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There is increasing interest in discrete or “pixelated” spacetime models as a foundation for a satisfactory
theory of quantum gravity. If spacetime possesses a cellular structure, there should be observable
consequences; for example, the vacuum becomes a dispersive medium. Of obvious interest are the
implications for the thermodynamic properties of quantum black holes. As a first step to investigating that
topic, we present here a calculation of the response of a uniformly accelerating particle detector in the
(modified) quantum vacuum of a background pixelated spacetime, which is well known to mimic some
features of the Hawking effect. To investigate the detector response we use the standard DeWitt’s treatment,
with a two-point function modified to incorporate the dispersion. We use dispersion relations taken from
the so-called doubly special relativity (DSR) and Hořava-Lifshitz gravity. We find that the correction terms
retain the Planckian nature of particle detection, but only for propagation faster than the speed of light, a
possibility that arises in this treatment because the dispersion relations violate Lorentz invariance. A fully
Lorentz-invariant theory requires additional features; however, we believe the thermal response will be
preserved in the more elaborate treatment.

DOI: 10.1103/PhysRevD.108.045009

I. INTRODUCTION AND BACKGROUND

Much of theoretical physics is formulated on the
assumption that spacetime is continuous and maps to the
real numbers. While this is an obvious idealization, conven-
ient for calculation, it rarely presents difficulties. However, in
quantum field theory, spacetime continuity leads to diver-
gences that must be evaded by renormalization—an ad hoc
procedure.Worse still,many formulations of quantumgravity
are nonrenormalizable.
What happens if spacetime continuity is discarded?

There is a rich history of models in which spacetime
emerges in the macroscopic limit from some sort of
discrete or pixelated substructure [1–7]. Quantum gravity
defines a fundamental length scale, the Planck length

lp ≡
ffiffiffiffiffi
ℏG
c3

q
¼ 1.616 × 10−35m, which provides a natural

measure of the “pixel” size, and a natural cutoff energy
for any incipient ultraviolet divergence. Although “pixelat-
ing” spacetime, i.e., replacing real numbers by a countable

infinity, is quite probably a placeholder for some more
nuanced microstructure, or pregeometry [8], it is interesting
to explore the impact of this simple modification to
determine whether there are any observable consequences.
One of the most basic spacetime structures, and the most
intensively studied, is the black hole. How might spacetime
discreteness affect its properties, such as Hawking radia-
tion? As a first step to addressing this question, we here
investigate the response of an accelerating particle detector,
the so-called Davies-Fulling-Unruh effect, known to mimic
Hawking radiation, in a pixelated spacetime background.
Although the existence of a fixed fundamental length

scale violates Lorentz invariance, Minkowski space may be
retained if momentum space acquires nonzero curvature, a
construction known as doubly special relativity (DSR)
[1,9,10]. DSR may be generalized to curved spacetime
by replacing locally Minkowski space with locally de Sitter
space [11].
The effect of introducing curvature in momentum space

is to render the vacuum a dispersive medium in which
different frequency light waves propagate at different
speeds. This can be modelled by adding successively
higher powers of the three-momentum p to the standard
energy-momentum dispersion relations,

E2 ¼ p2 þm2 þ κ1
Mp

p3 þ κ2
M2

p
p4 þ…; ð1Þ

where the dimensionless kappa coefficients are arbitrary at
this stage. The dispersion relation Eq. (1) on its own puts
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the theory in violation of Lorentz invariance, a defect that
may, however, be remedied in a more elaborate treatment
that involves changing the momentum measure [12,13]. We
defer the complete DSR treatment in this paper and restrict
our analysis to the effect of the dispersion relation alone on
the response of a particle detector.
If the vacuum really is dispersive, then there should be

observable effects. Indeed, it is known that the p3 term
produces a correction to the black hole entropy which is
usually discarded by setting κ1 to zero [14], a practice to
which we will adhere in this paper, focusing instead on the
consequences of nonzero p4 and p6 terms (the latter arising
in Hořava-Lifshitz theories of gravity (HLG) [15]).
Modifications to the dispersion relations in turn alter the
Green’s functions of any quantized field theory, which we
have previously explored in the context of the effect
of these changes on the bending of light by massive
bodies [16]. The same Green’s functions can be adapted
for use in calculating the response of aDeWitt-Unruh particle
detector. The principle results of this calculation are pre-
sented in Sec. IV, with the details covered in the appendices.
A similar calculation was performed by Rinaldi [17], but

crucially only the case of positive κ2 was considered, and
higher-order terms in p were not considered. The approach
taken there was to treat the higher-order terms in the
dispersion relationship perturbatively, whereas our calcu-
lation is more direct. For positive κ we obtain a similar
result to Rinaldi, but our method is more general and able to
accommodate negative as well as positive correction terms.
The layout of the paper starts with an overview of the

effect of extra terms on the propagation of waves through
the vacuum in Sec. II, and establish that κ controls whether
propagation is sub or superluminal. In Sec. III we present
the modified Hadamard functions that we use in Sec. IV to
compute the corrections to the detector response functions.
We then briefly consider the effect of higher-order terms in
the dispersion relations in Sec. V, before concluding with a
discussion of the impact of these results on other semi-
classical phenomena in Sec. VI.

