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We consider a self-interacting, massive rank-1 field coupled to quantum gravity. The theory is

renormalizable by power counting and contains a massive spin-1 field and a massive scalar field. The latter

has a propagator with negative residue and it is quantized as a purely virtual particle, namely it cannot

appear as external on-shell state but contributes to renormalization. In this way the resulting theory is also

unitary, both in flat spacetime and when it is coupled to renormalizable quantum gravity (where purely
virtual particles are required as well). We compute the full set of one-loop beta functions, including those
of the nonminimal couplings. We show that the gravitational couplings cannot be made asymptotically

free in absence of tachyons, even with the addition of the two nonminimal terms. Various aspects of

renormalizability are discussed by studying the beta functions. Finally, we compare our model with Proca

theory, where renormalizability is spoiled if self-interactions are present.

DOI: 10.1103/PhysRevD.108.045011

I. INTRODUCTION

Abelian massive vector fields have a variety of phenom-
enological applications that span from inflation [1-4] to
dark matter [5-7]. The typical adopted model is Proca
theory [8], which can be shown to be renormalizable in flat
spacetime by introducing the so-called Stueckelberg field
[9]. However, this holds only if the interaction terms have at
most dimension four and are invariant under an Abelian
U(1) symmetry [10]. Therefore, if we introduce self-
interactions, renormalizability is spoiled. Moreover, the
coupling to (renormalizable) quantum gravity generates all
the nonminimal couplings that are allowed by power
counting, even if they are absent at tree level.

On the other hand, a theory of general massive vectors
that transform as the irreducible representation (3, 3) of the
Lorentz group (which we call rank-1 field) is renormaliz-
able by power counting, even when self-interactions are
present, as well as if it is coupled to higher-derivative
quantum gravity. In this theory, all the four degrees of
freedom of the field propagate and are decomposed into a
massive spin-1 field and a massive scalar field. The latter,
if quantized with the usual Feynman prescription, is a
ghost and leads to a nonunitary S matrix. However,
unitarity can be restored by adopting the so-called fakeon
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prescription [11,12], which turns the ghost into a purely
virtual particle, that is to say, a particle which cannot
appear as external on-shell state at any energy scale but can
circulate inside Feynman diagrams. Moreover, the fakeon
prescription allows us to keep the renormalizability proper-
ties untouched, since the Euclidean sector of the theory is
not changed.

The theory discussed in this paper belongs to a more
general class recently studied in [13] and [14], where irre-
ducible multiplets of arbitrary spin are considered. In parti-
cular, in [14] the models were coupled to renormalizable
quantum gravity and their contribution to the gravitational
beta functions derived. However, certain simplifications
were adopted. For example, nonminmal couplings to gravity
have been neglected.

In this paper we study the full renormalization of the
rank-1 field theory, including all the nonminimal couplings
and a quartic self-interaction term. We derive the beta
functions of all parameters and discuss their limits. The
computations are performed by means of Feynman dia-
grams and with the help of the Batalin-Vilkovisky formal-
ism [15,16] to handle nonmultiplicative renormalization.
We also compute counterterms in the case of Proca theory
to show that it is not renormalizable.

We stress that most of the literature on this topic consider
Proca theory, or one of its self-interacting version [17],
coupled to external gravity [18-21]. In this sense our work
is more complete since it accounts for the effects of
quantum gravity. Clearly, those contributions depends on
the chosen theory of quantum gravity.

Besides possible phenomenological applications, the
rank-1 field theory can be used as prototype for the study
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of Stelle theory [22] and quantum gravity with fakeons [23]
in the context of scattering amplitudes. In fact, it mimics
those theories in several aspects, although there are no
higher derivatives. For example, in addition to the crucial
cancellations between the massive spin-1 and the massive
scalar ghost/fakeon, the 2-to-2 tree-level scattering ampli-
tude grows as a power of the center-of-mass energy
squared, pretty much like in the case of Stelle gravity
[24]. However, we do not address this matter and concen-
trate only on the properties under renormalization, which
hold regardless of the fakeon prescription.

The paper is organized as follows. In Sec. II we recall the
main properties of rank-1 field theory and discuss its
renormalizability in flat spacetime within two different
formulations, one of them including a field for the massive
scalar. In Sec. III we highlight the differences with the
Proca model in the Stueckelberg approach. In Sec. IV
we review the quantization of higher-derivative quantum
gravity in the Batalin-Vilkovisky formalism. In Sec. V we
couple the self-interacting rank-1 field to quantum gravity
and derive the one-loop counterterms and beta functions for
all the parameters. Moreover, we derive the counterterms in
the case of Proca theory and show that higher-dimensional
operators are generated at one loop. For completeness, we
also report all the beta functions in the case of a non-
minimally coupled, self-interacting scalar. Finally, Sec. VI
contains our conclusions.

Notation and conventions: We use the signature
(+,—,—,—) for the metric tensor. The Riemann and
Ricci tensors are defined as R¥,,, =9, — 0,17, +
oI, —ToelY, and R,, = R’,,,, respectively. We write
the four-dimensional integrals over spacetime points
of a function F of a field ¢(x) as [ /—gF(¢)=

[d*x\/—g(x)F(¢(x)). We always assume that the
integral of the Gauss-Bonnet term vanish, i.e,
f \ /—Q(RWMR”WG — 4R, R" + R2) =0.

II. MASSIVE RANK-1 FIELD THEORY

We consider a field A, that transforms as the irreducible
representation of the Lorentz group (% , %) The most general
quadratic action for such a field is

1 A 1
S1(A) = / <—ZFWF”” —EzaﬂAﬂa”Ay —I—EmZAHA”),
(2.1)

where 4, and m are real parameters. In momentum space,
the propagator reads

_ —i pypy —i pﬂpl/
DMD(P) —m(ﬂﬂy— ) ) +P2—%2f R
2
(2.2)

where the subscript “f” denotes that we chose the fakeon
prescription for the pole associated to that term. Since
most of this paper deals with renormalization, which is
unchanged by the fakeon prescription, we refer the reader
to the review [25] for details. What is important to know is
that the fakeon prescription is a way of deforming the S
matrix so that it is unitary in the Fock subspace where the
fakeons are removed from being external lines of Feynman
diagrams, provided that all the potential ghosts are treated
this way and tachyons are absent.

