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We consider a self-interacting, massive rank-1 field coupled to quantum gravity. The theory is
renormalizable by power counting and contains a massive spin-1 field and a massive scalar field. The latter
has a propagator with negative residue and it is quantized as a purely virtual particle, namely it cannot
appear as external on-shell state but contributes to renormalization. In this way the resulting theory is also
unitary, both in flat spacetime and when it is coupled to renormalizable quantum gravity (where purely
virtual particles are required as well). We compute the full set of one-loop beta functions, including those
of the nonminimal couplings. We show that the gravitational couplings cannot be made asymptotically
free in absence of tachyons, even with the addition of the two nonminimal terms. Various aspects of
renormalizability are discussed by studying the beta functions. Finally, we compare our model with Proca
theory, where renormalizability is spoiled if self-interactions are present.

DOI: 10.1103/PhysRevD.108.045011

I. INTRODUCTION

Abelian massive vector fields have a variety of phenom-
enological applications that span from inflation [1–4] to
dark matter [5–7]. The typical adopted model is Proca
theory [8], which can be shown to be renormalizable in flat
spacetime by introducing the so-called Stueckelberg field
[9]. However, this holds only if the interaction terms have at
most dimension four and are invariant under an Abelian
Uð1Þ symmetry [10]. Therefore, if we introduce self-
interactions, renormalizability is spoiled. Moreover, the
coupling to (renormalizable) quantum gravity generates all
the nonminimal couplings that are allowed by power
counting, even if they are absent at tree level.
On the other hand, a theory of general massive vectors

that transform as the irreducible representation ð1
2
; 1
2
Þ of the

Lorentz group (which we call rank-1 field) is renormaliz-
able by power counting, even when self-interactions are
present, as well as if it is coupled to higher-derivative
quantum gravity. In this theory, all the four degrees of
freedom of the field propagate and are decomposed into a
massive spin-1 field and a massive scalar field. The latter,
if quantized with the usual Feynman prescription, is a
ghost and leads to a nonunitary S matrix. However,
unitarity can be restored by adopting the so-called fakeon

prescription [11,12], which turns the ghost into a purely
virtual particle, that is to say, a particle which cannot
appear as external on-shell state at any energy scale but can
circulate inside Feynman diagrams. Moreover, the fakeon
prescription allows us to keep the renormalizability proper-
ties untouched, since the Euclidean sector of the theory is
not changed.
The theory discussed in this paper belongs to a more

general class recently studied in [13] and [14], where irre-
ducible multiplets of arbitrary spin are considered. In parti-
cular, in [14] the models were coupled to renormalizable
quantum gravity and their contribution to the gravitational
beta functions derived. However, certain simplifications
were adopted. For example, nonminmal couplings to gravity
have been neglected.
In this paper we study the full renormalization of the

rank-1 field theory, including all the nonminimal couplings
and a quartic self-interaction term. We derive the beta
functions of all parameters and discuss their limits. The
computations are performed by means of Feynman dia-
grams and with the help of the Batalin-Vilkovisky formal-
ism [15,16] to handle nonmultiplicative renormalization.
We also compute counterterms in the case of Proca theory
to show that it is not renormalizable.
We stress that most of the literature on this topic consider

Proca theory, or one of its self-interacting version [17],
coupled to external gravity [18–21]. In this sense our work
is more complete since it accounts for the effects of
quantum gravity. Clearly, those contributions depends on
the chosen theory of quantum gravity.
Besides possible phenomenological applications, the

rank-1 field theory can be used as prototype for the study
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of Stelle theory [22] and quantum gravity with fakeons [23]
in the context of scattering amplitudes. In fact, it mimics
those theories in several aspects, although there are no
higher derivatives. For example, in addition to the crucial
cancellations between the massive spin-1 and the massive
scalar ghost/fakeon, the 2-to-2 tree-level scattering ampli-
tude grows as a power of the center-of-mass energy
squared, pretty much like in the case of Stelle gravity
[24]. However, we do not address this matter and concen-
trate only on the properties under renormalization, which
hold regardless of the fakeon prescription.
The paper is organized as follows. In Sec. II we recall the

main properties of rank-1 field theory and discuss its
renormalizability in flat spacetime within two different
formulations, one of them including a field for the massive
scalar. In Sec. III we highlight the differences with the
Proca model in the Stueckelberg approach. In Sec. IV
we review the quantization of higher-derivative quantum
gravity in the Batalin-Vilkovisky formalism. In Sec. V we
couple the self-interacting rank-1 field to quantum gravity
and derive the one-loop counterterms and beta functions for
all the parameters. Moreover, we derive the counterterms in
the case of Proca theory and show that higher-dimensional
operators are generated at one loop. For completeness, we
also report all the beta functions in the case of a non-
minimally coupled, self-interacting scalar. Finally, Sec. VI
contains our conclusions.
Notation and conventions: We use the signature

ðþ;−;−;−Þ for the metric tensor. The Riemann and
Ricci tensors are defined as Rμ

νρσ ¼ ∂ρΓ
μ
νσ − ∂σΓ

μ
νρ þ

Γμ
αρΓα

νσ − Γμ
ασΓα

νρ and Rμν ¼ Rρ
μρν, respectively. We write

the four-dimensional integrals over spacetime points
of a function F of a field ϕðxÞ as

R ffiffiffiffiffiffi−gp
FðϕÞ≡R

d4x
ffiffiffiffiffiffiffiffiffiffiffiffi
−gðxÞp

FðϕðxÞÞ. We always assume that the
integral of the Gauss-Bonnet term vanish, i.e.,R ffiffiffiffiffiffi−gp ðRμνρσRμνρσ − 4RμνRμν þ R2Þ ¼ 0.

II. MASSIVE RANK-1 FIELD THEORY

We consider a field Aμ that transforms as the irreducible
representation of the Lorentz group ð1

2
; 1
2
Þ. The most general

quadratic action for such a field is

S1ðAÞ ¼
Z �

−
1

4
FμνFμν −

λ2
2
∂
μAμ∂

νAν þ
1

2
m2AμAμ

�
;

ð2:1Þ

where λ2 and m are real parameters. In momentum space,
the propagator reads

DμνðpÞ ¼
−i

p2 −m2 þ iϵ

�
ημν −

pμpν

m2

�
þ −i
p2 − m2

λ2

����
f

pμpν

m2
;

ð2:2Þ

where the subscript “f” denotes that we chose the fakeon
prescription for the pole associated to that term. Since
most of this paper deals with renormalization, which is
unchanged by the fakeon prescription, we refer the reader
to the review [25] for details. What is important to know is
that the fakeon prescription is a way of deforming the S
matrix so that it is unitary in the Fock subspace where the
fakeons are removed from being external lines of Feynman
diagrams, provided that all the potential ghosts are treated
this way and tachyons are absent.
We study the residues of the propagator (2.2) at the poles

p2 ¼ m2 and p2 ¼ m2
0 ≡m2=λ2. In order to determine

them we choose the rest frame pμ ¼ ðm; 0; 0; 0Þ and write
the propagator as a 4 × 4 matrix D. Then the residue
matrices read

