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The quantum null energy condition (QNEC) is usually stated as a bound on the expectation value of
null components of the stress-energy tensor at a point in terms of second null shape variations of the
entanglement entropy at the same point. It can be recast as the statement that the sign of the second
null shape variation of the relative entropy of any state with respect to the vacuum is positive. Using
instead a Rényi generalization of relative entropy, called sandwiched Rényi divergence (SRD), leads
to what is termed the Rényi QNEC: The second null shape variation of SRD of any state with
respect to the vacuum is positive. In this work, we prove the Rényi QNEC for free and super-
renormalizable fermionic quantum field theories in spacetime dimensions greater than 2 using null
quantization, for the case where the Rényi parameter n > 1. We end with comments on multiple possible
generalizations.
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I. INTRODUCTION

The holographic principle [1,2] (see also [3]) and its
explicit example, the AdS=CFT correspondence [4–6],
have revolutionized our understanding of (quantum) grav-
ity over the past three decades. An entry of the AdS=CFT
“dictionary,” the Hubeny-Rangamani-Ryu-Takayanagi
formula [7,8], provides a translation between the entangle-
ment structure of quantum field theories and geometric
properties of extremal surfaces in asymptotically AdS
spacetimes. This has led to major advances in our under-
standing of the AdS=CFT correspondence, on both sides of
the story.
An interesting development in recent years has been the

quantum focusing conjecture [9], a generalization of the
classical focusing theorem. The quantum focusing con-
jecture reduces in a particular limit to what has been termed
the quantum null energy condition (QNEC), which states
that, along null congruences with vanishing expansion and
shear, one has

hTkki ≥
ℏ
2π

S00; ð1Þ

where Tkk ¼ Tabkakb, Tab is the stress-energy tensor of
a quantum field theory (QFT) regarded as a quantum
operator, ka is the tangent to the null congruence, and S00
denotes the second variation of the entanglement entropy
as the entangling region is deformed along ka at one point.
A more precise statement can be found in Ref. [10]. We
note that the QNEC does not involve the bulk gravita-
tional constant GN and, as such, is a statement purely about
QFTs.
As discussed in Ref. [9], the variation S00 of the

entanglement entropy appearing in QNEC is of the form

S00 ¼ lim
y0→y

δ2S
δλðyÞδλðy0Þ ; ð2Þ

with λ the affine parameter along the geodesics of the null
plane. Entanglement entropy of subregions is known to be
universally UV divergent in QFTs (see, e.g., [11]), and one
would like to have a better formulation of the QNEC. This
is in fact easily achieved by rewriting Eq. (1) in terms of the
relative entropy [12]. For density matrices associated with a
region R, we have

SrelðρRjσRÞ ¼ trρR log ρR − trρR log σR

¼ ΔhKσ
Ri − ðΔSÞR; ð3Þ
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where Kσ ¼ − log σ is the modular Hamiltonian associated
to a density matrix σ.1 For arbitrary cuts of a null plane, one
has the result that [13]

Kσ
R ¼ 2π

Z
∞

VðyÞ
ðv − VðyÞÞTvvðyÞdvdd−2y; ð4Þ

where v is the null direction along the null surface, y are the
transverse directions, and VðyÞ is an arbitrary curve on the
null plane describing the choice of the cut. Choosing σR to
be the vacuum state, one can define a vacuum subtracted
modular Hamiltonian:

ΔhKi ¼ 2π

Z
∞

VðyÞ
ðv − VðyÞÞhTvvðyÞidvdd−2y: ð5Þ

Taking two variations along v and using the fact that the
entanglement entropy for the vacuum state is stationary for
null cuts, it is straightforward to see that Eq. (1) is
equivalent to

lim
y0→y

δ2SrelðρRjσRÞ
δλðyÞδλðy0Þ ≥ 0: ð6Þ

Positivity of the off-diagonal components (λ ≠ λ0) of the
second variation of Srel follows from strong subadditiv-
ity [10]. However, we focus on only the “diagonal” terms of
the variation, i.e., the limit y0 → y, throughout the work.
Evidence for validity of QNEC has been accumulating

over the years. Reference [10] gave the first proof of QNEC
for free and superrenormalizable bosons based on replica
trick calculations. Reference [14] later generalized this
proof to the case of free fermions. Reference [15] proved
QNEC for CFTs with holographic duals and their relevant
deformations. Reference [16] proved the QNEC for general
states of a CFT on Minkowski space using properties of
modular Hamiltonians under shape deformations and
causality. Finally, REf. [17] provided a rigorous proof of
QNEC for cases where the entangling region is a null cut in
a general Poincaré invariant QFT, using Tomita-Takesaki
theory and the theory of half-sided modular inclusions.
Relative entropy is a measure of the distinguishability of

a state ρ given a state σ. It is defined to be always positive,
SrelðρjσÞ ≥ 0, and is monotonic under completely positive
trace-preserving maps, SrelðΦρjΦσÞ ≤ SrelðρjσÞ [11,18].2

This monotonicity property is often referred to in the
literature as the data processing inequality (DPI). For states
that are close to each other, DPI can be thought of as a
constraint on the sign of the first derivative of Srel. QNEC is
a constraint on the sign of the second derivative of Srel in

local quantum physics. Given the purely information-
theoretic nature of QNEC (6) and the amount of supporting
evidence, it is natural to ask if generalizations of the relative
entropy that are positive and monotonic also satisfy such
constraints on their second derivatives.
One such measure is the sandwiched Rényi diver-

gence [20,21], a Rényi generalization of the relative
entropy. Reference [22] showed that some sandwiched
Rényi divergences (SRDs) can be written as correlation
functions in quantum field theory. Based on the path
integral expression for SRD in Ref. [22], Ref. [23] put
constraints on correlation functions in QFT based on some
known properties of the divergence. It was further con-
jectured there that the second null variation of the SRD
should also be positive, thus providing a Rényi generali-
zation of QNEC, which we will refer to as Rényi QNEC.
A few examples where the conjecture holds were also
demonstrated. Very recently, Ref. [24] gave a proof of the
Rényi QNEC for free and superrenormalizable bosons in
spacetime dimensions D > 2.
In this work, we provide a proof of Rényi QNEC for free

and superrenormalizable fermions in D > 2 spacetime
dimensions. Our proof closely follows the one presented
in Ref. [24]. We use the formalism of null quantization to
write an arbitrary state as an expansion around the vacuum
and reduce the Rényi QNEC for arbitrary states to a
statement regarding a state perturbatively close to the
vacuum. One can then evaluate the relevant SRD variations
using expansions known in the literature and show that the
conjecture indeed is true in some cases. We note that the
conjecture is not true for some values of the Rényi
parameter, as also found in Ref. [24]. We do not investigate
these.
We now present an outline of the rest of the paper.

Section II begins with a review of the definition and
properties of sandwiched Rényi divergence followed by
a discussion of the Rényi QNEC conjecture. Section III
provides details of the setup where we perform our
computations. We briefly review the formalism of null
quantization. Rényi QNEC is then reformulated as a
perturbative statement, simplifying the calculations signifi-
cantly. In Sec. IV, we proceed to prove Rényi QNEC, doing
it in two ways, once for integer values of the Rényi
parameter and then for general values. The two methods
provide complementary insight. Finally, we conclude with
a discussion of possible generalizations and applications of
Rényi QNEC. Two appendixes contain details of the
fermionic theory that we consider and the calculation of
correlation functions needed for completing the proof.

II. SANDWICHED RÉNYI DIVERGENCE
AND RÉNYI QNEC

We begin this section by defining sandwiched Rényi
divergence for finite-dimensional quantum systems, in
terms of density matrices. We then provide the basic

1Note that, here and in Eq. (5) below, Δx denotes a change in
the quantity x, as opposed to Sec. II, whereΔ is used to denote the
modular Hamiltonian.

