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More than twenty years ago a paradigm emerged according to which a UV-insensitive Higgs mass
mH and (more generally) a UV-insensitive Higgs effective potential V1lðϕÞ are obtained from higher-
dimensional theories with compact extra dimensions and Scherk-Schwarz supersymmetry breaking. Since
then, these ideas have been applied to different models of phenomenological interest, including recent
applications to the dark energy problem. A thorough analysis of the framework on which such a paradigm
is based allows us to show that a source of strong UV sensitivity formH and V1lðϕÞ, intimately connected to
the nontrivial topology of these models’ spacetime, was missed. The usual picture of the Scherk-Schwarz
mechanism and its physical consequences need to be seriously reconsidered.
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I. INTRODUCTION

The Standard Model (SM) of particle physics has met
with enormous successes, culminating ten years ago in the
discovery of the Higgs boson [1,2]. However, several
important issues (dark matter, matter-antimatter asym-
metry, neutrino masses, flavor problem, strong CP-
problem,...) are left unsolved, and urge us toward a theory
beyond the Standard Model (BSM). Among them the
naturalness and hierarchy (NH) problems, and the way
gauge theories should merge with gravity in a consistent
unified theory, more generally the problem of a complete
unification of forces.
Concerning the naturalness and hierarchy problems,

traditional approaches such as supersymmetry and/or
composite models have to cope with the experimental
constraints coming from the LHC: the compositeness scale
or the SUSY breaking scale, more generally, the scale at
which new physics is expected to appear, should be in the
TeV region, but no sign of new physics has been observed
in this energy regime so far. Other attempts, that suffer
however from similar difficulties, are related to the pos-
sibility of lowering the fundamental scale of quantum

gravity through large (compact) extra dimensions [3,4]
or warped dimensions, as in Randall-Sundrum models
[5,6]. Some other popular approaches are based on per-
turbative calculations, implemented with dimensional regu-
larization and/or perturbative RG equations, but a recent
analysis has shown that the theoretical frameworks on
which they are based are not sound (see [7,8] and
references therein). Other lines of research have also been
developed in the last years. These include: (i) the search for
UV/IR mixing properties in a quantum gravity/string
framework (see for instance works on the role of modular
invariance in the calculation of the Higgs mass in String
Theory [9], and on the application of the Swampland
arguments to the problem [10–12]), that would require at
least a partial breakdown of the EFT paradigm even below
the Planck scale; (ii) cosmological selection mechanisms,
originally inspired by the so-called relaxion of [13], where
different arguments are used with the aim of explaining the
observed value of the weak scale in terms of preferential
values determined by the cosmological evolution; (iii) the
use of discrete symmetries, as opposed to those of the
traditional approaches, started with the twin Higgs model
proposed in [14]; (iv) the possibility that the small value of
the Higgs mass results from a self-organized approach to
the critical point mH ¼ 0 [15,16].
As for the unification of forces, one of the most popular

approaches is inspired to the pioneering works of Kaluza
[17] and Klein [18], and consists in considering theories
with compact extra dimensions (sometimes related to string
theory), most often with at least one supersymmetry. Let us
take for instance a 5D theory with one compact circular
dimension of radius R. Fourier expanding the 5D fields of
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the original action along the compact dimension z, the
integration over z results in an effective 4D action. The
original 5D fields split into different representations of
the 4D Lorentz group and give rise to infinite towers of 4D
fields, the so-called Kaluza-Klein (KK) fields, one for each
distinct representation they decompose into, with masses
determined by the discrete values n=R of the momentum
along the compact dimension.
More than twenty years ago the idea emerged that some

theories with compact extra dimensions could naturally
provide finite (UV-insensitive) values for the masses of
scalar particles [19,20], in particular of the Higgs boson.1

This result was greeted with great enthusiasm, as it seemed
to hint to a physically well-motivated mechanism for the
solution of the long-standing naturalness problem. In its
original formulation, this mechanism was implemented by
considering supersymmetric extensions of the SM, with
one extra dimension compactified on the orbifold S1=Z2,

where S1 is a circle of radius R [19,20]. The particle
spectrum is given by KK-towers of states with masses
depending on n=R (n ¼ 0; 1;…). Supersymmetry is broken
through the Scherk-Schwarz mechanism [23,24], and the
masses of the KK fields are identified as (qba and qfa are
the R-symmetry charges or the periodicities of the boson
and fermion fields respectively):

m2
ba

¼ ðn=Rþ qbaÞ2 m2
fa

¼ ðn=Rþ qfaÞ2;

where “a” refers to each of the superpartner families, while b
and f are for bosons and fermions respectively.
Indicating with ϕ one of the scalar fields, that could

either be the n ¼ 0 mode of a scalar that lives in the 5D
bulk, or a Higgs field living on a boundary brane, the
resulting 4D one-loop effective potential V1lðϕÞ is written
as [19,20]:

V1lðϕÞ ¼
1

2

X
a

X
ia

ð−1Þδia;fa
X∞
n¼−∞

Z
d4p
ð2πÞ4 log

�
p2 þM2

aðϕÞ þ
�
n
R
þ qia

�
2
�
; ð1Þ

where M2
aðϕÞ is the field dependent mass of each family

that interacts with the field ϕ, and ia ≡ ba; fa indicates
the boson or the fermion partner in the family. Another
typical identification of the 4D Higgs field from higher-
dimensional theories with compact extra dimensions is
obtained by considering gauge theories, where the extra
components of the gauge fields serve as 4D scalars [25]. As
it was observed in [26,27], and later re-derived and care-
fully analyzed in [28], in such a framework a finite one-
loop Higgs potential (and thus a finite mass) is obtained
with no need for supersymmetry. In the present work we
limit ourselves to consider only supersymmetric models
with Scherk-Schwarz breaking mechanism, and leave the
analysis of the gauge-Higgs unification scenario, with the
related Hosotani mechanism, to a forthcoming paper [29].
Coming back to (1), it is important to point out that in the

usual approach the sum over n and the integration over p
are considered as independent operations. As we will see,
this is a delicate point, and we will discuss this issue at
length in due time. In [19,20] it is stated that the sum over n
must be done before the integration over p (as in finite
temperature field theory [30–32]), and the p integration is
performed introducing a hard momentum cutoff Λ. They
find that, in addition to finite contributions, V1lðϕÞ contains
divergent terms as Λ5, M2

aðϕÞΛ3, and M4
aðϕÞΛ (apart from

Λ5, these are all field dependent divergences). In super-
symmetric theories those are canceled due to the presence
of superpartners (M2

aðϕÞ is the same both for ia ¼ ba and
ia ¼ fa), and a finite V1lðϕÞ is obtained. We stress however
that, once a hard cutoff Λ for the integration over p is

introduced, the well-known finite V1lðϕÞ of [19,20] is
obtained irrespectively of the order followed for the two
operations (sum over n and integration over p), as first
hinted in [33,34]. This point will be further investigated in
the present work. Moreover we will see that there is a more
subtle issue, overlooked in the previous literature, ulti-
mately related to the way the quantum fluctuations of the
original 5D theory are treated. As the original theory lives
in 5 dimensions (one of which is compact), the dimen-
sionally reduced 4D one-loop Higgs potential V1lðϕÞ
actually derives from the original 5D one-loop potential.
The consequences of this apparently obvious observation
are profound, and will be carefully explored in this work.
A mechanism similar to the one proposed in [19,20] was

later implemented in slightly different supersymmetric
models, with M2

aðϕÞ ¼ 0 and qia field-dependent, where
the compactification was realized on S1=Z2 × Z0

2 [35] (see
also [36]). The calculation of the 4D potential V1lðϕÞ yields
the same expression as in (1), with M2

aðϕÞ → 0 and
qia → qiaðϕÞ. In [35,36] it is suggested that the finiteness
of V1lðϕÞ and m2

ϕ is due to compactification, and this
procedure is named “KK-regularization.” It is also worth to
stress that in the usual approach the need for considering
the sum over the KK-modes all the way up to infinity is
often presented as a requirement that comes from the

1This was built on observations and calculations already put
forward for other scopes in [21,22].
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higher-dimensional symmetries of the original theory (5D
Lorentz symmetry, 5D SUSY, …).2

The approach followed in [19,20,35,36] was challenged
in [33] (see also [37]), where it was hinted that, introducing
a hard numerical cut (L) for the sumover theKK-modes, and
a hard momentum cutoff (Λ) for the integration over p,
divergences show up unless L is taken much larger than Λ,
more precisely L=R ≫ Λ. They argued that under this
condition theΛ-insensitive results of [19,20,35,36], together
with terms suppressed by powers of ΛR=L, are obtained.
This work triggered a heated debate on the validity of the
techniques used to obtain the finite V1lðϕÞ and m2

H. Some
authors reacted to [33] reproducing the finite results with the
help of smooth regularizations [38,39], suggesting that the
hard cut L used in [33] for the sum could be at the origin
of the (unwanted) UV-sensitive terms. Accordingly, it was
argued that “the sharp truncation of the KK-modes spoils the
tower structure of the 5D theory” [38].
More specifically, considering a model with interactions

localized on an orbifold fixed point brane, for the calcu-
lation of m2

H in [38] a “thick brane” regularization was
used. Indicating with z the coordinate along the compact
dimension, the δðzÞ function that localizes the interactions
on the brane is smoothed with a Gaussian fðz; lsÞ≡
1=

ffiffiffiffiffiffiffiffiffi
2πl2s

p
e−z

2=2l2s , where ls is the thickness of the brane
[limls→0 fðz; lsÞ ¼ δðzÞ]. Integrating over z, a smooth cut-

off function e−π
2ðn=RþqÞ2l2s for the sum over each of the KK-

towers is generated (q generically indicates either qb or qf).
The authors find the same finite results of [19,20,35,36],
and claim that their smooth procedure provides a solid
derivation of them. From a similar perspective, the issues
raised in [33] were also challenged in [39]. Considering
again the one-loop correction to the Higgs boson mass, a
Pauli-Villars regularization is implemented through the
introduction of higher derivative terms. This generates
the smooth cutoff function Λ4=½Λ4 þ ðp2 þ ðnR þ qÞ2Þ2�
for each of the q and each propagator, and (in their words)
such a regularization “manifestly preserves supersym-
metry.” Once again the finite results of [19,20,35,36] are
obtained.
It seemed that these and similar works [38–41] closed the

debate, and that the community came to a general agree-
ment in favor of the finiteness of m2

H and V1lðϕÞ, as for
example later reported in the lecture notes [42], and more
recently in [43]. Since then, these ideas have been imple-
mented in several contexts and even in recent times they are
actively applied when working on theories with compact
extra dimensions [44–57]. Very recently there has also been
renewed interest in models with large extra dimensions in

connection to a Swampland approach to the cosmological
constant problem [58,59].
In this work we show that delicate and critical questions

went (and are still going) unnoticed. We will see that, when
sufficient attention is paid to the correct implementation of
the sum over n and integration over p, the expectation of
getting UV-insensitive results turns out not to be fulfilled.
The goal of the present work is to investigate on these
issues. We will see that the idea that compactification could
provide a mechanism (complementary to supersymmetry)
to obtain a finite Higgs boson mass needs to be deeply
reconsidered. As a consequence, the sometimes evoked
physical picture of the Scherk-Schwarz breaking as an
“effective lower-dimensional” SUSY breaking, more pre-
cisely as an apparent nonlocal and thus finite breaking for
low-energy observers that cannot resolve the additional
dimension, needs to be revisited too. In this respect, it is
worth to stress that in their original work Scherk and
Schwarz only use the extra dimensions as a trick/tool to
generate mass splittings in the context of “dimensional
reduction,” but do not give them any physical reality. The
question that needs to be reconsidered then concerns the
nature of what is usually named Scherk-Schwarz SUSY
breaking mechanism when the compact extra dimensions
are taken as physical.
The rest of the paper is organized as follows. In Sec. II we

pave the way to our analysis. Starting from a 5D theory with
one compact dimension, we review the usual way to derive
V1lðϕÞ, and recover the usual results [19,20,35,36,38–40].
Starting with the 5D action of the original theory, in Sec. III
we specify and set up the physical and mathematical
ingredients needed for a careful derivation of the (dimen-
sionally reduced) 4D Higgs potential V1lðϕÞ. In Sec. IV we
calculate V1lðϕÞ with the help of the Euler-McLaurin
formula, that allows us to obtain the full result for V1lðϕÞ
for the first time. We use a hard cutoff that we implement in
two different ways: in Sec. IVA we introduce a numerical
cut L for the sum over n, and a spherical cutoff Λ for the
remaining four components of the loop momentum; in
Sec. IV B a spherical hard cutoff for the whole 5D loop
momentum is considered. SectionVis devoted to the study of
the problem through the introduction of a smooth cutoff. In
Sec. VA we calculate V1lðϕÞ performing the infinite sum
over theKK-modes (with no cut as in Sec. II), and introduce a
smooth cutoff function for the integration over p, getting the
well-known finite result. In Sec. V B we introduce a smooth
cutoff function for the whole 5D momentum ðp; n=RÞ,
getting this time the results of Sec. IV B. In Sec. VI we
compare our results with those of previous literature.
Section VII is for the conclusions.