−iðp2 −m2ÞDjp2¼m2 ¼

0
BBB@

0 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

1
CCCA;

−iðp2 −m2
0ÞDjp2¼m2

0
¼

0
BBB@

−1
λ2

0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

1
CCCA: ð2:3Þ

From the number of independent residues we can see that
the first pole is associated to a massive vector, while the
second one is associated to a massive scalar. Moreover, the
sign of the residue of the scalar depends on λ2 and, if we
want a positive residue, we need to choose λ2 < 0.
However, in that case the mass squared would be negative.
Since the fakeon prescription cannot be applied to tachy-
ons, the only possibility to preserve unitarity without
spoiling renormalizability is to fix λ2 > 0 and then make
the scalar ghost purely virtual with the fakeon prescription.
In the standard approach, such ghost is removed by

fixing λ2 ¼ 0 so m0 is sent to infinity and (2.1) reduces to
Proca theory, which is renormalizable if the interactions are
Uð1Þ invariant. However, our aim is to preserve renorma-
lizability and unitarity when self-interactions, as well as
nonminimal couplings to gravity, are included, which
cannot be done in Proca theory.
Finally, we show that it is possible to write an action,

equivalent to (2.1), where the scalar field is explicit. First,
we introduce an auxiliary field φ and define a new action

S01ðA;φÞ ¼
Z �

−
1

4
FμνFμν þ 1

2
m2AμAμ

þ m2

2λ2

�
φ2 − 2

λ2
m
∂
μAμφ

��
: ð2:4Þ

The equivalence with (2.1) is obtained once the equations
of motion for φ are used, i.e.,
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S01ðA;φðAÞÞ ¼ S1ðAÞ; φðAÞ ¼ λ2
m
∂
μAμ: ð2:5Þ

Then we apply the redefinition

Aμ → Aμ −
1

m
∂μφ ð2:6Þ

and obtain

S01ðA;φÞ ¼
Z �

−
1

4
FμνFμν þ 1

2
m2AμAμ

−
1

2
∂μφ∂μφþ 1

2

m2

λ2
φ2

�
; ð2:7Þ

where the negative sign of the kinetic term for the field φ is
now manifest. If we include self-interactions in (2.1)
renormalizability is not spoiled even in the variables
(2.7) because of the presence of the ghost/fakeon, whose
negative residue is crucial (see below).
Note that the limit λ2 ¼ 0 of (2.1) gives Proca theory,

which in (2.7) is obtianed by setting both λ2 and φ to zero
with φ=λ2 constant, since φðAÞ ∝ λ2.
Before moving to the coupling to quantum gravity, it is

instructive to show how renormalization works when
switching between the variables (2.1) and (2.7). Here
and in the rest of the paper, we use the dimensional
regularization and define ε ¼ 4 −D, where D is the
continued spacetime dimension. For simplicity we consider
only a quartic self-interaction in flat spacetime, so the total
action reads

S1ðAÞ ¼
Z �

−
1

4
FμνFμν −

λ2
2
∂
μAμ∂

νAν

þ 1

2
m2AμAμ þ λ4

8
ðAμAμÞ2

�
: ð2:8Þ

At one loop the renormalized action is obtained by means
of the redefinitions

m2 → Zm2; λ4 → Z4λ4; ð2:9Þ

with

Z ¼ 1 −
3λ4ð1þ 3λ22Þ
32π2λ22ε

þOðλ24Þ;

Z4 ¼ 1 −
λ4ð5þ 2λ2 þ 17λ22Þ

32π2λ22ε
þOðλ24Þ: ð2:10Þ

The field Aμ and the parameter λ2 are not renormalized
at this order, since the one-loop two-point function is
given only by a tadpole diagram, which is proportional to
the mass.
Following the procedure used to obtain (2.7), in the

interacting case we obtain the action

S01ðA;φÞ ¼
Z �

−
1

4
FμνFμν þ 1

2
m2AμAμ −

1

2
∂μφ∂

μφ

þ 1

2

m2

λ2
φ2 þ λ4

8
ðAμAμÞ2jA→A−∂φ

m

�
: ð2:11Þ

The shift in the last term introduces several interactions of
dimension greater than four. However, as mentioned above,
those interactions do not spoil renormalizability. This is due
to the fact that the φ propagator has a negative residue,
which allows for crucial cancellations between diagrams. In
the original variables (2.8) those cancellations are evident
from the propagator (2.2), which behaves like 1=p2 in the
ultraviolet (UV).
To give an explicit example, we compute the one-loop

counterterms and show how the renormalization constants
relate to each other in the two cases.
The general expression for the renormalized action is

S01;RðA;φÞ ¼
Z �

−
Z20

4
FμνFμν þ Z0

20

2
m2AμAμ −

Z02

2
∂μφ∂

μφþ Z0
02

2

m2

λ2
φ2 þmZ11Aμ∂

μφ

þ λ4
8

�
Z40ðAμAμÞ2 − 4Z31

m
Aμ∂

μφAνAν þ 6Z22

m2
∂μφ∂

μφAνAν

−
4Z13

m3
∂μφ∂

μφ∂νφAν þ Z04

m4
ð∂μφ∂μφÞ2

�	
; ð2:12Þ

where the subscripts in Z and Z0 indicate the number of fields A and the number of fields φ, respectively. We find

Z20 ¼ Z0
02 ¼ 1; Z0

20 ¼ Z02 ¼ Z; Z11 ¼ 1 − Z ð2:13Þ

Z40 ¼ Z31 ¼ Z22 ¼ Z13 ¼ Z04 ¼ Z4 ð2:14Þ

and the action (2.12) reads
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S01;RðA;φÞ ¼
Z �

−
1

4
FμνFμν þ Z

2
m2AμAμ −

Z
2
∂μφ∂

μφþ 1

2

m2

λ2
φ2 þmð1 − ZÞAμ∂

μφþ λ4Z4

8
ðAμAμÞ2jA→A−∂φ

m

�
: ð2:15Þ

Note that a mixing kinetic term is generated at one loop. This means that Aμ and φ are renormalized by the field redefinitions

Aμ → Aμ −
Z − 1

mZ
∂μφ; φ →

1ffiffiffiffi
Z

p φ ð2:16Þ

together with

m2 → Zm2; λ4 → Z4λ4: ð2:17Þ

Alternatively, we can diagonalize the quadratic part of the action (2.15) by means of the transformation

Aμ → Aμ þ
Z − 1

m
∂μφ; φ → Zφ; ð2:18Þ

which leaves Aμ − 1
m ∂μφ invariant, and the action (2.15) becomes

S01;RðA;φÞ ¼
Z �

−
1

4
FμνFμν þ Z

2
m2AμAμ −

Z
2
∂μφ∂

μφþ Z2

2

m2

λ2
φ2 þ λ4Z4

8
ðAμAμÞ2jA→A−∂φ

m

�
: ð2:19Þ

In this variables it is clear that renormalization is multi-
plicative, i.e.,

m2 → Zm2; λ4 → Z4λ4; φ →
ffiffiffiffi
Z

p
φ; ð2:20Þ

and such that Aμ − 1
m ∂μφ does not renormalize (at one

loop). This is in agreement with the results obtained in the
variables (2.1), where the field Aμ does not renormalize at
this order.