2It is, in fact, monotonic under positive maps [19].
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definitions of modular theory, to be able to define SRD in
QFTs in general. As discussed in Refs. [22,23], sandwiched
Rényi divergence for integer n > 1 can be expressed in
terms of one-sheeted Euclidean 2n-point correlation func-
tions. One can then evaluate the SRD explicitly and check
the statement of Eq. (14), at least in free field theories. We
provide a brief introduction to these ideas to finish this
section.

A. Preliminaries

A quantum version of Rényi relative entropy, termed
sandwiched Rényi divergence, was proposed for type I von
Neumann algebras in Refs. [20,21]; see also Sec. 3.3 in
Ref. [25]. States in these systems can be described in terms
of density matrices. For two states described by density
matrices ρ, σ, sandwiched Rényi relative α entropy3 of ρ
with respect to σ is defined to be

SαðρjσÞ ¼
1

α − 1
log tr

h�
σ

1−α
2α ρσ

1−α
2α

�
α
i
; ð7Þ

for α > 0, α ≠ 1, if the support of ρ is contained in the
support of σ; otherwise, SαðρjσÞ ¼ ∞. For α ∈ ½1=2;∞Þ,
SαðρjσÞ was shown to satisfy the DPI [26,27]. The limit
α → 1 corresponds to Umegaki’s relative entropy defined
in Eq. (3).
Our interest is in the Rényi relative entropy for

QFTs, which correspond to type III von Neumann alge-
bras [28–31]. There is no notion of a density matrix for
general von Neumann algebras, and the above definitions
of relative entropy and Rényi relative entropy are not
useful. It becomes essential to use the language of
algebraic QFT, in particular, the theory of Tomita and
Takesaki [32,33]. See Ref. [11] for an accessible intro-
duction to these ideas. We briefly review the basics needed
to define SRD in QFT. The reader is also referred to
Ref. [34] for a quick introduction to, and to Ref. [25] for a
detailed treatment of, the algebraic approach in the finite-
dimensional context.
For an open set R in D-dimensional Minkowski space,

MD, we consider the local algebra AR of operators
supported in R. Denote the vacuum state by Ω. States
formed by acting with a finite number of operators on the
vacuum comprise the vacuum sector H0 of the Hilbert
space. A state Ψ ∈ H0 is called cyclic for AR if the states
AjΨi; A ∈ AR, are dense in H0. The state Ψ is called
separating for AR if, for A ∈ AR, AjΨi ¼ 0 ⇒ A ¼ 0. The
Reeh-Schlieder theorem implies that the vacuum is a cyclic
separating vector for the algebra associated to any sub-
region. Including what are known as weak limits of
sequences of operators gives a closed algebra of operators,
and we denote the corresponding Hilbert space by H.

Let Ψ ∈ H be a cyclic separating state for AR. The
Tomita operator (for the state Ψ) is the antilinear4 operator
defined by SΨAjΨi ¼ A†jΨi ∀ A ∈ AR.

5 SΨ is invertible
and has a unique polar decomposition as

SΨ ¼ JΨΔ
1=2
Ψ ; ð8Þ

where JΨ is an antiunitary called the modular conjugation
operator and Δ1=2

Ψ is Hermitian and positive definite; ΔΨ is
called the modular operator.
Now, let Φ ∈ H0 be another state, with H0 not neces-

sarily the same as H ∋ Ψ. Let AR be an algebra that acts
on both H and H0. The relative Tomita operator is
defined by

SΨjΦ∶ H → H0; SΨjΦAjΨi ¼ A†jΦi; ð9Þ

where hΨjΨi ¼ hΦjΦi ¼ 1, and one again needs to take a
closure. The relative Tomita operator satisfies SΩjΦSΦjΩ ¼
1 and S†ΩjΦS

†
ΦjΩ ¼ 1. The relative modular operator is

defined to be

ΔΨjΦ ¼ S†ΨjΦSΨjΦ; ð10Þ

which is unbounded and positive semidefinite. It is positive
definite iff SΨjΦ is invertible. The polar decomposition of
the relative Tomita operator takes the form SΨjΦ ¼
JΨjΦΔ

1=2
ΨjΦ. We note that the modular operator acts as, e.g.,

hBΨjΔΨjΦjAΨi ¼ hA†ΦjB†Φi; ð11Þ

which can be alternatively written as BΔΨjΦA ¼ AB. The
inverse of the relative modular operator satisfies Δ−1

ΨjΦ ¼
SΦjΨS

†
ΦjΨ. The relative modular operator comprises the core

component of Tomita-Takesaki theory.
The relative modular operator can be used to define

relative entropy in QFT [35] as

SrelðΨjΦÞ ¼ −hΨj logΔΨjΦjΨi: ð12Þ

This reduces to Eq. (3) for von Neumann algebras of type I.
For regions R̃ ⊂ R, so that AR̃ ⊂ AR, the relative modular
operators associated with given regions satisfy the

3Alternatively called sandwiched Rényi divergence and Rényi
relative entropy.

4For an antilinear operator W, its adjoint for states λ, χ is
defined by

hλjWχi ¼ hW†λjχi ¼ hχjW†λi:
If W is antiunitary, then hWλjWχi ¼ hχjλi.

5One has to take a closure for the Tomita operator to be
completely well defined. We consider only the closed operator
throughout.
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monotonicity property: ΔR
ΨjΦ ≤ ΔR̃

ΨjΦ.
6 This can be used to

prove the monotonicity of SrelðΨjΦÞ under restrictions of
subsets: SrelðΨjΦÞðRÞ ≥ SrelðΨjΦÞðR̃Þ.

B. SRD for QFT and Rényi QNEC

Sandwiched Rényi divergence between statesΦ andΨ is
defined by the relations [23,36,37]

SRpðΦjΨÞ ¼ p
p− 1

sup
jχi∈H

loghΦjðΔχjΨÞ
1
p−1jΦi; p∈ ð1;∞Þ

SRpðΦjΨÞ ¼ p
p− 1

inf
jχi∈H

loghΦjðΔχjΨÞ
1
p−1jΦi; p∈

�
1

2
;1

�
:

ð13Þ

This definition is a generalization of the p-norm of a matrix
to unbounded operators.7 For p > 1, SRD is defined to be
infinite if the vector Φ is not in the intersection of the
domains of Δ−1

χjΨ for all jχi ∈ H. For p < 1, SRD is finite if
Ψ is cyclic separating [24].
SRD is non-negative and satisfies the data processing

inequality; i.e., it monotonically decreases for algebras of
smaller subregions [23,37–39]. This makes it an interest-
ing quantity to study from an information theoretic
perspective. SRD is also monotonic in p, SRpðΦjΨÞ >
SRq ðΦjΨÞ for p > q ∈ ½1

2
; 1Þ ∪ ð1;∞Þ. In the limit p → 1,

SRpðΦjΨÞ → SrelðΦjΨÞ.
Based on the similarities between the relative entropy

and the sandwiched Rényi divergence, Ref. [23] conjec-
tured that its second variation should also be positive as it is
for relative entropy:

lim
y0→y

δ2SRpðΦjΨÞ
δλðyÞδλðy0Þ ≥ 0; ð14Þ

where the variation being considered is the same as in
Eq. (6). We note that we are still concerned with only the
“diagonal” component of the variation. This was termed
the Rényi QNEC conjecture in Ref. [24], where a proof for
the case of free (and superrenormalizable) bosons was
provided. The goal of this paper is to extend their proof to
the case of free (and superrenormalizable) fermions.