We study the residues of the propagator (2.2) at the poles
p?> =m? and p* =mj=m?/A,. In order to determine
them we choose the rest frame p, = (m,0,0,0) and write
the propagator as a 4 x 4 matrix D. Then the residue
matrices read

0 0 0 O
01 0 0
_i(n2 _ 2|D _ — ,
i(p* = m?)D 2 00 1 0
0 0 0 1
;—2‘ 0 0 O
0 0 0 O
—i 2—m2ID 22 = 2.3
P =mPle=| 0 (2.3)
0 0 0 O

From the number of independent residues we can see that
the first pole is associated to a massive vector, while the
second one is associated to a massive scalar. Moreover, the
sign of the residue of the scalar depends on 4, and, if we
want a positive residue, we need to choose 4, <O.
However, in that case the mass squared would be negative.
Since the fakeon prescription cannot be applied to tachy-
ons, the only possibility to preserve unitarity without
spoiling renormalizability is to fix 4, > 0 and then make
the scalar ghost purely virtual with the fakeon prescription.

In the standard approach, such ghost is removed by
fixing 4, = 0 so my, is sent to infinity and (2.1) reduces to
Proca theory, which is renormalizable if the interactions are
U(1) invariant. However, our aim is to preserve renorma-
lizability and unitarity when self-interactions, as well as
nonminimal couplings to gravity, are included, which
cannot be done in Proca theory.

Finally, we show that it is possible to write an action,
equivalent to (2.1), where the scalar field is explicit. First,
we introduce an auxiliary field ¢ and define a new action

1 1
Si(A, ) :/|:—4FﬂDFW+2m2A”Aﬂ

m2 2 12
— —2—=0"A .
o, <¢ m ”"')]

The equivalence with (2.1) is obtained once the equations
of motion for ¢ are used, i.e.,

(2.4)
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A
Si(A.p(A) = Si1(A), @A) = ﬁd"A . (25)
Then we apply the redefinition
A=A — g (2.6)
- A, —— .
u T
and obtain
S\ (A, @) = 1F Frv ! 2A,AH
1( ’ (P) - 4 )17% + 2m
1 1 m?
—0,p0 2 2.7
~ 2000 5 > (2.7)

where the negative sign of the kinetic term for the field ¢ is
now manifest. If we include self-interactions in (2.1)
renormalizability is not spoiled even in the variables
(2.7) because of the presence of the ghost/fakeon, whose
negative residue is crucial (see below).

Note that the limit 1, =0 of (2.1) gives Proca theory,
which in (2.7) is obtianed by setting both 4, and ¢ to zero
with ¢/4, constant, since p(A) x 4,.

Before moving to the coupling to quantum gravity, it is
instructive to show how renormalization works when
switching between the variables (2.1) and (2.7). Here
and in the rest of the paper, we use the dimensional
regularization and define € =4 — D, where D is the
continued spacetime dimension. For simplicity we consider
only a quartic self-interaction in flat spacetime, so the total
action reads

- f[

1
5 mA, A +/1; (A,A4) ] (2.8)

1 Ay
—F F’“’——()“A 0"A,
4" 2

At one loop the renormalized action is obtained by means
of the redefinitions

m2 - Zmz, /14 d Z4/14, (29)
with
324(1 +343)
Z=1-" 22 1 O(A2),
3272 3e o)
24(5 422, +1723)
Zy=1- O23). 2.10
4 327‘[2/1%8 + ( 4) ( )

The field A, and the parameter 4, are not renormalized
at this order, since the one-loop two-point function is
given only by a tadpole diagram, which is proportional to
the mass.

Following the procedure used to obtain (2.7), in the
interacting case we obtain the action

1 1
SII(A,(P):/{ 4F/wFlw E m*A Aﬂ_iaﬂ(ﬂa’l?’

+1m +/14
27 v+

(AMA”)2|A_,A_% . (2.11)
The shift in the last term introduces several interactions of
dimension greater than four. However, as mentioned above,
those interactions do not spoil renormalizability. This is due
to the fact that the ¢ propagator has a negative residue,
which allows for crucial cancellations between diagrams. In
the original variables (2.8) those cancellations are evident
from the propagator (2.2), which behaves like 1/p? in the
ultraviolet (UV).

To give an explicit example, we compute the one-loop
counterterms and show how the renormalization constants
relate to each other in the two cases.

The general expression for the renormalized action is

Z Z Zh, m?
s’LR(A,fp)—/{ jOF Fﬂ”+§m2AﬂAﬂ ﬁa P p + 202/1 @ +mZ A,
2 47 6Z
+§“ {Z4O(A,,Aﬂ) ——31A B2 AAv+m—§?aﬂ(paﬂ¢AyAv

47
— 220,000, pA" + —Off (aﬂfpd“(p)z} }
m m

(2.12)

where the subscripts in Z and Z' indicate the number of fields A and the number of fields ¢, respectively. We find

220 — 262 — 1,

Zyg=Zy=Zyn=2Ziz=2Zyy=12

and the action (2.12) reads

ZIZO — 202 — Z,

(2.14)
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/ 1 v Z o Z
l.R(A’¢): ——F, F" +5m AMA’ _Z ”(paﬂ¢+

4" 2

1 m?
EZ"’z +m(l = 2)A,0"¢ + == (AA")] 4y s |

V4
AaZs (2.15)

Note that a mixing kinetic term is generated at one loop. This means that A, and ¢ are renormalized by the field redefinitions

Z-1
Mz

together with
m? - Zm?,

Alternatively, we can diagonalize the quadratic part of the action (2.15) by means of the transformation

zZ-1
A, — A, +76ﬂ¢,

which leaves A, — %0#(/) invariant, and the action (2.15) becomes

1 z
S’I’R(A,(p):/[——F P 4D A A

4"

In this variables it is clear that renormalization is multi-
plicative, i.e.,

m2 d Zmz, 24 = Z4/14, P — \/2(0, (220)

and such that A, — %aﬂqo does not renormalize (at one
loop). This is in agreement with the results obtained in the
variables (2.1), where the field A, does not renormalize at
this order.

