale-dependent
potential Ṽkðϕ0Þ includes fermionic fluctuations associated with
eigenvalues of − =D2 that are larger than k2.

6Alternatively, one can also define a scale-dependent potential
using the proper-time regularization scheme as done in [60,61] in
the study of gravitational catalysis in Riemannian geometries.
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logð− =D2 þ ϕ2
0Þ ↦ logð− =D2 þ Rkð− =D2Þ þ ϕ2

0Þ; ð33Þ

where Rkð− =D2Þ is the FRG regulator function. The

regulator function Rkð− =D2Þ is defined7 such that it sup-
presses quantum fermionic fluctuation contributions based

on the spectrum of the effective Dirac operator − =D2, i.e.,

Rkð− =D2Þ suppresses modes with eigenvalues lower than k2

(see, e.g., [4,5] for general properties of the FRG regulator).

In general, in the limit k → 0 the regulator Rkð− =D2Þ should
vanish, implying that Ṽk¼0ðϕ0Þ ¼ Ṽeffðϕ0Þ. Throughout

this work we use the notation Rkð− =D2Þ ¼ k2rðyÞ (with

y ¼ − =D2=k2), and we explore the Litim [116] and expo-
nential shape functions, respectively defined by

Litim∶ rðyÞ ¼ ð1 − yÞθð1 − yÞ; ð34Þ
Exponential∶ rðyÞ ¼ y

ey − 1
: ð35Þ

Based on this FRG regularization scheme, we define the
scale-dependent effective potential as

Ṽkðϕ0Þ ¼
Nf

2λ
ϕ2
0 −

Nf

2v4
Tr½logð− =D2 þ Rkð− =D2Þ þ ϕ2

0Þ�:

ð36Þ
We define the flow of Ṽkðϕ0Þ by acting on it with a scale-
derivative operator k∂k, such that

k∂kṼkðϕ0Þ ¼ −
Nf

2v4
Tr½ð− =D2 þ Rkð− =D2Þ

þ ϕ2
0Þ−1k∂kRkð− =D2Þ�: ð37Þ

The right-hand side of (37) is both ultraviolet- and infrared-

finite, as long as Rkð− =D2Þ satisfies all the standard
properties of a FRG-regulator [4,5]. To compute the
effective potential at a given scale kIR, we integrate the
flow equation (37), resulting in8

ṼkIRðϕÞ ¼
Nf

2λΛ
ϕ2 −

Z
Λ

kIR

dk
k
k∂kVkðϕÞ

¼ Nf

2λΛ
ϕ2 þ Nf

2v4

Z
Λ

kIR

dk
k
Tr½ð− =D2 þ Rkð− =D2Þ

þ ϕ2Þ−1k∂kRkð− =D2Þ�; ð38Þ

where Λ is an ultraviolet cutoff scale, and we used the
boundary condition ṼΛðϕÞ ¼ Nfϕ

2=ð2λΛÞ, with λΛ ¼ λ.
Since the field-independent part of ṼkIRðϕÞ is irrelevant for
the analysis of chiral symmetry breaking, it is convenient to
define

VkIRðϕÞ ¼ ṼkIRðϕÞ − ṼkIRð0Þ; ð39Þ

which automatically removes divergences that are propor-
tional to Λ4.
Before discussing the impact of torsion on the mecha-

nism of chiral symmetry breaking, let us briefly review
how to identify chiral symmetry breaking from VkIRðϕÞ. To
simplify the discussion, we first consider the case of flat
spacetime. In this case, we can compute the trace in (38) in
Fourier space. Computing VkIRðϕÞ in a polynomial expan-
sion around ϕ ¼ 0, we find9

VkIRðϕÞ ¼
Nf

2λΛ
ϕ2 þ Nf

8π2

Z
Λ

kIR

dk
k

�
k6

k2 þ ϕ2
− k4

�

¼ Nf

2λΛ
ϕ2 þ Nf

16π2
ðk2IR − Λ2Þϕ2 þOðϕ4Þ

¼ Nf

2

�
1

λΛ
−

1

λcr
þ 1

8π2
k2IR

�
ϕ2 þOðϕ4Þ; ð40Þ

where λcr ¼ 8π2Λ−2. We are interested in determining if
ϕ ¼ 0 is a local minimum or a local maximum of VkIRðϕÞ.
If ϕ ¼ 0 is a local maximum, the structure of VkIRðϕÞ
implies the existence of at least two degenerate minima
with nonvanishing ϕ,10 thus implying chiral symmetry
breaking.
Since V 0

kIR
ð0Þ ¼ 0, ϕ ¼ 0 is an extremum of VkIRðϕÞ.