II. ONE-LOOP POTENTIAL:
INFINITE KK-TOWER SUM

To introduce the tools for our work and pave the way to
our analysis, in the present section we review the usual way

2Sometimes the shift symmetry along the compact dimension
is also evoked and presented as the reflection on the effective field
theory of the modular invariance of the string theory in which the
former should be embedded.
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a 4D one-loop potential V1lðϕÞ is derived from a higher-
dimensional theory with compact extra dimensions.
As specified in the Introduction, we limit ourselves

to the case of higher-dimensional supersymmetric theories
with compact dimensions and SUSY broken by the
Scherk-Schwarz mechanism [23,24]. The case of higher-
dimensional gauge theories with compact extra dimensions
is left for a future publication [29]. For our illustrative
purposes it is sufficient to focus on 5D theories (the results
are easily generalized to 4þ n dimensions). Let us consider
for example the following (Euclidean) action in 4þ 1
dimensions (a ¼ 1;…; 5),

Sð5Þ½Φ̂; χ̂� ¼
Z

d5y

�
1

2
∂aΦ̂∂

aΦþ ∂aχ̂∂
aχ̂† þ M̂2ðΦ̂Þχ̂χ̂†

�
;

ð2Þ

where Φ̂ðyÞ and χ̂ðyÞ are 5-dimensional scalar fields (real and
complex respectively), with y≡ ðx; zÞ, z being the compact
spatial coordinate along S1 and x the spacetime coordinate
on R4 (M4 before Euclideanization). Moreover, M̂2ðΦ̂Þ≡
m̂2 þ fðΦ̂Þ, where m̂ is the χ̂ mass and fðΦ̂Þχ̂χ̂† the
interaction between Φ̂ and χ̂. As for the periodicities of
the fields along the compact dimension, for Φ̂ we have

Φ̂ðx; zþ 2πRÞ ¼ Φ̂ðx; zÞ; ð3Þ
while for the complex scalar field χ̂ we consider the non-
monodromy

χ̂ðx; zþ 2πRÞ ¼ ei2πRqχ χ̂ðx; zÞ ð4Þ
allowed by the existence of an internal symmetry, whose
charge is qχ . Expanding the fields in Fourier components:

Φ̂ðx; zÞ ¼ 1

2πR

Xþ∞

n¼−∞

Z
d4p
ð2πÞ4 Φ̂n;peiðp·xþ

n
RzÞ ≡ 1ffiffiffiffiffiffiffiffiffi

2πR
p

Xþ∞

n¼−∞
ϕnðxÞeinRz

χ̂ðx; zÞ ¼ 1

2πR

Xþ∞

n¼−∞

Z
d4p
ð2πÞ4 χ̂n;pe

iðp·xþðnRþqχÞzÞ ≡ 1ffiffiffiffiffiffiffiffiffi
2πR

p
Xþ∞

n¼−∞
χnðxÞeiðnRþqχÞz; ð5Þ

where the 4D fields ϕnðxÞ are defined by [a similar
equation holds for χnðxÞ]

ϕnðxÞ≡ 1ffiffiffiffiffiffiffiffiffi
2πR

p
Z

d4p
ð2πÞ4 Φ̂n;peip·x: ð6Þ

In realistic phenomenological applications, additional fer-
mion and boson fields (with supersymmetry explicitly
implemented), and possibly different compactifications
(typically orbifolds), are considered. The Higgs field is
usually identified either with the n ¼ 0 mode ϕ0ðxÞ of the
KK-tower of a scalar field Φ̂ðyÞ [19,20,35,36], or with a 4D
scalar field φðxÞ confined on a brane placed at the orbifold
fixed point [36,38].
In the next section we will focus our attention on the

question of considering an infinite sum over n and the

whole R4 space for the integration over p. For the time
being, we start the usual calculation of V1lðϕÞ inserting the
expansions (5) in (2), and performing the integration over
the compact dimension z, thus ending up with a dimen-
sionally reduced 4D action for the KK-fields ϕnðxÞ and
χnðxÞ. The 4D one-loop Higgs potential V1lðϕÞ is then
calculated summing up the loop contributions [60] from the
infinitely many fields that appear in this action. When the
Higgs field is identified with the zero KK-mode of a 5D
scalar field, as Φ̂ in (2) (see for instance [19,20]), or with a
brane field localized on an orbifold fixed point (see for
instance [36,38]), V1lðϕÞ takes the form (the index i runs
over the families of bosons (b) and fermions (f) of the
considered model)

V1lðϕÞ ¼
1

2

X
i

ð−1Þδif
X∞
n¼−∞

Z
d4p
ð2πÞ4 log

�
p2 þM2ðϕÞ þ

�
n
R
þ qi

�
2
�
; ð7Þ

while in other supersymmetric theories, with S1=Z2 × Z0
2 compactification and mass mixing [35], it is given by

V1lðϕÞ ¼
1

2

X
i

ð−1Þδif
X∞
n¼−∞

Z
d4p
ð2πÞ4 log

�
p2 þ

�
n
R
þ qiðϕÞ

�
2
�
: ð8Þ
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For our illustrative purposes,wedonot need to concentrate
on details of the (orbifold) compactifications considered, or
on specific phenomenologically viable models that lead to
(7) or (8). Dwelling too much into them would obscure the
message/focus of this work: the UV behavior of V1lðϕÞ can
be studied from (7) and (8), independently of themodel from
which either of them is derived.
In [35,36] supersymmetric theories that lead to a

potential of the kind (8) (or directly to the corresponding
one-loop contribution to the Higgs mass) were considered.
The authors, performing first the sum over the infinite
tower of KK-modes, and successively the infinite integra-
tion over the four-momentum p, obtain for (8) a finite
result, the same being obviously true for m2

H. They dubbed
this procedure “KK-regularization.” It was later observed
(and we will see it below) that for models described by (8)
supersymmetry is not necessary, as the boson and fermion
contributions are separately finite [33]. When the same
calculation is done for models described by (7), V1lðϕÞ

turns out to be finite only if the model is supersymmetric:
finite contributions are obtained when the superpartners are
combined together, but each single tower gives rise to
divergences proportional to powers of M2ðϕÞ.
Let us move now to the explicit calculation of V1lðϕÞ.

We begin with (7) and consider first a generic bosonic
contribution Vb

1lðϕÞ, subtracting a normalization term
logðp2 þ n2

R2Þ to logðp2 þM2 þ ðnR þ qbÞ2Þ. Following the
strategy usually adopted in the literature [see the comments
above Eq. (7)], we perform separately the sum over n and
the integral over p, invert in (7) the sum with the integral,
and carry out the former first. A simple look to (7) shows
that, independently of getting or not a finite result for
V1lðϕÞ, this calculation is possible only if a cutoff Λ in the
momentum integral is introduced (whatever order we
consider in performing the sum and the integral). With
the help of the Schwinger identity (the upper case Λ
indicates that the integral over p is performed with a cutoff
Λ), we can then write:

Vb
1lðϕÞ ¼ −

1

2

Z
Λ d4p
ð2πÞ4

Z
∞

0

ds
s

X∞
n¼−∞

½e−sðR2ðp2þM2ÞþðnþRqbÞ2Þ − e−sðp2R2þn2Þ�: ð9Þ

As the above series is uniformly convergent, we also exchanged the integral over s with the sum over n. With the help of the
Poisson resummation formula we obtain3

Vb
1lðϕÞ ¼ −

ffiffiffi
π

p
2

Z
Λ d4p
ð2πÞ4

Z
∞

0

ds

s3=2

�
ϑ3ðπRqb; e−π2

s Þe−sR2ðp2þM2Þ − ϑ3ð0; e−π2

s Þe−sR2p2

�
; ð10Þ

where

ϑ3ðx; yÞ ¼ 1þ 2
X∞
k¼1

cosð2kxÞyk2 : ð11Þ

Taking first for both ϑ3 in (10) only the first term in the right-hand side of (11), we get

−
1

2

Z
∞

0

ds

s3=2
ffiffiffi
π

p ½e−sR2ðM2þp2Þ − e−sR
2p2 � ¼ πR

	
−pþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þ p2

q 

; ð12Þ

and integrating4 finally over p we haveZ
Λ d4p
ð2πÞ4 πR

	
−pþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þ p2

q 

¼ −

Λ5R
40π

þM5R
60π

þ Λ2M2R
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Λ2 þM2

p

120π
þ Λ4R

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Λ2 þM2

p

40π
−
M4R

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Λ2 þM2

p

60π

∼ R

�
Λ3M2

48π
−
ΛM4

64π
þ M5

60π
þO

�
1

Λ

��
; ð13Þ

where in the last line we expanded the result for M=Λ ≪ 1.

3Note for the expert reader. As we introduced the cutoffΛ for the momentum integration, the lower extreme of the proper time integral
need not to be replaced with an UV cutoff, but should be kept zero, since the Schwinger parametrization is here used only as an identity.

4It is worth to note that (13) is the result one would obtain for the one-loop potential in 5 noncompact dimensions (M5, or R5 after
Euclideanization, where, being the spacetime simply connected, there is obviously no room for any q), when the integration over p5 is
performed in the whole range � −∞;∞½ (i.e., with loop integral R∞−∞ dp5

R
Λ d4p). We also note that it differs from the result that would

be obtained in M5ðR5Þ with a more uniform cutoff, say p2 þ p2
5 ≤ Λ2, only for the coefficients in front of the divergent terms.
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Considering now the second term in the right-hand side of (11), and inserting it in (10), we note that both series in k are
uniformly convergent, so that we can treat each of the two integrals over s separately. Again we can exchange the sum over k
with the integration over s, and picking up from (10) only the contribution coming from the first ϑ3 we obtain

Z
∞

0

ds

s3=2
ffiffiffi
π

p
e−sR

2ðM2þp2ÞX∞
k¼1

e−
π2k2
s cosð2πkRqbÞ ¼

X∞
k¼1

cosð2πkRqbÞe−2πkR
ffiffiffiffiffiffiffiffiffiffiffi
M2þp2

p

k
: ð14Þ

Inserting (14) in (10), and exchanging the sum over k with the integration over p we have

−
X∞
k¼1

Z
Λ d4p
ð2πÞ4

cosð2πkRqbÞe−2πkR
ffiffiffiffiffiffiffiffiffiffiffi
M2þp2

p

k

¼
X∞
k¼1

�
−
e−2πkMRð2πkMRð2πkMRþ 3Þ þ 3Þ cosð2πkRqbÞ

64π6k5R4
þ e−2πkRΛΛ3 cosð2πkRqbÞ

2πk2R
þ…

�
; ð15Þ

where the second term in the square brackets, as well as the terms indicated with the dots, is suppressed in the Λ → ∞ limit.
Finally, from the second ϑ3 function in (10), we obtain

X∞
k¼1

Z
Λ d4p
ð2πÞ4

Z
∞

0

ds

s3=2
ffiffiffi
π

p
e−sR

2p2

e−
π2k2
s ¼

X∞
k¼1

Z
Λ d4p
ð2πÞ4

e−2πkRp

k
≃
X∞
k¼1

3

64π6k5R4
¼ 3ζð5Þ

64π6R4
; ð16Þ

where Λ suppressed terms are ignored. Adding together (13), (15) and (16) (and neglecting all the Λ suppressed terms), for
Vb
1lðϕÞ we get [19,20]

Vb
1lðϕÞ ¼ R

�
Λ3M2

48π
−
ΛM4

64π
þ M5

60π

�
þ 3ζð5Þ
64π6R4

−
X∞
k¼1

e−2πkMRð2πkMRð2πkMRþ 3Þ þ 3Þ cosð2πkRqbÞ
64π6k5R4

¼ R

�
Λ3M2

48π
−
ΛM4

64π
þ M5

60π

�
þ 3ζð5Þ
64π6R4

−
Uðrb; xÞ
128π6R4

ð17Þ

where

Uðrb; xÞ≡ x2Li3ðrbe−xÞ þ 3xLi4ðrbe−xÞ þ 3Li5ðrbe−xÞ þ H:c:; ð18Þ

with

rb ≡ e2πiRqb ; x≡ 2πR
ffiffiffiffiffiffiffiffiffiffiffiffiffi
M2ðϕÞ

q
; ð19Þ

and LiiðxÞ are the Polylogarithm functions.
If we now calculate the contribution to V1lðϕÞ of the

corresponding fermion superpartner, we get the same result
as in (17), with qb replaced by qf (and then rb by rf), and a
minus sign overall. Combining these two contributions, the
first and second term in the right-hand side of (17) cancel
the corresponding ones of the fermion superpartner, and for
each couple ðb; fÞ we are left with two finite contributions
to V1lðϕÞ. The potential (7) becomes

V1lðϕÞ ¼
1

128π6R4

X
b;f

½Uðrf; xÞ − Uðrb; xÞ�: ð20Þ

Let us consider now themodels described by (8), i.e., those
withM2ðϕÞ ¼ 0 and qi ¼ qiðϕÞ. In this caseV1lðϕÞ is given
by (17) with the term in parenthesis in the second line
vanishing, so that (as observed above) a finite result is
obtained separately for bosons and fermions. Irrespectively
of being the theory supersymmetric or not, each of the finite
boson or fermion contributions to V1lðϕÞ is obtained taking
x ¼ 0 (i.e., M2 ¼ 0) and qi ¼ qiðϕÞ in (17) (i ¼ b, f):

Vi
1lðϕÞ¼ ð−1Þδfi

�
3ζð5Þ
64π6R4

−
3

64π6R4

X∞
k¼1

cosð2πkRqiðϕÞÞ
k5

�
:

ð21Þ

Equations (20) and (21) are the well-known UV-
insensitive (finite) results for the two classes of models (7)
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and (8) respectively (see [19,20] and [35]). For models
described by (7) (M2 ≠ 0) the strategy of considering the
infinite sum over n first is not sufficient to render V1lðϕÞ
finite: SUSY is also needed to cancel divergences propor-
tional to powers of M2 (a finite term proportional to M5 is
also canceled). For models described by (8) (M2 ¼ 0)
SUSY is unnecessary, and a finite V1lðϕÞ is obtained even
without supersymmetry. We also stress that within such a
calculation strategy the terms that contain qi [whether they
are qi or qiðϕÞ] give rise only to UV-insensitive (finite)
contributions, more precisely to oscillatory functions of
the qi [see (20) and (21)]. Interestingly, this oscillatory
dependence of V1lðϕÞ in (7) and (8) on the qi is a general
property that can be proved even before the calculation is
performed. It is due to the fact that there is an infinite sum
over n, and that the latter is performed independently of the
integration over p (in a sense that will be better clarified in
the next sections). This property is shown in the Appendix.
To summarize, in the present section we reviewed the

usual approach for the calculation of the one-loop Higgs
potential V1lðϕÞ from a higher-dimensional theory with
compact dimensions. Using the example of a 5D theory
with one compact dimension, we considered the decom-
position of the 5D fields in terms of KK-modes, obtained

the dimensionally reduced 4D action upon integration over
the compact dimension z, and then calculated V1lðϕÞ
summing up the Coleman-Weinberg contributions from
the infinitely many fields of the KK-towers.
As mentioned in the Introduction, however, this

approach needs to be carefully investigated. In the next
section we begin our analysis taking a 5D theory with a real
scalar field Φ̂ðx; zÞ interacting with a complex scalar field
χ̂ðx; zÞ, and calculate the 5D one-loop potential Vð5DÞðΦ̂Þ.
Successively, considering the KK-decomposition of
Φ̂ðx; zÞ and χ̂ðx; zÞ, and choosing ϕ0ðxÞ as the 4D Higgs
field, we calculate the 4D one-loop potential V1lðϕ0Þ and
establish the relation between Vð5DÞðΦ̂Þ and V1lðϕ0Þ. This
will allow us to draw important conclusions on the UV-
sensitivity of V1lðϕ0Þ.