III. PROCA AND STUECKELBERG THEORIES

In this section we briefly review the Stueckelberg
mechanism and explain why it does not work for a self-
interacting Proca theory. In this way we clarify the
differences between the theory considered in this paper
and those explored in the literature [17–21].
The free Proca action is

SPðAÞ ¼
Z �

−
1

4
FμνFμν þ 1

2
m2AμAμ

�
ð3:1Þ

and its propagator is given by the first term of (2.2), which
goes like 1=m2 in the UV, apparently breaking power-
counting renormalizability. However, this depends on the
symmetry of the interactions. We can perform the redefi-
nition (2.6) to the free Proca action and obtain the
Stueckelberg action

SSðA;φÞ ¼
Z �

−
1

4
FμνFμν þ 1

2
m2AμAμ

þ 1

2
∂μφ∂

μφ −mAμ∂
μφ

�
: ð3:2Þ

The new action is invariant under the gauge symmetry

Aμ → Aμ þ ∂μf; φ → φþmf; ð3:3Þ

where f is an arbitrary function. This symmetry allows us
to write Proca theory as a gauge-fixed version of the theory
(3.2). The advantage of the action (3.2) is that renormaliz-
ability can be explicitly proved once interactions are
switched on, provided that they do not break (3.3).
In order to derive the propagator we first extend (3.3) to

the Becchi-Rouet-Stora-Tyutin (BRST) symmetry

sAμ ¼ ∂μC; sφ ¼ mC; sC ¼ 0;

sC̄ ¼ 0; sB ¼ 0; ð3:4Þ

where C, C̄ and B are the ghost, antighost and Nakanishi-
Lautrup fields respectively, and s is the nilpotent BRST
operator. Then the gauge-fixed action is

Sgf ¼ SSðA;φÞ þ sΨ; ð3:5Þ

where Ψ is the gauge-fixing functional
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Ψ ¼
Z

C̄½GðA;φÞ þ αB�; GðA;φÞ ¼ βmφþ γ∂μAμ

ð3:6Þ

and α, β, γ are gauge-fixing parameters. Integrating out the
field B, the gauge fixed action becomes

Sgf ¼ SS −
1

4α

Z
G2 þ

Z
C̄ðγ□þ βm2ÞC: ð3:7Þ

The propagators read

hAμðpÞAνð−pÞi0
¼ −i
p2−m2þiϵ

�
ημν−

ðγ2−2αÞp2þð2αþβ2−2βγÞm2

ðγp2−βm2Þ2 pμpν

�
;

ð3:8Þ

hAμðpÞφð−pÞi0 ¼
mð2α − βγÞ
γp2 − βm2

pμ ¼ −hφðpÞAμð−pÞi0;

hφðpÞφð−pÞi0 ¼
γ2p2 − 2αm2

ðγp2 − βm2Þ2 : ð3:9Þ

We show that by choosing different values of α, β and γ we
can interpolate between Proca propagator and propagators
that behaves like ∼1=p2 in the UV for both Aμ and φ.
Indeed, by choosing α ¼ 0 and γ ¼ 0 we find

hAμðpÞAνð−pÞi0 ¼
−i

p2 −m2 þ iϵ

�
ημν −

pμpν

m2

�
; ð3:10Þ

hAμðpÞφð−pÞi0 ¼ hφðpÞAμð−pÞi0 ¼ hφðpÞφð−pÞi0 ¼ 0;

ð3:11Þ

while for α ¼ β2=2 and γ ¼ β we have

hAμðpÞAνð−pÞi0 ¼
−iημν

p2 −m2 þ iϵ
; ð3:12Þ

hAμðpÞφð−pÞi0 ¼ hφðpÞAμð−pÞi0 ¼ 0;

hφðpÞφð−pÞi0 ¼
i

p2 −m2 þ iϵ
: ð3:13Þ

Therefore, there is a gauge choice where the theory is
manifestly renormalizable, pretty much like the case of
theories with a spontaneously broken symmetry. It is clear
that the interactions need to be invariant under (3.3) in order
to be able to make such a gauge choice also in the
interacting case. A possibility is to couple the theory to
charged fermions through the action

Sfðψ ; ψ̄Þ ¼
Z

ψ̄ði=D −mfÞψ ;
=D ¼ γμDμ ¼ γμð∂μ þ iQAμÞ; ð3:14Þ

where Q and mf are the charge and the mass of the
fermions, respectively, and the BRST transformations (3.4)
are extended with

sψ ¼ iQCψ ; sψ̄ ¼ −iQψ̄C: ð3:15Þ

In this case, the action (3.14) is invariant under a Uð1Þ
symmetry so it is also invariant under (3.3) and the theory
is renormalizable. Note that, because of the symmetry (3.3),
the field φ can only appear in the combination Vμ ≡ Aμ−
1
m ∂μφ. Then, since φ is decoupled, no loop diagrams with
an external φ can be built. Therefore, the mass term does
not renormalize at any order.
On the other hand, if we include self-interactions,

renormalizability would be spoiled. For example if we
add a quartic term ðAμAμÞ2 to (3.2) it would break gauge
invariance and Proca theory could not be viewed as a
gauge-fixed version of (3.2).
Another possibility is to add a quartic term of the form

ðVμVμÞ2. In this case the new action is invariant, but it
would allow to build counterterms with arbitrary powers of
Vμ such as ðVμVμÞ3 or ðVμVμÞ□ðVνVνÞ. The reason is that
powers of Vμ higher than 2 introduce powers of 1=m that
cannot be canceled by other terms, which, instead, happens
in the case of the theory (2.11).
In other words, renormalizability is preserved if theUð1Þ

symmetry of the massless theory is explicitly broken only
by a mass term for the field Aμ.
The procedure explained in this section can be applied

also to the non-Abelian Proca theory [26,27]. However, in
that case the Stueckelberg field is coupled to the spin-1
field and renormalizability is not guaranteed. See also [28]
for a recent investigation.

IV. RENORMALIZATION IN THE
BATALIN-VILKOVISKY FORMALISM

In this section we review the basics of the Batalin-
Vilkovisky (BV) formalism, which we use to renormalize
the theory of rank-1 field coupled to quantum gravity. The
BV is useful to handle the invariance under diffeomor-
phisms, to deal with nonmultiplicative renormalization and
to formulate the renormalization procedure in a systematic
way. Moreover, it handles the Ward-Takahashi-Slavnonv-
Taylor identities and the closure of the gauge algebra in a
compact form.
We introduce the BV formalism in the context of pure

gravity, so we also recall some properties of the theory. In
the next section we study the cases of rank-1 fields, Proca
theory and nonminimally coupled scalars, explaining addi-
tional modifications when necessary.