III. PROCA AND STUECKELBERG THEORIES

In this section we briefly review the Stueckelberg
mechanism and explain why it does not work for a self-
interacting Proca theory. In this way we clarify the
differences between the theory considered in this paper
and those explored in the literature [17-21].

The free Proca action is

1 1
Sp(A) = / (—ZFﬂ,,F””+§m2A”A”) (3.1)

and its propagator is given by the first term of (2.2), which
goes like 1/m? in the UV, apparently breaking power-
counting renormalizability. However, this depends on the
symmetry of the interactions. We can perform the redefi-
nition (2.6) to the free Proca action and obtain the
Stueckelberg action

1
.9 Q- ﬁ(p (2.16)
l4 d Z4/14. (217)
@ — Zo, (2.18)
7% m? A4z
Zowro+ 20 B Pl ] @9
1 1
Ss(A, @) = /(—ZFWFW +§m2AﬂAﬂ
1

+ Eaﬂgaa”qo - mA,ﬂ‘cp). (3.2)

The new action is invariant under the gauge symmetry

A, = A, +0,f, @ = ¢+ mf, (3.3)

where f is an arbitrary function. This symmetry allows us
to write Proca theory as a gauge-fixed version of the theory
(3.2). The advantage of the action (3.2) is that renormaliz-
ability can be explicitly proved once interactions are
switched on, provided that they do not break (3.3).

In order to derive the propagator we first extend (3.3) to
the Becchi-Rouet-Stora-Tyutin (BRST) symmetry

sA, = 9,C, sp = mC, sC =0,
sC =0, sB =0, (3.4)

where C, C and B are the ghost, antighost and Nakanishi-
Lautrup fields respectively, and s is the nilpotent BRST
operator. Then the gauge-fixed action is

Ser = Ss(A, @) + s, (3.5)

where ¥ is the gauge-fixing functional
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. / ClO(A.0) +aBl.  G(A.) = fmgp + 7oA,

(3.6)

and a, 3, y are gauge-fixing parameters. Integrating out the
field B, the gauge fixed action becomes

1 _
Sef = Ss —@/ G + / CyO+pm*)C. (3.7)
The propagators read

(A, (P)AL(=P))o
—i [ (¥ =2a)p*+ (2a+p = 2py)m’

TP -mitie (rp*—pm?)? Pubr)
(3.8)
W)= =" b, =t o
2= 2am?
(p(P)o(=r))o = P =R (3.9)

We show that by choosing different values of a, f and y we
can interpolate between Proca propagator and propagators
that behaves like ~1/p? in the UV for both A, and ¢.
Indeed, by choosing @ = 0 and y = 0 we find

—i PuPv
— 2 2 . (’hu - :12 >’ (310)

(3.11)
while for @ = ?/2 and y = 3 we have
_ _in/w
<A/4(P)Av(_p)>() - pz — mz +ie s (3'12)
(Au(P)p(=P))o = (@(P)A,(=P))o = 0,
(@(P)o(=p))o : (3.13)

:pz—mz—l—ie'

Therefore, there is a gauge choice where the theory is
manifestly renormalizable, pretty much like the case of
theories with a spontaneously broken symmetry. It is clear
that the interactions need to be invariant under (3.3) in order
to be able to make such a gauge choice also in the
interacting case. A possibility is to couple the theory to
charged fermions through the action

i) = [ #iD=mpw.

D =y"D, =y"(0, +iQA,), (3.14)
where Q and m, are the charge and the mass of the
fermions, respectively, and the BRST transformations (3.4)
are extended with

sy = iQCy, sy = —iQyC. (3.15)
In this case, the action (3.14) is invariant under a U(1)
symmetry so it is also invariant under (3.3) and the theory
is renormalizable. Note that, because of the symmetry (3.3),
the field ¢ can only appear in the combination V, = A, —
iaﬂ(p. Then, since ¢ is decoupled, no loop diagrams with
an external ¢ can be built. Therefore, the mass term does
not renormalize at any order.

On the other hand, if we include self-interactions,
renormalizability would be spoiled. For example if we
add a quartic term (AMA”)2 to (3.2) it would break gauge
invariance and Proca theory could not be viewed as a
gauge-fixed version of (3.2).

Another possibility is to add a quartic term of the form
(V,V#)2. In this case the new action is invariant, but it
would allow to build counterterms with arbitrary powers of
V, suchas (V,V¥#)? or (V,V#)O(V,V¥). The reason is that
powers of V, higher than 2 introduce powers of 1/m that
cannot be canceled by other terms, which, instead, happens
in the case of the theory (2.11).

In other words, renormalizability is preserved if the U(1)
symmetry of the massless theory is explicitly broken only
by a mass term for the field A,,.

The procedure explained in this section can be applied
also to the non-Abelian Proca theory [26,27]. However, in
that case the Stueckelberg field is coupled to the spin-1
field and renormalizability is not guaranteed. See also [28]
for a recent investigation.

IV. RENORMALIZATION IN THE
BATALIN-VILKOVISKY FORMALISM

In this section we review the basics of the Batalin-
Vilkovisky (BV) formalism, which we use to renormalize
the theory of rank-1 field coupled to quantum gravity. The
BV is useful to handle the invariance under diffeomor-
phisms, to deal with nonmultiplicative renormalization and
to formulate the renormalization procedure in a systematic
way. Moreover, it handles the Ward-Takahashi-Slavnonv-
Taylor identities and the closure of the gauge algebra in a
compact form.