III. FIVE- AND FOUR-DIMENSIONAL
ONE-LOOP POTENTIAL

Let us consider a 5D theory with a real scalar field Φ̂
interacting with a complex scalar field χ̂, where the fifth
dimension is compact in the shape of a circle S1 of radius R
(the generalization to phenomenologically viable models is
straightforward), with 5D (Euclidean) action (a ¼ 1;…; 5)

Sð5Þ½Φ̂; χ̂� ¼
Z

d4xdz

�
1

2
∂aΦ̂∂

aΦ̂þ ∂aχ̂∂
aχ̂† þm2

Φ
2

Φ̂2 þm2
χ χ̂χ̂

† þ λ̂

4!
Φ̂4 þ ĝ

2
Φ̂2χ̂χ̂†

�
: ð22Þ

Taking for Φ̂ðx; zÞ and χ̂ðx; zÞ the boundary conditions (see previous section)

Φ̂ðx; zþ 2πRÞ ¼ Φ̂ðx; zÞ; χ̂ðx; zþ 2πRÞ ¼ e2iπRqχ̂ðx; zÞ; ð23Þ

we consider their Fourier expansions. As z is compact, and R is much smaller than the size of the other four dimensions, the
5D momentum pð5Þ is (n integer)

pð5Þ ≡ ðp1; p2; p3; p4; n=RÞ≡ ðp; n=RÞ: ð24Þ

To investigate on the UV sensitivity of the dimensionally reduced Higgs one-loop potential V1lðϕÞ, we begin by
considering the 5D one-loop potential Vð5DÞðΦ̂Þ

Vð5DÞ
1l ðΦ̂Þ ¼ 1

2
Tr5 log

p2 þ n2

R2 þm2
ϕ þ λ̂

2
Φ̂2

p2 þ n2

R2

þ 1

2
Tr5 log

p2 þ ðnR þ qÞ2 þm2
χ þ ĝ

2
Φ̂2

p2 þ n2

R2

¼ 1

4πR

X
n

Z
d4p
ð2πÞ4

�
log

p2 þ n2

R2 þm2
ϕ þ λ̂

2
Φ̂2

p2 þ n2

R2

þ log
p2 þ ðnR þ qÞ2 þm2

χ þ ĝ
2
Φ̂2

p2 þ n2

R2

�
; ð25Þ

where the subscript 5 indicates that the trace is calculated in the 5D Fourier space.

We are already in the position to make some important
comments. As the 5D momentum pð5Þ ¼ ðp; n=RÞ that
appears in (25) is the momentum of a generic 5D virtual
particle in the loop, the sum over n and the integral over p

are intrinsically intertwined. Therefore in (25) we cannot
take the asymptotics of one the components of pð5Þ

without considering also the asymptotics of the other
components. In particular, we cannot send n to infinity
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independently5 of p. These observations show that
Vð5DÞðΦ̂Þ in (25) diverges,6 and that the regularization
has to be implemented over the full momentum pð5Þ. From
the physical point of view, this simply means that the
model has to be regarded as an effective theory, so that the
modulus of the 5D momentum pð5Þ should not exceed a
maximal UV value above which the theory is no longer
valid. In other words, we need to require

ðpð5ÞÞ2 ¼ p2 þ n2=R2 ≤ ðpð5Þ
maxÞ2 ≡ Λ2: ð26Þ

This in turn means that in (25), where originally the sum
over n and the integral over p are extended up to infinity,
we have to make the replacement

X
n

Z
d4p

ð2πÞ5R →

�X
n

Z
d4p

ð2πÞ5R
�0

≡ 1

2πR

X½RΛ�
n¼−½RΛ�

Z
Cn
Λ d4p
ð2πÞ4 ; ð27Þ

where

Cn
Λ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Λ2 −

n2

R2

r
ð28Þ

and ½RΛ� is the integer part of RΛ. For the sake of
simplicity, in practical calculations we adjust Λ in such a
way that RΛ is an integer.
These considerations are better formulated in a

Wilsonian framework, that is at the basis of our physical
understanding of quantum field theories. Being our 5D
model not a UV-complete theory but rather an effective one,
valid up to a certain UV scale Λ, the Fourier components of

the 5D fields Φ̂ðx; zÞ and χ̂ðx; zÞ must be such that pð5Þ
obeys the condition (26), so that

Φ̂ðx; zÞ ¼
�X

n

Z
d4p

ð2πÞ5R
�0
Φ̂n;peiðp·xþ

n
RzÞ;

χ̂ðx; zÞ ¼
�X

n

Z
d4p

ð2πÞ5R
�0
χ̂n;peiðp·xþðnRþqÞzÞ: ð29Þ

Therefore, when calculating the determinant that gives the
one-loop potential Vð5DÞðΦ̂Þ, only those eigenvalues of the
fluctuation operator that respect this condition have to be
taken into account. This means that in (25) the replacement
(27) has to be made. Finally, from (29) we have

Φ̂ðx; zÞ ¼ 1ffiffiffiffiffiffiffiffiffi
2πR

p
XRΛ

n¼−RΛ
ϕΛ
n ðxÞeinRz;

χ̂ðx; zÞ ¼ 1ffiffiffiffiffiffiffiffiffi
2πR

p
XRΛ

n¼−RΛ
χΛn ðxÞeiðnRþqÞz; ð30Þ

where ϕΛ
n ðxÞ and χΛn ðxÞ are defined through the relations

ϕΛ
n ðxÞ≡ 1ffiffiffiffiffiffiffiffiffi

2πR
p

Z
Cn
Λ d4p
ð2πÞ4 Φ̂n;peip·x;

χΛn ðxÞ≡ 1ffiffiffiffiffiffiffiffiffi
2πR

p
Z

Cn
Λ d4p
ð2πÞ4 χ̂n;pe

ip·x: ð31Þ

Inserting (30) in (22), choosing (similarly to what is done
in Sec. II) ϕΛ

0 ðxÞ as the 4D Higgs field, and integrating over
the compact variable z, we end up with a 4D action that
contains a finite number of Kaluza-Klein fields ϕΛ

n ðxÞ and
χΛn ðxÞ. The calculation of the Higgs one-loop potential for a
constant value ϕ of ϕΛ

0 ðxÞ then gives

V1lðϕÞ ¼
1

2

XRΛ
n¼−RΛ

Z
Cn
Λ d4p
ð2πÞ4

�
log

p2 þ n2

R2 þm2
ϕ þ λ

2
ϕ2

p2 þ n2

R2

þ log
p2 þ ðnR þ qÞ2 þm2

χ þ g
2
ϕ2

p2 þ n2

R2

�
; ð32Þ

where, in terms of the dimensionful 5D couplings λ̂ and ĝ in
(22) and (25), the 4D couplings λ and g are defined through
the relations

λ≡ λ̂

2πR
; g≡ ĝ

2πR
; ð33Þ

and the combinations

m2
ϕ;n ≡m2

ϕ þ
n2

R2
; m2

χ;n ≡m2
χ þ

�
n
R
þ q

�
2

ð34Þ

are the so called KK-masses of each of the ϕΛ
n ðxÞ and χΛn ðxÞ

4D fields.
As a result of the physical cuts in (30) and (31), the 4D

one-loop Higgs potential in (32) differs from (7) for the
presence of the cuts in the sum over n and integration over
p. From (30) and (31) we also see that the constant value Φ̂
of the 5D field Φ̂ðx; zÞ in the 5D potential (25), and the

5Note that this is the procedure followed in the usual
calculation of the four-dimensional V1lðϕÞ (see Sec. II).

6If we would perform the infinite sum over n before consid-
ering the integral over p [as done in Sec. II for the calculation
of V1lðϕÞ], we would erroneously conclude that Vð5DÞðΦ̂Þ is
convergent.
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constant value ϕ of the 4D field ϕΛ
0 ðxÞ in the 4D potential

(32) are related, with

Φ̂ ¼ 1ffiffiffiffiffiffiffiffiffi
2πR

p ϕ; ð35Þ

and this shows that the 4D one-loop Higgs potential V1lðϕÞ
(32) [and not (7)] is obtained from the one-loop potential

Vð5DÞ
1l ðΦ̂Þ (25) of the original 5D theory through the relation

V1lðϕÞ ¼ 2πRVð5DÞ
1l ðΦ̂Þ: ð36Þ

A few comments are in order. As already noted below
Eq. (25) for Vð5DÞ

1l ðΦ̂Þ, the sum over n and the integral over
p are intertwined, and we cannot include in the calculation
the asymptotics of n independently from the asymptotics
of p. On the contrary, in Eqs. (7) and (8) for the four-
dimensional V1lðϕÞ it seems that n and p have genuinely
different roles: p has the role of the four-momentum of the
KK-particles in the 4D theory, while n enumerates the
infinitely many KK-fields. From this 4D perspective it then
seems that to calculate V1lðϕÞ we have to sum up the
infinitely many Coleman-Weinberg one-loop contributions
from the KK-fields. However, from Eq. (36) that gives the

connection between Vð5DÞ
1l ðΦ̂Þ and V1lðϕÞ, we already

know that this amounts to consider the asymptotics of
p5 independently of the asymptotics of p. This is at the
origin of the illusory result that V1lðϕÞ is UV-insensitive. In
this respect, we also note that the vivid interpretation of
n=R as the mass of a KK particle has to be taken with a
grain of salt, as it should never be forgotten that n=R is the
fifth component of the loop momentum and as such it is
deeply intertwined to the other components. It is also worth
to note that this latter observation allows to understand that
the EFT paradigm is perfectly suited to higher-dimensional
theories with compact extra dimensions, and in our opinion
overcomes some recently expressed warnings [59].
These considerations have an important mathematical

counterpart, that helps to shed more light on the flaws
hidden in the usual calculation. Sending n to infinity while
keeping the domain of the p integration fixed (that is
realized keeping Λ fixed), and expanding only later this
domain to cover the entire R4 (obtained sending Λ → ∞),
that is the usual approach to the calculation of V1lðϕÞ, does
not respect the very definition of multidimensional
improper integrals. To better appreciate this point, it is
useful to transform first the infinite sum over n into an
integral of a piecewise constant function, thus getting a
five-dimensional integral of the kind

R
D d5pfðpð5ÞÞ, where

D≡ R5. To define this improper integral, we must consider
a sequence of compact five-dimensional domains Di (with
Di ⊂ Diþ1), that in the limit i → ∞ cover D. When we
integrate (sum) over the fifth component of pð5Þ in the

whole infinite p5 range (infinite n range), that is what is
done in the usual approach for the calculation of V1lðϕÞ
(see Sec. II), we are rather taking a sequence of noncompact
domains D∞

i , and this can lead (and actually leads) to
incorrect results. In Sec. IV we will see that the UV-
insensitive result for V1lðϕÞ comes from such an incorrect
procedure. When the calculation is performed correctly,
UV-sensitive terms appear.
Keeping in mind the above remarks, in the next section

we start our analysis on the UV-sensitivity of V1lðϕÞ
introducing a hard cutoff (along the lines exposed above)
both for the sum over n and for the integration over p.
In Sec. V a similar calculation is performed with the help a
smooth cutoff.

IV. UV-SENSITIVITY OF V1lðϕÞ: HARD CUTOFF

To begin our analysis on the UV-sensitivity of V1lðϕÞ, in
the present section we perform the calculations introducing
a hard cut for the sum over n and the integration over p. We
have already seen in the previous section that as p1, p2, p3,
p4, n=R are the components of the 5D loop momentum
pð5Þ, the cut on the latter has to be realized requiring [here
we write again (26)]

ðpð5ÞÞ2 ¼ p2 þ n2

R2
≤ Λ2; ð37Þ

where p was already defined as p≡ ðp1; p2; p3; p4Þ.
For the purposes of our analysis, however, in Sec. IVAwe

will consider as in [33] a numerical cut L for the sum over n
and a momentum cutoff Λ for the integration over p, since
this allows us to get a result for V1lðϕÞ that can be compared
with those obtained with the usual approach, where the
infinite sumovern is performed first.With these two separate
cuts, in fact, we can calculate the limitL → ∞while keeping
Λ fixed (that corresponds to perform the infinite sum over n
first), and compare it with the usual result. In Sec. IV B we
will come back to the more physical cut (37).