C. Correlation functions from path integrals

Let us write D-dimensional Minkowski space as MD,
withmetric ds2 ¼ −dt2 þ dx2 þ dy⃗ · dy⃗. LetΣ be the initial
value surface t ¼ 0, which we divide into two half-spaces,
x > 0 and x < 0, denoted VR;L. Their respective domains of

dependence will be denoted UR;L with the corresponding
local algebras beingAR;L. LetΩ be the vacuum of a QFTon
MD. States in this QFT can be prepared by inserting
appropriately smeared operators in the path integral over
the lower half of Euclidean time, τ ≤ 0.Wewill be interested
in only the set of states that have finite SRD with respect to
the vacuum.
The modular operator on the vacuum state, ΔΩ,

leaves the vacuum invariant. However, positive powers
Δα

Ω; α ∈ ð0; 1=2�, take operators in AR and rotate them
to the location θ ¼ −2πα in the path integral over
τ ≤ 0 [11]. Here, ðr; θÞ are polar coordinates on the
ðτ; xÞ plane, with z ¼ xþ iτ ¼ reiθ. Consider then an
operator OR ∈ AR, and construct the excited states

jΦi ¼ Δθ=2π
Ω ORðr; 0ÞjΩi ¼ Oðr; θÞjΩi; ð15Þ

with θ ∈ ½0; π�, wherewe have usedΔθ=2π
Ω ORðr; 0ÞΔ−θ=2π

Ω ¼
Oðr; θÞ. One can bound the SRD SRpðΦjΩÞ for 1 ≤ p ∈ R,
by choosing χ ¼ Ω in the supremum in Eq. (13):

SRpðΦjΩÞ ≥ p
p − 1

loghΦjðΔΩjΩÞ
1
p−1jΦi

¼ p
p − 1

log kðΔΩÞ
θ
2πþ 1

2p−
1
2ORðr; 0ÞjΩik2:

States of the form Δα
ΩORjΩi generically have infinite norm

for α > 1=2, which implies that SRpðΦjΩÞ diverges for
θ < π − π=p and for θ > 2π − π=p. On the other hand, as
discussed in Refs. [22,23], sandwiched Rényi divergence for
integer p ¼ n > 1 can be expressed in terms of one-sheeted
Euclidean 2n-point correlation functions, which are known
to be finite. An overview of their construction follows.
The vacuum density matrix of the right half-space, ω, is

given by a path integral over the whole τ plane, with cuts at
τ ¼ 0�; x > 0. Let ϕ be the density matrix with operator
insertions of Φ†;Φ at �ðπ − θÞ. For θ ≤ π=n, with integer
n > 1, the operator ω

1
2n−

1
2ϕω

1
2n−

1
2 has a path integral repre-

sentation as a wedge of opening angle 2π=n with two
operator insertions. Sewing together n such wedges eval-
uates tr½ðω 1

2n−
1
2ϕω

1
2n−

1
2Þn� as a 2n-point correlation function

of Φ;Φ†, with operators inserted at z�k ¼ reið2πkn �θÞ for
k ¼ 0;…; n − 1,

tr½ðω 1
2n−

1
2ϕω

1
2n−

1
2Þn� ¼

�Yn−1
k¼0

Φ†ðzþk ÞΦðz−k Þ
�
; ð16Þ

where the other directions y⃗ are suppressed. Then, for
integer n > 1, we can evaluate SRD for this configuration
of fields with respect to the vacuum as

6This means that the operator ΔR̃
ΨjΦ − ΔR

ΨjΦ is a positive
operator on R̃.

7For p ≥ 1, the (Schatten) p-norm of a matrix A is defined to
be jAjp ¼ ½Trð

ffiffiffiffiffiffiffiffiffi
A†A

p
pÞ�1=p.
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SRn ðΦjΩÞ ¼ 1

n − 1
log

	hQn−1
k¼0Φ†ðzþk ÞΦðz−k Þi
hΦ†ðzþ0 ÞΦðz−0 Þin

�
: ð17Þ

This relation between SRD and correlation functions was
used in Ref. [23] to put constraints on correlation functions
in QFT from known properties of SRD. It will be very
useful for us, too.
As a final point, note that, although we defined SRD for

QFTs using the abstract modular theory of Tomita and
Takesaki, we have here resorted to using density matrices
and will continue to do so in what follows. This implicitly
assumes that one is working with regularized entropy and
energy-momentum tensor using an appropriate renormal-
ization scheme. See Ref. [40] for a detailed discussion. It
has recently been shown that this assumption holds in
various situations [41–44].

III. SETTING UP

In this section, we introduce the field theory that we
work with and the null quantization scheme that allows us
to prove the Rényi QNEC. We also give the precise
statement that we will prove and reformulate it in a much
more convenient form as a calculation regarding a state
perturbatively close to the vacuum.

A. Null quantization and the state

For our proof, we will need to assume that the QFT
describing the matter has a valid null-hypersurface initial-
value formulation; i.e., a field algebraAðNÞ can be defined
on a stationary null-surface N without making reference to

anything outside N. Our treatment of null quantization
closely follows Ref. [10]; see Refs. [40,45] for more details.
The details of our setup are summarized in Fig. 1. We spell
them out in detail below.
Let γ be a spacelike codimension-2 surface that splits a

Cauchy surface Σ into two sides. The proof we present here
applies when γ is a section of a general stationary null
surface N in D > 2. Specifying the state of the QFT on the
Cauchy surface Σ is unitarily equivalent to specifying the
state on the null plane N and parts of past and future null
infinities.
Now discretize N along the transverse directions into

small regions of transverse area A. These regions fully
extended along the null directions are called pencils. See
Fig. 1. We use A as an expansion parameter and take the
limit A → 0 at the end. Degrees of freedom on different
horizon generators are independent systems [40], and so the
Hilbert space on N factorizes into a product of Hilbert
spaces on the pencils. On each pencil, there exists a 1þ 1-
dimensional free chiral fermionic conformal field theory.
Details of the CFT on the pencils are provided in
Appendix A.
We want to consider the second shape variation along N

of SRD at some point q on γ. This point is contained in one
specific pencil, which we denote by P. Decompose the
Hilbert space of the system as H ¼ HP ⊗ HA, where
HP is the Hilbert space of our specific pencil P and HA ≡
Hauxiliary contains all the remaining degrees of freedom.
Consider a density matrix onH, which we deform to obtain
a one-parameter family of density matrices ρðλÞ by tracing
out the part of the pencil P in the past of affine parameter λ.

FIG. 1. An illustration of the setup that we work with. Σ is a Cauchy surface in Minkowski space, which is split in half by the
codimension-2 surface γ. The reduced state ρR on the green half of the Cauchy surface is equivalent to the state on (green) parts of the
null hypersurface N and null infinity Iþ. The right figure is a front view of N. The vertical segments bounded by solid lines are the
pencils on N, with the blue pencil being our specific pencil P; the rest are all part of the auxiliary system. The parameter λ is −∞ at the
bottom of N in the right figure, and λ → ∞ at the top. The curve that divides the green and orange regions on N is γ. The point p used
above is the intersection of P with γ. The green part of Σ extends behind the plane of the page.
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For small A, the state of the pencil is near the vacuum, and
the global state can be written as

ρðλÞ ¼ σPðλÞ ⊗ ρð0ÞA þA1=2ρð1ÞðλÞ þ � � � : ð18Þ

This can be seen as follows. Since the probability to have n
particles on a pencil should scale extensively with the area,
it is proportional to An for each pencil. Then, terms of the
form jnihmj in the pencil Fock basis scale as AðnþmÞ=2.
Thus, the leading contribution to the perturbation, ρð1ÞðλÞ,
is of the order of A1=2, with terms of the form j0ih1j and
j1ih0j. Explicitly, the state on N must take the form