RENORMALIZATION OF MASSIVE RANK-1 FIELD THEORY … PHYS. REV. D 108, 045011 (2023)

045011-5



The action of higher-derivative quantum gravity we
consider in this paper is

SQGðgÞ ¼ −
1

2

Z ffiffiffiffiffiffi
−g

p �
2Λþ ζRþ 1

2α
C2 −

1

6ξ
R2

�
; ð4:1Þ

where α, ξ, ζ, Λ are positive real constants and C2 ≡
CμνρσCμνρσ is the square of the Weyl tensor.
The BRST transformations associated to diffeomor-

phisms is defined by including Faddeev-Popov ghosts
and antighosts, Cρ, C̄σ and the Nakanishi-Lautrup fields
Bτ and read

sgμν ¼ −∂μCαgαν − ∂νCαgμα − Cα
∂αgμν

sCρ ¼ −Cσ
∂σCρ

sC̄σ ¼ Bσ

sBτ ¼ 0: ð4:2Þ

For practical reasons all the fields are collected in

Φi ¼ ðgμν; Cρ; C̄σ; BτÞ: ð4:3Þ

Moreover, we introduce a row of sources

Ki ¼ ðKμν
g ; KC

σ ; Kτ
C̄; K

τ
BÞ ð4:4Þ

that are conjugated to the fields, and define the antipar-
entheses of two functionals XðΦ; KÞ and YðΦ; KÞ as

ðX; YÞ≡
Z �

δrX
δΦi

δlY
δKi

−
δrX
δKi

δlY
δΦi

�
; ð4:5Þ

where the subscripts r and l denotes the right and left
functional derivatives, respectively, and the integral is over
the spacetime points associated with repeated indices. With
these definitions, we extend the classical action as

SðΦ; KÞ ¼ SQG þ ðSK;ΨÞ þ SK; ð4:6Þ

where

SK ¼ −
Z

RiKi ¼
Z

ð∂μCαgαν þ ∂νCαgμα þ Cα
∂αgμνÞKμν

g

þ
Z

Cσ
∂σCρKC

ρ −
Z

BσKC̄
σ ð4:7Þ

collects the infinitesimal transformations RiðΦÞ of the
fields and ΨðΦÞ is the gauge-fixing functional. We choose

Ψ ¼
Z

C̄μðζ þ□=αÞðGμ − λBμÞ;

Gμ ¼ ηνρ∂ρgμν − ðωþ 1Þηνρ∂μgνρ; ð4:8Þ

where λ and ω are gauge-fixing parameters. Then the
gauge-fixing term reads

ðSK;ΨÞ ¼
Z

Bμðζ þ□=αÞðGμ − λBμÞ þ Sgh; ð4:9Þ

Sgh ¼
Z

C̄μ
∂
νðζ þ□=αÞðgμρ∂νCρ þ gνρ∂μCρ þ Cρ

∂ρgμνÞ:

ð4:10Þ

The extended action (4.6) satisfies the so-called master
equation

ðS; SÞ ¼ 0; ð4:11Þ

which encodes the gauge invariance of SQG and the closure
of the transformation under diffeomorphisms. After inte-
grating Bτ out, the gauge-fixing term becomes

ðSK;ΨÞ ¼
1

4λ

Z
Gμðζ þ□=αÞGμ þ Sgh: ð4:12Þ

At this point we can invert the quadratic operator and derive
the graviton propagator. We report it in the case λ ¼ 1 and
ω ¼ −1=2

hhμνðpÞhρσð−pÞi0 ¼
iαIμνρσ

p2ðαζ − p2Þ þ
iðξ − αÞπμνπρσ

6ðp2 − ζαÞðp2 − ζξÞ ;

ð4:13Þ
where we have omitted the prescriptions and

Iμνρσ ¼ ημρηνσ þ ημσηνρ − ημνηρσ; πμν ¼ ημν þ 2
pμpν

p2
:

ð4:14Þ
However, all the computations of this paper has been done
for generic values of λ and ω.
The effective action ΓðΦ; KÞ is defined as the Legendre

transform ΓðΦ; KÞ ¼ WðJ; KÞ − R
ΦiJi of the generating

functional WðJ; KÞ of the connected correlation functions
with respect to J, where Φi ¼ δrW=δJi and

iWðJ; KÞ ¼ lnZðJ; KÞ;

ZðJ; KÞ ¼
Z

½dΦ� exp
�
iSðΦ; KÞ − i

Z
ΦlJl

�
; ð4:15Þ

ZðJ; KÞ being the generating functional of the correlation
functions. Then, also the effective action satisfies the
master equation

ðΓ;ΓÞ ¼ 0; ð4:16Þ

which collects the Ward-Takahashi-Slavnov-Taylor
identities in a compact form. It is easy to show that a

MARCO PIVA PHYS. REV. D 108, 045011 (2023)

045011-6



consequence of Eq. (4.16) is that the counterterms SctQG
satisfies the equation

ðS; SctQGÞ ¼ 0: ð4:17Þ

Note that the operator ðS; ·Þ generalizes the usual BRST
transformations and, when applied to the metric it reduces to
the usual diffeomorphisms. Moreover, since ðS;ðS;XÞÞ¼0
for any functional X, a general solution of (4.17) can be
written as

SctQG ¼ GðΦ; KÞ þ ðS; XÞ ð4:18Þ

where ðS;GÞ ¼ 0. Finally, a theorem [29] guarantees that all
the dependencies ofG on the unphysical fields, i.e.,C, C̄, B,
and Ki, can be moved to ðS; XÞ, so the counterterms read

SctQG ¼ GðgÞ þ ðS; XÞ: ð4:19Þ

The functional G depends only on the metric and is gauge
invariant. Therefore, it is given by the integral of all possible
four-dimensional covariant operators that can be built using
the metric tensor, i.e.,

GðgÞ ¼ 1

2

Z ffiffiffiffiffiffi
−g

p �
2ΛδZΛþ ζδZζRþ δZ1=α

2α
C2−

δZ1=ξ

6ξ
R2

�
;

ð4:20Þ

where δZi are real constants. Finally, the term ðS; XÞ can be
removed by a canonical transformation, i.e., a map

Φi → Φi0ðΦ; KÞ; Ki → K0
iðΦ; KÞ; ð4:21Þ

such that

ðX0; Y 0Þ0 ¼ ðX; YÞ; ð4:22Þ

where the prime superscript denotes the quantities that
are evaluated using the transformed fields and sources. A
canonical transformation is generated by a fermionic func-
tional F ðΦ; K0Þ such that

Φi0 ¼ δF
δK0

i
; Ki ¼

δF
δΦi : ð4:23Þ

In particular, any functional of the form ðS; XÞ can be
removed by a canonical transformation generated by

F ðΦ; K0Þ ¼
Z

ΦiK0
i − XðΦ; K0Þ; ð4:24Þ

which gives

Sct 0QGðΦ0; K0Þ ¼ SctQGðΦ; KÞ − ðS; XðΦ; KÞÞ: ð4:25Þ

This transformation is importantwhenwe derive the counter-
terms by splitting the metric as gμν ¼ ημν þ 2hμν and using
Feynman diagrams. In fact, the results obtained in this way
would not be covariant, in general, since they include the
terms ðS; XÞ that depends on the graviton field only and are
not covariant. Only after performing the canonical trans-
formation it is possible to obtain covariant counterterms and
identify the correct renormalization constants. This general-
izes the more common multiplications by wave function
renormalization constants and amounts to perform the field
redefinitions

gμν → gμν − Δgμν; Cρ → Cρ − ΔCρ; ð4:26Þ

Δgμν ¼ t0gμν þ t1hμν þ t2ημνh
ρ
ρ þOðh2Þ;

ΔCρ ¼ s1Cρ þOðhÞ; ð4:27Þ

plus analog transformations for the sources, which we
do not report here, since they are not important for the
purpose of this section, and where s1 and ti are one-loop
coefficients. The effect of (4.26) is to add terms proportional
to the equations of motion, so the noncovariant terms
Gncðg; hÞ obtained from Feynman diagrams becomes modi-
fied as follows