A. Cylindrical hard cutoff

Let us introduce then a momentum cutoff Λ for the
integration over p, and a numerical cut L for the sum over
n, that means a cutoff L=R for the fifth component p5 ¼
n=R of the 5D momentum pð5Þ ¼ ðp1; p2; p3; p4; p5Þ. For
the sake of definiteness, we begin by considering a single
bosonic contribution to V1lðϕÞ only. Moreover, we note
that we can treat both cases (7) and (8) at once if we write
V1lðϕÞ with the convention that M2 ¼ M2ðϕÞ and qb is
field-independent for the case (7), while M2 ¼ 0 and qb ¼
qbðϕÞ for the case (8). We have:
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Vb
1lðϕÞ ¼

1

2

XL
n¼−L

Z
Λ d4p
ð2πÞ4 log

�
p2 þM2 þ ðnR þ qbÞ2

p2 þ n2

R2

�
: ð38Þ

Performing first the integration over p we obtain (omitting for simplicity the label b)

V1lðϕÞ ¼
XL
n¼−L

1

64π2

�
Λ4 log

Λ2 þM2 þ ðnR þ qÞ2
Λ2 þ n2

R2

þ Λ2

�
M2 þ

�
n
R
þ q

�
2

−
n2

R2

�

þ
�
M2 þ

�
n
R
þ q

�
2
�

2

log
M2 þ ðnR þ qÞ2

Λ2 þM2 þ ðnR þ qÞ2 −
n4

R4
log

n2

R2

Λ2 þ n2

R2

�
≡ XL

n¼−L
FðnÞ: ð39Þ

An important novelty of our analysis is that we calculate (39) with the help of the Euler-McLaurin (EML) formula. This
turns out to be a good choice since, differently from previous attempts [33,34,37], it allows us to obtain for the first time the
complete result for V1lðϕÞ. We then write

V1lðϕÞ ¼
Z

L

−L
dxFðxÞ þ FðLÞ þ Fð−LÞ

2
þ
Xr
k¼1

B2k

ð2kÞ! ðF
ð2k−1ÞðLÞ − Fð2k−1Þð−LÞÞ þ R2r; ð40Þ

where r is an integer, Bn are the Bernoulli numbers, and the rest R2r is given by

R2r ¼
X∞
k¼rþ1

B2k

ð2kÞ! ðF
ð2k−1ÞðLÞ − Fð2k−1Þð−LÞÞ ¼ ð−1Þ2rþ1

ð2rÞ!
Z

L

−L
dxFð2rÞðxÞB2rðx − ½x�Þ; ð41Þ

with BnðxÞ the Bernoulli polynomials, while [x] indicates the integer part of x.

Clearly, if in (39), (40) and (41) we send L → ∞ while
keeping Λ fixed, we get for V1lðϕÞ the celebrated UV-
insensitive (finite) result of Sec. II. From the discussion of
Sec. III, however, we know that the asymptotics of the
different components of pð5Þ cannot be included in the
calculation of V1lðϕÞ independently of one another. As a
consequence, we cannot take the L → ∞ limit while
keeping Λ fixed. In the process of including the asymp-
totics of the loop momentum in V1lðϕÞ, on the contrary, we
have to keep the ratio L=RΛ finite, that is we cannot
introduce any hierarchical order in the formal limits
L;Λ → ∞. In other words the asymptotics are properly
taken into account if we include them in (38) while keeping
the ratio L=RΛ finite:

L
RΛ

finite when L;Λ → ∞: ð42Þ

Moreover, from the physical meaning of the UV cuts, we
know that the right-hand side of (38) has to be considered
only for values of M and q that fulfill the conditions

M2; q2 ≪ Λ2; L2=R2: ð43Þ

The conditions (42) and (43) are easily implemented in our
calculations if we write (ξ dimensionless finite number)

L ¼ ξRΛ; ð44Þ

and expand each term in (40) for M2=Λ2; q2=Λ2 ≪ 1.
After inserting (44) in (40), we see that the first term in

the sum over k in the latter equation (i.e. the term with
k ¼ 1) turns out to be linearly divergent (∼Λ), while those
starting from k ¼ 2 are suppressed by inverse powers of Λ,
more precisely they behave as Λ3−2k. In particular, as the
term with k ¼ 2 is OðΛ−1Þ, for any r > 1 we have
R2r ¼ R2 þOðΛ−1Þ. Therefore, we can (and will) perform
the calculation by referring always to the rest R2.
Expanding (40) for M2=Λ2; q2=Λ2 ≪ 1, we finally obtain
(ξ is finite)
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V1lðϕÞ ¼
2M2tan−1ξþ ξ

	
ξ2 log ξ2

ξ2þ1
þ 1


ðM2þ 3q2Þ

48π2
RΛ3þ

ξ2ðM2þ 3q2Þþ ξ2ðξ2þ 1ÞðM2þ 3q2Þ log ξ2

ξ2þ1
þM2þq2

32π2ðξ2þ 1Þ Λ2

þ ξM2ð6q2R2þ 1Þðξ2þ 1Þþ ξq2ðq2R2þ 1Þð3ξ2þ 5Þ
96π2ðξ2þ 1Þ2

Λ
R
þ
ξ log ξ2

ξ2þ1
ð3R2ðM2þq2Þ2þM2þ 3q2Þ− 3M4R2tan−1ξ

96π2
Λ
R

þ 3ðξ2þ 1Þ2M4þ 6ðξ4þ 4ξ2þ 3ÞM2q2þð3ξ4þ 6ξ2þ 11Þq4
192π2ðξ2þ 1Þ3 þ

16πM5Rþ 15 log ξ2

ξ2þ1
ðM2þq2Þ2

960π2
þR2þOðΛ−1Þ:

ð45Þ
To realize the previously mentioned comparison of our result (45) with the usual calculations present in the literature

(Sec. II), we now consider its limit for ξ → ∞, with Λ kept finite. We get7 (R̃2 ≡ limξ→∞ R2)

V1lðϕÞ gξ ≫ 1
RΛ3M2

48π
−
RΛM4

64π
þ RM5

60π
þ R̃2 þOðξ−1Þ: ð46Þ

Due to (44), in this limit we must obtain the result (17) of Sec. II. The comparison of (46) with (17) then shows that, in the
ξ → ∞ limit, R2 has to coincide with the sum of the second and third term in the right-hand side of (17) [see also (18) and
(19)]. Restoring the label b, we finally have

R̃2 ¼ lim
ξ→∞

R2 ¼
3ζð5Þ
64π6R4

−
1

128π6R4
½x2Li3ðrbe−xÞ þ 3xLi4ðrbe−xÞ þ 3Li5ðrbe−xÞ þ H:c:�: ð47Þ

The corresponding fermion contribution has the same form with a minus sign overall and rb replaced by rf.

Tomake the correct calculationwith no hierarchy between
the asymptotics of L andΛ, we need to evaluate R2 for finite
Oð1Þ values of ξ. To this end we resort to (41), which

provides an explicit formula to calculate R2. Although we
cannot perform this calculation analytically, using for the
Bernoulli polynomials B2rðx − ½x�Þ the relation

B2rðx − ½x�Þ ¼ ð−1Þr−1ð2rÞ!
X∞
k¼1

2 cosð2πkxÞ
ð2πkÞ2r ; ð48Þ

we can resort to a numerical analysis.
It is convenient to consider separately the two cases (7)

and (8). Let us begin with (8), i.e., with the caseM ¼ 0 and
q ¼ qðϕÞ. Taking ξ ¼ 1, and assigning also specific values
to R and Λ, with the help of (41) we evaluate numerically
R2 as a function of q. In the left panel of Fig. 1, the result

7Resorting directly to (40), and taking the L → ∞ limit (while
keeping Λ finite), for V1lðϕÞ we get [see (13)]

V1lðϕÞ ¼ −
Λ5R
40π

þM5R
60π

þ Λ2M2R
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Λ2 þM2

p

120π

þ Λ4R
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Λ2 þM2

p

40π
−
M4R

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Λ2 þM2

p

60π
þ R2:

This coincides with (46) if we expand for M2=Λ2 ≪ 1.
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FIG. 1. Left panel: the rest R2r for r ¼ 1 as a function of q in the range q ∈ ½0; 10�, for ξ ¼ 1, R ¼ 1,Λ ¼ 5 × 104, andM ¼ 0. The red
dots come from the numerical integration of (41). The continuous blue curve is R2ðqÞ for the same values of R and M obtained for
ξ → ∞, Eq. (47). Right panel: the same as in the left panel, with Λ ¼ 102.
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for R ¼ 1 and Λ ¼ 5 × 104 in the range q ∈ ½0; 10� is given
by the red dots, while the continuous blue line is the plot
of R̃2 in (47) for the same value of R. We see that, under
the condition q2=Λ2 ≪ 1, even when ξ ∼ 1, the rest R2

coincides with R̃2 (in this case M ¼ 0, i.e. x ¼ 0). As we
know, (47) is nothing but (a bosonic contribution to) the
celebrated UV-insensitive one-loop Higgs potential (21) of

the usual approach. We have then found that such a finite
contribution is present also for values of ξ ∼ 1 as long as the
necessary condition q2ðϕÞ=Λ2 ≪ 1 is satisfied.
It is worth to stress the centrality of this latter point. To

this end we use the example of a four-dimensional ϕ4

theory, for which, after performing the loop integral
ℏ
2

R ðΛÞ d4k
ð2πÞ4 lnð1þ

m2
0
þλ0

2
ϕ2

k2 Þ, the one-loop potential reads8

UðϕÞ ¼ m2
0

2
ϕ2 þ λ0

4!
ϕ4 þ ℏ

64π2

�
Λ4 ln

�
1þM2ðϕÞ

Λ2

�
þM2ðϕÞΛ2 − ðM2ðϕÞÞ2 ln

�
Λ2

M2ðϕÞ þ 1

��
; ð49Þ

whereM2ðϕÞ ¼ m2 þ λ
2
ϕ2. As it is well known, (49) is physically meaningful only for M2ðϕÞ=Λ2 ≪ 1. Expanding (49) in

powers of M2ðϕÞ=Λ2

UðϕÞ ¼ m2
0

2
ϕ2 þ λ0

4!
ϕ4 þ ℏ

64π2

�
2Λ2M2ðϕÞ þ ðM2ðϕÞÞ2

�
ln
M2ðϕÞ
Λ2

−
1

2

��
; ð50Þ

that finally becomes the renormalized potential once the
bare parameters are written in terms of the renormalized
ones and of the counterterms (that eventually cancel the
divergences).
This example underlines the importance of the condition

q2ðϕÞ=Λ2 ≪ 1 in our case. This is even better appreciated
if we consider again Eq. (41) for R2ðqÞ in the range q ∈
½0; 10� with R ¼ 1 (as for the left panel of Fig. 1), but with a
lower cutoff, Λ ¼ 102. The result of the numerical analysis
is given by the red dots in the right panel of Fig. 1. As for
the left panel, the blue continuous line is the plot of (47) for
the same value of R. Comparing with the left panel, we see
that the superposition between dotted and continuous curve

holds for a more limited range of q, since in this case the
condition q2=Λ2 ≪ 1 breaks up for smaller values of q.
The important result that emerges from this analysis

is that the finite term (47), that is the only outcome of
the calculation for V1lðϕÞ when the usual approach is
considered, does not come from the fact that the infinite
sum over n is performed, but rather from the physical
requirement q2=Λ2 ≪ 1, even when the limits L → ∞,
Λ → ∞ are properly considered, i.e. when the ratio L=RΛ
is kept finite (ξ finite). We will further comment on this
point later. For the time being we observe that in the present
case (M ¼ 0 and q field dependent), from (45) we have
for V1lðϕÞ

V1lðϕÞ ¼
3ξ

�
ξ2 log ξ2

ξ2þ1
þ 1

�
48π2

q2ðϕÞRΛ3 þ
3ξ2 þ 3ξ2ðξ2 þ 1Þ log ξ2

ξ2þ1
þ 1

32π2ðξ2 þ 1Þ q2ðϕÞΛ2

þ
ξð3ξ2 þ 5Þ þ 3ξðξ2 þ 1Þ2 log ξ2

ξ2þ1

96π2ðξ2 þ 1Þ2 ðR2q4ðϕÞ þ q2ðϕÞÞΛ
R
þ
�
3ξ4 þ 6ξ2 þ 11

192π2ðξ2 þ 1Þ3 þ
log ξ2

ξ2þ1

64π2

�
q4ðϕÞ þ R̃2 þOðΛ−1Þ;

ð51Þ

where we see that, in addition to R̃2, that is nothing but the
result obtained with the usual calculation, UV-sensitive
field-dependent terms (cubic, quadratic, and linear diver-
gences in Λ), and a new finite term, contribute to V1lðϕÞ.
From (51) we see that in the limit ξ → ∞ only the term R̃2

survives, i.e. (as expected) we recover the usual finite
result.
Let us consider now V1lðϕÞ in (7), i.e., for models with

M2 ¼ M2ðϕÞ and q field-independent. As for the previous
case, we take ξ ¼ 1, assign specific values to R, q and Λ,
and evaluate numerically the rest R2 in (41), this time as a
function ofM. In the left panel of Fig. 2, R2ðMÞ is given by
the red dots, with R ¼ 1, q ¼ 0.1,Λ ¼ 5 × 104 in the range
M ∈ ½0; 10�. The continuous blue line is the plot of R̃2ðMÞ
given in (47) for the same values of R and q. Similarly to

8InM2ðϕÞ the bare parameters m2
0 and λ0 are replaced with the

renormalized onesm2 and λ as the counterterms areOðℏÞ and the
loop correction already contains the ℏ factor.
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the previous case, we see that, even when ξ ∼ 1, the rest R2

in (41) coincides with R̃2 in (47) when the conditions
M2ðϕÞ=Λ2; q2=Λ2 ≪ 1 are fulfilled.
To better appreciate the importance of these physical

conditions, in the right panel of Fig. 2 we plot again (41) for
R2ðMÞ in the rangeM ∈ ½0; 10�, where (as in the left panel)
we take R ¼ 1 and q ¼ 0.1, but consider now a lower cutoff
Λ ¼ 102. The result is given by the red dots. As for the left

panel, the blue continuous curve is the plot of (47) for the
same values of R and q, but differently from that case, the
superposition between dotted and continuous curve holds for
a more limited range of M, since in this case the condition
M2=Λ2 ≪ 1 breaks up for smaller values of M.
Let us consider in particular a SUSY model. From (45)

we see that the contribution to V1lðϕÞ from a single couple
of superpartners with charges qb and qf is

V1lðϕÞ ¼
q2b − q2f
16π2

M2ðϕÞ
�
2ξ log

ξ2

ξ2 þ 1
þ 2ξ

ξ2 þ 1

�
ΛRþ q2b − q2f

16π2
M2ðϕÞ

�
log

ξ2

ξ2 þ 1
þ ξ2 þ 3

ðξ2 þ 1Þ2
�
þ R̃ðbÞ

2 − R̃ðfÞ
2 þOðΛ−1Þ;

ð52Þ

and that, as long as ξ is kept finite, together with the usual
result (that in this case consists of the difference

R̃ðbÞ
2 − R̃ðfÞ

2 ), an additional finite term and an additional
Λ-sensitive term (linear divergence) are present. It is
immediate to see from (52) that, when ξ → ∞, these terms
disappear and we are left with the well-known finite result
of Sec. II. Moreover, from (45) and (52) we see that, while
the UV-sensitive terms proportional to powers of M2ðϕÞ
(but that do not depend on the qi) are canceled by the
presence of superpartners, this does not happen for the
terms q2i M

2ðϕÞRΛ, with the exception of the trivial case
qb ¼ qf.
An important outcome of the present analysis is that in

(51) and (52) UV-sensitive terms proportional to powers of
the qi appear. They are lost when the calculation is done in
the usual manner (Sec. II), that in this section is realized
with the ξ → ∞ limit, but when we take into account the
asymptotics of the loop momenta properly, we find that
V1lðϕÞ is UV-sensitive. Further important comments on the
physical meaning and origin of such an UV-sensitivity will

be done at the end of the next section, where a spherical
cutoff is used.