II. MODIFIED DISPERSION RELATION
AND REFRACTIVE INDEX

We restrict the discussion here to the modified dispersion
relation,

E2 ¼ p2 þ κη2p4 þm2; ð2Þ
where η is a characteristic length scale related to the
pixelation scale, and κ controls the sign of the correction.
In the massless limit with units ℏ ¼ 1; E ¼ ω, and p ¼ k
we note that a scalar field ϕðt; xÞ obeys the modified free
space wave equation,

∂
2ϕ

∂t2
−
∂
2ϕ

∂x2
þ κη2

∂
4ϕ

∂x4
¼ 0; ð3Þ

which has a set of solutions ϕðt; xÞ ¼ e�ðωt−k·xÞ; e�iðωt−k·xÞ,
shown to be complete by computation of the Wronskian.
The key result is that, although Eq. (3) has wavelike
solutions, the vacuum itself is dispersive and possesses a
refractive index nðkÞ given by

nðkÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ κη2k2

p
1þ 2κη2k2

; ð4Þ

a result that extends to spin-1 (photons) and (linearized)
spin-2 (gravitons) too, and broadly follows the analysis
by Myers et al. [18]. The fact that the speed of wave
propagation of the waves depends on the frequency intro-
duces some peculiar features. Note that for κ > 0 high-
frequency radiation propagates faster than low frequency
radiation, and all waves propagate at a speed> 1, i.e., faster
than the speed of light in the unmodified case. For the case
κ ≤ 0 the propagation speed is≤ 1 and slows as k increases,
albeit slowly. There is a singularity at k ¼ 1

η
ffiffiffiffi
2κ

p , which is

determined by the pixalation length, which might naturally
be associated with the Planck length. However, for the
purposes of this paper, we shall sidestep the choice of length
scale, as the key issue from the above discussion is the sign
rather than the value of κ.
There is the obvious problem of reconciling superluminal

propagation with relativistic causality. This is of course
expected since the dispersion relations from DSR and HLG
explicitly violate Lorentz invariance. LocallyLorentz invari-
ant discrete spacetimes theories can be constructed by
introducing curvature in momentum space [19]. We think
our principal result will remain true in themore general case.

III. GREEN’S FUNCTIONS IN POSITION SPACE

In the massive case, Eq. (2) leads to a modified
propagator in n-dimensional momentum space, and asso-
ciated Feynman diagram [16],

and the position space propagator,

Gðt; x; t0; x0Þ ¼
Z∞

−∞

dnp
ð2πÞn

e−i½p0ðt−t0Þ−p⃗·ðx⃗−x⃗0Þ�

p2
0 − p2ð1þ κη2p2Þ −m2

: ð5Þ

The p0 integral is performed using a contour integral noting
that the poles occur at p2

0 ¼ p2ð1þ κη2p2Þ þm2, with the
choice of contour related to the relevant two-point functions
in the standard manner [20]. For our treatment we require
the positive and negative frequency Hadamard functions,

Gðt;x;t0;x0Þ¼ 1

ð2πÞn−1
Z

∞

−∞

dn−1p
2Ep

e−i½Epðt−t0Þ−p⃗·ðx⃗−x⃗0Þ�; ð6Þ
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where Ep ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2ð1þ κη2p2Þ þm2

p
.

Note that we use the standard Lorentz-invariant measure
from conventional quantum field theory in this integral, and
not one modified by attributing a curvature to momentum
space, in accordance with the simpler Lorentz-violating
theory we are using. The integration in Eq. (6) is compli-
cated, but we require only the small corrections Oðκη2Þ
here. The details of these calculations are contained in the
Appendices. In the massless limit, 3þ 1 case, we find for
timelike separation,

Dþðt; rÞ ¼ −θðσ2Þ
4π2ðσ2 − iϵÞ

�
1 −

κη2

ðσ2 − iϵÞ
�
; ð7Þ

and for the (retarded) spacelike case,

D−ðt; rÞ ¼ θð−σ2Þ
4π2ð−σ2 þ iϵÞ

�
1þ κη2

ð−σ2 þ iϵÞ
�
: ð8Þ

Here we denote by σ2 ¼ t2 − r2 the invariant interval, with
θðxÞ being the normal sign function. In the case of η ¼ 0
we recover the standard result [21].