ρ ¼ j0ih0j ⊗ ρð0ÞA þA1=2
X
ij

ðj0ihψ1
ijj þ jψ2

ijih0jÞ ⊗ jiihjj

þA1=2
X
ij

ðj0ihψ2
ijj þ jψ1

ijih0jÞ ⊗ jjihij þ � � � ;

where jψ iji are single-particle states on the pencil CFT,
which can be constructed by inserting single operators in
the fermionic path integral, and fjii; jjig together form an
arbitrary basis of HA such that fjiihjj; jjihijg form a
Grassmann-odd basis of operators on HA. The basis
elements need to be Grassmann-odd, since the pencil
CFT has one fermion excited in the leading contribution
to the perturbation. We also note for later use that physical
observables can be only Grassmann-even. We can define
the needed Grassmann-odd basis, e.g., by taking jiiðjjiÞ to
be states with an even (odd) number of creation operators
acting on the vacuum. We stick to this convention through-
out the paper. A resolution of the identity operator for the
auxiliary system in this basis is

1a ¼
X
i

jiihij þ
X
j

jjihjj≡X
μ

jμihμj; ð19Þ

where the sum over i (respectively, j) runs over states with
even (respectively, odd) numbers of creation operators. We
use the convention that indices μ, ν can correspond to either

even (i) or odd (j) states. Note that the auxiliary system ρð0ÞA
is not necessarily in the vacuum state. Entanglement
between the pencil and the auxiliary system is contained
in ρð1ÞðλÞ and the further subleading terms.
Since the theory on each pencil is chiral, we can replace

translations (and derivatives) along λ by translations (and
derivatives) along the spatial direction. Also, the single-
particle states jψ iji of the Fock space can be constructed by
a Euclidean path integral over the lower half plane, τ < 0,
with insertions of a single field.
The affine parameter λ ¼ VP, VP some constant,

describes the location of the entangling surface on the
pencil or, equivalently, the location x ¼ λ on the τ ¼ 0 slice
of the Euclidean path integral. Using null translation
invariance of the free theory, we choose to fix the

entangling surface to be at x ¼ 0 by moving the operator
insertions simultaneously. The reduced density matrix ρðλÞ
then corresponds to tracing out the region x < 0.
Deformations of the entangling region now amount to
changing the location of the operator insertions, allowing
us to evaluate shape derivatives with relative ease.

Furthermore, the density matrix σð0ÞP is now independent
of λ. In fact,

σP ¼ e−2πKP; ð20Þ

whereKP is the modular Hamiltonian on the pencil [46,47].
We can now write an arbitrary state as

ρðλÞ¼ σP⊗ ρð0ÞA

þA1=2
X
ij

	
σP

Z
drdθfijðr;θÞψðreiθ−λÞ

�
⊗ jiihjj

þA1=2
X
ij

	
σP

Z
drdθfjiðr;θÞψðreiθ−λÞ

�
⊗ jjihij

þOðAÞ;

which we write as

ρðλÞ¼σP⊗ρð0ÞA

þA1=2
X
μν

	
σP

Z
drdθfμνðr;θÞψðreiθ−λÞ

�
⊗ jμihνj

þOðAÞ:

Defining

ρð1ÞðλÞ ¼
X
μν

	
σP

Z
drdθfμνðr; θÞψðreiθ − λÞ

�
⊗ jμihνj;

we succinctly write

ρðλÞ ¼ σP ⊗ ρð0ÞA þA1=2ρð1ÞðλÞ þOðAÞ; ð21Þ

with the factor of A1=2 explicit. To ensure that the state is
Hermitian, we need to impose

fμνðr; θÞ ¼ −if�νμðr; 2π − θÞ; ð22Þ

where we emphasize that μ, ν indices can be either i or j.
It is necessary to require that fμνðr; θÞ vanishes at

θ ¼ 0; π so that the state is normalizable. To ensure that
SRD is finite for the states we study, it is further necessary
to restrict the support of the functions fμν to a wedge of size
2π=n centered at θ ¼ π, as discussed in Sec. II C. We will
refer to this requirement as the wedge condition.
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B. Statement of Rényi QNEC

Recall that, for density matrices, SRD of ρ with respect
to σ is given by

SRn ðρjσÞ ¼
1

n − 1
log ẐnðρjσÞ; ð23Þ

where

ẐnðρjσÞ ¼ Tr½ðσ1−n
2n ρσ

1−n
2n Þn�: ð24Þ

For the Rényi QNEC, ρ is the density matrix ρðλÞ
introduced above, defined for the subregion v > Vðy⃗Þ,
along the null surface N, and σ is the vacuum density
matrix. The deformation relevant for Rényi QNEC is then
simply translation along the affine parameter λ on the pencil
P near λ ¼ 0, and Rényi QNEC is the statement that, for
1 < n ∈ R,

lim
A→0

1

A
d2

dλ2
SnðρðλÞjσÞ






λ¼0

≥ 0: ð25Þ

If we expand the state ρðλÞ as

ρðλÞ ¼ σP ⊗ ρð0ÞA þA1=2ρð1ÞðλÞ þAρð2ÞðλÞ
þOðA3=2Þ; ð26Þ

Ẑn can be expanded as

ẐnðρðλÞjσÞ ¼ Ẑð0Þ
n þA1=2Ẑð1Þ

n ðλÞ
þAðẐð2Þ

n ðλÞ þ Ẑð1;1Þ
n ðλÞÞ þOðA3=2Þ;

where ẐðiÞ
n contains contributions from the ith term of the

ρðλÞ expansion and Ẑð1;1Þ
n contains two powers of ρð1Þ.

Using this in Eq. (25), one can recast the Rényi QNEC
statement as [24]

d2

dλ2
Zð1;1Þ
n ðλÞ






λ¼0

≥ 0; ð27Þ

where

Zð1;1Þ
n ðλÞ ¼ 1

n − 1
Ẑð1;1Þ
n ðλÞ: ð28Þ

C. Reformulation as a perturbative calculation

As it stands, we need to perform a calculation of SRD
between an arbitrary state and the vacuum. As demon-
strated in Ref. [24], however, we can improve the situation
and restate our problem as a calculation of SRD between
two perturbatively close states.

Let us first define

ρ̃ð0Þ ¼ σP ⊗ ρ̃ð0ÞA ; ρ̃ð0ÞA ¼
�
σ

1−n
2n
a ρð0ÞA σ

1−n
2n
a

�
n
; ð29Þ

and choose a basis fjii; jjig such that ρ̃ð0ÞA acts diagonally:

ρ̃ð0ÞA jμi ¼ e−2πKμ jμi: ð30Þ

We also define

Eμν ≡ eθðKμ−KνÞjμihνj: ð31Þ

Then, inserting a complete set of states, we can write

σ
1−n
2n ρð1ÞðλÞσ1−n

2n

¼
X
μ1μνμ2

σ
1−n
2n þ1

P

	Z
drdθfμνðr; θÞψðreiθ − λÞ

�
σ

1−n
2n
P

⊗ jμ1ihμ1jσ
1−n
2n
a jμihνjσ1−n

2n
a jμ2ihμ2j:

Note that, since σa is a Grassmann-even operator, elements
such as hijσma jji will vanish.
Now define

f̃μνðr; θÞ ¼
X
μ1ν1

fμ1ν1ðr; θÞhμjσ
1−n
2n
a jμ1ihν1jσ

1−n
2n
a jνi;

which satisfies the same reality conditions as fμν. This
allows us to write

σ
1−n
2n ρð1ÞðλÞσ1−n

2n

¼
X
μν

σ
1−n
2n
P

	
σP

Z
drdθf̃μνðr;θÞψðreiθ−λÞ

�
σ

1−n
2n
P ⊗ jμihνj:

Note that any function that satisfies the same reality and
support conditions as fμνðr; θÞ is equally valid as a support
function for the field. We use this freedom to write [24]