Gncðg; hÞ → Gncðg; hÞ −
Z

δSQG
δgμν

Δgμν ¼ GðgÞ: ð4:28Þ

The coefficients ti and s1 can be obtained by working on
the term ðS; XÞ and noticing that, by power counting and
ghost number, its most general form is

XðΦ; KÞ ¼
Z

ΔgμνK̃
μν
g þ

Z
ΔCρKC

ρ ;

K̃μν
g ≡ Kμν

g þ ðζ þ□=αÞ
Z

δGρ

δgμν
C̄ρ: ð4:29Þ

From this expression it is possible to work out the
renormalization of the BRST transformations, from which
the coefficients in (4.27) are extracted. They read [30]

s1π2ε ¼
αλ

64ω2
ð4:30Þ

t1π2ε ¼ −
5α

18
−
αλ

3
þ ξ

9
−

αλ

24ω2
þ ξ

12ω2
þ 5α

18ω
þ 5ξ

36ω
;

t2π2ε ¼
5α

72
−
5αλ

48
−

ξ

36
−

αλ

192ω2
−

ξ

48ω2
−

5α

72ω
−

5ξ

144ω
:

ð4:31Þ

The coefficient t0 is arbitrary, since it multiplies a covariant
term, and encodes a surviving gauge dependence of the
counterterms. A convenient way of parametrize it is
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t0π2ε ¼
3αλ

16
þ αλ

64ω2
−

3ξ

64ω2
−

3ξ

16ω
þ A

8
; ð4:32Þ

where A is a gauge-dependent arbitrary coefficient. The
details of this procedure can be found in [30].1 However,
in Sec. VA we repeat some of the steps for the case of
rank-1 field.
Here and in the next sections the beta functions are

related with the renormalization constants by means of the
relation βi ¼ 16π2εδZi. The coefficients δZi in (4.20) can
be worked out by computing the graviton self-energy and
the renormalization of the BRST operators. In the case of
pure gravity the results are [30–32]

βα ¼ −α2β1=α ¼ −
133

10
α2;

βξ ¼ −ξ2β1=ξ ¼
5

6
ξ2 þ 5αξþ 5α2

3
;

βζ ¼ −ζ
�
5ξ

6
þ 5α2

3ξ2
þ A

�
;

βΛ ¼ Λð5α − 2ξ − 2AÞ þ ζ2

4
ð5α2 þ ξ2Þ: ð4:33Þ

Finally, we comment about the signs of the constants α
and ξ. The theory (4.1) propagates a massless graviton, a
massive scalar and a massive spin-2 particle. The latter is a
ghost and therefore is responsible for the violation of
unitarity. As mentioned in the introduction, this problem
can be solved by turning the ghost into a purely virtual
particle, that is to say particle that can only mediate
interactions without ever appear as an on-shell external
state. Purely virtual particles are introduced by means of a
different quantization procedure called fakeon prescription
[11,12]. In this way, we can consistently project the total
Fock space of the theory onto a subspace where the would-
be ghost cannot be an external line in the Feynman
diagrams. This projection is nontrivial, since it cannot be
naively done by just excluding some diagrams. The reason
is that for a projection to be consistent it has to be
supplemented by some additional procedures, otherwise
the degrees of freedom we want to remove would be
generated back by loop corrections. One example of a
consistent projection is the one done in gauge theories,
where the BRST symmetry allows to remove the Faddeev-
Popov ghosts from the spectrum, as well as the longitudinal
and temporal component of the gauge fields. In the case of
purely virtual particles this goal is achieved by a prescrip-
tion for the scattering amplitudes instead of a symmetry.
However, this procedure cannot be applied to tachyons.
Therefore, we impose α > 0 and ξ > 0 since they are
related to the squared masses ζα and ζξ of the spin-2 fakeon
and the scalar field, respectively. The same rationale is
applied to the scalar ghost in (2.1).

V. COUPLING TO QUANTUM GRAVITY

In this section we couple the theory (2.8) to the quantum
gravity theory (4.1). The coupling to matter generates
contributions to the beta functions (4.33), as well as
contributions to the renormalization of the field Aμ and
to the parameters m, λ2, and λ4. As we show below, the
nonminimal couplings RAμAμ and RμνAμAν are also gen-
erated at one loop. Therefore we add them to classical
action. We compare some of the results with Proca theory
coupled to quantum gravity, which is nonrenormalizable, as
we explicitly show.
Finally, we include the renormalization of a scalar field

nonminimally coupled to quantum gravity.

A. Rank-1 fields

We consider the covariantized version of (2.8) and
include all possible terms with dimension four2

SAðA;gÞ ¼−
1

2

Z ffiffiffiffiffiffi
−g

p �
1

2
FμνFμνþ λ2ð∇μAμÞ2 −m2AμAμ

þ η1RAμAμþ η2RμνAμAν−
λ4
4
ðAμAμÞ2

�
; ð5:1Þ

where η1, η2 are real parameters. Note that there is no need
to add the term ∇μAν∇νAμ with an independent coupling,
since it would be equivalent to a redefinition of η2. Then
we expand the metric around Minkowski spacetime and
compute the relevant diagrams. The contributions to the
purely gravitational counterterms (4.20) are derived from
the diagrams in Fig. 1. We find

βAα
α2

¼ −
7

30
−
η2ð1þ 5λ2Þ

6λ2
−
η22ð1þ 4λ2 þ 7λ22Þ

24λ22
; ð5:2Þ

βAξ
ξ2

¼ 1

6
þ 3η21

�
3þ 1

λ21

�
−
η1ð1 − 3λ1Þ

λ2
−
η2ð1 − 7λ2Þ

6λ2

þ 3η1η2ð1þ 3λ22Þ
2λ21

þ η22ð5þ 2λ2 þ 17λ21Þ
24λ22

; ð5:3Þ

βAζ ¼ m2

�
1

2
−

1

6λ2
þ ð4η1 þ η2Þð1þ 3λ22Þ

4λ22

�
;

βAΛ ¼ −
m4

2λ22
ð1þ 3λ22Þ: ð5:4Þ

First, we comment on asymptotic freedom in the gravita-
tional sector. The theory (4.1) with the no-tachyon con-
ditions α > 0 and ξ > 0 is not asymptotically free, as it
can be seen from (4.33). Moreover, coupling (4.1) to
standard matter does not change the situation [33]. How-
ever, in [14] it has been shown that including arbitrary-spin

1Note that the formulas of this paper are related to those in [30]
through the substitutions α → 1=α, ξ → 1=ξ.