IV. ACCELERATED DETECTORS

Following Sec. 3.3 of [20], we can use the correction to
the propagator to investigate the response of an accelerated
particle in pixelated spacetime by leveraging the modifi-
cations to dispersion relations. We consider a particle
detector under uniform inverse acceleration α, executing
a hyperbolic path in Minkowski space parametrized by
proper time τ according to

x ¼ y ¼ 0; z ¼ ðt2 þ α2Þ12; α ¼ const; such that;

z ¼ α cosh
τ

α
; t ¼ α sinh

τ

α
;

The standard DeWitt-Unruh detector [22–24] leads to the
transition probability per unit proper time,

c2
X
E

jhEjmð0ÞjE0ij2
Z∞

−∞

dðΔτÞeiðE−E0ÞΔτDþðΔτÞ; ð9Þ

and the detector response function,

F ðEÞ ¼
Z∞

−∞

dðΔτÞeiðE−E0ÞΔτDþðΔτÞ: ð10Þ

The response function is modified by the correction term in
the propagator (see Appendix B) to yield,

F ðEÞ ¼
��

1þ κη2

6α2

�
E − E0

e2πðE−E0Þα − 1

þ
�
κη2

6

� ðE − E0Þ3
e2πðE−E0Þα − 1

�
ð11Þ

which retains a thermal character. We also show
(Appendix B) that the modified Green’s function remains
periodic in imaginary time with period 2πα, as in the
standard (unmodified) treatment.
Although the modification to the detector response looks

innocuous at first sight, it contains some troublesome
features. If κ < 0 (subluminal propagation) the transition
probability becomes negative for jκj > 6α2

η2
. Thismay point to

a breakdown of unitarity or some other pathology with the
theory, but only in cases of extreme acceleration (very small
α). Our results would still be valid over a wide range of
accelerations. Alternatively, one might simply rule out
values of κ < 0, corresponding to subluminal propagation,
as unphysical.
In the case of κ > 0, (superluminal propagation),the

detector response function has no worrying negative terms
that would produce a pathological transition probability.
In some sense this is consistent with the fact that the
calculation is not Lorentz invariant, and so by definition
places no restriction of propagation velocities. This was
essentially the case considered by Rinaldi [17], and we
need to perform the full Lorentz-invariant calculation to
investigate whether this behavior survives.

V. EFFECT OF HIGHER TERMS ON THE RESULT

We now briefly consider higher-order terms in the
dispersion relations. It was remarked in Sec. I that (HLG)
can introduce a p6 term into the dispersion relations. The
central idea of HLG gravity is an anisotropic scaling of space
and time, achieved by introducing a scaling parameter b and
critical exponent z, such that x⃗ → bx⃗, and t → bzt. As a
quantized theory this becomes power counting renormaliz-
able at a value of z ¼ 3 [15], and we focus on the
modifications this makes to the dispersion relations. The
anisotropic scaling introduces new diffeomorphisms, that in
turn introduce additional terms to the gravitational action, in
particular a potential term that alters the dispersion relations.
At the high-energy UV limit these modifications suggest the
following form of the dispersion relations,

E2 ¼ p2 þm2 þ κη2p4 − κη4p6: ð12Þ
The additional p6 term is explicitly set to have the opposite
sign to the p4 term, as required to ensure that the sign of κ
dictates whether propagation is super or subluminal [19,25].
We can formulate an associated equation of motion to

the dispersion relationship Eq. (12) to determine the
refractive index of the vacuum. This modifies the equation
of motion Eq. (3) to

∂
2ϕ

∂t2
−
∂
2ϕ

∂x2
þ κη2

∂
4ϕ

∂x4
− κη4

∂
6ϕ

∂x6
¼ 0; ð13Þ

with the corresponding momentum-dependent refractive
index,
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nðkÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ κη2k2 þ κη4k4

p
1þ 2κη2k2 þ 3κη4k4

: ð14Þ

As before, for κ > 0 propagation is superluminal, and
κ < 0 restores subluminal propagation.
The impact of this new dispersion relation on the

detector response function is straightforward to calculate
as detailed in Appendix C and we obtain the following
modification to the detector response function,