We introduce the BV formalism in the context of pure
gravity, so we also recall some properties of the theory. In
the next section we study the cases of rank-1 fields, Proca
theory and nonminimally coupled scalars, explaining addi-
tional modifications when necessary.
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The action of higher-derivative quantum gravity we
consider in this paper is

1 1 1

where a, & ¢, A are positive real constants and C?> =
ClupsC"? is the square of the Weyl tensor.

The BRST transformations associated to diffeomor-
phisms is defined by including Faddeev-Popov ghosts
and antighosts, C”, C? and the Nakanishi-Lautrup fields
B* and read

SOuw = _aﬂcagav - avcag/m - Caaag/,w

sCP = —-C°9,C"
sC° = B°
sBT = 0. (4.2)
For practical reasons all the fields are collected in
D = (G- C°, C°, BY). (4.3)
Moreover, we introduce a row of sources
K, = (KZ”,KE,K’C,KIQ) (4.4)

that are conjugated to the fields, and define the antipar-
entheses of two functionals X(®, K) and Y(®, K) as

0,X6,Y 06X0oY
(X’y)E/ i
5D 5K, OK; 5D

where the subscripts r and [ denotes the right and left
functional derivatives, respectively, and the integral is over
the spacetime points associated with repeated indices. With
these definitions, we extend the classical action as

(4.5)

S((D, K) = SQG + (SK’ lP) + SK’ (46)

where
SK = _/RiKi = /<aﬂcagau + apcaglla + Caaagﬂ’/)Kgy
4 / Cna”C/JKg _ / Bo—Kg (47)

collects the infinitesimal transformations R'(®) of the
fields and W(®) is the gauge-fixing functional. We choose

y— / O+ 0/a)(G, — 2B,).

g/,t = ”Upapgyu - (0) + 1)’7Upaygvp7 (48)

where A and @ are gauge-fixing parameters. Then the
gauge-fixing term reads

(S, ¥) = / B¢+ 0/a)(G, — 2B,) + Sgn. (4.9)

Sgh - / Cﬂa‘/@ + D/“)(-gﬂpavcp + gﬂﬂaﬂcp + Cpa/’gl““)'
(4.10)

The extended action (4.6) satisfies the so-called master
equation

(5.5) =0, (4.11)
which encodes the gauge invariance of Sog and the closure

of the transformation under diffeomorphisms. After inte-
grating B® out, the gauge-fixing term becomes

(Sx. W) = %/ G“(¢+0/a)G, + San- (4.12)

At this point we can invert the quadratic operator and derive
the graviton propagator. We report it in the case A = 1 and
w=-1/2

_ o ial/wpa l<€ B a>”ﬂ””/’"
<h/w(p)hﬂa( P)>0 = pz(aé’ _ pz) 6(p2 — Ca)(pz — &) ’
(4.13)

where we have omitted the prescriptions and

DuP
ﬂﬂyzﬂﬂb+2 ;21./.

I;wp(i = ’7;4/)771/{7 + ’7/4{7771//1 - 77;41/’7/)07
(4.14)

However, all the computations of this paper has been done
for generic values of 1 and w.

The effective action I'(®, K) is defined as the Legendre
transform I'(®,K) = W(J,K) — [ ®'J; of the generating
functional W(J, K) of the connected correlation functions
with respect to J, where ® = §,W/8J; and

iW(J,K) =1nZ(J.K),

Z(J,K) _/[dCD] exp (iS((D,K) —i/(I)’J,), (4.15)

Z(J, K) being the generating functional of the correlation
functions. Then, also the effective action satisfies the
master equation

(I,T) =0, (4.16)

which collects the Ward-Takahashi-Slavnov-Taylor
identities in a compact form. It is easy to show that a
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consequence of Eq. (4.16) is that the counterterms SSG
satisfies the equation
(S, 886) = 0. (4.17)
Note that the operator (S,-) generalizes the usual BRST
transformations and, when applied to the metric it reduces to
the usual diffeomorphisms. Moreover, since (S, (S,X))=0
for any functional X, a general solution of (4.17) can be
written as
Soc = G(®,K) + (S, X) (4.18)
where (S, G) = 0. Finally, a theorem [29] guarantees that all
the dependencies of G on the unphysical fields, i.e., C, C,B,
and K;, can be moved to (S, X), so the counterterms read
Soc = G(g) + (8. X). (4.19)
The functional G depends only on the metric and is gauge
invariant. Therefore, it is given by the integral of all possible

four-dimensional covariant operators that can be built using
the metric tensor, i.e.,

1 6Z1/0 o O6Z1)
—— | J=G|2A8Z, + 67, R+ M a2 T2 po
G(9) 2/\/ g{ A FHEOZR+— =C 6 ,

(4.20)

where 6Z; are real constants. Finally, the term (S, X) can be
removed by a canonical transformation, i.e., a map
' — O (D, K),

K, - Kj(®,K), (4.21)

such that

(X, Y) =(X,Y), (4.22)
where the prime superscript denotes the quantities that
are evaluated using the transformed fields and sources. A

canonical transformation is generated by a fermionic func-
tional F(®, K') such that

5 5
F o _oF

D= =
5K’ Y

(4.23)

In particular, any functional of the form (S,X) can be
removed by a canonical transformation generated by

F(®.K') = / OK - X(®.K'),  (4.24)

which gives

S56(@', K') = Sg6(@, K) — (S, X (@, K)). (4.25)

This transformation is important when we derive the counter-
terms by splitting the metric as g,, =, + 2h,, and using
Feynman diagrams. In fact, the results obtained in this way
would not be covariant, in general, since they include the
terms (S, X) that depends on the graviton field only and are
not covariant. Only after performing the canonical trans-
formation it is possible to obtain covariant counterterms and
identify the correct renormalization constants. This general-
izes the more common multiplications by wave function
renormalization constants and amounts to perform the field
redefinitions