Thus, to determine if ϕ ¼ 0 is a local minimum or a local
maximum, we need to investigate the sign of

V 00
kIR
ð0Þ ¼ Nf

�
1

λΛ
−

1

λcr
þ 1

8π2
k2IR

�
: ð41Þ

If λΛ < λcr, then the sign of V 00
kIR
ð0Þ is positive for all

values of kIR, implying that ϕ ¼ 0 is a local minimum of
VkIRðϕÞ for all kIR. However, if λΛ > λcr, then the sign of
V 00
kIR
ð0Þ becomes negative for kIR < kχSB [where k2χSB ¼

8π2ðλΛ − λcrÞ=ðλΛλcrÞ], implying that ϕ ¼ 0 is a local
maximum of VkIRðϕÞ for kIR < kχSB. Thus, for λΛ > λcr,
the potential VkIRðϕÞ has nontrivial minima for kIR < kχSB,
indicating that quantum fluctuation can trigger chiral
symmetry breaking.7Following [115], we adopt the so-called type-II regulariza-

tion, in which the argument of the regulator function is the full
Dirac operator squared. This choice is motivated by [18], where
the authors argued that the type-II regulator is more appropriate
for the treatment of fermions in a curved background. See also
[32,33].

8From now on, we omit the subscript on ϕ0 and we write
simply ϕ for constant field configurations.

9In this example, we use the Litim regulator defined in (34).
10Assuming that the effective potential is bounded from below

(which is necessary for stability reasons), it implies that, if ϕ ¼ 0
is a local maximum, the potential VkIRðϕÞ has at least two local
minima with nonvanishing ϕ.
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From the discussion above, we see that the sign of
V 00
kIR
ð0Þ plays a key role in determining whether or not the

system exhibits chiral symmetry breaking. Using Eq. (38),
we can write

V 00
kIR
ð0Þ ¼ Nf

λΛ
−
Nf

v4

Z
Λ

kIR

dk
k
Tr½ð− =D2 þ Rkð− =D2ÞÞ−2

× k∂kRkð− =D2Þ�: ð42Þ

In the next section, we use this equation to study the impact
of a nontrivial background geometry on V 00

kIR
ð0Þ.

IV. THE IMPACT OF TORSION
ON THE MECHANISM OF CHIRAL

SYMMETRY BREAKING

In this section we investigate the impact of the back-
ground torsion on the mechanism of chiral symmetry
breaking. Our analysis entails the evaluation of the trace
on the right-hand side (rhs) of (42). In general, it requires
the knowledge of the spectral properties of the nonminimal

operator − =D2 [cf., Eq. (48)], thus leading to a complicated
problem of spectral geometry. To simplify the analysis, we
focus on two different regimes:

(i) jR∘ j=k2IR ≪ 1 and A2=k2IR ≪ 1: In this regime, we can
use early-time heat kernel expansion to evaluate the
trace in (42). This approximation allows us to carry
the combined effect of background curvature and
torsion. However, it is not applicable in the infrared
regime.

(ii) R
∘
μναβ ≈ 0 and A2 is approximately homogeneous: In

this regime, we can evaluate the trace in (42) without
employing the early-time heat kernel expansion.
Therefore, this approximation allows us to inves-
tigate the impact of background torsion in the deep
infrared regime.