F ðEÞ ¼
��

1þ κη2

6α2
−
3κ0η4

5α4

�
E − E0

e2πðE−E0Þα − 1

þ
�
η2½κ þ 12κ0η2�

6

� ðE − E0Þ3
e2πðE−E0Þα − 1

þ
�
κ0η4

10

� ðE − E0Þ5
e2πðE−E0Þα − 1

�
: ð15Þ

The calculation introduces a new sign term κ0 ¼ κð3
4
κ þ 1Þ,

but for κ ¼ �1 it has the same polarity as the original term
(i.e., for κ ¼ �1; κ0 ¼ �1).
The first thing to note is that the additional contributions

arising from the p6 term retain the Planck factor, and so
preserve the thermal nature of the response. However, as in
Eq. (11), we have problematic features that arise in the case
of subluminal propagation where κ; κ0 < 0. The new terms
in the detector function pick up a coefficient of η4 from the
dispersion relation, and are therefore much smaller in
magnitude than the p4 terms. The only hope for restoring

positive definiteness would arise from the 3κ0η4
5α4

coefficient of

the first term overwhelming the κη2

6α2
from the original

calculation. If we assume η ∼ 1
Mp
, this would only be the

case for very small accelerations in the order of a few ms−2

or α ∼ c. At this point the absence of a factor of α in the
second Planck term would cause that to dominate the sign
of F ðEÞ and give it an overall negative value. The converse
argument for superluminal propagation (κ; κ0 > 1) confirms
that the detector response function remains positive across
the full range of α in this case.
We can therefore conclude that the detector response

function remains potentially problematic for subluminal
propagation, and the possibility exists that the transition
probability will then also be negative. On dimensional
grounds, for higher powers of p in the dispersion relation,
the corrections will acquire increasing powers of η and
follow the same pattern for their contribution to the
response function. One would expect that similar argu-
ments would apply to those corrections, and the detector
response function will cease to be positive definite in the
case of subluminal propagation. We conclude that any route
to cancellation of the p4 term from higher-order terms in
dispersion relations appears shut off.

VI. CONCLUSION AND DISCUSSION

The principal result of this paper is the discovery of severe
pathologies in the calculation of the Davies-Fulling-Unruh
effect in the case of discrete spacetime theories, unless we
are willing to accept superluminal propagation. Although we
use the modified dispersion relations derived from DSR, a
fully Lorentz-invariant treatment that accommodates a fun-
damental length, requires additional features in the theory
that we shall address in a future paper. The close relationship
between the Davies-Fulling-Unruh effect, systems of
accelerating mirrors and Hawking radiation makes this result
even more interesting. Adding higher-order terms in the
dispersion relations does not provide a remedy to the issue.
In fact due to the relative size of contribution at higher
powers of p and the appearance of powers of inverse
acceleration, the likelihood of cancellation from higher-
order momentum terms in the dispersion relationship
appears low. One is led to the conclusion that the coarse-
grained structure of spacetime may significantly modify, or
even suppress, thermal vacuum effects for certain parameter
ranges. It is well recognized that introducing a simple cutoff
in trans-Planckian modes occasioned by the existence of a
fundamental length is problematic for some derivations of
the Hawking effect [26,27]. Further investigation of how
vacuum dispersion affects the calculation of the Bogoliubov
transformation in the black hole radiance calculation may
clarify these issues.
In particular our principal conclusion concerning pathol-

ogies in the detector response function arise when consid-
ering subluminal propagation may not survive the re-
imposition of Lorentz invariance. The question of whether
this is indeed the case is the subject of ongoing investigation.
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APPENDIX A: COMPUTATION OF POSITION
SPACE GREEN’S FUNCTION

IN 3+ 1 SPACETIME

1. First method of computation

We start with the massless propagator as defined in
Eq. (6), which we convert to n-dimensional spherical polar
momentum space to obtain,

Dðt; rÞ ¼ 2ðπn−2
2 Þ

ð2πÞn−1Γðn−2
2
Þ
Zπ

0

sinn−3θdθ
Z∞

0

dnp
2Ep

e−iðEpt−prÞ:
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The angular integral can be performed by analytic continu-
ation of the standard result from [28] [page 346. 3.387 (1)],

Zπ

0

sinkθeipr cos θdθ ¼ ffiffiffi
π

p �
2

pr

�k
2

Γ
�
kþ 1

2

�
Jk

2
ðprÞ;

where JnðxÞ are the Bessel functions of order n. To remove
clutter in what follows, we define,

ζ ¼ 1

2ð2πÞðn−1Þ=2rðn−3Þ=2 : ðA1Þ

Using this result and inserting our modified form for Ep,
we have the following integral to perform,