G = G = BGpu» ¢’ = = AC”, (4.26)
Ag/,w = tOg/u/ + tlh;w + t277/,wh1/0) + O(hz)v
AC? = 5,C" + O(h), (4.27)

plus analog transformations for the sources, which we
do not report here, since they are not important for the
purpose of this section, and where s; and ¢; are one-loop
coefficients. The effect of (4.26) is to add terms proportional
to the equations of motion, so the noncovariant terms
Gpc(g, h) obtained from Feynman diagrams becomes modi-
fied as follows

Gre(g: h) = Guelg. ) / 0506 £y = Glg). (428)

dg,

uv

The coefficients #; and s; can be obtained by working on
the term (S, X) and noticing that, by power counting and
ghost number, its most general form is

X(®.K) = / Ag, Ky + / ACPKS,

G,
0

K =K + (¢ +0/a) / cr. (4.29)

From this expression it is possible to work out the
renormalization of the BRST transformations, from which
the coefficients in (4.27) are extracted. They read [30]

al

5177.'28 = @ (430)
Sa al & al & Sa 5&
fmle=——— " 12 — ==
=T8T 3 79 24’ 1207 18w 36w
o S5a Sai €& al I S5a 5&
M= ——— — -~ 5~ 55—~ — .
2 72 48 36 1920® 480 o 144w
(4.31)

The coefficient ¢ is arbitrary, since it multiplies a covariant
term, and encodes a surviving gauge dependence of the
counterterms. A convenient way of parametrize it is
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, 3ok al 3¢ 3¢ A
=6 T 6aa? 64’ 16w 8
where A is a gauge-dependent arbitrary coefficient. The
details of this procedure can be found in [30].1 However,
in Sec. VA we repeat some of the steps for the case of
rank-1 field.

Here and in the next sections the beta functions are
related with the renormalization constants by means of the
relation 3; = 162%¢5Z;. The coefficients 6Z; in (4.20) can
be worked out by computing the graviton self-energy and
the renormalization of the BRST operators. In the case of
pure gravity the results are [30-32]

133

) =22
ﬂa_ aﬁl/(l lOa

(4.32)

5 Sa?
P = —52/31/5 = —52 + 5“54‘7,

5¢  Sa

be = _C< €+3—§2+A>
— SYETa
Pr = ASa—2E-2A) +Z(5a +&%). (4.33)

Finally, we comment about the signs of the constants a
and &. The theory (4.1) propagates a massless graviton, a
massive scalar and a massive spin-2 particle. The latter is a
ghost and therefore is responsible for the violation of
unitarity. As mentioned in the introduction, this problem
can be solved by turning the ghost into a purely virtual
particle, that is to say particle that can only mediate
interactions without ever appear as an on-shell external
state. Purely virtual particles are introduced by means of a
different quantization procedure called fakeon prescription
[11,12]. In this way, we can consistently project the total
Fock space of the theory onto a subspace where the would-
be ghost cannot be an external line in the Feynman
diagrams. This projection is nontrivial, since it cannot be
naively done by just excluding some diagrams. The reason
is that for a projection to be consistent it has to be
supplemented by some additional procedures, otherwise
the degrees of freedom we want to remove would be
generated back by loop corrections. One example of a
consistent projection is the one done in gauge theories,
where the BRST symmetry allows to remove the Faddeev-
Popov ghosts from the spectrum, as well as the longitudinal
and temporal component of the gauge fields. In the case of
purely virtual particles this goal is achieved by a prescrip-
tion for the scattering amplitudes instead of a symmetry.
However, this procedure cannot be applied to tachyons.
Therefore, we impose @ > 0 and & > O since they are
related to the squared masses {a and {¢ of the spin-2 fakeon
and the scalar field, respectively. The same rationale is
applied to the scalar ghost in (2.1).

'Note that the formulas of this paper are related to those in [30]
through the substitutions @ — 1/a, & — 1/&.

V. COUPLING TO QUANTUM GRAVITY

In this section we couple the theory (2.8) to the quantum
gravity theory (4.1). The coupling to matter generates
contributions to the beta functions (4.33), as well as
contributions to the renormalization of the field A, and
to the parameters m, 4,, and 14. As we show below, the
nonminimal couplings RA,A* and R*“A,A, are also gen-
erated at one loop. Therefore we add them to classical
action. We compare some of the results with Proca theory
coupled to quantum gravity, which is nonrenormalizable, as
we explicitly show.

Finally, we include the renormalization of a scalar field
nonminimally coupled to quantum gravity.

A. Rank-1 fields

We consider the covariantized version of (2.8) and
include all possible terms with dimension four”

Sa(A.g) =~ / a {2 Fu P + (VA —m>A, A

M

+mRA A"+ RYAA — 21 (A, A2, (5.1)
where 71, , are real parameters. Note that there is no need
to add the term V,A, V¥A* with an independent coupling,
since it would be equivalent to a redefinition of #,. Then
we expand the metric around Minkowski spacetime and
compute the relevant diagrams. The contributions to the
purely gravitational counterterms (4.20) are derived from
the diagrams in Fig. 1. We find

"7

m(1+54) m(1+44 +7%)

Pa _ _ 1 _ (52
2 30 61, 2473 (52)
B 1\ p(1=34) m(1=172)
T C 4323 -
26 i TEZ) T4 61,
3mna (1 + 3/1%) 112(5 + 24, + 17/1%) (5.3)
272 2423 ’ '
1 (4 +m) (1 4 323 )
A 2
fe=m {2 6/12+ 472
4
pA =01 +32). (5.4)

2/12

First, we comment on asymptotic freedom in the gravita-
tional sector. The theory (4.1) with the no-tachyon con-
ditions a > 0 and £ > 0 is not asymptotically free, as it
can be seen from (4.33). Moreover, coupling (4.1) to
standard matter does not change the situation [33]. How-
ever, in [14] it has been shown that including arbitrary-spin

A Z, symmetry prevents to generate terms with odd powers
of A,.
"
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FIG. 1. Contributions to the graviton self-energy due to the
presence of matter. The wavy lines denote the graviton, while the
solid lines are matter (either scalar or vector fields).

generalizations of the theory (2.1) can change the sign of j;
without changing that of ,. Among several solutions, a
single rank-3 tensor field theory is enough to achieve
asymptotic freedom in the gravitational couplings. Other
solutions include a certain number of rank-2 and rank-1
fields, but no solution with rank-1 fields only or fermionic
multiplets were found. However, in [14] nonminimal terms,
as well as the analog of 1, for spin larger than 2, were
assumed to be small. The calculations of this section are the
generalization of those in [14] for the case of rank-1 field
and they include all the renormalizable couplings.