A. Effects of background curvature and torsion

Now, we investigate the regime where R
∘
and A2 are small

in comparison with the cutoff scale k2IR. In this regime, we
can evaluate the trace in (42) using standard heat kernel
methods based on early-time expansion.
For a generic function of the square of the Dirac operator

W ð− =D2Þ, the heat kernel expansion reads [4,5,109,117]

TrW ð− =D2Þ ¼ 1

ð4πÞ2
X∞
n¼0

Z
x
Q2−n½W �tr½b2nð− =D2Þ�; ð43Þ

where b2nð− =D2Þ denotes the nonintegrated heat kernel

coefficients for the operator − =D2. The Q-functionals are
defined as

Qn½W � ¼ ð−1Þp
Γðnþ pÞ

Z
∞

0

dzznþp−1 d
pW ðzÞ
dzp

; ð44Þ

where p denotes some arbitrary positive integer satisfying
the restriction nþ p > 0. In particular, if n is positive,
then p ¼ 0. Here, tr denotes the trace over the internal and
spacetime indices.
For the trace that we are interested in computing [see

Eq. (42)], we can identify the function

W ðzÞ ¼ k∂kRkðzÞ
ðzþ RkðzÞÞ2

; ð45Þ

leading to

Qn½W � ¼ 1

ΓðnÞ
Z

∞

0

dzzn−1
k∂kRkðzÞ

ðzþ RkðzÞÞ2
¼ 2k2ðn−1ÞIn½r�:

ð46Þ

We have introduced the dimensionless threshold integral
In½r�, which one defines in terms of the shape function rðyÞ
according to

In½r� ¼
1

ΓðnÞ
Z

∞

0

dyyn−1
rðyÞ − yr0ðyÞ
ðyþ rðyÞÞ2 : ð47Þ

The numerical value of In½r� depends on the explicit form
of the shape function rðyÞ, except in the case n ¼ 1 where
one can show that I1½r� ¼ 1 for all suitable choices of
regulator (see, e.g., [4,5]). Since we are interested in the

regime where jR∘ j=k2IR ≪ 1 and A2=k2IR ≪ 1, we will only

keep terms that are at most linear in R
∘
and A2. In such case,

we just need to evaluate I2½r�, which results in I2½r� ¼ 1=2
for the Litim regulator and I2½r� ¼ 1 for the exponential
regulator.
In order to use the (nonintegrated) heat-kernel coeffi-

cients b2n available in the literature, it is useful to rewrite

the Dirac operator − =D2 in a minimal form. In fact,

− =D2 ¼ −D
∘
2 þ B̂μD

∘
μ þ X̂; ð48Þ

where the operators B̂μ and X̂ are defined as follows

B̂μ ¼ −
i
4
γ5σ

μνAν; ð49Þ

X̂ ¼ 1

4

�
R
∘ þ 1

16
A2

�
1þ 1

8
ð∇∘ · A − iσμν∇∘ μAνÞγ5: ð50Þ

The heat-kernel coefficients for this class operators are
available, e.g., in [118–120]. In our analysis, we use

tr½b0ð− =D2Þ� ¼ 4; ð51Þ
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tr½b2ð− =D2Þ� ¼ 2

3
R
∘ þ 1

2
trð∇∘ μB̂μÞ − 1

4
trðB̂μB̂μÞ − trðX̂Þ:

ð52Þ

From the definition of B̂μ and X̂, one can show that

trð∇∘ μB̂μÞ ¼ 0, trðB̂μB̂μÞ ¼ − 3
4
A2, and trðX̂Þ ¼ R

∘ þ 1
16
A2,

resulting in

tr½b2ð− =D2Þ� ¼ −
1

3
R
∘ þ 1

8
A2: ð53Þ

Plugging those results in Eq. (42) leads to

V 00
kIR
ð0Þ ¼ Nf

�
1

λΛ
−

1

λcr

�
þ Nf

4π2
I2½r�k2IR

þ Nf

16π2

�
1

3
hR∘ i − 1

8
hA2i

�
logðΛ2=k2IRÞ; ð54Þ

where we have defined spacetime averaged quantities as
hð� � �Þi ¼ 1

v4

R
xð� � �Þ. Here, we also use the critical coupling

λcr defined as

1

λcr
¼ Λ2

4π2
I2½r�: ð55Þ

In order to absorb the logarithmic divergence in the last
term of (54), we add the following counterterm to the
original action

δS½ϕ� ¼ NfξΛ
3

Z
x
ðR − TαβμTαβμ þ TαβμTβαμ

þ Tμ
μαTνα

ν þ 2∇μTν
νμÞϕ2; ð56Þ

where all geometrical objects are defined with respect
to the full connection Γα

μν. Such a counterterm leads to the
following contribution to the scale-dependent effective
potential