2A Z2 symmetry prevents to generate terms with odd powers
of Aμ.
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generalizations of the theory (2.1) can change the sign of βξ
without changing that of βα. Among several solutions, a
single rank-3 tensor field theory is enough to achieve
asymptotic freedom in the gravitational couplings. Other
solutions include a certain number of rank-2 and rank-1
fields, but no solution with rank-1 fields only or fermionic
multiplets were found. However, in [14] nonminimal terms,
as well as the analog of λ2 for spin larger than 2, were
assumed to be small. The calculations of this section are the
generalization of those in [14] for the case of rank-1 field
and they include all the renormalizable couplings.
From (5.3) we find that βξ þ βAξ cannot be negative,

which is a necessary condition for asymptotic freedom. In
conclusion, no massive vector fields of any type can change
the asymptotic behavior of ξ.
Now we proceed with the renormalization of the terms

that contain the field Aμ by using again the Batalin-
Vilkovisky formalism. As explained in section IV, renor-
malziation is a combinations of field and parameters
redefinitions. We perform field redefinitions first, so from
what is left of the counterterms we can read the renorm-
alization constants of the physical parameters. We intro-
duce the source Kμ

A for the BRST transformation of Aμ,
through the term

SKA
¼ −

Z
RA

μK
μ
A; RA

μ ¼ −Cν
∂νAμ − Aν∂μCν; ð5:5Þ

so the extended action now reads

S ¼ SQG þ SA þ ðSK;ΨÞ þ SK þ SKA
: ð5:6Þ

Taking it into account this extension, the functional X in
(4.29) is modified as

X → X þ
Z

ΔAμK
μ
A;

ΔAμ ¼ a0Aμ þ a1hνμAν þ a2hAμ þOðh2Þ; ð5:7Þ
where the last term is the most general functional we can
build that involves the field Aμ and has ghost number -1,
and dimension 3 and ai are real coefficients to be
determined. In order to obtain ai we focus on the terms
in ðS; XÞ that contain Aμ, which read

ðS; XÞjA ¼
Z

δSA
δgμν

Δgμν þ
Z

δSA
δAμ

ΔAμ þ
Z

δSKA

δAμ
ΔAμ

þ
Z

δSKA

δCρ ΔCρ þ
Z

RA
μ

�Z
δΔAρ

δAμ
Kρ

A

�

þ
Z

Rμν

�Z
δΔAρ

δhμν
Kρ

A

�
: ð5:8Þ

In particular, the coefficients a1 and a2 can be derived
from the renormalization of the BRST transformations
by computing the first diagram in Fig. 2. Therefore, it is
enough to look at the terms in (5.8) that are linear in C and
KA. A straightforward calculation gives

ðS; XÞjACKA
¼

Z
½s1Cν

∂νAμK
μ
A þ ðs1 − a1ÞCνAν∂μK

μ
A

− a1∂μCνAμKν
A − 2a2∂μCμAρK

ρ
A�; ð5:9Þ

which can be used to read the coefficients from the first
diagram in Fig. 2. Finally, the coefficient a0 can be derived
by using the second term in (5.8) to renormalize the field Aμ

in the second and third diagrams in Fig. 2. After performing
these computations the results are

a0 ¼
1

48π2ε

�
−19ξη1 −

27ξη1
2ω

þ 10αη2
3

−
23ξη2
6

−
9ξη2
4ω

þ ξη1η2 þ
5αη22
12

þ 7ξη22
12

−
2ξη1η2
λ1

−
5αη22
6λ2

−
11ξη22
12λ2

�
;

ð5:10Þ

a1 ¼
1

72π2ωε
½6ξη1 þ ðξ − 10αÞη2�; a2 ¼ −

1

4
a1:

ð5:11Þ

FIG. 2. The first diagram contributes to the renormalization of the BRST transformation of matter fields (either scalar or vector). The
wavy lines denote the graviton, the dashed lines the Faddeev-Popov ghosts, the solid lines the matter fields and the double solid line the
sources KA;ϕ. The other diagrams are the contributions to the matter self-energy.

FIG. 1. Contributions to the graviton self-energy due to the
presence of matter. The wavy lines denote the graviton, while the
solid lines are matter (either scalar or vector fields).
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Note that a1 and a2 are not vanishing when the nonminimal
couplings are present, which means that the renormaliza-
tion of the Aμ field is not multiplicative. This is a para-
metrization and gauge dependent fact and can be avoided
by by using other techniques, such as the background field

method. However, keeping a1 and a2 nonzero allows to
have a better control over the computations and make cross
checks of the results.
The analog of (4.28) for the noncovariant termsGA;ncðh; AÞ,

obtained from diagrams that contain at least two Aμ, reads

GA;ncðh; AÞ → GA;ncðh; AÞ −
Z

δSA
δgμν

Δgμν −
Z

δSA
δAμ

ΔAμ ¼ SctAðA; gÞ; ð5:12Þ

After this redefinition the counterterms are

SctAðA; gÞ ¼ −
1

2

Z ffiffiffiffiffiffi
−g

p �
1

2
FμνFμν þ λ2δZλ2ð∇μAμÞ2 −m2δZm2AμAμ

þη1δZη1RAμAμ þ η2δZη2R
μνAμAν −

λ4δZλ4

4
ðAμAμÞ2

�
; ð5:13Þ

where each parameter is renormalized by means of the redefinition of the form

λ → ð1þ δZλÞλ; ð5:14Þ

where λ indicates a generic parameter.
The renormalization of m2 and λ2 can be extracted from the sum of the second, third, and fourth diagram in Fig. 2.

We find

βm2 ¼ m2

�
−3ξ −

20ξη1
3

þ 9ξη21 −
70αη2
9

−
14ξη2
9

þ 11

3
ξη1η2 −

20αη22
9

þ 23ξη22
36

−
η2
3λ2

�
4ξη1 þ

5αη2
3

þ 11ξη2
6

�
þ 3ξ

4λ22
ð2η1 þ η2Þ2 −

3λ4ð3þ λ22Þ
2λ22

− 2A

�

þ ζ

�
−10α2η1 þ 4ξ2η1 þ 9ξ2η21 −

15α2η2
2

þ 3ξ2η2
2

þ 3ξ2η1η2 −
5

2
α2η22 þ

1

4
ξ2η22

þ 3ξ2

4λ2
ð2η1 þ η2Þ2

�
: ð5:15Þ

βλ2 ¼ −2λ2
�
5αþ ξþ 10ξη1

3
þ 35αη2

9
þ 7ξη2

9
−
1

3
ξη1η2 −

5αη22
36

−
7ξη22
36

�

þ 4ξη1 −
10αη2
3

−
2ξη2
3

−
16

3
ξη1η2 −

20αη22
9

−
13ξη22
9

þ η2
λ2

�
2ξη1 þ

5αη2
6

þ ξη2
6

�
: ð5:16Þ

As expected, βλ2 is gauge independent, while βm2 is not. However, in our parametrization, all the gauge dependence is
encoded in the quantity A in the second line of (5.15).
From the diagrams in the first row of Fig. 3 we derive the counterterms of the nonminmal couplings. The results are a few

lines long and we write them by collecting the powers of the couplings η1, η2, and λ4. They read

βη1 ¼
λ4ðλ2 − 1Þ

3λ2
þ 2η1

�
5αþ 5α2

3ξ
þ ξ

�
þ 5η2

�
2α

3
þ α2

2ξ
þ ξ

6

�
þ 3η1λ4

2λ22
ð1þ 3λ22Þ þ

η2λ4
6λ22

ð2 − λ2 þ 5λ22Þ

þ 2η1η2
9

�
35αþ 10ξþ 3ξ

λ2

�
þ 14η21ξ

3
þ η22

6

�
10αþ 5α2

ξ
þ ξþ 2ξ

λ2

�
−
η21η2ξ

6λ22
ð21 − 14λ2 þ 25λ22Þ

þ η1η
2
2

36

�
80α − 29ξ −

45ξ

λ22
þ 20α

λ2
þ 46ξ

λ2

�
−
3η31ξ

λ22
ð1þ 3λ22Þ −

η32
72

�
ξ − 40αþ 9ξ

λ22
−
6ξ

λ2

�
ð5:17Þ
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βη2 ¼ 4λ2ð5αþ ξÞ þ λ4ð5λ2 þ 1Þ
3λ2