Dðt; rÞ ¼ ζ

Z∞

0

dp
p

n−3
2

ð1þ κη2p2Þ1=2 Jn−3
2
ðprÞe−ipð1þκη2p2Þ1=2t:

ðA2Þ

Exploiting the fact that κη2 is very small we can expand the
numerator ð1þ κη2p2Þ−1

2 to first order in κη2, to obtain,

Dðt; rÞ ¼ ζ

Z∞

0

dpp
n−3
2 Jn−3

2
ðprÞe−ipð1þη2p2Þ1=2t

− ζ
κη2

2

Z∞

0

dpp
nþ1
2 Jn−3

2
ðprÞe−ipð1þη2p2Þ1=2t:

One can now expand the ð1þ κη2p2Þ12 in the exponential,

e−ipð1þκη2p2Þ1=2t ¼ e−ipte−i
κη2

2
p3t:

For the second factor for small κη2 we can further expand the

exponential to first order, obtaining e−i
κη2

2
p3t ¼ 1 − κη2

2
it.

This would give a term proportional to t, which we are
free to disregard as it is not an invariant quantity and we
are free to rotate to a frame where r ¼
θð−σ2Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 − t2 þ iϵ

p
; t ¼ 0 as in the 1þ 1 propagator case.

This will compute the retarded or timelike massless propa-
gator D−ðt; rÞ.
We are left with the following integrals to evaluate,

D−ðt; rÞ ¼ ζ

Z∞

0

dpp
n−3
2 Jn−3

2
ðprÞe−ipt

− ζ
κη2

2

Z∞

0

dpp
nþ1
2 Jn−3

2
ðprÞe−ipt:

To solve these we analytically continue the standard
integral from [28] [page 694. 6.623 (1)],

Z
∞

0

e−γxJνðβxÞxν dx ¼ ð2βÞνΓðνþ 1
2
Þffiffiffi

π
p ðγ2 þ β2Þνþ1

2

: ðA3Þ

It will be convenient to subtract a small imaginary
component iϵ to t to allow convergence of the integral
later, replacing t2 with t2 þ iϵ, after discarding the term
in Oðϵ2Þ.
For the first integral we have,

ζ

Z∞

0

dpp
n−3
2 Jn−3

2
ðprÞe−ipt ¼ Γðn

2
− 1Þ

4ðπÞn2ðr2 − t2 þ iϵÞn2−1 : ðA4Þ

The second integral is more problematic, but can be
massaged into standard forms by taking advantage of the
differential recurrence relationship of the Bessel functions
and integrating by parts. We note,

d
dx

fxηJηðβxÞg ¼ βxηJη−1ðβxÞ: ðA5Þ

One can now write the integrand as

ζ
κη2

2

Z∞

0

dpp
nþ1
2 Jn−3

2
ðprÞe−ipt

¼ ζ
κη2

2r

Z∞

0

dppe−ipt
d
dp

n
p

n−1
2 Jn−1

2
ðprÞ

o
:

This is in the form of
R
udv ¼ uv −

R
vdu, with u ¼

pe−ipt and v ¼ p
n−1
2 Jn−1

2
ðprÞ. Rotation of the time axis by

an arbitrary small angle δ ≤ π=2, such that t− > ∞e−iδ in
the upper limit of the integral, ensures the convergence of
½uv�∞0 , and we are left with,

ζ
κη2

2r

Z∞

0

dppe−ipt
d
dp

n
p

n−1
2 Jn−1

2
ðprÞ

o

¼ −ζ
κη2

2r

Z∞

0

dp e−iptp
n−1
2 Jn−1

2
ðprÞ

þ ζ
κη2

2r
it
Z∞

0

dp e−iptp
nþ1
2 Jn−1

2
ðprÞ:

The second of these integrals can be discarded due to the
leading factor of it as above, and the first is in the standard
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form used earlier. Using Eq. (A3) we have the result for this
correction to order η2,

ζ
κη2

2

Z∞

0

dpp
nþ1
2 Jn−3

2
ðprÞe−ipt ¼ κη2Γðn

2
Þ

4ðπÞn2ðr2 − t2 þ iϵÞn2 :

ðA6Þ

Substituting in n ¼ 4 into Eqs. (A4) and (A6), with
σ2 ¼ t2 − r2 being the invariant interval, we obtain our
final result for the propagator to first order in κ,