δVkIRðϕÞ ¼ NfξΛ

�
1

3
hR∘ i − 1

8
hA2i

�
ϕ2: ð57Þ

Thus, we define a renormalized effective potential such that

V 00
kIR
ð0Þ ¼ Nf

�
1

λΛ
−

1

λcr

�
þ Nf

4π2
I2½r�k2IR

þ NfξIR

�
2

3
hR∘ i − 1

4
hA2i

�
; ð58Þ

where we have introduced the renormalized coupling

ξIR ¼ ξΛ þ 1

32π2
logðΛ2=k2IRÞ: ð59Þ

In principle, ξIR needs to be fixed by experiments. In our
analysis, we leave ξIR as a free parameter.
As discussed in the previous section, the analysis of

chiral symmetry breaking relies on the sign of N−1
f V 00

kIR
ð0Þ.

If chiral symmetry breaking is present, there must be a
transition scale ktr such that V 00

ktr
ð0Þ ¼ 0. From (58), we find

the transition scale

k2tr ¼
4π2

I2½r�
�
1

λcr
−

1

λΛ
−
2

3
ξIRhR

∘ i þ 1

4
ξIRhA2i

�
: ð60Þ

For vanishing curvature and torsion, such transition scale
only makes sense if λΛ ≥ λcr. For nonvanishing curvature
and/or torsion, the viability of chiral symmetry breaking
depends on the inequality

1

λcr
−

1

λΛ
−
2

3
ξIRhR

∘ i þ 1

4
ξIRhA2i ≥ 0: ð61Þ

For ξIR > 0, we find that positive (negative) values of hR∘ i
act against (in favor of) chiral symmetry breaking, while the
axial-torsion term hA2i acts exclusively in favor of chiral

symmetry breaking. For ξIR < 0, the term hR∘ i can still act
in favor of or against chiral symmetry breaking (depending
on its sign), while the axial-torsion term only acts toward
the preservation of chiral symmetry. A comment is in order:
due to our use of a Euclidean setting, the sign of A2 is
positive definite. In a Lorentzian framework, this is not
necessarily true, and a spacetime average can be rather
misleading quantity in order to make concrete statements.
In such a quantum-field theoretic on a fixed background
setting, one can choose specific backgrounds where one
can compute quantities beyond their averages. In Fig. 1, we
show the regions in the parameter space λΛ × λcr where
chiral symmetry breaking is triggered by quantum fluctua-
tions in the presence of curvature or torsion.
Since the results presented in this section were based on

the early-time heat kernel truncated at the first order in

jR∘ j=k2IR and A2=k2IR, our results do not allow us to extract
information concerning the deep infrared regime. It is of
great importance to determine whether or not there is a
mechanism of gravitational catalysis related to a nontrivial
background structure. For Riemannian manifolds (i.e.,
without torsion), the mechanism of gravitational catalysis
was investigated, e.g., in [60]. If we take such infrared
contributions into account, we expect the inequality (61) to
have an extra term, namely

1

λcr
−

1

λΛ
−
2

3
ξIRhR

∘ i þ 1

4
ξIRhA2i þ F kIRðAμ; R

∘
μναβÞ ≥ 0;

ð62Þ
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where F kIR is a function of invariants built from Aμ and

R
∘
μνβα (and their derivatives), and it encodes the contribu-

tions beyond the early-time heat kernel expansion. We
expect that F kIR acts as the dominant contribution in the
infrared. Thus, if F kIR > 0, it would necessarily trigger
chiral symmetry breaking. Determining the form of F kIR

associated with the operator − =D2 [see Eq. (48)] in the
presence of curvature and torsion is a complicated problem
of spectral geometry lying outside the scope of this paper.
In the next section, we show that F kIR ¼ 0 if we neglect
curvature effects and restrict the axial-torsion component to
be homogeneous.

B. Is there a torsion-based gravitational catalysis?

In this section, we study the regime of vanishing

Riemannian curvature R
∘
μναβ ¼ 0 and homogeneous axial-

torsion Aμ. Our goal is to derive the contribution of Aμ to
V 00
kIR
ð0Þ beyond the early-time heat kernel approximation,

aiming at an understanding if torsion can be a source of
gravitational catalysis.