B. Spherical hard cutoff

In the present section we consider the spherical cutoff
p2 þ p2

5 ≤ Λ2 introduced in (37), that immediately leads to

the cutoff Cn
Λ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Λ2 − n2=R2

p
in (28) for the integration

over p, while for the sum over the integer n it is n ¼
−½RΛ�;…; ½RΛ� (with ½RΛ� integer part of RΛ). Assuming
for the sake of simplicity that Λ is adjusted so that RΛ is an
integer (R is fixed), for V1lðϕÞ we have

V1lðϕÞ ¼
1

2

XRΛ
n¼−RΛ

Z
Cn
Λ d4p
ð2πÞ4 log

 
p2 þM2 þ

	
n
R þ q



2

p2 þ n2

R2

!
;

ð53Þ

and performing the integration over p:
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FIG. 2. Left panel: the rest R2r for r ¼ 1 as a function ofM in the rangeM ∈ ½0; 10�, for ξ ¼ 1, R ¼ 1, Λ ¼ 5 × 104 and q ¼ 0.1. The
red dots come from the numerical integration of (41). The continuous blue curve is R2ðMÞ for the same values of R and q obtained for
ξ → ∞, Eq. (47). Right panel: the same as in the left panel, with Λ ¼ 102.
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V1lðϕÞ ¼
XRΛ

n¼−RΛ

1

64π2

��
Λ2 −

n2

R2

��
M2 −

n2

R2
þ
�
n
R
þ q

�
2
�
−
n4

R4
log

n2

Λ2R2

þ
�
M2 þ

�
n
R
þ q

�
2
�

2

log
M2 þ ðnR þ qÞ2

Λ2 þM2 − n2

R2 þ ðnR þ qÞ2

þ
�
Λ2 −

n2

R2

�
2

log
Λ2 þM2 − n2

R2 þ ðnR þ qÞ2
Λ2

�
: ð54Þ

As in Sec. IVA, we calculate the sum over nwith the help of the EML formula (40) and truncate the sum over k at r ¼ 1. We
obtain

V1lðϕÞ ¼
5M2 þ 3q2

180π2
RΛ3 −

35M4 þ 14M2q2 þ 3q4

840π2
RΛþM5R

60π
þ R2 þOðΛ−1Þ: ð55Þ

Contrary to what happens with the cylindrical regulariza-
tion of Sec. IVA, from (54) we see that the cubic and linear
terms in Λ come from the first term in the right-hand side
of the EML formula (40), i.e. from the integral, while
the second and third term vanish. This means that, with the
exception of R2, all the terms in (55) come from the
integral. Therefore, the difference between having a sum
(as in the present case) rather than an integral over p5 is
entirely encoded9 in the presence of the rest R2.
Equation (55) looks similar to (45) (where, however, an

additional term proportional to Λ2 and an additional finite
term are also present), but the terms proportional to Λ3 and
Λ have different numerical coefficients. This mismatch is
easily understood if we note that treating the cut in the 5D
momentum in a symmetric manner (as done in this section)
and introducing two separate cuts for the modulus of the
first four components p ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p2
1 þ p2

2 þ p2
3 þ p2

4

p
and for

the fifth component p5 (as done in Sec. IVA) are clearly
two different operations. In this latter case, in fact, the
integration over p reproduces the typical results of a 4D
theory, including the quadratic divergences. Obviously,
performing the integration over pð5Þ (that for the fifth
component n=R means

P
n) with a spherical cutoff, cannot

generate any term proportional to Λ2. By the same token,
the additional finite terms in (45) are again due to the
asymmetric way of treating the cuts in n=R and in p.
To proceed with our analysis, let us consider now the

M ¼ 0 and q ¼ qðϕÞ case, i.e., the case where V1lðϕÞ is
given by (8). Assigning specific values to R and Λ, from
(41) and (48) we can evaluate numerically the rest R2 as a

function of q. In the left panel of Fig. 3 the result for R ¼ 1

and Λ ¼ 5 × 104 in the range q ∈ ½0; 10� is given by the red
dots. The continuous blue curve is the plot of (47) for the
same value of R. As it was the case for the cylindrical
regularization (Sec. IVA), under the condition q2=Λ2 ≪ 1
also for the spherical regularization the rest R2 coincides
with R̃2 in (47) (here we have M ¼ 0, i.e., x ¼ 0), i.e. with
the usual result (21) for V1lðϕÞ.
As before, we now investigate on the importance of the

condition q2ðϕÞ=Λ2 ≪ 1. Again we consider (41) for
R2ðqÞ in the range q ∈ ½0; 10� with R ¼ 1 (as in the left
panel of Fig. 3), but this time with a lower cutoff, Λ ¼ 102.
The resulting curve is given by the red dots in the right
panel of Fig. 3, while the blue continuous curve (as for the
left panel) is the plot of (47) for the same value of R. We
immediately see that with this choice ofΛ the superposition
between the dotted curve and the continuous one holds for a
more limited range of q. In this case, in fact, the condition
q2=Λ2 ≪ 1 breaks down for smaller values of q.
In conclusion, as long as we limit ourselves to consider

values of qmuch smaller than Λ (as we have to), the rest R2

coincides with the usual finite result R̃2 in (47). Under this
condition, from Eq. (8) we obtain

V1lðϕÞ ¼
3

180π2
q2ðϕÞRΛ3 −

3

840π2
q4ðϕÞRΛ

þ R̃2 þOðΛ−1Þ; ð56Þ

from which we see that, in addition to the UV-insensitive
result R̃2 obtained in the usual approach (Sec. II), UV-
sensitive field-dependent terms also contribute to V1lðϕÞ.
Let us consider now the cases whenV1lðϕÞ is given by (7),

i.e., models with M2 ¼ M2ðϕÞ and q field-independent.
Similarly to the previous case, we assign specific values toR,
q and Λ, and evaluate numerically the rest R2 in (41) as a
function ofM. In the left panel of Fig. 4 the numerical result
for R2ðMÞ with R ¼ 1, q ¼ 0.1, and Λ ¼ 5 × 104 in the

9In the cylindrical regularization, where p and p5 are treated
asymmetrically, we see the appearance of a term proportional to
Λ2 from the second term of the EML formula, and a term
proportional to Λ from the third one. However, both in the
cylindrical and spherical regularization, the k ¼ 2 term in the sum
over k is OðΛ−1Þ.
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range M ∈ ½0; 10� is given by the red dots, while the
continuous blue line is the plot of the analytic curve
R̃2ðMÞ in (47) for the same values of R and q. Under the
condition M2=Λ2 ≪ 1, once again we see that the rest R2

in (41) coincides with R̃2 in (47): the finite contribution (47)
to V1lðϕÞ is present also with the spherical regularization.
In the right panel of Fig. 4 we plot again the numerical

result for R2ðMÞ in the range M ∈ ½0; 10�, where we take
R ¼ 1 and q ¼ 0.1 (as for the left panel), but Λ ¼ 102. The
result is given by the red dots, while the blue continuous
curve is the plot of (47) for the same values of R and q.
Differently from the left panel, the superposition between
dotted and continuous curve holds for a more limited range
ofM, as in this case the conditionM2=Λ2 ≪ 1 breaks down
for smaller values of M.
Focusing as before on SUSY models, we now consider

the contribution to V1lðϕÞ from a single couple of super-
partners. From (55) we get

V1lðϕÞ¼−
14ðq2b−q2fÞ

840π2
M2ðϕÞRΛþ R̃ðbÞ

2 − R̃ðfÞ
2 þOðΛ−1Þ;

ð57Þ

from which we see that V1lðϕÞ is given by the sum of the
usual finite result (Sec. II), that here consists in the

difference R̃ðbÞ
2 − R̃ðfÞ

2 , with a UV-sensitive term. An
important outcome of the present analysis is that, while
in (55) the UV-sensitive terms proportional to powers of
M2ðϕÞ (but independent of qi) are canceled by the presence
of superpartners, the same does not hold for the UV-
sensitive terms of the kind q2i M

2ðϕÞRΛ, with the exception
of the qb ¼ qf irrelevant case.
Let us discuss now the findings of the present section.

The result in (55) [see also (56) and (57)] for V1lðϕÞ can
hardly be overestimated. It contains two different contri-
butions: (i) the result obtained in the usual approach (see
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FIG. 3. Left panel: the rest R2r for r ¼ 1 as a function of q in the range q ∈ ½0; 10�, for R ¼ 1, Λ ¼ 5 × 104 and M ¼ 0. The red dots
come from the numerical integration of (41). The continuous blue curve is R̃2ðqÞ for the same values of R andM in (47). Right panel: the
same as in the left panel, with Λ ¼ 102. With respect to the analogous case of Sec. III A, the drift of the red dots from the blue curve
(at increasing values of q) is more pronunced, and this is why we need a wider range for the vertical axis (note that, despite the difference
in scale, the blue curve in the right panel is the same as the blue curve in the left panel).
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FIG. 4. Left panel: the rest R2r for r ¼ 1 as a function of M in the range M ∈ ½0; 10�, for R ¼ 1, Λ ¼ 5 × 104, and q ¼ 0.1. The red
dots come from the numerical integration of (41). The continuous blue curve is R̃2ðMÞ in (47) for the same values of R and q. Right
panel: the same as in the left panel, with Λ ¼ 102.
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the last line of (17) in Sec. II); (ii) additional UV-sensitive
terms proportional to powers of q. These latter terms do not
vanish due to the fact that in the calculation of V1lðϕÞ we
included the asymptotics of the loop momenta in a proper
manner. Their absence in the celebratedUV-insensitive result
for V1lðϕÞ comes from an inconsistent limiting procedure.
Wehave also found that the finite contribution to the potential
does not arise because of the infinite sum over n, but rather
from the fact that we take into account the necessary physical
limitations of the calculation, namely q2=Λ2;M2=Λ2 ≪ 1.
It is of the greatest importance to stress that the

UV-insensitive contribution to V1lðϕÞ (usual result) and
the UV-sensitive ones found in the present work have a
totally different origin. The former [right-hand side of (47)]
arises because the fifth component of the loop momentum
comes with a sum rather than an integral. Physically this is
due to the large scale hierarchy between the dimension of
the 4D box (∼R4) and the finite radius R of S1. The use
of the EML formula greatly helps in highlighting this point:
the finite term is nothing but the rest of the EML. In this
respect, we observe that such a term vanishes in the R → ∞
limit (i.e., when the difference between sum and integral
is practically washed out). The physical origin of the
q-dependent UV-sensitive terms is different. Their presence
is entirely due to the topology of the nonsimply connected
R4 × S1 manifold, which implies that boundary conditions
are needed to define the theory. In particular, nontrivial
boundary conditions as those in (4) can be realized,
independently of the value of R. This holds true even
when the size of the 4D box and R are comparable, that in
turn means even when the sum over the fifth component
of the momentum can be replaced with an integral (as it is
the case for the other four components). Therefore, these
previously missed q-dependent UV-sensitive terms are a
consequence of the nontrivial topology of the spacetime,
and are always present when nontrivial boundary condi-
tions are realized.
One might think that when the size of the compact

dimension is sufficiently large (R → ∞) we should recover
for V1lðϕÞ the result obtained in R5. However we have just
seen that, whatever the size of the compact dimensions of
the multiply connected manifold, in the presence of global
supersymmetry the physics in R4þn can sensibly differ
from the physics in R4 ×H (with H ¼ Tn; Tn=Z2;…,
where Tn is the n-dimensional torus). The difference is
due to the UV-sensitive terms of topological origin that we
have found. Physically this comes from the difference
between qb and qf: the nontrivial boundary conditions

introduce a mismatch in the mode expansion of super-
partners. This determines a breaking of SUSY, governed
by the parameter ðq2b − q2fÞ, in a way similar to the more
typical and better known breaking that arises in R4þn when
the masses of superpartners do not coincide. Moreover, the
fact that in (57) the field-dependent Λ3 terms are canceled
seems to suggest that the breaking is spontaneous. In fact,
we are left with linearly divergent terms only, that are
reminiscent of the typical logΛ terms of a softly broken
4D theory (the linear divergence is clearly the upgrade
of the logarithmic one when we move from four to five
dimensions). On the contrary, the result (56) for the super-
symmetric models [35] described by (8) shows a cubic
divergence, so that one could be tempted to conclude that in
this case the SUSY breaking is hard. However, we should
note that (8) is obtained only after the diagonalization of an
infinite KK mass matrix. According to our findings, such a
procedure is ill defined. In fact, treating the descendant
theory as a 4D theory with an infinite number of KK-fields
corresponds to take the asymptotics of the Fourier compo-
nent of the momentum along the fifth compact dimension
independently from the others, and we have shown that this
is an inconsistent procedure.
To further deepen our analysis, in the next section we

calculate V1lðϕÞ introducing a smooth cutoff.