From (5.3) we find that g, —I—ﬂ? cannot be negative,

which is a necessary condition for asymptotic freedom. In
conclusion, no massive vector fields of any type can change
the asymptotic behavior of ¢.

Now we proceed with the renormalization of the terms
that contain the field A, by using again the Batalin-
Vilkovisky formalism. As explained in section IV, renor-
malziation is a combinations of field and parameters
redefinitions. We perform field redefinitions first, so from
what is left of the counterterms we can read the renorm-
alization constants of the physical parameters. We intro-
duce the source Kﬁ for the BRST transformation of A,
through the term

—/R,‘}K”, Rﬁ =-C"9,A, —A,0,C", (5.5)
so the extended action now reads
S:SQG+SA+(SKle>+SK+SKA' (56)

Taking it into account this extension, the functional X in

(4.29) is modified as

X—)X—i—/AA”Kﬁ,

AA, = ayA, + a\hbA, + a;hA, + O(h?),  (5.7)
where the last term is the most general functional we can
build that involves the field A, and has ghost number -1,
and dimension 3 and qg; are real coefficients to be
determined. In order to obtain @; we focus on the terms
n (S,X) that contain A,, which read

5S4 58, 5Sk
S.X), = [ —*Ag, AA, LAA,
(S, %)l / 8¢ v / A, * / A,

v

o fu( [
()

In particular, the coefficients a; and a, can be derived
from the renormalization of the BRST transformations
by computing the first diagram in Fig. 2. Therefore, it is
enough to look at the terms in (5.8) that are linear in C and
K,. A straightforward calculation gives

(5.8)

(8.X)|acx, = / [51CY0,A K" + (51— ay) C*A,0,K"

- a,0'C,A, K" —2a,0,C"A,K"], (5.9)
which can be used to read the coefficients from the first
diagram in Fig. 2. Finally, the coefficient @, can be derived
by using the second term in (5.8) to renormalize the field A,
in the second and third diagrams in Fig. 2. After performing
these computations the results are

an = ——— _19&7 _ 275’71 10a’72 _ 235’72 _ 95’72

07 487% ! 2m 3 6 4

Samy | 1En} 2emm,  Sand 11&n3

témm +—5=+ /11 . 1,
(5.10)

1 1

ay = m[6§7]1 + (f— 1061)1’]2], a, = _Zal'

(5.11)

oy O

FIG. 2. The first diagram contributes to the renormalization of the BRST transformation of matter fields (either scalar or vector). The
wavy lines denote the graviton, the dashed lines the Faddeev-Popov ghosts, the solid lines the matter fields and the double solid line the
sources K, 4. The other diagrams are the contributions to the matter self-energy.
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Note that a; and a, are not vanishing when the nonminimal
couplings are present, which means that the renormaliza-
tion of the A, field is not multiplicative. This is a para-
metrization and gauge dependent fact and can be avoided
by by using other techniques, such as the background field
|

GA,nc(h’A) - GA,nC(h7A) -

After this redefinition the counterterms are

SEU(A, )———/\/_{2FWFW

+1116Z,y RA,AF + 1,67, R A,A, —

method. However, keeping a; and a, nonzero allows to
have a better control over the computations and make cross
checks of the results.

The analog of (4.28) for the noncovariant terms G 4 .. (1, A),
obtained from diagrams that contain at least two A, reads

5S,

where each parameter is renormalized by means of the redefinition of the form

A= (1

where /1 indicates a generic parameter.

/—AA = S%(A, g), (5.12)
+ 16Zy, (V,A¥)? — m*SZ,,0 A, A
240Z
AT (A”A/‘)z} , (5.13)
+ 52/1),17 (5.14)

The renormalization of m? and 1, can be extracted from the sum of the second, third, and fourth diagram in Fig. 2.

We find
20@;1 »_T0any _ 148, 20an; | 23&15
3 982 — el _
ﬁm |: 5 + 577] 9 9 6 l 2 9 36
M Samy | 11gnp\ | 3 » 34(3+143)
— = (2 st AL VR V')
T3 <§ R T +4z§( M+ 2) 22
1502 3&2 5 1
+¢ [—100:%71 + 482, +9gp - 222 52"2 + 38 m — S @ + 1 &3
3£2
+ g, 2t 2) } (5.15)
10¢n,  35am, | Tény Sapy 705
=-21(5 —
B, 2( a+&+ 3 + 9 512 36 36
10an,  2&n, 16 20015 13&72 Sany S\
4y ——— - ——=—— 2 — 5.16
+4ém 3 3 f nny — 9 9 /1 &ny + 6 +— 6 ( )

As expected, f3;, is gauge independent, while f3,» is not. However, in our parametrization, all the gauge dependence is

encoded in the quantity A in the second line of (5.15).