Within the approximation where R
∘
μναβ ¼ 0 and Aμ is

homogeneous, the differential operator − =D2 reduces to

− =D2 ¼
�
−∂2 þ 1

64
A2

�
1 −

i
4
γ5σ

μνAν∂μ: ð63Þ

This approximation is useful because it allows us to
evaluate the full heat-kernel trace (see Appendix for more
details), resulting in the following expression

Tr½expð−τ =D2Þ� ¼ 1

16π2τ2

�
4þ τ

8
A2

�
: ð64Þ

Surprisingly, the axial-torsion contributes at most up to
linear order in A2. This result implies that we can determine
all the heat kernel coefficients bn associated with the
operator in (63), leading to

tr½bnð− =D2Þ� ¼ 4δn;0 þ
1

8
A2δn;2: ð65Þ

Thus, only b0 and b2 lead to nonvanishing contributions to
the trace in (43). In other words, we can truncate the series
in (43) at n ¼ 1 without resorting to any form of early-time
approximation. Based on these results, we find

V 00
kIR
ð0Þ ¼ Nf

�
1

λΛ
−

1

λcr

�
þ Nf

4π2
I2½r�k2IR −

1

4
NfξIRhA2i;

ð66Þ

which correspond exactly to the limit R
∘
→ 0 of (58).

However, the current result is not restricted to small values
of A2=k2IR.
The most striking feature of Eq. (66) is the absence

of torsion-dependent contributions related to the deep
infrared regime. On physical grounds, a background torsion
would affect the mechanism of chiral symmetry breaking
by deforming the region in the parameter space of λΛ × λkIR
where we can flip the sign of V 00

kIR
ð0Þ. However, our results

show no indication of a mechanism of gravitational
catalysis based on a background torsion. If λΛ is sufficiently
small, then V 00

kIR
ð0Þ remains positive in the deep infrared,

thus avoiding chiral symmetry breaking. This is different
from the mechanism of curvature-based gravitational
catalysis investigated in [60], where chiral symmetry
breaking might be triggered even for arbitrarily small
values of λΛ.

FIG. 1. Regions in the parameter space λΛ × λcr where chiral symmetry breaking is triggered by quantum fluctuations in the presence

of curvature or torsion. Left panel: we have set hA2i ¼ 0 and we have probed the range ξIRk−2IR hR
∘ i ¼ −1=2;−1=4; 0; 1=4; 1=2 from

lighter to darker regions. Right panel: we have set hR∘ i ¼ 0 and from darker to lighter we have probed the range ξIRk−2IR hA2i ¼
−1;−1=2; 0; 1=2, 1.
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This conclusion may change if we drop the assumptions
we considered in this section. It is possible that by
combining the effects of curvature and torsion, a more
sophisticated geometric-driven mechanism could lead to
gravitational catalysis. It is also conceivable that a non-
homogeneous Aμ could change our conclusion. The analy-
sis in this direction, however, goes beyond the scope of
this paper.

C. Comments on the teleparallel theory

Manifolds with torsion play an important role in the
formulation of teleparallel theories of gravity [77–79] (see
also [121–123] for reviews). This class of theories is a
particular case of the general class of metric-affine gravity
(MAG) [71,72], and they are known to be classically
equivalent to general relativity [73].
The teleparallel formulation is characterized by vanish-

ing curvature and nonmetricity tensors, such that spacetime
degrees of freedom are entirely encoded in the torsion
tensor. In this framework, there is a special spin connection
configuration ω

:ab
μ, called the Weitzenböck spin connec-

tion, that ensures that R
:
ρ
λμν ¼ 0, with

ω
:ab

μ ¼ ω
∘ ab

μ þ K
:
ab

μ: ð67Þ

Here, we use a filled ring to indicate that the geometric
quantities are computed with the Weitzenböck spin
connection.
In the following, we briefly discuss the mechanism of

chiral symmetry breaking (due to background effects) in the
context of teleparallel theories. The key point for
such discussion is to identify the prescription of minimal
coupling between fermions and gravity in teleparallel
theories. Following Refs. [124,125], in the context of tele-
parallel theories, fermions couple to gravity according to

∂μψ ↦ ∂μψ þ 1

8

�
ω
:ab

μ − K
:
ab

μ

�
½γa; γb�ψ : ð68Þ

Using condition (67) we recover the usual Levi-Civita
covariant derivative and no torsion contribution appears.
Therefore, the mechanism of chiral symmetry breaking in
the context of teleparallel theories is equivalent to the case of
Riemannian manifolds explored in [60].