σ
1−n
2n ρð1ÞðλÞσ1−n

2n

¼
X
μν

σ
1−n
2n
P

	
σP

Z
drdθf̃μνðr; θÞψðreiθ − λÞ

�
σ

1−n
2n
P

⊗ ððρ̃ð0ÞA Þ1−n2n ρ̃ð0ÞA EμνðθÞðρ̃ð0ÞA Þ1−n2n Þ:

Defining

ρ̃ð1ÞðλÞ ¼
X
μν

ρ̃ð0Þ
Z

drdθf̃μνðr; θÞðψðreiθ − λÞ ⊗ EμνðθÞÞ;

ð32Þ

we have the result that
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ZnðλÞ¼
1

n−1
Tr½ðσ1−n

2n ρσ
1−n
2n Þn�

¼ 1

n−1
Tr½ððρ̃ð0ÞÞ1=nþA1=2ðρ̃ð0ÞÞ1−n2n ρ̃ð1ÞðλÞðρ̃ð0ÞÞ1−n2n Þn�:

This is equivalent to

ZnðλÞ ¼ Znðρ̃ð0Þ þA1=2ρ̃ð1ÞðλÞjρ̃ð0ÞÞ; ð33Þ

which is just the SRD between two perturbatively close
states. This quantity has been studied previously in
Refs. [24,48] and is much simpler than the original state-
ment (27) involving a state arbitrarily far from the vacuum.

IV. PROOF

We prove Rényi QNEC in two ways. We first deal with
the case where the Rényi index 1 < n ∈ Zþ. This proof is
much shorter and neater, following just from reflection
positivity, the Euclidean analog of unitarity. Then we
proceed to calculate the second variation of SRD for
arbitrary n and calculate correlation functions of the pencil
and the auxiliary systems to show that the relevant shape
variation is, in fact, positive.

A. For integer n > 1

For n ∈ Zþ, it is easy to see from Eq. (33) that

Zð1;1Þ
n ðλÞ¼ n

2ðn−1Þ

×
Xn−1
k¼1

Trððρ̃ð0ÞÞ−1þk
nρ̃ð1ÞðλÞðρ̃ð0ÞÞ−k

nρ̃ð1ÞðλÞÞ: ð34Þ

Denoting λ derivatives by dots, we are interested in the
second derivative

Z̈ð1;1Þ
n ðλÞ¼ n

2ðn−1Þ
Xn−1
k¼1

½Trððρ̃ð0ÞÞ−1þk
n ̈̃ρð1ÞðλÞðρ̃ð0ÞÞ−k

nρ̃ð1ÞðλÞÞ

þ2Trððρ̃ð0ÞÞ−1þk
n ˙̃ρð1ÞðλÞðρ̃ð0ÞÞ−k

n ˙̃ρð1ÞðλÞÞ
þTrððρ̃ð0ÞÞ−1þk

nρ̃ð1ÞðλÞðρ̃ð0ÞÞ−k
n ̈̃ρð1ÞðλÞÞ�:

Using the explicit form of ρ̃ð1Þ given in Eq. (32) and setting
λ ¼ 0, this becomes

Z̈ð1;1Þ
n ¼ n

2ðn− 1Þ
Xn−1
k¼1

Z
dα

× ½Trðρ̃ð0Þðρ̃ð0ÞÞ−k
nOμ2ν2ðr2;θ2Þðρ̃ð0ÞÞ

k
nÖμ1ν1ðr1;θ1ÞÞ

þ 2Trðρ̃ð0Þðρ̃ð0ÞÞ−k
nȮμ2ν2ðr2;θ2Þðρ̃ð0ÞÞ

k
nȮμ1ν1ðr1;θ1ÞÞ

þTrðρ̃ð0Þðρ̃ð0ÞÞ−k
nÖμ2ν2ðr2;θ2Þðρ̃ð0ÞÞ

k
nOμ1ν1ðr1;θ1ÞÞ�;

where we have defined

Z
dα ¼

X
μ1;ν1μ2ν2

Y2
i¼1

Z
dri

Z
πþπ

n

π−π
n

dθif̃μiνiðri; θiÞ ð35Þ

and

Oμν ¼ ψðreiθÞ ⊗ EμνðθÞ;
Ȯμν ¼ ∂ψðreiθÞ ⊗ EμνðθÞ;
Öμν ¼ ∂

2ψðreiθÞ ⊗ EμνðθÞ: ð36Þ

Since the conformal weight of ∂mψ is ð1
2
þm; 0Þ, it trans-

forms under conjugation by σP as

σ
− k
2n

P ∂
mψðreiθÞσ k

2n
P ¼ eiπ

k
nðmþ1

2
Þ
∂
mψðreiθþiπknÞ: ð37Þ

The other factor EμνðθÞ transforms under conjugation by

ρ̃ð0ÞA as

ðρ̃ð0ÞA Þ− k
2nEμνðθÞðρ̃ð0ÞA Þ k

2n ¼ Eμνðθ þ πk=nÞ: ð38Þ

Combining these, we can conjugate the operators Oμν and
their derivatives to get

Z̈ð1;1Þ
n ¼ n

2ðn − 1Þ
Xn−1
k¼1

Z
dα

�
e−i

5πk
2nTr

	
ρ̃ð0ÞOμ2ν2

	
r2; θ2 þ

πk
n

�
Öμ1ν1

	
r1; θ1 −

πk
n

��

þ 2Tr

	
ρ̃ð0ÞȮμ2ν2

	
r2; θ2 þ

πk
n

�
Ȯμ1ν1

	
r1; θ1 −

πk
n

��

þ ei
5πk
2nTr

	
ρ̃ð0ÞÖμ2ν2

	
r2; θ2 þ

πk
n

�
Oμ1ν1

	
r1; θ1 −

πk
n

���
:
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Because of the wedge condition, the operator insertions are
angle ordered and the terms above can be written as
correlation functions:

Z̈ð1;1Þ
n ¼ n

2ðn− 1Þ
Xn−1
k¼1

Z
dα

×

�
e−i

5πk
2n

�
Oμ2ν2

	
r2;θ2þ

πk
n

�
Öμ1ν1

	
r1;θ1−

πk
n

��

þ 2

�
Ȯμ2ν2

	
r2;θ2þ

πk
n

�
Ȯμ1ν1

	
r1;θ1−

πk
n

��

þ ei
5πk
2n

�
Öμ2ν2

	
r2;θ2þ

πk
n

�
Oμ1ν1

	
r1;θ1−

πk
n

���
:

Now we note that, since

h∂2zψðzÞψðwÞip ¼ −h∂zψðzÞ∂wψðwÞip ¼ hψðzÞ∂2wψðwÞip;

the correlators appearing in Z̈ð1;1Þ
n are, in fact, all propor-

tional to each other. This allows us to write

Z̈ð1;1Þ
n ¼ 2n

n − 1

Xn−1
k¼1

Z
dα sin2

	
5πk
4n

�

× hȮμ2ν2ðr2; θ2 þ πk=nÞȮμ1ν1ðr1; θ1 − πk=nÞi:

Defining the (Grassmann-even) operators

Ψk ¼
X
μν

Z
dr

Z
πþπ=n

π−π=n
dθf̃μνðr; θÞȮμνðr; θ − πk=nÞ;

Ψ̄k ¼
X
μν

Z
dr

Z
πþπ=n

π−π=n
dθf̃μνðr; θÞȮμνðr; θ þ πk=nÞ;

we see that

Z̈ð1;1Þ
n ¼ 2n

n − 1

Xn−1
k¼1

sin2
	
5πk
4n

�
hΨ̄kΨki: ð39Þ

Under the change of variables θ → 2π − θ, we have
fμνðr; 2π − θÞ ¼ −if�νμðr; θÞ and

Ȯμνðr; 2π − θÞ ¼ iðρ̃ð0ÞÞ−1Ȯ†
νμðr; θÞρ̃ð0Þ: ð40Þ

Using both of these, we get

Ψ̄k ¼ ðρ̃ð0ÞÞ−1Ψ†
kρ̃

ð0Þ: ð41Þ

The correlators in Z̈ð1;1Þ
n now become

hΨ̄kΨki ¼ hðρ̃ð0ÞÞ−1Ψ†
kρ̃

ð0ÞΨki ¼ hΨkΨ
†
ki > 0; ð42Þ

where the last inequality is just the statement of reflection
positivity.8 Thus, all terms in Eq. (39) are individually
positive, and we have proved Rényi QNEC for integer
n > 1.