V. UV-SENSITIVITY OF V1lðϕÞ: SMOOTH CUTOFF

In the present section we consider the calculation of
V1lðϕÞ resorting to a smooth regularization. In Sec. VAwe
introduce a smooth cutoff only for the four components
p ¼ ðp1; p2; p3; p4Þ of the 5D momentum. The reason for
this choice is that we want to check whether, treating again
the sum over n independently from the integration over p,
even with a smooth cutoff we recover the finite result of the
usual calculation. The consistent way of implementing the
asymptotics of the 5D momentum pð5Þ is considered in
Sec. V B, where a smooth spherical cutoff for the 5D loop
momenta pð5Þ ¼ ðp; n=RÞ is introduced.

A. Smooth cutoff on p= ðp1; p2; p3; p4Þ
We now calculate V1lðϕÞ introducing a smooth cutoff for

the integration over p through the cutoff function e−p
2=Λ2

,
and (as in Sec. II) we perform first the infinite sum over n
and then the integration over p.
Referring to Eq. (9) for a bosonic contribution to V1lðϕÞ,

multiplying the integrand in (9) for e−p
2=Λ2

, and using the
Poisson summation formula we get

Vb
1lðϕÞ ¼ −

1

2

Z
d4p
ð2πÞ4 e

−p2

Λ2

Z
∞

0

ds
s

X∞
n¼−∞

h
e−sðR2ðp2þM2ÞþðnþqbÞ2Þ − e−sðp2R2þn2Þ

i
¼ −

1

2

Z
d4p
ð2πÞ4 e

−p2

Λ2

Z
∞

0

ds

s3=2
ffiffiffi
π

p h
ϑ3ðπqb; e−π2

s Þe−sR2ðp2þM2Þ − ϑ3ð0; e−π2

s Þe−sR2p2
i
; ð58Þ

BRANCHINA, BRANCHINA, and CONTINO PHYS. REV. D 108, 045007 (2023)

045007-16



where ϑ3ðx; yÞ ¼ 1þ 2
P∞

k¼1 cosð2kxÞyk
2

was already
given in (11).
As in Sec. II, we begin by taking in (58) only the term

“1” for both of the ϑ3, thus obtaining (12). Performing
successively the integration over p we get

R

�
Λ3M2

64
ffiffiffi
π

p −
ΛM4

128
ffiffiffi
π

p þ M5

60π

�
þO

�
1

Λ

�
; ð59Þ

where we expanded the result for M=Λ ≪ 1. Comparing
(59) with its hard cutoff counterpart (13), we see that the
only difference between these two results is in the value of
the numerical coefficients in front of the divergent terms.10

Let us go on with our calculation, and consider the first
of the two ϑ3 in (58). Inserting in this equation the
remaining part of the ϑ3 function (the series of cosines),
for this contribution to V1lðϕÞ we get

X∞
k¼1

�
−
e−2πkMRð2πkMRð2πkMRþ 3Þ þ 3Þ cosð2πkqBÞ

64π6k5R4

−
e−2πkMRð−8π3k3M3R3 − 24π2k2M2R2 − 30πkMR − 15Þ cosð2πkqÞ

64Λ2ðπ8k7R6Þ þ…

�
; ð60Þ

where the second term in the square brackets and the terms indicated with the dots are suppressed in the Λ → ∞ limit.
Comparing with the corresponding hard cutoff result (15), we see that the finite results in (60) and (15) coincide.11

To complete our calculation, we still have to consider the remaining term in the second line of (58), namely the
contribution of the cosines in the second of the two ϑ3 functions. We get

X∞
k¼1

Z
d4p
ð2πÞ4 e

−p2

Λ2

Z
∞

0

ds

s3=2
ffiffiffi
π

p
e−sR

2p2

e−
π2k2
s ¼

X∞
k¼1

3

64π6k5R4
þO

�
1

Λ2

�
≃

3ζð5Þ
64π6R4

; ð61Þ

that coincides with the hard cutoff result (16).
Putting together (59), (60) and (61), we get the complete result for V1lðϕÞ. Once again we see that, having introduced a

cut (although smooth) over p but none for n, the usual finite result (Sec. II) for V1lðϕÞ is obtained. The reason is that even in
this case we treated the asymptotics of the different components of pð5Þ in an asymmetric (incorrect) manner.

B. Smooth cutoff over the 5-momentum pð5Þ = ðp;n=RÞ
In this section we calculate V1lðϕÞ using the 5D cutoff function e−

p2þn2=R2

Λ2 , that smoothly suppresses in the loop the
contribution of the modes with 5D momenta ðpð5ÞÞ2 ¼ p2 þ n2=R2 ≥ Λ2:

V1lðϕÞ ¼
X∞
n¼−∞

Z
d4p
ð2πÞ4

�
log

�
p2 þM2 þ

�
n
R
þ q

�
2
�
− log

�
p2 þ n2

R2

��
e−

p2þn2=R2

Λ2 : ð62Þ

In connection with the warnings raised in previous
sections (correct treatment of the pð5Þ asymptotics), it is
important to observe that the presence in (62) of the cutoff
function e−ðp2þn2=R2Þ=Λ2

makes the integrand sufficiently
damped, so that the infinite sum over n and the integration
in the infinite domain R4 over p can be performed in any
order, obtaining always the correct result. From the
mathematical point of view, this means that in this case
there is no need to pay attention to the construction of the
set of compact domains.
Comparing with the hard cutoff calculation of Sec. IV B,

the upside of the present regularization is that it
manifestly respects the higher-dimensional symmetries
of the model, as for, e.g., the 5D Lorentz symmetry (before
Euclideanization). Moreover, thanks to the fact that we can

10It is worth to stress that the coefficients of (nonuniversal)
powerlike divergences obtained through different regularization
procedures may well differ. Moreover, we know that in four-
dimensional QFTs the coefficients of the logarithmic divergences
are universal and do not depend on the regularization. In fact they
determine the anomalous dimension of the couplings, that is in
turn related to the critical exponents. In the present 5D case the
term that shows universality is the finiteM5 term. It has the same
coefficient in (13), (45), (55), and (59). The reason is that the M5

contribution is generated by the sum over n of terms of the kind
ðm2

nÞ2 logðm2
nÞ (with m2

n ≡M2 þ ðn=Rþ qÞ2), that are well
known to be universal.

11All the other terms (that of course vanish in theΛ → ∞ limit)
are suppressed as inverse powers of Λ, while in the hard cutoff
case (15) they are exponentially suppressed by factors of the kind
e−2πkRΛ.
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perform the infinite sum over n without making any
violence to the asymptotics of pð5Þ, the above expression
also preserves the shift symmetry along the circle. In fact,

while implementing a decoupling of the modes with
ðpð5ÞÞ2 ≥ Λ2, the potential V1lðϕÞ in (62) is invariant under
the transformation n → nþm (with m integer).

Performing in (62) the integration over p, we get

V1lðϕÞ ¼
X∞
n¼−∞

Λ2e−
n2=R2

Λ2

32π2

�
e
ðn=RþqÞ2þM2

Λ2

�
M2 þ

�
n
R
þ q

�
2

− Λ2

�
Ei

�
−
ðnR þ qÞ2 þM2

Λ2

�
þ Λ2 log

�ðnR þ qÞ2 þM2

n2=R2

�
− e

n2=R2

Λ2

�
n2

R2
− Λ2

�
Ei

�
−
n2=R2

Λ2

��
≡ X∞

n¼−∞
GðnÞ; ð63Þ

where EiðxÞ is the exponential integral function. Resorting again to the EML formula, we have

V1lðϕÞ ¼ lim
y→∞

�Z
y

−y
dxGðxÞ þGðyÞ þ Gð−yÞ

2
þ
Xr
k¼1

B2k

ð2kÞ! ðG
ð2k−1ÞðyÞ − Gð2k−1Þð−yÞÞ þ R2r

�
; ð64Þ

where the rest R2r is given by [see (41)]

R2r ¼
ð−1Þ2rþ1

ð2rÞ!
Z

y

−y
dxGð2rÞðxÞB2rðx − ½x�Þ; ð65Þ

with B2k and B2rðx − ½x�Þ defined below Eqs. (40) and (41).
AsGðyÞ and its derivatives all vanish in the y → ∞ limit,

in (64) the terms beside the integral and the rest all give null
contributions to V1lðϕÞ. This results from the presence of
the damping factor e−n

2=ðR2Λ2Þ in (63). Two different
choices of r for the calculation of the rest differ only for
terms that vanish in the y → ∞ limit, so that, depending on
calculation convenience, one can choose which value of r
to consider. Unfortunately, the integral in (64) cannot be
performed analytically. This might seem a serious obstacle
to our calculation, but we will see that it is possible to
overcome such an apparent problem: combining together
analytic and numerical calculations, we will eventually
obtain the result.
Let us expand first GðxÞ in (64) in powers of M and q,

and then evaluate the integral. We obtain

V1lðϕÞ ¼
5M2 þ 3q2

240π3=2
RΛ3 −

35M4 þ 14q2M2 þ 3q4

1680π3=2
RΛ

þ R2 þOðΛ−1Þ: ð66Þ

From the numerical evaluation of (65), we see that the rest
R2 is nothing but R̃2 in (47) (see also the left panels of
Figs. 3 and 4). Moreover, comparing (66) with its spherical
hard cutoff analog (55), we see that they have the same kind

of divergences with the same relative weight among the
terms that multiply a given divergence. Considering for
instance the Λ3 divergence, we see that (66) differs from
(55) only for an overall numerical factor. The same holds
true for the Λ divergence.
There is however an important difference between (55)

and (66), namely the finite termM5, which is missing in the
latter. We then ask ourselves the following question. Is this
term missing as it does not appear when a smooth cutoff is
used, or is it lost due to the fact that we possibly performed
an illegitimate exchange in (64) between the integral over x
and the expansion in powers of M and q in the termR
∞
−∞ dxGðxÞ?. To answer this question, we begin by
observing that in this integral, upon expansion of GðxÞ
in powers of M, only even powers of M can be generated
(the same is true for q). Therefore, performing the integral
after this expansion, no odd powers of M (and q) can ever
show up in the final result. This already suggests that
making the expansion in GðxÞ before performing the
integral over x might be a mathematically illegitimate
operation.
To further investigate on this point, we now move to a

fully numerical analysis: we evaluate the integral in (64)
numerically, with no reference to any expansion. This
analysis should allow to check: (i) whether odd powers of
M and q are actually present, in particular the term M5;
(ii) whether the coefficients of the even powers of M and q
in (66) [obtained after the expansion of GðxÞ] are the
correct ones. To isolate the different powers ofM and q, we
use the following numerical strategy. We first take specific
values for q and R. Then, given a value of Λ (such that the
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conditions q; 1=R ≪ Λ are fulfilled), we perform the
integration over x for a range of values of M such that
M ≪ Λ. For any fixed triple ðq; R;ΛÞ, the integral I ¼R
∞
−∞ dxGðxÞ becomes a function of M, I ¼ IðMÞ.
Successively we fit IðMÞ with a polynomial expansion

IðMÞ ¼
X6
n¼0

cnMn ð67Þ

and extract the coefficients of each power of M. Starting
over and over again, while keeping fixed values for q and R
but varying Λ, we obtain the dependence on Λ of the
various cn: cn ¼ cnðΛÞ. The results of the fits for the
different cnðΛÞ are presented in Figs. 5–8.
In Fig. 5 the coefficient c0ðΛÞ is plotted in the range

103 ≤ Λ ≤ 6 × 103, for R ¼ 1 and q ¼ 10. The red dots are
the outcome of the numerical analysis, while the blue
continuous line is the analytic result contained in (66),

namely c0ðΛÞ ¼ q2RΛ3=80π3=2 − q4RΛ=560π3=2. The
numerical values perfectly sit on the analytic curve. The
function c2ðΛÞ, again for R ¼ 1 and q ¼ 10, is plotted in
the left panel of Fig. 6, where againwe see that the numerical
values (red dots) sit on the theoretical curve c2ðΛÞ ¼
RΛ3=48π3=2 − q2RΛ=120π3=2 (blue continuous line) con-
tained in (66). In order to evidentiate the two different
contributions to c2ðΛÞ (one proportional to Λ3 and q-
independent, the other proportional to Λ and q-dependent),
in the right panel of Fig. 6 we compare the two cases q ¼ 0.1
and q ¼ 103, and zoom in the region 14200 ≤ Λ ≤ 14500.
The distance between the blue dots (curve) and yellow dots
(curve) allows to ascertain that the results of the numerical
analysis actually contain for c2 the sum of the two analytic
terms that appear in the curve c2ðΛÞ given above.
In the left panel of Fig. 7, taking once again R ¼ 1 and

q ¼ 10, we plot the results of the numerical analysis for
the function c4ðΛÞ, together with the analytic prediction
c4ðΛÞ ¼ −RΛ=48π3=2. Once more we see that numerical
and analytic curves coincide. We also observe that the
analytic prediction for c4ðΛÞ, namely c4ðΛÞ ¼ −RΛ=
48π3=2, does not depend on q. The numerical investigation
on this point is carried out performing the analysis for q ¼ 1,
q ¼ 10, and q ¼ 100. The results are reported in the right
panel of Fig. 7. The analysis confirms the independence of c4
from q.
Up to now we considered only even powers of M.