V. CONCLUSIONS AND OUTLOOK

In this work, we have investigated the impact of non-
trivial background on the mechanism of chiral symmetry
breaking. In particular, we focused on the impact of
background torsion. Our analysis is based on the evaluation
of a scale-dependent effective potential in the bosonized

version of the NJL model on a Riemann-Cartan manifold.
Within this setting, we used FRG-inspired tools to define a
coarse-grained effective potential.
We have analyzed the impact of torsion in two different

situations. First, in the approximation where jR∘ j=k2IR ≪ 1

and A2=k2IR ≪ 1, we investigated the combined impact of
torsion and curvature. In this case, torsion may contribute
toward or against chiral symmetry breaking, depending on
the infrared value of the renormalized nonminimal coupling
ξIR. In fact, for a given sign of the nonminimal coupling ξIR,
the torsion contribution plays the analog role of negative
curvature, i.e., favors chiral symmetry breaking for positive
nonminimal coupling and prevents it for negative coupling.

The analysis with jR∘ j=k2IR and A2=k2IR does not capture the
deep infrared regime. Thus, it does not allow us to
investigate a possible torsion-based gravitational catalysis.
The second analysis we performed was in the regime of

vanishing curvature and homogeneous torsion. Although
this analysis does not capture the combined effects of
curvature and torsion, it allows us to investigate the impact
of torsion on the mechanism of chiral symmetry breaking in
the deep infrared. Surprisingly, in this regime, the only
contribution of torsion to V 00

kIR
ð0Þ comes from the leading

order correction in A2 in an early-time heat kernel expan-
sion. In physical terms, we have found no indication of a
torsion-based gravitational catalysis mechanism.
To our knowledge, this is the first paper investigating the

effect of non-Riemannian structures on the mechanism of
gravitational catalysis. The results presented here are in
agreement with the very recent account [126], where the
possibility of chiral symmetry breaking was also inves-
tigated in a background with curvature and torsion, but
computing the effective action from the anomaly-induced
vacuum effective action in non-Riemannian spacetimes
probed in [127]. Furthermore, the results presented here
were restricted to a nondynamical background. As a
next step, we aim to investigate the impact of torsion
fluctuations on the mechanism of chiral symmetry break-
ing. In particular, one can investigate the compatibility
of light fermions [14] with quantum gravity scenarios
with fluctuating torsion field. We hope to report on
this soon.
Torsion effects can also play a role in low-energy

physics. For instance, effects of torsion can be emulated
in condensed matter systems [128–130]. In the context of
the geometric theory of defects, the appearance of torsion
and curvature in solids are associated with topological
defects known as dislocations and disclinations, respec-
tively. Crystalline structures are then viewed as a manifold
endowed with a Riemman-Cartan-like geometry. The
methods used in this paper can, in principle, be adapted
to the study of chiral symmetry breaking in low-energy
systems that emulate torsion effects. This path could pave
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the road to the experimental realization of the results
presented in this paper by means of analog gravity systems.
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APPENDIX: HEAT-KERNEL TRACE OF THE
SQUARED DIRAC OPERATOR IN SPACES WITH

TORSION AND VANISHING CURVATURE

Our goal is to compute the following heat-kernel trace:

Kτ ¼ Tr½expð−τð− =D2ÞÞ�: ðA1Þ

Here, we focus on the approximation of vanishing curva-
ture and homogeneous axial-torsion. Thus, with the differ-

ential operator − =D2 defined in Eq. (63).
Within the current setting, we can write a Fourier space

representation for the heat-kernel trace:

Kτ ¼ v4e−τA
2=64

Z
q
e−τq

2

tr

�
exp

�
−
τ

4
γ5σ

μνAμqν

��
; ðA2Þ

where tr stands for trace over the Dirac space only. To
compute the momentum space integrals, we consider an
expansion of the exponential inside the remaining trace:

tr

�
exp

�
−
τ

4
γ5σ

μνAμqν

��
¼ 4þ

X∞
n¼1

ð−1Þnτn
22nn!