From the diagrams in the first row of Fig. 3 we derive the counterterms of the nonminmal couplings. The results are a few
lines long and we write them by collecting the powers of the couplings 7, 7,, and A4. They read

Ay(Ap —

ﬂm: 3/12

3¢

3 6

456 20a 46
+%<80 —29§——5 a+—€)

A A 23

1 502 2

(1 4 343 -

34 A
25+§)+ N2 (14 302) + 254 (2 = 2, + 583)

2 1472 2
N nénz(% 106+ §>+ né 7]2(10 +51+5+/1§)_

212 642

mmé
612

: (21 — 144, + 2522)

2

- 5.17
B A ( )

(5 40a +9£ 65)
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A AR oy o

FOO S GF NN & SRR

FIG. 3. In the first line the contributions to the matter-matter-graviton vertex. In the second line the correction to the matter quartic self-
interactions. In the second line the diagrams obtained from all the inequivalent permutations of external legs have not been depicted for
space reasons. They are additional 22 diagrams.

24(54 + 1) 8m1

2 A 4 1
B, = 42y(5a + &) + + 5 E(5R-3) + % (400t + 5& + 70l + 146) + =22 <7 5 /12>

31,
2nymy 9 1 396 Sa 17¢ i )
5-=—21, | —-2p%¢(5 900 + — — == — ——= — Sak, — T&A 40y 471
+ 3 ¢ W 2 nié +/1 90 +2 2 aky =184 2 (1444, +74)
2 3
mmé o 9¢ 20a 10
- 3444 +92) + 22 (20— 4+ 542, 5.18
G+ D+ 2 (-ate A% (5.18)

Finally, from the diagrams in the second row of Fig. 3, plus those with inequivalent exchanges of external legs, we derive
the counterterm of the self-interaction obtaining

4) 2 8 4) 9F\ 4
Bro =5 (E = 100) = Z5 (5 + 20+ 1743) + 4’7‘ e+ ) ;’72 <50 +§—f> + ;‘Z;’” E(9 + 42, + 132)
1 2
12247 A 275 100 2¢
+ é"“ E(1 + 4y +423) — —49"2 <70 - 195 =T Z) — 207 (o — € + &%)
2 25 2382\ 12382
- ”—é (2750 — 40a& + 5382) + 211]172§<20a 216 - —‘5) — <1Oa —20aé + 982 + f ) - —;71‘5 (3+54)
2 2 2
3 2 2
7 , , 638\ 12Pn¢ ) 20a SE 98 4f
12 (20002 + 400t — 118 — - 3bddy + 52 HmndE( e -2 e
+13 ( o +40aé — 11 7 e (3 + 4y + 543)+mmé| 5~ 3727
276 228\ 1842 m (850 2008 58 9 52
226 200 — 156 =22 225 — 1 1+2 2y _ 12 1
+f71n2€< Oa — 15¢ Z 7 > 2z (1424 +5%) 2\ 90 "o Tigtaz 27 +o (5.19)

We report the gauge-independent beta functions in some specific cases, in order to show that all the terms in (2.8) must be
included if 4, # 0. First, when the nonminmal couplings are vanishing the beta functions become

4, 22

P =2+, fiy == 100) = 25 (5420 + 17, (5.20)
Jallp =1 245k + 1
p, = 4(#2) By, = 4 (5a+ &) +4(+2>. (5.21)

This tells us that the nonminimal terms are generated anyway at one loop, even if they are absent at tree level. If we also set
A4 to zero, f3, vanishes but f, does not. Then, we could choose

Sa+&=0 (5.22)
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and all the beta functions in (5.20) and (5.21) would be
zero. However, the condition (5.22) is not renormalization-
group invariant and violates one of the no-tachyon con-
ditions a > 0, £ > 0. Therefore, it is not a viable choice.
Barring this possibility, this means that the presence of the
term (V#A,)? in the free action forces us to have 5, # 0,
which in turn makes 3, and f3;, nonzero. In conclusion, all
the terms in (5.1) must be included.

B. Proca fields

We present the one-loop counterterms in the case of
Proca theory in order to make a comparison with the results
obtained in the previous subsection.

First we consider the free Proca action

Sp(A. g) ———/\/_<2Fﬂ,,F’“’—m2A A”) (5.23)

minimally coupled to quantum gravity (4.1). In this case,
the theory is renormalizable. The reason is that F,, does
not contain covariant derivatives and an external A, line is
necessarily multiplied by either a mass or a derivative
(pretty much like in the case of the free scalar described
below). Therefore, any diagram with an external A, leg can
only renormalize either the kinetic or mass terms. Higher-
derivative terms cannot be generated because the counter-
terms are polynomial in dimensionful parameters, so no
inverse powers of m can appear to compensate the higher-
dimensional operators. This changes if we include self-
interactions, as shown below.

The gravitational counterterms are well known [33] and

while for the other counterterms we find

6ZA — 5Z/14 — 52,71 — 52,72 - 0,
1 (3¢
6, »=——5(=+A),
" 87[28<2+ )

which shows that the nonminimal couplings, as well as the
quartic self-interaction, are not generated by renormaliza-
tion if they are absent in the classical action, as explained
above. Moreover, the field renormalization is zero, as in the
massless case. Note that this is true even with a nonzero
cosmological constant, differently from the case of the
Einstein-Hilbert action, where the counterterms are poly-
nomials in A and 1/, so itis possible to generate F,, F** at
one loop [34].

If we turn on a quartic interaction term (A,A*)? we find
that the divergent part of two-point function still renorm-
alizes the mass term without introducing any higher-

dimensional operators
1 [3¢
~are (3 AT,

However, the divergent part of the four-point function
produces all possible operators with up to four derivatives
such as

(5.25)