Moving to the coefficients c1 and c3 in (67), and perform-
ing for them the same numerical analysis as for c0, c2, and
c4, we find that these terms are not present: c1 ¼ c3 ¼ 0.
We now come to investigate on the possible presence of a
term proportional to M5. In Sec. IV B we have seen that
such a term shows up when a hard spherical cutoff is used,
but it is missing in (66), where not only we implement a
smooth spherical cutoff, but also perform an expansion of
GðxÞ in powers of M and q before proceeding to the
evaluation of

R
∞
−∞ dxGðxÞ in (64). The results of our
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FIG. 5. The red points show the numerical value of the
coefficient c0 in (67) for R ¼ 1 and q ¼ 10 as a function of
the smooth cutoff Λ. The blue continuous line is the theoretical
prediction given in (66), namely c0ðΛÞ ¼ q2RΛ3=80π3=2−
q4RΛ=560π3=2.
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FIG. 6. Left panel: the red dots show the numerical value of the coefficient c2 in (67) for R ¼ 1 and q ¼ 10 as a function of the smooth
cutoff Λ. The blue continuous line is the theoretical prediction given in (66): c2ðΛÞ ¼ RΛ3=48π3=2 − q2RΛ=120π3=2. Right panel: zoom
of c2 in the range 14200 ≤ Λ ≤ 14500 for q ¼ 0.1 (the blue points show the numerical value, the blue line the analytic curve) and
q ¼ 1000 (yellow points and yellow line).
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numerical analysis for the function c5ðΛÞ are reported in
Fig. 8. The red dots are the numerical values of c5 (obtained
for R ¼ 1 and q ¼ 10) for different values of Λ, while the
blue horizontal line is the analytic prediction obtained with
the hard cutoff in (55), namely c5 ¼ 1=60π. Repeating the
same analysis for different values of q we always obtain the
same result for c5ðΛÞ.
These results allow us to ascertain that: (i) theM5 term is

present even when the theory is regularized with a smooth
spherical cutoff (we have already seen in (55) that it is
present when an hard spherical cutoff is used); (ii) its
absence from (66) is certainly due to the fact that the
expansion ofGðxÞ in powers ofM and q before performing
the integral over x is illegitimate [in other words, we cannot
invert the integral over x with the series in powers ofM and
q, as done to obtain (66)]; (iii) the coefficient of M5 is the
same both for the hard and the smooth spherical cutoff
regularizations, and does not depend neither onΛ, nor on q.

Once again, this indicates the universality of this term.
Finally, pursuing the numerical analysis to consider powers
of M higher than 5, we find that no such terms are present.
They all vanish.
The same kind of numerical analysis can also be per-

formed exchanging the roles ofM and q. In the left panel of
Fig. 9, for instance, the red dots are the numerical values, for
R ¼ 1 and M ¼ 10, of the coefficient of q2 for values of Λ
within the range 103 ≤ Λ ≤ 6 × 103, while the blue line is
the analytic result b2ðΛÞ≡ Λ3=80π3=2 −M2Λ=120π3=2
contained in (66). In the right panel we focus on a shorter
range of Λ, namely 1.42 × 104 ≤ Λ ≤ 1.45 × 104, con-
fronting the cases M ¼ 0.1 and M ¼ 103. The distance
between the resulting two curves allows to ascertain the
presence of both terms Λ3=80π3=2 and −M2Λ=120π3=2 in
b2ðΛÞ. Another example is given in Fig. 10, where the
coefficient b4ðΛÞ of q4 is initially plotted for R ¼ 1 and
M ¼ 0.1. The red dots are the results of the numerical
analysis, while the blue continuous line is the analytic
prediction b4ðΛÞ ¼ −Λ=560π3=2 contained in (66).
Successivelywe consider the caseM ¼ 1, and obtain exactly
the same plot, thus confirming the correspondence of the
analytic and numerical results for b4ðΛÞ, and its independ-
ence from M (see above).
Finally, putting together all the results of the present

section, we conclude that when a spherical smooth cutoff is
used, V1lðϕÞ is given by

V1lðϕÞ ¼
5M2 þ 3q2

240π3=2
RΛ3 −

35M4 þ 14q2M2 þ 3q4

1680π3=2

× RΛþM5R
60π

þ R̃2 þOðΛ−1Þ; ð68Þ

which is nothing but (66) with the addition of the universal
M5 contribution.

FIG. 7. Left panel: the red dots show the numerical values of c4 for q ¼ 10, while the blue continuous line is the theoretical prediction
given in (66): c4ðΛÞ ¼ −RΛ=48π3=2. Right panel: The red, yellow, and green dots are the values of c4 for q ¼ 1, q ¼ 10, and q ¼ 100
respectively. The blue continuous line is again the analytic prediction given above.
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FIG. 8. The red dots show the numerical values of c5 as a
function of Λ for R ¼ 1 and q ¼ 10, the blue continuous line is
the analytic prediction (55) of the spherical hard cutoff in Sec. IV
B, c5 ¼ 1=60π.
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Equation (68) is of paramount importance for our
analysis. It shows that the UV-sensitive terms proportional
to powers of q, whose presence in V1lðϕÞ we first
evidentiated using for the calculation a hard cutoff (see
Sec. IV B), are also found when a smooth cut is used: the
results (55) and (68) for V1lðϕÞ (hard and smooth cutoff
respectively) crucially differ from (13) and (59) (the well-
known UV-insensitive result of Sec. II) for the presence of
additional UV-sensitive terms proportional to q2 and q4.
Contrary to the largely diffused idea [38–41] that the
appearance of these terms is due to the use of a hard
cutoff, we have shown that when V1lðϕÞ is calculated
including the asymptotic regions of the virtual momenta in
a consistent manner, UV-sensitive terms proportional to
powers of q show up, irrespectively of the use of a hard or
smooth cutoff. Therefore, the comments that we have done
below Eq. (57) also apply to the present section.

Let us summarize the results obtained so far. In the usual
approach (see Secs. II, IVA, and VA), where V1lðϕÞ is
calculated performing the infinite sum over n independ-
ently from the integration over p, only divergences propor-
tional to powers of M (eventually canceled in SUSY
theories) appear. In Secs. III, IV B, and V B, however,
we have shown that, when the calculation of V1lðϕÞ is
properly done, new field dependent UV-sensitive terms
proportional to powers of q show up. They originate from
the presence of nontrivial boundary conditions on a
multiply connected spacetime. These additional terms
are artificially canceled out when the asymptotic contribu-
tion of the fifth component of the loop momentum pð5Þ is
included in V1lðϕÞ independently from the asymptotic
contributions of the other components. We have also found
that the finite contribution to V1lðϕÞ is always obtained
when the physical conditions q2=Λ2;M2=Λ2 ≪ 1 are
fulfilled, and is physically relevant when the size of the
compact dimension is sufficiently small (compared to the
size of the 4D box).
Coming back to the smooth cutoff case of the present

section, we point out that, using smooth cutoff functions
different from ours, some authors recovered the UV-
insensitive result for V1lðϕÞ. In the next section we
investigate on this issue, considering three notable exam-
ples, namely the “thick brane” [38], the “Pauli-Villars”
[39], and the “proper time” [21,22] calculations.

VI. COMPARISON WITH OTHER SMOOTH
CUTOFF REGULARIZATIONS

We now compare the results that we obtained in
Sec. V B, where for the calculation of V1lðϕÞ we used
the smooth cutoff function e−ðp2þn2=R2Þ=Λ2

, with those
present in the literature, where other smooth functions
are considered. We focus on three different realizations:
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FIG. 9. Left panel: the red dots are the numerical values of the coefficient of q2, b2ðΛÞ, for R ¼ 1 andM ¼ 10. The values of Λ are in
the range ½103; 6 × 103�; the blue continuous line is the analytic prediction b2ðΛÞ ¼ Λ3=80π3=2 −M2Λ=120π3=2 contained in (66). Right
panel: zoom in a limited range of Λ of b2ðΛÞ, forM ¼ 0.1 (the blue dots show the numerical values, the blue line is the analytic curve)
and M ¼ 1000 (yellow dots and yellow line).

FIG. 10. The red dots are the numerical values of the coefficient
of q4, b4ðΛÞ, for R ¼ 1 andM ¼ 0.1. The blue continuous line is
the analytic prediction b4ðΛÞ ¼ −Λ=560π3=2 contained in (66).
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“thick brane” [38], “Pauli-Villars” [39], and “proper time”
[21,22]. To make contact with the existing literature, for the
thick brane and Pauli-Villars regularizations we consider
tadpole one-loop corrections δm2 to the Higgs mass (rather
than the one-loop corrections to the Higgs potential), that
without regularization read

δm2 ¼
X∞
n¼−∞

Z
d4p
ð2πÞ4

1

p2 þ ðnR þ qÞ2 þm2
: ð69Þ

When discussing the proper time, we will go back to
V1lðϕÞ.
For the thick brane case [38], the authors consider a

model with orbifold compactification, and interactions
localized on branes placed at the orbifold fixed points.
Indicating with z the coordinate along the compact dimen-
sion, these interactions in the 5D action Sð5Þ are regularized
by smoothening the localizing delta function δðzÞ with a
Gaussian distribution fðz; lsÞ ¼ 1=ð ffiffiffiffiffiffi

2π
p

lsÞe−z2=l2s , where ls
is the thickness of the brane. Performing in Sð5Þ the
integration over z, the 4D action Sð4Þ is generated, and
the coupling constants turn out to be multiplied by
e−ðn=RþqÞ2π2=2Λ2

, so that (69) becomes12

X∞
n¼−∞

Z
Λ d4p
ð2πÞ4

e−
ðn=RþqÞ2π2

2Λ2

p2 þ ðnR þ qÞ2 þm2
: ð70Þ

The function e−ðn=RþqÞ2π2=2Λ2

provides a smooth cut for the
sum over the fifth component p5 ¼ n=R of the 5D momen-
tum, while the hard spherical cutoff Λ≡ l−1s is used for the
integration over the remaining four components (this is
indicated by the uppercase Λ in the above integral).
Altogether, the sum/integration over the 5D loopmomentum
pð5Þ is done with the cutoff e−ðn=RþqÞ2π2=2Λ2

θðΛ2 − p2Þ.
From (70) we see that the fifth component p5 ¼ n=R

appears only in the combination n=Rþ q, both in the cutoff
function and in the original propagator. From a physical
point of view, such a combination in the cutoff function
is disturbing, as for each of the qi that appear in the
contribution to δm2 it introduces a different cutoff function.
On the contrary, our cutoff function e−n

2=ðR2Λ2Þ does not
depend on the qi, so that in δm2 the high energy modes
are all uniformly cut. We will further comment on this
point later.
Let us move to the Pauli-Villars regularization [39]. The

authors consider the model introduced in [35], and imple-
ment this regularization through the insertion in Sð5Þ of
higher derivative terms. The 5-dimensional d’Alambertian
□ð5Þ is replaced by

□ð5Þð1þ□
2
ð5Þ=Λ

4Þ; ð71Þ

so that Eq. (69) becomes13

X∞
n¼−∞

Z
d4p
ð2πÞ4

Λ4

Λ4 þ ðp2 þ ðnR þ qÞ2Þ2
1

p2 þ ðnR þ qÞ2 þm2
:

ð72Þ

From (72) we see that (71) generates the smooth cutoff
function Λ4=½Λ4 þ ðp2 þ ðnR þ qÞ2Þ2� for the sum/integra-
tion over the 5Dmomentum pð5Þ. Moreover, as for the thick
brane case (70), n=R appears only in the combination
n=Rþ q, so that the observations we made above also
apply to the present case.
Pushing our analysis a step further, we proceed now

to a comparison between the smooth cutoff function
e−ðn=RþqÞ2π2=2Λ2

for the sum over n in (70) and the
corresponding function that we introduced in Sec. V B,
namely e−n

2=ðR2Λ2Þ that appears in (62). In Sec. V B we
calculated the one-loop Higgs potential V1lðϕÞ, while here
we are considering a tadpole contribution to the Higgs
mass. But this is not a problem, since a typical tadpole
contribution of the kind (69) emerges from our V1lðϕÞ with
each term of the sum multiplied by e−n

2=ðR2Λ2Þ. The former
cutoff function can be obtained from the latter replacing14

n=R with n=Rþ q. Although such a replacement might
seem a harmless deformation of our cutoff function, the
final result strongly depends on whether one or the other
of these functions is used. We will see in fact that (i) the
presence of the combination n=Rþ q in the cutoff function,
and (ii) the fact that in [38,39] the sum over n is done
independently from the integral over p, together conspire to
make the final result artificially UV-insensitive: they realize
a washing out of the UV-sensitive terms proportional to
powers of q2.

12In the model discussed in [38] m2 ¼ 0. Eq. (70) is more
general, but this does not change the conclusions.

13In the model considered in [39] the boson and fermion
partners are considered together, and the loop integral for the two
point function is then

X∞
n¼−∞

Z
d4x
ð2πÞ4 x

2

� ðΛRÞ8
½ðΛRÞ4 þ ðx2 þ ð2nÞ2Þ2�2

�
1

x2 þ ð2nÞ2
�

2

−
ðΛRÞ8

½ðΛRÞ4 þ ðx2 þ ð2nþ 1Þ2Þ2�2
�

1

x2 þ ð2nþ 1Þ2
�

2
�
;

where x≡ pR is the adimensional four-momentum, and q takes
the values q ¼ 0; 1=2 for bosons and fermions respectively.
The arguments developed in this section apply to each of the
above integrals.