B. Second variation of SRD for arbitrary n

Let jκi denote a basis in which ρ̃ð0Þ is diagonal, i.e.,

ρ̃ð0Þjκi ¼ e−2πκjκi; ð43Þ

where κ can be negative since ρ̃ð0Þ is not a normalized
density matrix. Recall from Eq. (34) that

Zð1;1Þ
n ðλÞ ¼ n

2ðn − 1Þ

×
Xn−1
k¼1

Trððρ̃ð0ÞÞ−1þk
nρ̃ð1ÞðλÞðρ̃ð0ÞÞ−k

nρ̃ð1ÞðλÞÞ:

One can show that, in this basis, we have the following
result for arbitrary n [24]:

Zð1;1Þ
n ðλÞ ¼ 1

2

Z
dκ

Z
dκ0e2πκ0 Fnðκ − κ0Þjhκjρ̃ð1ÞðλÞjκ0ij2;

where

FnðxÞ ¼ −
n

n − 1

e2πðn−1n Þx − 1

e−2πx=n − 1
: ð44Þ

Taking two derivatives with respect to λ gives us

Z̈ð1;1Þ
n ðλÞ ¼

Z
dκdκ0 e2πκ0Fnðκ − κ0Þ

× ðhκjρ̃ð1ÞðλÞjκ0ihκ0j ̈ρ̃ð1ÞðλÞjκi
þ hκj ˙̃ρð1ÞðλÞjκ0ihκ0j ˙̃ρð1ÞðλÞjκiÞ; ð45Þ

where dots again denote λ derivatives. Using the definition
of ρ̃ð1Þ in Eq. (32) and setting λ ¼ 0,

Z̈ð1;1Þ
n jλ¼0 ¼

Z
dα

Z
dκdκ0e−2πκFnðκ − κ0Þ

× ðhκjOμ1ν1ðr1; θ1Þjκ0ihκ0jÖμ2ν2ðr2; θ2Þjκi
þ hκjȮμ1ν1ðr1; θ1Þjκ0ihκ0jȮμ2ν2ðr2; θ2ÞjκiÞ;

where
R
dα is defined in Eq. (35) and Oμν in Eq. (36).

8See, e.g., Ref. [49] for an overview of reflection positivity.
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Making the angular ordering explicit, this is

Z̈ð1;1Þ
n ¼

Z
θ1>θ2

dα
Z

dκdκ0e−2πκFnðκ − κ0ÞðhκjOμ1ν1ðr1; θ1Þjκ0ihκ0jÖμ2ν2ðr2; θ2Þjκi

þ hκjȮμ1ν1ðr1; θ1Þjκ0ihκ0jȮμ2ν2ðr2; θ2ÞjκiÞ þ
Z
θ2>θ1

dα
Z

dκdκ0e−2πκ0Fnðκ0 − κÞ

× ðhκjOμ1ν1ðr1; θ1Þjκ0ihκ0jÖμ2ν2ðr2; θ2Þjκi þ hκjȮμ1ν1ðr1; θ1Þjκ0ihκ0jȮμ2ν2ðr2; θ2ÞjκiÞ;

where we have used the fact that FnðxÞ ¼ e2πxFnð−xÞ. Decomposing FnðxÞ into Fourier modes as

FnðxÞ ¼
Z

∞

−∞
dseisxF nðsÞ; ð46Þ

one obtains

Z̈ð1;1Þ
n ¼

Z
θ1>θ2

dα
Z

∞

−∞
dsF nðsÞfTr½ðρ̃ð0ÞÞ1− is

2πOμ1ν1ðr1; θ1Þðρ̃ð0ÞÞ
is
2πÖμ2ν2ðr2; θ2Þ�

þ Tr½ðρ̃ð0ÞÞ1− is
2πȮμ1ν1ðr1; θ1Þðρ̃ð0ÞÞ

is
2πȮμ2ν2ðr2; θ2Þ�g

þ
Z
θ2>θ1

dα
Z

∞

−∞
dsF nð−sÞfTr½ðρ̃ð0ÞÞ1þ is

2πÖμ2ν2ðr2; θ2Þðρ̃ð0ÞÞ−
is
2πOμ1ν1ðr1; θ1Þ�

þ Tr½ðρ̃ð0ÞÞ1þ is
2πȮμ2ν2ðr2; θ2Þðρ̃ð0ÞÞ−

is
2πȮμ1ν1ðr1; θ1Þ�g:

Since correlation functions are defined to be implicitly
ordered in angular time, we can now write

Z̈ð1;1Þ
n ¼

Z
dα

Z
∞

−∞
dsF nðsgnðθ12ÞsÞGðsÞ; ð47Þ

where we have defined θij ¼ θi − θj and

GðsÞ ¼ hðρ̃ð0ÞÞ− is
2πOμ1ν1ðr1; θ1Þðρ̃ð0ÞÞ

is
2πÖμ2ν2ðr2; θ2Þi

þ hðρ̃ð0ÞÞ− is
2πȮμ1ν1ðr1; θ1Þðρ̃ð0ÞÞ

is
2πȮμ2ν2ðr2; θ2Þi:

Using the Fourier transform of GðsÞ, defined by

GðωÞ ¼ 1

2π

Z
∞

−∞
dse−isωGðsÞ; ð48Þ

we obtain

Z̈ð1;1Þ
n ¼

Z
dα

Z
∞

−∞
dωFnðsgnðθ12ÞωÞGðωÞ: ð49Þ

We write this instead as

Z̈ð1;1Þ
n ¼

Z
dα

Z
∞

−∞
dωF̃nðωÞesgnðθ12ÞπωGðωÞ; ð50Þ

with

F̃nðωÞ ¼ e−πωFnðωÞ ¼
n

n − 1

sinh πω n−1
n

sinh πω=n
: ð51Þ

The correlation function GðsÞ and its Fourier transform
GðωÞ are calculated explicitly in Appendix B. The result
we obtain is

GðωÞ ¼ −
i
8
δμ1ν2δμ2ν1e

−πðKμ1
þKμ2

Þe−sgnðθ12Þπω

× ðr1eiθ1Þ−3
2ðr2eiθ2Þ−3

2

	
r1
r2

�
iKμ1μ2

×

�
Qðz − iÞ

	
r1eiθ1

r2eiθ2

�
1−iω

þQðzÞ
	
r1eiθ1

r2eiθ2

�−iω�
;

where z ¼ Kμ1μ2 − ω and

QðxÞ ¼ 4x2 þ 1

cosh πx
: ð52Þ

We finally have that

Z̈1;1
n ¼ −

i
8

Z
dα̃e−πðKμþKνÞðr1eiθ1Þ−3

2ðr2eiθ2Þ−3
2

×

	
r1
r2

�
iKμν

Z
∞

−∞
dωF̃nðωÞ

�
QðzÞ

	
r1eiθ1

r2eiθ2

�−iω

þQðz − iÞ
	
r1eiθ1

r2eiθ2

�
1−iω�

;
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where

Z
dα̃ ¼

X
μν

Z
dr1dr2

Z
dθ1dθ2f̃μνðr1; θ1Þf̃νμðr2; θ2Þ:

C. Proving Rényi QNEC for n > 1

Note that QðKμν − ωÞ has no poles in the strip −1=2 ≤
ImðωÞ ≤ 1=2 and that the poles of F̃nðωÞ are at
ω ¼ inp; p ∈ Z. Then, for n > 1, we can make a contour
deformation ω → ω� i=2 without crossing any poles. This
leads to the equalities

Z
∞

−∞
dωF̃nðωÞQðzÞ

	
r1eiθ1

r2eiθ2

�−iω

¼
Z

∞

−∞
dωF̃nðω − i=2ÞQðzþ i=2Þ

	
r1eiθ1

r2eiθ2

�−iω−1=2
;

Z
∞

−∞
dωF̃nðωÞQðz − iÞ

	
r1eiθ1

r2eiθ2

�
1−iω

¼
Z

∞

−∞
dωF̃nðω − i=2ÞQðz − i=2Þ

	
r1eiθ1

r2eiθ2

�−iωþ1=2

:

We note that this deformation makes use of the fact that
the source functions f̃μν are nonvanishing only inside
jθ − πj < π=n, in which range the integrand vanishes as
ReðωÞ → �∞. Using these relations, we can write

Z̈1;1
n ¼ −

i
8

Z
dα̃e−πðKμþKνÞðr1eiθ1Þ−3

2ðr2eiθ2Þ−3
2

	
r1
r2

�
iKμν

×
Z

∞

−∞
dωF̃nðω − i=2Þ

�
Qðzþ i=2Þ

	
r1eiθ1

r2eiθ2

�−iω−1=2

þQðz − i=2Þ
	
r1eiθ1

r2eiθ2

�−iωþ1=2
�
:

Under μ ↔ ν, ðr1; θ1Þ ↔ ðr2; θ2Þ, ω → −ω, we get

Z̈1;1
n ¼ −

i
8

Z
dα̃e−πðKμþKνÞðr1eiθ1Þ−3

2ðr2eiθ2Þ−3
2

	
r1
r2

�
iKμν

×
Z

∞

−∞
dωF̃nðωþ i=2Þ

�
Qðz − i=2Þ

	
r1eiθ1

r2eiθ2

�−iωþ1=2

þQðzþ i=2Þ
	
r1eiθ1

r2eiθ2

�−iω−1=2�
:

This gives us

Z̈1;1
n ¼ −

i
16

Z
dα̃e−πðKμþKνÞðr1eiθ1Þ−3

2ðr2eiθ2Þ−3
2

	
r1
r2

�
iKμν

Z
∞

−∞
dω½F̃nðωþ i=2Þ þ F̃nðω − i=2Þ�

×

�
Q

	
zþ i

2

�	
r1eiθ1

r2eiθ2

�−iω−1
2 þQ

	
z −

i
2

�	
r1eiθ1

r2eiθ2

�−iωþ1
2

�
:

We want to show that this expression is positive definite. It can be written as

−
i
16

X
μν

e−πðKμþKνÞ
Z

∞

−∞
dω

�
F̃n

	
ωþ i

2

�
þ F̃n

	
ω −

i
2

��

×

�
Q

	
Kμν − ωþ i

2

�Z
dr1dr2

Z
dθ1dθ2f̃μνðr1; θ1ÞriKμν−iω−2

1 e−ð2i−ωÞθ1 f̃νμðr2; θ2Þr−iKμνþiω−1
2 e−ðiþωÞθ2

þQ

	
Kμν − ω −

i
2

�Z
dr1dr2

Z
dθ1dθ2f̃μνðr1; θ1ÞriKμν−iω−1

1 e−ði−ωÞθ1 f̃νμðr2; θ2Þr−iKμνþiω−2
2 e−ð2iþωÞθ2

�
:

One can show that, for n ≥ 1,

F̃nðωþ i=2Þ þ F̃nðω − i=2Þ ¼ −
2n

n − 1

cosh πω sin π
n

cos πn − cosh 2πω
n

≤ 0:

We now make the substitution θ2 → 2π − θ2 and use f̃μνðr; θÞ ¼ −if̃�νμðr; 2π − θÞ. The term within the square brackets
above then becomes

− ie−2πω
�
QðKμν − ωþ i=2Þ

Z
dr1dr2

Z
dθ1dθ2f̃μνðr1; θ1ÞriKμν−iω−2

1 e−ð2i−ωÞθ1 f̃�μνðr2; θ2Þr−iKμνþiω−1
2 eðiþωÞθ2

þQðKμν − ω − i=2Þ
Z

dr1dr2

Z
dθ1dθ2f̃μνðr1; θ1ÞriKμν−iω−1

1 e−ði−ωÞθ1 f̃�μνðr2; θ2Þr−iKμνþiω−2
2 eð2iþωÞθ2

�
:
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If we now again perform the substitutions ω → ω� i=2
in the first and second terms, respectively, we get

Z̈1;1
n ¼ n

4ðn − 1Þ
X
μν

e−πðKμþKνÞ
Z

∞

−∞
dω

× e−2πωsin2
	
π

n

�
sinh πω coth πω

n

cosh 2πω
n − cos 2πn

×QðKμν − ωÞ
Z

dr1dθ1f̃μνðr1θ1Þriz−3=21 eð−3i
2
þωÞθ1

×
Z

dr2dθ2f̃
�
μνðr2; θ2Þr−iz−3=22 eð3i2þωÞθ2 :

The last two integrals are complex conjugates of each other,
and the other terms are all positive for n ≥ 1. Thus,

Z̈1;1
n ≥ 0; ð53Þ

proving the Rényi QNEC for free fermions for arbitrary
n ≥ 1. We note that the limit n → 1þ correctly reproduces
the answer in Ref. [14].

V. DISCUSSION

Sandwiched Rényi divergence is a new measure of
distance between states in Hilbert spaces, which has the
desirable properties of being positive and satisfying the
data processing inequality. Previous studies of SRD in the
context of QFT and holography include Refs. [48,50–53].
Motivated by the purely information theoretic formulation
of QNEC, a Rényi QNEC was conjectured [23] and was
soon proven for free bosons [24]. In this work, we have
generalized the arguments of Ref. [24] to the case of free
fermions and showed that the Rényi QNEC indeed holds
for n ≥ 1.
Other related distance measures between quantum states

are the Petz divergence [23,54,55], the α-z-Rényi relative
entropy [56], optimized quantum f divergences [57,58],
and the refined Rényi divergence defined in Ref. [59]. A
visual summary of the interrelations between various
entropy measures is found in Ref. [60]. Another measure
is the recently defined multistate quantum f diver-
gence [61]. A Rényi mutual information in QFT was
defined very recently in Ref. [62]. It is natural to expect
that some of these measures also satisfy a QNEC-like
constraint on second null shape derivatives. This was
already pointed out for some divergences in Ref. [24]. It
will be very interesting to see if the techniques used in this
work can be used to check such conjectural inequalities,
and we hope to report on this front in a future work. An
important technical direction to explore is proving Rényi
QNEC beyond the free regime using methods of algebraic
QFT as in Ref. [17].
Inverting the question, it is as important to find and

understand examples where such general inequalities fail to

hold. The first example to demonstrate the violation of
QNEC to the author’s best knowledge is Ref. [63], which
attributed the violation to IR effects. In Ref. [64], the
authors studied the evolution of QNEC after a quench in
AdS3=CFT2. Reference [65] found very interestingly that
QNEC can, in fact, be violated in these situations and that
nonviolation of QNEC places bounds on the thermody-
namics of the system postquench. This was further studied
in Ref. [66] in the context of inhomogeneous quenches.
Performing similar calculations for Rényi QNEC in trac-
table setups should also lead to nontrivial constraints on the
dynamics postquench.
It seems important to the author to understand the

holographic dual of the statement of Rényi QNEC, since
it might lead to a generalization of the quantum focusing
conjecture. This requires first elucidating the holographic
dual of the sandwiched Rényi divergence. The holographic
dual of the Rényi entropy was proposed in Ref. [67] and
further studied in Refs. [68–72], among others. In particu-
lar, Ref. [59] studied the holographic dual to the refined
Rényi relative entropy. We hope that the techniques of these
works might be further developed and progress made
toward a holographic statement and proof for Rényi QNEC.
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APPENDIX A: FREE FERMION FIELD