57, = (5.26)

read AﬂAydf‘a”(ApA/’), A”A”D(ADA”), AA PP (AA,)
. ;3 (5.27)
s V=913 ——R R>+—C?|,
v (9) =~ (g2 / [ " HEZAIRET o . _
and so on. This is true already in flat spacetime. In fact,
(5.24) neglecting the contributions from gravity, we find
|
23 7p?
<Au(pl )Al/(pQ)Ap(pS)Ao(p4)>l,div = m zpupup/)po + 7 (pypun/m + ppprrn;w)
»?
+ 7 (Pulplluo + PuPollup + PuPplluo + PuPollup)
2)2 2)2 2
p’) 13(p?) A
+ ( 4 (77;4/)771/6 + ’7;467711/)) +T’7m/’7{m + Wjﬂzg —4(17,4171/’1,76 + Pppgﬂ,w)
p2 14p2
- (pﬂp/)nzm' + PuDlslup + PuPpNuc + pupo'nﬂ/)) + ? (’7//!/)’11/(7 + nﬂ(i”y/)) - Tnﬁwﬂp(i
2
+wepp-ok+uspp—q) - e = (MuMpo + Moo+ Nuollup) - (5.28)
where
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P =P+ D2

k= p,+ p3,

q=p>+p;3 (5.29)

On the other hand, if we include the nonminimal interactions we find nonrenormalizable operators also in the two-point

function. In that case we find

2
mp
(Ay(P)AL(=P)) 1 aiw = m [12&n; + (Sa+ TE)ny] p*n,, + 2[(128n, + (5a = 2E)m]pp.} (5.30)
which generates the terms Sk, = - / o, K. (5.34)
F,OF", #A, A, . (5.31)

In (5.30) we have written only the terms that contribute
to higher-dimensional operator proportional to the gravi-
tational couplings. Besides them, there are also contribu-
tions to the mass and wave-function renormalizations. In
particular, since inverse powers of m” are present, the
cosmological constant contributes to both.

These results are expected since the nonminmal terms
spoil renormalizability, as discussed in [18].

To summarize, free Proca theory minimally coupled to
quantum gravity is renormalizable as long as also the
gravitational theory is renormalizable. On the other hand,
adding self-interactions and/or nonminimal couplings to
gravity spoils renormalizability.

C. Scalars

For completeness, we show the results in the case of a
scalar field nonminimally coupled to (4.1). The diagram-
matic and some details are similar to the rank-1 field case.

The action reads

1 A
o) = [ V7390009 = sk =30 )

(5.32)

where 7 and A4 are real parameters. Expanding the metric
around flat spacetime, we derive the necessary graviton-
scalar vertices and compute the diagrams, which are the
same as in Figs. 1-3 with the solid lines representing
the scalar field instead of the massive rank-1 field. From the
graviton self-energy diagrams of Fig. 1 we derive the
contributions of the scalar to the gravitational couplings.
We find the known result for the pure gravitational
counterterms

2

Serav(9) = — 47[ /\/_[ ’%(1—611)1?

1
— (1 -6n)2R2 + 2 )
+72( 61) lzoc] (5.33)

Then we follow the steps of Sec. V A and introduce the term

that accounts for the composite BRST operator of ¢ and its
source K. The extended action (4.6) is
In analogy with the massive vector case, we perform the

field redefinition that turns the noncovariant term G, (, ¢)
into

S,
o9

v

G e ) = Gipoclh. ) - / Agu

—ao/ )

5 (5.36)

where Ag,, is given by (4.27) and

ay=———
4 w

! [35 3”€(w+1)—|—%] (5.37)

In principle there might be an additional term in the
redefinition of ¢ proportional to /,¢. However, this term is
multiplied by a vanishing coefficient. This can be explicitly
check by computing the divergent part of the first diagram
in Fig. 2. After this operation we are left with

SC‘ (¢, 9) /\/_{ 0,$0,9g" — m*6Z,,¢* +ndéZ, R¢?

- 5,1452144)4} . (5.38)

Since in this case the renormalization of ¢ is multiplicative,
it is easy to derive the correction to the wave function
renormalization 6Z from the second and third diagram of
Fig. 2 and check that

0Zy = 2ay. (5.39)

From the same diagrams, together with the fourth one, we
derive the beta function of the mass
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A
B = 2m2{%4 + 5a — g 1+ 12n(1 =7n)] - 5}

- 24n[5a* + E(1 - 6n)). (5.40)
From the diagrams in the first row of Fig. 3 we extract the
beta function of the nonminimal coupling, which reads

L [5a & a(l—6n) ne
ﬂ”_4’7[_6_§+3 27 2

(5- 611)} (5.41)

Moreover, as a consistency check, we have verified the
Ward identities of diffeomorphisms that relate the second
and third diagram in Fig. 2 with those in the first row
of Fig. 3.

Finally, from the second row of diagrams in Fig. 3 we
extract the beta function of the coupling 44

2 2
Pr, =224 B“+5a<1 +6j’7> +(1 —6;7)2<1 +65’7>}

4 Ay
(5.42)

As expected, (5.41) and (5.42) are gauge independent
and agree with the results in the literature (e.g., [35]).

Note that the quartic interaction and the nonminimal
coupling turn each other on if one of the two is present.
Only if they are both absent they are not generated by
renormalization. The reason is the same as in Proca theory:
when 1, = n = 0 every external ¢ line comes with either a
derivative or a mass. Therefore, any one-loop diagram can

only correct the kinetic term or the mass term. However,
once one of the two interactions is nonzero, this is not true
anymore and every term of dimension smaller or equal than
four that satisfies diffeomorphism invariance is generated.

VI. CONCLUSIONS

We have studied the renormalization of the most general
massive vector field theory, where all the four components
of the multiplet propagates, coupled to quantum gravity.
The theory is renormalizable by power counting, even
when self-interactions are switched on. In particular, all
the nonminimal couplings with gravity are generated by
renormalization and therefore must be included in the
classical action. We compute all the relevant one-loop
diagrams and derive the beta functions for the parameters of
the theory. We show that there is no choice for their initial
value that avoids the generation of nonminimal terms or
quartic self-interactions. Moreover, the presence of non-
minimal couplings cannot change the ultraviolet behavior
of the gravitational interactions, which are not asymptoti-
cally free in absence of tachyons. Finally, we have made a
comparison with the case of Proca theory, which is not
renormalizable when self-interactions and/or nonminimal
couplings with gravity are included, and explicitly show
that higher-dimensional divergent terms are generated.
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