tr½γ5σμ1ν1 � � � γ5σμnνn �Aμ1 � � �Aμnqν1 � � � qνn ; ðA3Þ

where we used tr1 ¼ 4 in the zeroth order term. It turns out that only contributions with even values of n are nonzero. For
these terms, the trace will have an even power of γ5, which can be combined into an identity matrix. After relabeling
n ↦ 2n, we find

tr

�
exp

�
−
τ

4
γ5σ

μνAμqν

��
¼ 4þ

X∞
n¼1

τ2n

24nð2nÞ! tr½σ
μ1ν1 � � � σμ2nν2n �Aμ1 � � �Aμ2nqν1 � � � qν2n : ðA4Þ

Plugging (A4) back into the original integral, we find

Z
q
e−τq

2

tr

�
exp

�
−
τ

4
γ5σ

μνAμqν

��
¼ 4

Z
q
e−τq

2 þ
X∞
n¼1

τ2n

24nð2nÞ! tr½σ
μ1ν1 � � � σμ2nν2n �Aμ1 � � �Aμ2n

Z
q
qν1 � � � qν2ne−τq

2

: ðA5Þ

The result for tr½σμ1ν1 � � � σμ2nν2n � will be a linear combination of products of the flat metric δμν. As a consequence, for each
value of n, the combination

I ¼ tr½σμ1ν1 � � � σμ2nν2n �Aμ1 � � �Aμ2n

Z
q
qν1 � � � qν2ne−τq

2

; ðA6Þ

can be rearranged into the form

I ¼
Xn
m1¼0

X2n
m2¼0

cm1;m2
δn;m1þm2

ðA2Þn−m1

Z
q
ðq · AÞ2m1ðq2Þm2e−τq

2

; ðA7Þ

for a given set of coefficients cm1;m2
. By standard covariance arguments, we can rewrite the remaining integrals as

(see, e.g., Appendix A from [131])

Z
q
ðq · AÞ2m1ðq2Þm2e−τq

2 ¼ Γðm1 þ 1
2
Þffiffiffi

π
p

Γðm1 þ 2Þ ðA
2Þm1

Z
q
ðq2Þm1þm2e−τq

2

: ðA8Þ

FATE OF CHIRAL SYMMETRY IN RIEMANN-CARTAN … PHYS. REV. D 108, 045012 (2023)

045012-11



It then follows that

I ¼ CnðA2Þn
Z
q
ðq2Þne−τq2 ; ðA9Þ

where

Cn ¼
Xn
m1¼0

X2n
m2¼0

cm1;m2
δn;m1þm2

Γðm1 þ 1
2
Þffiffiffi

π
p

Γðm1 þ 2Þ ; ðn > 0Þ:

ðA10Þ
Notably, this expression can be computed order by order
with Mathematica. Using the function FindSequenceFunc-
tion, we arrive at the following expression for Cn,

Cn ¼
8ffiffiffi
π

p Γðnþ 3
2
Þ

Γðnþ 2Þ : ðA11Þ

Going back to the original integral, we find
Z
q
e−τq

2

tr

�
exp

�
−
τ

4
γ5σ

μνAμqν

��

¼
X∞
n¼0

Cn
24nð2nÞ! τ

2nðA2Þn
Z
q
ðq2Þne−τq2 ; ðA12Þ

where we have defined C0 ¼ 4 (which is compatible
with (A10) in the limit n → 0) to group all terms into a

single sum. Finally, we can compute the remaining integral
over q:

Z
q
ðq2Þne−τq2 ¼ 1

16π2

Z
∞

0

dq2ðq2Þnþ1e−τq
2 ¼ Γðnþ 2Þ

16π2τnþ2
:

ðA13Þ

Therefore, we find

Z
q
e−τq

2

tr

�
exp

�
−
τ

4
γ5σ

μνAμqν

��

¼ 1

16π2τ2
X∞
n¼0

CnΓðnþ 2Þ
24nð2nÞ! ðτA2Þn: ðA14Þ

Based on (A10), we can use Mathematica to show that the
sum in the last expression converges to

X∞
n¼0

CnΓðnþ 2Þ
24nð2nÞ! ðτA2Þn ¼ 1

8
eτA

2=64ð32þ τA2Þ: ðA15Þ

Going back to the heat-kernel trace, we finally find

Kτ ¼
v4

16π2τ2

�
4þ 1

8
τA2

�
: ðA16Þ
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