D−ðt; rÞ ¼ θð−σ2Þ
4π2ð−σ2 þ iϵÞ

�
1þ κη2

ð−σ2 þ iϵÞ
�
: ðA7Þ

This has the corresponding advanced or timelike counter-
part,

Dþðt; rÞ ¼ −θðσ2Þ
4π2ðσ2 − iϵÞ

�
1 −

κη2

ðσ2 − iϵÞ
�
: ðA8Þ

2. Second method of computation

We start with Eq. (A2); however we proceed differently.
Instead we make the simplification pð1þ κη2p2Þ1=2 ∼ffiffiffi
κ

p
ηp2 in the exponential, we can also expand the

ð1þ κη2p2Þ for small κη2 in the denominator to

ð1 − κη2

2
p2 þ � � � þOðκ2η4ÞÞ, and following a change of

variable x ¼ p2, we have,

Dðt; rÞ ¼ ζ

2

Z
∞

0

dx

�
x
n−5
4 −

κη2

2
x
n−1
4

�
Jn−3

2
ðr ffiffiffi

x
p Þe−i ffiffi

κ
p

ηxt:

These gives two standard integrals [28] [page
701. 6.643(1)] of the form,

Z∞

0

dxxμ−1=2e−axJ2νð2b
ffiffiffi
x

p Þ

¼ Γðμþ νþ 1=2Þ
bΓð2νþ 1Þ exp

−b2

2a
a−μMμ;v

�
b2

a

�
; ðA9Þ

where Mμ;vðxÞ is the Whittaker special function, and we
analytically continue to imaginary exponents. For our
integrals,

a ¼ i
ffiffiffi
κ

p
ηt;

b ¼ r
2
;

and we have and two pairs of parameters μ, ν. These are

μ ¼ n − 3

4
; ν ¼ n − 3

4
; for x

n−5
4 ; and;

μ ¼ nþ 1

4
; ν ¼ n − 3

4
; for x

n−1
4 :

Completing the substitutions we have for our Green’s
function,

Dðt; rÞ ¼ ζ

r
exp

�
−r2

8i
ffiffiffi
κ

p
ηt

��
Γðn−2

2
Þ

Γðn−1
2
Þ ði

ffiffiffi
κ

p
ηtÞ−ðn−34 ÞMn−3

4
;n−3
4

�
r2

4i
ffiffiffi
κ

p
ηt

�
−
κη2Γðn

2
Þ

2Γðn−1
2
Þ ði

ffiffiffi
κ

p
ηtÞ−ðnþ1

4
ÞMnþ1

4
;n−3
4

�
r2

4i
ffiffiffi
κ

p
ηt

��
: ðA10Þ

This unpleasant looking result collapses rather nicely in
the limit of t → 0, when the argument of the Whittaker
function becomes infinite. The Whittaker function Mμ;νðzÞ
has the following asymptotic behavior in the case of
z → ∞,

lim
z−>∞

Mμ;νðzÞ ∼
Γð1þ 2νÞ
Γð1

2
þ ν − μÞ e

1
2
zz−μ: ðA11Þ

The exponential term is the reciprocal of the expf−r2
8iηtg

term before the brackets, and the z−μ cancels the ði ffiffiffi
κ

p
ηtÞμ

terms preceding the Whittaker functions, leaving the r2
4

factors. In this limit therefore, the Green’s function
becomes,

Dðt; rÞ

¼ ζ

r

�
Γðn−2

2
Þ

Γð1
2
Þ
�
r2

4

�−ðn−3
4
Þ
−
κη2

2

Γðn
2
Þ

Γð− 1
2
Þ
�
r2

4

�−ðnþ1
4
Þ�
:

ðA12Þ

When taking the limit t → 0, we should interpret r2 as
being the spacelike interval, r2 ¼ θð−σ2Þð−σ2 þ iϵÞ, and
the propagator as the retarded or spacelike propagator
D−ðt; rÞ. Setting n ¼ 4 and making this substitution for r
we have

D−ðt; rÞ ¼ θð−σ2Þ
4π2ð−σ2 þ iϵÞ

�
1þ κη2

ð−σ2 þ iϵÞ
�
: ðA13Þ
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We can further make the substitution ð−σ2þ iϵÞ→−ðσ2−
iϵÞ to recover the advanced or timelike propagator,

Dþðt; rÞ ¼ −θðσ2Þ
4π2ðσ2 − iϵÞ

�
1 −

κη2

ðσ2 − iϵÞ
�
: ðA14Þ

It will be noted that this result is identical to that obtained
using the first method in Appendix A 1.