A Majorana fermion in two-dimensional Minkowski
space is described by the action

S ¼ k
Z

d2xð−iÞχ̄γμ∂μχ; ðA1Þ

where χT ¼ ðχ1 χ2Þ, fγμ; γνg ¼ 2ημν, χ̄ ¼ χ†γ0, and k is
some normalization factor. We choose

γ0 ¼
	
0 1

1 0

�
; γ1 ¼

	
0 1

−1 0

�
; ðA2Þ

so that the Majorana condition on χ implies that both χ1 and
χ2 are real. After rotating to Euclidean time, t → −iτ,
writing SE ¼ −iS, and defining z ¼ x − iτ; z̄ ¼ xþ iτ,
we get
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SE ¼ k
Z

dτdxðψ∂ψ þ ψ̄∂ψ̄Þ; ðA3Þ

where we have defined ψ ¼ ffiffiffiffiffi
−i

p
χ1; ψ̄ ¼ ffiffi

i
p

χ2. We focus
only on the left-moving chiral field ψ throughout the work,
which has the property that

ψðrÞ† ¼ iψðrÞ: ðA4Þ

Since ψ is a conformal primary with weight ðh; h̄Þ ¼ ð1
2
; 0Þ,

we also have

ψðreiθÞ ¼ eiθ=2eθKPψðrÞe−θKP; ðA5Þ

where KP is the modular Hamiltonian generating θ rota-
tions for the pencil system.
We choose the normalization factor k to be such that the

two-point correlation function is given by

hψðzÞψðwÞi ¼ 1

z − w
: ðA6Þ

APPENDIX B: CALCULATING
CORRELATION FUNCTIONS

We want to evaluate

GðsÞ ¼ hðρ̃ð0ÞÞ− is
2πOμ1ν1ðr1; θ1Þðρ̃ð0ÞÞ

is
2πÖμ2ν2ðr2; θ2Þi

þ hðρ̃ð0ÞÞ− is
2πȮμ1ν1ðr1; θ1Þðρ̃ð0ÞÞ

is
2πȮμ2ν2ðr2; θ2Þi:

Recalling Eq. (36) and that ρ̃ð0Þ ¼ σP ⊗ ρ̃ð0ÞA , this correla-
tion function factorizes into separate correlation functions
for the pencil and the auxiliary system:

GðsÞ ¼ GPðsÞ · GAðsÞ; ðB1Þ

where

GPðsÞ ¼ hσ− is
2π

P ψðr1eiθ1Þσ
is
2π
P∂

2ψðr2eiθ2ÞiP
þ hσ− is

2π
P ∂ψðr1eiθ1Þσ

is
2π
P∂ψðr2eiθ2ÞiP

and

GAðsÞ ¼ hðρ̃ð0ÞA Þ− is
2πEμ1ν1ðθ1Þðρ̃ð0ÞA Þ is

2πEμ2ν2ðθ2ÞiA:

The auxiliary system correlation function can be calculated
straightforwardly. For θ1 > θ2, we get

GAðsÞ ¼ e−2πKμ1eisðKμ1
−Kμ2

Þeθ1ðKμ1
−Kν1

Þeθ2ðKμ2
−Kν2

Þ

× Tra½jμ1ihν1j · jμ2ihν2j�
¼ e−2πKμ1eðisþθ12ÞKμ1μ2 δμ1ν2δμ2ν1 ;

where, as above, θij ¼ θi − θj and also Kμiμj ¼ Kμi − Kμj .
Similarly, for θ2 > θ1, we have

GAðsÞ ¼ −e−2πKμ2eðisþθ12ÞKμ1μ2 δμ1ν2δμ2ν1 ;

where the minus sign appears due to angle ordering the Eμν,
which have fermionic statistics. We can combine the above
two equations to write, for all θ1 and θ2,

GAðsÞ ¼ sgnðθ12Þe−πðKμ1
þKμ2

Þe−sgnðθ12ÞπKμ1μ2

× eðisþθ12ÞKμ1μ2 δμ1ν2δμ2ν1 : ðB2Þ

Let us now look at GPðsÞ. Using

σ−αP ∂
mψðreiθÞσαP ¼ ei2παðmþ1

2
Þ
∂
mψðreiðθþ2παÞÞ;

and the fermion two-point function (A6), we get

GPðsÞ ¼
2

ðr1eiθ1−s − r2eiθ2Þ3
ðe−s=2 − e−3s=2Þ: ðB3Þ

Multiplying GAðsÞ and GPðsÞ,

GðsÞ ¼ −sgnðθ12Þ2e−πðKμ1
þKμ2

Þe−sgnðθ12ÞπKμ1μ2

× eθ12Kμ1μ2 δμ1ν2δμ2ν1
ðe−s=2 − e−3s=2ÞeisKμ1μ2

ðr2eiθ2 − r1eiθ1−sÞ3
;

where we have collected the s-dependent terms.
We now want to take a Fourier transform to calculate

GðωÞ:

GðωÞ ¼ 1

2π

Z
∞

−∞
dse−isωGðsÞ:

Note that GðsÞ → 0 as ReðsÞ → �∞. Also note that

Gðsþ 2πiÞ ¼ −e−2πKμ1μ2GðsÞ:

These allow us to write

GðωÞ ¼ 1

2π

1

1þ e2πðω−Kμ1μ2
Þ

I
C
dse−isωGðsÞ; ðB4Þ

where C is the closed contour

C∶ð−∞;∞Þ ∪ ð∞;∞þ 2πiÞ
∪ ð∞þ 2πi;−∞þ 2πiÞ ∪ ð−∞þ 2πi;−∞Þ:

This contour integral can now be evaluated using the
residue theorem, noting the fact that GðsÞ has only one
pole inside C, given by
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s ¼ s� ¼ log
r1
r2

þ iðθ12 þ πð1 − sgnðθ12ÞÞÞ; ðB5Þ

where the extra terms take care of the branches when
θ12 < 0. For z ∈ C, one can calculate that

Res

�
e−3s=2eisz

ð1 − reiθ−sÞ3 ; s ¼ s�

�

¼ −
1

8
sgnðθÞe−πzð1−sgnðθÞÞðreiθÞ−3

2
þizð1þ 4z2Þ;

Res

�
e−s=2eisz

ð1 − reiθ−sÞ3 ; s ¼ s�

�

¼ −
1

8
sgnðθÞe−πzð1−sgnðθÞÞðreiθÞ−1

2
þizð−3 − 8izþ 4z2Þ:

Putting everything together and writing z ¼ Kμ1μ2 − ω,

GðωÞ ¼ ieπðKμ1μ2
−ωÞ

2 cosh πðKμ1μ2 − ωÞRes½e
−isωGðsÞ; s ¼ s��

¼ −
i
8
δμ1ν2δμ2ν1e

−πðKμ1
þKμ2

Þe−sgnðθ12Þπω

× ðr1eiθ1Þ−3
2ðr2eiθ2Þ−3

2

	
r1
r2

�
iKμ1μ2

×

�
Qðz − iÞ

	
r1eiθ1

r2eiθ2

�
1−iω

þQðzÞ
	
r1eiθ1

r2eiθ2

�−iω�
;

where we have defined

QðxÞ ¼ 4x2 þ 1

cosh πx
: ðB6Þ
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