14In (72) a different cutoff function appears, but it still depends
on q through the combination n=Rþ q, and the considerations
that we develop below also apply to that case.
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To further investigate on this point, we begin by
observing that both (70) and (72) contain functions of
the kind fΛðp; n=Rþ qÞ, where the dependence on n only
comes through the combination n=Rþ q. Within the usual
strategy (where the sum over n and the integral over p are
performed independently from one another), we have then
to calculate expressions of the kind

AðqRÞ≡ X∞
n¼−∞

CΛðnþ qRÞ ð73Þ

with

CΛðnþ qRÞ≡
Z

d4p
ð2πÞ4 fΛ

�
p;

n
R
þ q

�
: ð74Þ

For the purposes of the present discussion, we are only
interested in the presence or absence of divergences
proportional to powers of q, so we disregard the possible
presence of other divergent terms (that in SUSY theories in
any case disappear when the contributions of each couple
of boson and fermion superpartners are combined).
The right-hand side of (73) can be evaluated resorting

again to the EML formula

AðqRÞ ¼
Z

∞

−∞
dxCΛðxþ qRÞ þ lim

L→∞

�
CΛðLþ qRÞ þ CΛð−Lþ qRÞ

2
þ B2

Cð1Þ
Λ ðLþ qRÞ − Cð1Þ

Λ ð−Lþ qRÞ
2

þ R2

�
; ð75Þ

where Cð1Þ
Λ ðxÞ indicates the first derivative of the function

CΛðxÞ, B2 is the Bernoulli number Bi with i ¼ 2, and R2 the
rest. The integer L in (75) is needed in the intermediate steps
of the calculation, and is eventually sent to infinity. Inserting
(75) in (70) and (72),we find that in both cases all the terms in
the second line of (75), with the exception ofR2, areOðL−1Þ,
so they vanish in the L → ∞ limit. In the same limit R2

gives the usual result, with its well-known finite periodic
dependence on q. Therefore, the only possible source of
(q-dependent) divergences in (75) is the integral. However,
due to the choice of a cutoff function that depends on n only
through the combination n=Rþ q, the trivial change of
variable x → xþ qR shows that no q-dependent terms arise
from it, and a fortiori no q-dependent divergences.
To better appreciate the difference with our smooth

cutoff function e−n
2=ðR2Λ2Þ, we go back to our result (62)

for V1lðϕÞ and consider the derivation of a tadpole
contribution to the mass. A simple inspection of (62)
shows that in this case Eq. (73) is replaced by an expression
of the kind

ÃðqRÞ≡ X∞
n¼−∞

C̃Λðnþ qR; nÞ; ð76Þ

where the terms of the series do not depend only on the
combination nþ qR, but also on n alone.
This difference between AðqRÞ and ÃðqRÞ is crucial. We

have already argued that from the physical point of view
AðqRÞ presents the drawback that it generates different
cutoff functions for different values of q in the same
potential, while ÃðqRÞ results from a cutoff function that
implements the cut in the high energy modes in a physically
uniform way for all the terms that contribute to the
potential. Now, applying the EML formula to (76), we
see that in the integral

R∞
−∞ dxC̃Λðxþ qR; xÞ it is not

possible to get rid of the dependence on q by performing

the change of variable xþ qR → x. These observations
allow us to understand the reason why in the one-loop
Higgs potential V1lðϕÞ in (68), that is calculated with the
smooth cutoff function e−n

2=ðR2Λ2Þ, UV-sensitive terms
proportional to powers of q2 appear.
Differently from the UV-sensitive terms proportional only

to powers of M2, the q2-dependent ones do not disappear
evenwhen supersymmetric theories are considered. They are
profoundly different from the former, and are the hallmark of
the UV-sensitivity of V1lðϕÞ that comes from the nontrivial
boundary conditions allowed by the compact extra dimen-
sions when the spacetime manifold is multiply-connected
[see also the discussion below Eq. (57)].
We can ask why, when considering the thick brane and

Pauli-Villars regularizations, smoothing functions that
depend on the combination n=Rþ q ¼ p5 þ q appear.
The reason is that these functions come out from defor-
mations of the original lagrangian in x-space (see
comments above Eqs. (70) and (72) for thick brane and
Pauli-Villars respectively), so that the nonmonodromies of
the fields along the compact dimension [see (5)] generate
the quantity p5 þ q for the regulating functions in momen-
tum space. This results in cuts on n=Rþ q rather than on
the fifth component of the momentum p5 ¼ n=R. But we
already stressed that this is physically not sound, as
different cutoff functions are generated for each value of
the charges qi. Therefore, the thick brane and Pauli-Villars
regularizations implement an ad hoc procedure that arti-
ficially cancels the divergences proportional to powers of
q2. In other words, a class of specially chosen functions
forces the calculations to wash out UV-sensitive terms that
are actually present. There is another reason why such a
way of implementing cutoff functions is physically unac-
ceptable. For models with an effective potential of the
kind (8), where q ¼ qðϕÞ, a field dependence in the cutoff
function would appear, but clearly this is physically
unacceptable.
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We now move to consider the calculation of V1lðϕÞ with the proper time regularization [21,22]. Writing the loop integral
with the help of the Schwinger identity, replacing the lower extreme “0” for the integration over s with 1=Λ2, and
performing the s integral, we get

V1lðϕÞ ¼ −
X∞
n¼−∞

Z
d4p
ð2πÞ4

Z
∞

1

Λ2

ds
s

�
e−sðp2þM2þðnRþqÞ2Þ − eðp

2þn2

R2
Þ
�

¼ −
X∞
n¼−∞

Z
d4p
ð2πÞ4

�
Γ
�
0;
p2 þM2 þ ðnR þ qÞ2

Λ2

�
− Γ
�
0;

n2

R2 þ p2

Λ2

��
ð77Þ

where Γðx; yÞ is the incomplete gamma function. The
proper time regularization then casts the calculation of
V1lðϕÞ in the form

V1lðϕÞ ¼
X∞
n¼−∞

Z
d4p
ð2πÞ4

�
fΛ

�
p;

n
R
þ q

�
þ gΛ

�
p;

n
R

��
;

ð78Þ

that is of the kind (73) (disregarding the second term in the
right-hand side of (78) that is related to the subtraction of
field independent quantities, and then irrelevant for our
physical considerations). The comments made above for
the thick brane and Pauli-Villars regularizations then also
apply to this case.
Before ending this section, we stress again that the above

attempts to implement smooth cutoff regularizations were
made to overcome the objections originally raised in [33]
against the UV-insensitivity (finiteness) of V1lðϕÞ. Our
conclusion is that they are flawed by the use of cutoff
functions that are physically unacceptable and artificially
realize the cancellation of UV-sensitive terms. On the
contrary, the use of physically sound cutoff functions
shows that these are genuine UV-sensitive contributions
that have to be taken into account.

VII. SUMMARY AND CONCLUSIONS

We considered higher-dimensional theories with com-
pact extra dimensions and studied the UV-sensitivity of
the Higgs effective potential V1lðϕÞ derived from these
models. About twenty years ago, some results indicated
that V1lðϕÞ, as well as the Higgs boson mass mH, could be
UV-insensitive (Introduction and Sec. II). The possibility of
having a finite mH was clearly seen as a very welcome
result, leading to the widespread belief that compactifica-
tion could be combined with unbroken higher-dimensional
supersymmetry to alleviate (and possibly get rid of) the
naturalness problem, while still furnishing at low energies
the typical spectrum of a softly broken SUSY theory.
Objections against these results were raised, that triggered a
heated debate. However, the community soon came (or
seemed to came) to a general agreement in favor of the
correctness of the finite results for V1lðϕÞ, that have since

been used in many different applications, even in very
recent times.
The search for a mechanism, a symmetry, a theoretical

framework, where the Higgs mass could show UV-
insensitivity, or at least a much milder sensitivity to UV
physics than the typical one, is clearly a question of the
greatest importance. This motivated us to reconsider the
entire approach based on higher-dimensional theories with
compact extra dimensions. Combining analytical and
numerical methods, we found that the UV-insensitivity of
the Higgs one-loop potential V1lðϕÞ is illusory. In fact, it
results from physically and mathematically illegitimate
steps in the calculation, and we have shown in detail how
an artificial cancellation of UV-sensitive terms occurs. For
the purposes of our analysis, it was sufficient to consider
5D theories with one compact dimension in the shape of a
circle of radius R (Secs. III, IV, and V), but the results can
immediately be extended to more general cases. They show
that V1lðϕÞ has a previously overlooked UV sensitivity,
whose physical origin is in the boundary conditions of the
fields in spacetimes with nontrivial topology.
We have found that the usual result of a UV-insensitive

Higgs potential V1lðϕÞ comes from an incorrect treatment
of the loop momentum asymptotics in the calculation: the
fifth component p5 of the loop momentum pð5Þ is included
separately from the asymptotic contributions of the other
components. In Sec. IVA we have explicitly shown how
such an artificial cancellation of the above mentioned
UV-sensitive terms from V1lðϕÞ takes place in the original
calculation. In Secs. III, IV B (with a hard cutoff), and
V B (with a smooth cutoff) we have shown the way to
properly include the asymptotics of the loop momentum
in the calculation of V1lðϕÞ. As a result, we found the
UV-sensitive terms previously overlooked.
In Sec. VI we analyzed certain smooth regularizations

considered in the previous literature that allowed to recover
the finite result, and thus consolidated the belief that in
V1lðϕÞ and mH no UV-sensitive terms are present. We have
shown that these calculations once again implement an
artificial washing out of the UV-sensitive terms. In par-
ticular, this is what happens in the framework of the proper
time regularization. This latter observation is relevant in
connection with the usual way string theory calculations are
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related to field theory ones. In fact, unfolding the funda-
mental domain of the torus on which the string partition
function is calculated, an integral that strongly resembles a
proper time realization of a loop integral is obtained. Our
results raise some warnings on the use the proper time
integral as the appropriate bridge toward field theories with
nontrivial boundary conditions [9,34].
We cannot conclude the present work without discussing

some well-known attempts to justify the asymmetrical
treatment of the sum over n and the integration over p.
One is rooted in the comparison of this usual way of
performing the calculation of V1lðϕÞ with the correspond-
ing one in finite temperature field theory for the free energy.
It is pointed out that the infinite sum over n has to be
performed before the integration over p as it is the case in
finite temperature field theory for the sum over the
Matsubara frequencies ωn. However, such an advocated
analogy between these two cases is misleading. In fact, the
sum over n in finite temperature field theory is needed to
realize the ensemble average, that implements the ergodic
hypothesis, and as such must be extended up to infinity
(otherwise ergodicity would be violated). The sum over n
and integration over p in our case realize the inclusion in
the theory of the quantum fluctuations, and obviously none
of the components of the loop momentum can be treated
differently from the others. In particular, we should be
extremely careful when treating the asymptotics of each of
these components.15

Another apparently different attempt consists in perform-
ing the calculation of the two-point Green’s function in the
“mixed position-momentum” space [36]. This corresponds
to a physically unrealizable separation of the dynamics
along the compact dimension (S1 in our case) from that in
R4. Actually, trying to solve the dynamics along the circle
while keeping the other components frozen (i.e. technically
swapping ∂

2
ð4Þ ↔ p2

ð4Þ and treating p2
ð4Þ as a constant in the

equations of motion), is tantamount to perform the infinite
sum over n first, and is equally unacceptable on physical
grounds.
We conclude underlining once again that the deep

physical reason for the appearance of UV-sensitive terms
in V1lðϕÞ is in the nontrivial boundary conditions allowed
by the multiply connected nature of the spacetime. We do
not see how such a physical effect related to the nontrivial
topology of the spacetime could be circumvented to make
these terms disappear from V1lðϕÞ.
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APPENDIX

In Eqs. (70), (72), and (77) in the text we have to perform
the sum and the integral of a function of the kind
fΛðp; n=Rþ qÞ, where the dependence on n comes only
through the combination n=Rþ q (apart from a possible
field-independent normalization). Actually fΛ depends on
the square of n=Rþ q, so that we have to calculate an
expression of the kind

FðqRÞ≡ X∞
n¼−∞

�Z
d4p
ð2πÞ4 ½fΛðp; ðnþ qRÞ2;ΛÞ

þ gΛðp; n=R;ΛÞ�
�
: ðA1Þ

In the text we have found that the function FðqRÞwritten
above is periodic (see (18), polylogarithmic functions).
Interestingly, we can show that the fact that a function
FðqRÞ of the kind defined in (A1) is periodic, with period
the unitary interval, can be seen even before performing the
actual calculation. In fact, being the sum infinite, when
qR ∈ N the final result for FðqRÞ does not depend on q (we
can operate the replacement nþ qR → n in the summation
index). This means that a q-dependence can only arise from
values of q such that qR∈N. From (A1) we immediately
see that FðqRÞ ¼ Fð−qRÞ and that FðqRþ sÞ ¼ FðqRÞ,
where s is an integer. Combining the two, we also have that
FðqRÞ ¼ Fð½qR� þ 1 − qRÞ, where ½qR� is the integer part
of qR. There are two important consequences of these
relations: (i) the function FðqRÞ is periodic, with period
equal to the unitary interval; (ii) in each unitary interval
[0, 1], [1, 2], …, the function FðqRÞ is such that in the
second half of the interval it is the mirror symmetric of itself
in the first half of the interval.
We then see that, even before performing the actual

calculation, FðqRÞ can have only a periodic and oscillatory
dependence on q when the sum over n is extended up to
infinity. To obtain such a result two crucial steps are
needed: (i) the introduction of a regularizing function that
casts the ill-defined original one-loop correction into a
well-defined (convergent) contribution of the form (A1)
[(78) in the text]; (ii) the infinite sum over n is performed
independently of the integration over the four-momentum.
In this respect, we observe that even the one-loop potential
considered in Sec. II has the general form (A1), and that

15In this respect we note that we should not be misled by the
fact that in finite temperature field theory in the imaginary time
formalism the “space” is R3 × S1, and in our case it is R4 × S1.
We stress again that the crucial difference between the two cases,
is that in the latter case we cannot send n → ∞ otherwise we
would treat inconsistently the different components of the loop
momentum, while in the former case we must send n → ∞
otherwise we would violate ergodicity.
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also for that calculation we followed the usual strategy of
performing the infinite sum over n independently from the
integration over p. Therefore, all the considerations on the
dependence on q developed above apply straightforwardly
to that calculation, so that the oscillatory form of V1lðϕÞ
had to be expected even in (15).

Finally, we note that in all the cases considered:
(i) limΛ→∞ fðp; n=Rþ q;ΛÞ≡ hðp; n=Rþ qÞ is finite;
(ii)
P∞

n¼−∞ hðp; n=Rþ qÞ is convergent. As the argument
developed above do not depend on the specific value of Λ,
we conclude that the periodic function of q does not
contain Λ.
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