APPENDIX B: DETECTOR FUNCTION
CALCULATION

To compute the transition probability we need to perform
the integral in Eq. (10), and follow a calculation similar to
that in [20]. To make progress we use the modified 3þ 1
propagator Eq. (8), choosing the advanced propagator
(spacelike) form,

DþðΔt;ΔzÞ ¼ −
1

4π2ðΔt2 − Δz2 − iϵÞ

×

�
1 −

κη2

ðΔt2 − Δz2 − iϵÞ
�
:

Using the elementary properties of the hyperbolic
functions, we have for Δt2 and Δz2,

Δt ¼ 2α cosh

�
τ þ τ0

2α

�
sinh

�
τ − τ0

2α

�
;

Δz ¼ 2α sinh

�
τ þ τ0

2α

�
sinh

�
τ − τ0

2α

�
:

Inserting these back into the propagator we have

DþðΔτÞ ¼ −
1

16π2α2
sinh−2

�
Δτ
2α

−
iϵ
α

�

×

�
1 −

κη2

4α2
sinh−2

�
Δτ
2α

−
iϵ
α

��
: ðB1Þ

One can make use of the identities,

X∞
k¼−∞

ðx − πikÞ−2 ¼ sinh−2 x;

X∞
k¼−∞

ðx − πikÞ−4 ¼ 1

3
ðtanh−2 x sinh−2 xþ sinh−4 xÞ;

to allow us to restate the sinh−4 term as

sinh−4 x ¼
X∞
k¼−∞

ðx − πikÞ−4 − 2

3

X∞
k¼−∞

ðx − πikÞ−2; ðB2Þ

and then write the propagator as

DþðΔτÞ ¼ −
1

4π2

�
1þ κη2

6α2

� X∞
k¼−∞

ðΔτ − 2iϵ − 2πiαkÞ−2

þ κη2

4π2
X∞
k¼−∞

ðΔτ − 2iϵ − 2πiαkÞ−4: ðB3Þ

This expression for the propagator can be substituted back
into Eq. (9), and evaluated by reversing the order of the
sum and the integral. To evaluate the integral we choose
a semicircular contour around the multiple pole at
Δτ ¼ 2πiαk, closed in the upper-half plane. The integral
then evaluates to 2πi times the residue at 2πiαk. These
residues are found by elementary means to be −iðE −
E0Þe2παðE−E0Þk and i

6
ðE − E0Þe2παðE−E0Þk, respectively.

We have for our two integrals the values,

Z∞

−∞

dðΔτÞ e−iðE−E0ÞΔτ

ðΔτ − 2iϵ − 2πiαkÞ2 ¼ 2πðE − E0Þe2πðE−E0Þαk;

Z∞

−∞

dðΔτÞ e−iðE−E0ÞΔτ

ðΔτ − 2iϵ − 2πiαkÞ4 ¼ −
π

3
ðE − E0Þ3e2πðE−E0Þαk:

The sum over k is from k ¼ −∞ to k ¼ ∞, but our choice
of contour for the integral subtracts the contribution to the
sum from k ∈ ½−∞; 0Þ leaving the result as the sum of a
geometric series. One obtains for the transition probability,

c2

2π

X
E

jhEmð0ÞjE0ij2
��

1þ κη2

6α2

�
E − E0

e2πðE−E0Þα − 1

þ
�
κη2

6

� ðE − E0Þ3
e2πðE−E0Þα − 1

�
; ðB4Þ

and correspondingly for the detector response function,

F ðEÞ ¼
��

1þ κη2

6α2

�
E − E0

e2πðE−E0Þα − 1

þ
�
κη2

6

� ðE − E0Þ3
e2πðE−E0Þα − 1

�
: ðB5Þ

The Planck factor is unaffected by the modification to the
propagator, and the presence of this factor suggests that the
particles detected by the Unruh detector are essentially
thermal. This can be further reinforced by examining
the periodic behavior of the Green’s function. It is well
known [20] that a thermal Green’s function Gβ is
periodic in imaginary time. In particular it satisfies
G�

β ðt;x; t0;x0Þ ¼ G∓
β ðtþ iβ;x; t0;x0Þ, where β ¼ ðkTÞ−1.

It will be noted that for our smoothly accelerating detector
the propagator Eq. (B1) is composed of terms in
sinh−2ðΔtÞ. It is well-known that the hyperbolic functions
are periodic with an imaginary period of 2πi, however,
both of the sinh terms are squared. This has the effect of
changing the period to πi. Inspection of Eq. (B1), reveals
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that the period of the propagator is 2πα, indicating that
β ¼ 2πα as suggested by the Planck factor in Eq. (11).