þ 8η1
3

ξð5λ2 − 3Þ þ 2η2
9

ð40αþ 5ξþ 70αλ2 þ 14ξλ2Þ þ
λ4η2
6

�
7þ 4

λ2
þ 1

λ22

�

þ 2η1η2
3

ξ

�
5 −

9

λ2
− 2λ2

�
− 2η21ξ

�
5þ 1

λ2

�
þ η22
90

�
90αþ 39ξ

2
−
5α

λ2
−
17ξ

2λ2
− 5αλ2 − 7ξλ2

�
−
η21η2ξ

λ22
ð1þ 4λ2 þ 7λ22Þ

−
η1η

2
2ξ

3λ22
ð3þ 4λ2 þ 9λ22Þ þ

η32
36

�
−21ξ −

9ξ

λ22
þ 20α

λ2
þ 10ξ

λ2

�
: ð5:18Þ

Finally, from the diagrams in the second row of Fig. 3, plus those with inequivalent exchanges of external legs, we derive
the counterterm of the self-interaction obtaining

βλ4 ¼
4λ4
3

ðξ − 10αÞ − λ24
2λ21

ð5þ 2λ2 þ 17λ22Þ þ
8λ4η1
3λ2

ξð3þ λ2Þ −
4λ4η2
9

�
50αþ ξ −

9ξ

λ2

�
þ 4λ4η1η2

3λ22
ξð9þ 4λ2 þ 13λ22Þ

þ 12λ4η
2
1

λ22
ξð1þ λ2 þ 4λ22Þ −

λ4η
2
2

9

�
70α − 19ξ −

27ξ

λ22
þ 10α

λ2
þ 2ξ

λ2

�
− 20η21ðα2 − αξþ ξ2Þ

−
η22
18

ð275α2 − 40αξþ 53ξ2Þ þ 2η21η2ξ

�
20α − 21ξ −

25ξ

λ2

�
− η1η

2
2

�
10α2 − 20αξþ 9ξ2 þ 23ξ2

λ2

�
−
12η31ξ

2

λ2
ð3þ 5λ2Þ

þ η32
18

�
−200α2 þ 40αξ − 11ξ2 −

63ξ2

λ2

�
−
12η31η2ξ

2

λ22
ð3þ 4λ2 þ 5λ22Þþη1η

3
2ξ

�
20α

3
−
5ξ

3
−
9ξ

λ22
−
4ξ

λ1

�

þ η21η
2
2ξ

�
20α − 15ξ −

27ξ

λ22
−
22ξ

λ2

�
−
18η41ξ

2

λ22
ð1þ 2λ2 þ 5λ22Þ −

η42
4

�
85α2

9
−
20αξ

9
þ 5ξ2

18
þ 9ξ2

2λ22
þ ξ2

λ2

�
ð5:19Þ

We report the gauge-independent beta functions in some specific cases, in order to show that all the terms in (2.8) must be
included if λ2 ≠ 0. First, when the nonminmal couplings are vanishing the beta functions become

βλ2 ¼ −2ð5αþ ξÞλ2; βλ4 ¼
4λ4
3

ðξ − 10αÞ − λ24
2λ21

ð5þ 2λ2 þ 17λ22Þ; ð5:20Þ

βη1 ¼
λ4ðλ2 − 1Þ

3λ2
; βη2 ¼ 4λ2ð5αþ ξÞ þ λ4ð5λ2 þ 1Þ

3λ2
: ð5:21Þ

This tells us that the nonminimal terms are generated anyway at one loop, even if they are absent at tree level. If we also set
λ4 to zero, βη1 vanishes but βη2 does not. Then, we could choose

5αþ ξ ¼ 0 ð5:22Þ

FIG. 3. In the first line the contributions to the matter-matter-graviton vertex. In the second line the correction to the matter quartic self-
interactions. In the second line the diagrams obtained from all the inequivalent permutations of external legs have not been depicted for
space reasons. They are additional 22 diagrams.
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and all the beta functions in (5.20) and (5.21) would be
zero. However, the condition (5.22) is not renormalization-
group invariant and violates one of the no-tachyon con-
ditions α > 0, ξ > 0. Therefore, it is not a viable choice.
Barring this possibility, this means that the presence of the
term ð∇μAμÞ2 in the free action forces us to have η2 ≠ 0,
which in turn makes βη1 and βλ4 nonzero. In conclusion, all
the terms in (5.1) must be included.

B. Proca fields

We present the one-loop counterterms in the case of
Proca theory in order to make a comparison with the results
obtained in the previous subsection.
First we consider the free Proca action

SPðA; gÞ ¼ −
1

2

Z ffiffiffiffiffiffi
−g

p �
1

2
FμνFμν −m2AμAμ

�
ð5:23Þ

minimally coupled to quantum gravity (4.1). In this case,
the theory is renormalizable. The reason is that Fμν does
not contain covariant derivatives and an external Aμ line is
necessarily multiplied by either a mass or a derivative
(pretty much like in the case of the free scalar described
below). Therefore, any diagram with an external Aμ leg can
only renormalize either the kinetic or mass terms. Higher-
derivative terms cannot be generated because the counter-
terms are polynomial in dimensionful parameters, so no
inverse powers of m can appear to compensate the higher-
dimensional operators. This changes if we include self-
interactions, as shown below.
The gravitational counterterms are well known [33] and

read

SctgravðgÞ¼−
1

ð4πÞ2ε
Z ffiffiffiffiffiffi

−g
p �

3m4−
m2

2
Rþ 1

72
R2þ 13

120
C2

�
;

ð5:24Þ

while for the other counterterms we find

δZA ¼ δZλ4 ¼ δZη1 ¼ δZη2 ¼ 0;

δZm2 ¼ −
1

8π2ε

�
3ξ

2
þ A

�
; ð5:25Þ

which shows that the nonminimal couplings, as well as the
quartic self-interaction, are not generated by renormaliza-
tion if they are absent in the classical action, as explained
above. Moreover, the field renormalization is zero, as in the
massless case. Note that this is true even with a nonzero
cosmological constant, differently from the case of the
Einstein-Hilbert action, where the counterterms are poly-
nomials in Λ and 1=ζ, so it is possible to generate FμνFμν at
one loop [34].
If we turn on a quartic interaction term ðAμAμÞ2 we find

that the divergent part of two-point function still renorm-
alizes the mass term without introducing any higher-
dimensional operators

δZm2 ¼ −
1

8π2ε

�
3ξ

2
þ Aþ 9

4
λ4

�
: ð5:26Þ

However, the divergent part of the four-point function
produces all possible operators with up to four derivatives
such as

AμAν∂
μ
∂
νðAρAρÞ; AμAμ

□ðAνAνÞ; AμAν∂
μ
∂
ν
∂
ρ
∂
σðAρAσÞ

ð5:27Þ

and so on. This is true already in flat spacetime. In fact,
neglecting the contributions from gravity, we find

hAμðp1ÞAνðp2ÞAρðp3ÞAσðp4Þi1;div ¼
λ24

240π2m4ε

�
2pμpνpρpσ þ

7p2

2
ðpμpνηρσ þpρpσημνÞ

þp2

4
ðpμpρηνσ þpμpσηνρ þpνpρημσ þpνpσημρÞ

þ ðp2Þ2
4

ðημρηνσ þ ημσηνρÞ þ
13ðp2Þ2

2
ημνηρσ

�
þ λ24
32π2m2ε

�
−4ðpμpνηρσ þpρpσημνÞ

− ðpμpρηνσ þpμpσηνρ þpνpρημσ þpνpσημρÞ þ
p2

3
ðημρηνσ þ ημσηνρÞ−

14p2

3
ημνηρσ

�

þ ðν↔ ρ;p→ kÞ þ ðμ↔ ρ; p→ qÞ− 15λ24
32π2ε

ðημνηρσ þ ημρηνσ þ ημσηνρÞ; ð5:28Þ

where
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p≡ p1 þ p2; k≡ p1 þ p3; q≡ p2 þ p3: ð5:29Þ

On the other hand, if we include the nonminimal interactions we find nonrenormalizable operators also in the two-point
function. In that case we find

hAμðpÞAνð−pÞi1;div ¼
η2p2

576π2m2ε
f½12ξη1 þ ð5αþ 7ξÞη2�p2ημν þ 2½12ξη1 þ ð5α − 2ξÞη2�pμpνg; ð5:30Þ

which generates the terms

Fμν□Fμν; ∂
μAμ□∂

νAν: ð5:31Þ

In (5.30) we have written only the terms that contribute
to higher-dimensional operator proportional to the gravi-
tational couplings. Besides them, there are also contribu-
tions to the mass and wave-function renormalizations. In
particular, since inverse powers of m2 are present, the
cosmological constant contributes to both.
These results are expected since the nonminmal terms

spoil renormalizability, as discussed in [18].
To summarize, free Proca theory minimally coupled to

quantum gravity is renormalizable as long as also the
gravitational theory is renormalizable. On the other hand,
adding self-interactions and/or nonminimal couplings to
gravity spoils renormalizability.

C. Scalars

For completeness, we show the results in the case of a
scalar field nonminimally coupled to (4.1). The diagram-
matic and some details are similar to the rank-1 field case.
The action reads

Sϕðϕ; gÞ ¼
1

2

Z ffiffiffiffiffiffi
−g

p �
∂μϕ∂νϕgμν−m2ϕ2þ ηRϕ2 −

λ4
12

ϕ4

�
;

ð5:32Þ

where η and λ4 are real parameters. Expanding the metric
around flat spacetime, we derive the necessary graviton-
scalar vertices and compute the diagrams, which are the
same as in Figs. 1–3 with the solid lines representing
the scalar field instead of the massive rank-1 field. From the
graviton self-energy diagrams of Fig. 1 we derive the
contributions of the scalar to the gravitational couplings.
We find the known result for the pure gravitational
counterterms

SctgravðgÞ ¼ −
1

ð4πÞ2ε
Z ffiffiffiffiffiffi

−g
p �

m4

2
þm2

6
ð1 − 6ηÞR

þ 1

72
ð1 − 6ηÞ2R2 þ 1

120
C2

�
: ð5:33Þ

Then we follow the steps of Sec. VA and introduce the term

SKϕ
¼ −

Z
Cμ

∂μϕKϕ; ð5:34Þ

that accounts for the composite BRST operator of ϕ and its
source Kϕ. The extended action (4.6) is

S ¼ SQG þ Sϕ þ ðSK;ΨÞ þ SK þ SKϕ
: ð5:35Þ

In analogy with the massive vector case, we perform the
field redefinition that turns the noncovariant term Gncðh;ϕÞ
into

Gϕ;ncðh;ϕÞ → Gϕ;ncðh;ϕÞ −
Z

δSϕ
δgμν

Δgμν

− a0

Z
δSϕ
δϕ

ϕ ¼ Sctϕðϕ; gÞ; ð5:36Þ

where Δgμν is given by (4.27) and

a0 ¼ −
1

8π2ε

�
3ξ

4
−
3ηξ

ω
ðωþ 1Þ þ A

2

�
: ð5:37Þ

In principle there might be an additional term in the
redefinition of ϕ proportional to hρρϕ. However, this term is
multiplied by a vanishing coefficient. This can be explicitly
check by computing the divergent part of the first diagram
in Fig. 2. After this operation we are left with

Sctϕðϕ; gÞ ¼
1

2

Z ffiffiffiffiffiffi
−g

p �
∂μϕ∂νϕgμν −m2δZm2ϕ2 þ ηδZηRϕ2

−
1

12
λ4δZλ4ϕ

4

�
: ð5:38Þ

Since in this case the renormalization of ϕ is multiplicative,
it is easy to derive the correction to the wave function
renormalization δZϕ from the second and third diagram of
Fig. 2 and check that

δZϕ ¼ 2a0: ð5:39Þ

From the same diagrams, together with the fourth one, we
derive the beta function of the mass
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βm2 ¼ 2m2

�
λ4
2
þ 5α −

ξ

2
½1þ 12ηð1 − ηÞ� − A

2

	

− 2ζη½5α2 þ ξ2ð1 − 6ηÞ�: ð5:40Þ

From the diagrams in the first row of Fig. 3 we extract the
beta function of the nonminimal coupling, which reads

βη ¼ 4η

�
−
5α2

6ξ
þ ξ

3
−
λ4ð1 − 6ηÞ

24η
−
ηξ

2
ð5 − 6ηÞ

�
: ð5:41Þ

Moreover, as a consistency check, we have verified the
Ward identities of diffeomorphisms that relate the second
and third diagram in Fig. 2 with those in the first row
of Fig. 3.
Finally, from the second row of diagrams in Fig. 3 we

extract the beta function of the coupling λ4

βλ4 ¼ 2λ4

�
3λ4
2

þ 5α

�
1þ 6αη2

λ4

�
þ ξð1− 6ηÞ2

�
1þ 6ξη2

λ4

��
:

ð5:42Þ

As expected, (5.41) and (5.42) are gauge independent
and agree with the results in the literature (e.g., [35]).
Note that the quartic interaction and the nonminimal

coupling turn each other on if one of the two is present.
Only if they are both absent they are not generated by
renormalization. The reason is the same as in Proca theory:
when λ4 ¼ η ¼ 0 every external ϕ line comes with either a
derivative or a mass. Therefore, any one-loop diagram can

only correct the kinetic term or the mass term. However,
once one of the two interactions is nonzero, this is not true
anymore and every term of dimension smaller or equal than
four that satisfies diffeomorphism invariance is generated.

VI. CONCLUSIONS

We have studied the renormalization of the most general
massive vector field theory, where all the four components
of the multiplet propagates, coupled to quantum gravity.
The theory is renormalizable by power counting, even
when self-interactions are switched on. In particular, all
the nonminimal couplings with gravity are generated by
renormalization and therefore must be included in the
classical action. We compute all the relevant one-loop
diagrams and derive the beta functions for the parameters of
the theory. We show that there is no choice for their initial
value that avoids the generation of nonminimal terms or
quartic self-interactions. Moreover, the presence of non-
minimal couplings cannot change the ultraviolet behavior
of the gravitational interactions, which are not asymptoti-
cally free in absence of tachyons. Finally, we have made a
comparison with the case of Proca theory, which is not
renormalizable when self-interactions and/or nonminimal
couplings with gravity are included, and explicitly show
that higher-dimensional divergent terms are generated.
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