APPENDIX C: COMPUTATION OF
HOŘAVA-LIFSHITZ CORRECTIONS

As mentioned in Sec. I, and discussed in Sec. V, the
Hořava-Lifshitz theory of gravity can introduce higher-
order terms in p into the dispersion relationship. In general
the p6 term has opposite sign to the p4 term, and so to
assess the effect of light-speed propagation on the result
obtained in Sec. IV, we propose for a massless particle the
following dispersion relation:

E2 ¼ p2 þ κη2p4 − κη4p6; ðC1Þ
where η4 is introduced on dimensional grounds.
We repeat our calculation in 3þ 1 dimensions to obtain

the Dþðt; rÞ propagator as outlined in Appendix A 1. The
crux of the calculation involves expanding the denominator
of the integral measure, Ep ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þ κη2p4 − κη4p6

p
, for

small κη2. We proceed as before, but collect terms up to p4,
and as such we now have

ðEpÞ−1 ≃ p

�
1 −

1

2
κη2p2 þ 1

2
κ

�
3

4
κ þ 1

�
η4p4 þ…

�
:

For brevity we will refer to κ0 ¼ κð3
4
κ þ 1Þ, but note for

κ ¼ 1; κ0 ¼ 7
4
, and κ ¼ −1; κ0 ¼ − 1

4
, preserving the oppo-

site polarity of the effect to the p4 term.
Following the analysis in Appendix A 1, the expression

for the spacelike propagator acquires an additional integral
contribution,

D−ðt; rÞ ¼ ζ

Z∞

0

dpp
n−3
2 Jn−3

2
ðprÞe−ipt

− ζ
κη2

2

Z∞

0

dpp
nþ1
2 Jn−3

2
ðprÞe−ipt

þ ζ
κ0η4

2

Z∞

0

dpp
nþ5
2 Jn−3

2
ðprÞe−ipt;

after discarding the irrelevant contribution from expanding
Ep in the exponential.
We can proceed identically for the third integral as

undertaken for the second, making use of the Bessel
function recursion relationship Eq. (A5) twice. After
manipulation the third integral is reduced to

3ζκ0η4

2r2

Z∞

0

dpp
nþ1
2 Jnþ1

2
ðprÞe−ipt;

whose value can be read off from the standard integral
Eq. (A3), as

3Γðnþ2
2
Þκ0η4

2ðπÞn2ðr2 − t2 þ iϵÞnþ2
2

:

Setting n ¼ 4, this can now be inserted into the expression
for the propagator, and for the timelike advanced propa-
gator we have

Dþðt; rÞ ¼ −θðσ2Þ
4π2ðσ2 − iϵÞ

�
1 −

κη2

ðσ2 − iϵÞ þ
12κ0η4

ðσ2 − iϵÞ2
�
:

ðC2Þ
We note the positive sign for the ðσ2 − iϵÞ−2 term, which
arises from the conversion of ð−σ2 þ iϵÞ to ðσ2 − iϵÞ inside
an overall cubic denominator.
Turning to the computation of the detector response

function, we follow the calculation in Appendix B, noting
that upon inserting the smoothly accelerating trajectory we
had an additional term in the propagator,

DþðΔτÞ ¼ −
1

16π2α2
sinh−2

�
Δτ
2α

−
iϵ
α

�

×

�
1 −

κη2

4α2
sinh−2

�
Δτ
2α

−
iϵ
α

�

þ 3κ0η4

4α4
sinh−4

�
Δτ
2α

−
iϵ
α

��
: ðC3Þ

Similar considerations to Eq. (B2) allow us to substitute for
the sinh−6 term the following infinite sum,

sinh−6 x ¼
X∞
k¼−∞

ðx − πikÞ−6 −
X∞
k¼−∞

ðx − πikÞ−4

−
4

5

X∞
k¼−∞

ðx − πikÞ−2: ðC4Þ

The calculation proceeds identically and yields a similar
result with additional correction terms at all orders of
ðE − E0Þ in the detector response function,

F ðEÞ ¼
��

1þ κη2

6α2
−
3κ0η4

5α4

�
E − E0

e2πðE−E0Þα − 1

þ
�
η2½κ þ 12κ0η2�

6

� ðE − E0Þ3
e2πðE−E0Þα − 1

þ
�
κ0η4

10

� ðE − E0Þ5
e2πðE−E0Þα − 1

�
: ðC5Þ

It was remarked in Appendix B that the propagator, being
stated in terms of sinh−2, is periodic with a period of πi,
which strengthens the interpretation of 2πα as the temper-
ature of the radiation. Although we now have a term in
sinh−4, the period is the same and we can conclude
that the propagator Eq. (C3) satisfies G�

β ðt;x; t0;x0Þ ¼
G∓

β ðtþ iβ;x; t0;x0Þ, where β ¼ ðkTÞ−1 ¼ 2πα.
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