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We analyze the fixed points of QCD at high loop order in a variety of renormalization schemes and
gauges across the conformal window. We observe that in the minimal momentum subtraction scheme
solutions for the Banks-Zaks fixed point persist for values of Nf below that of the MS scheme in the
canonical linear covariant gauge. By treating the parameter of the linear covariant gauge as a second
coupling constant we confirm the existence of a second Banks-Zaks twin critical point, which is infrared
stable, to five loops. Moreover a similar and parallel infrared stable fixed point is present in the Curci-
Ferrari and maximal Abelian gauges which persists in different schemes including kinematic ones. We
verify that with the increased available loop order, critical exponent estimates show an improvement in
convergence and agreement in the various schemes.
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I. INTRODUCTION

Non-Abelian gauge theories with Nf flavors of quarks
are known to possess an infrared stable fixed point for a
range of Nf from the work of Banks and Zaks [1] as well as
that of Caswell [2]. Known as the conformal window the
actual range depends on the values of the color group
factors of the gluon and quark representations. The fixed
point of [1,2], which we will refer to as the Banks-Zaks
fixed point throughout in keeping with common usage, was
derived from the two loop β-function of quantum chromo-
dynamics (QCD) [2–5], in the modified minimal subtrac-
tion (MS) scheme. For the case where the color group is
SUð3Þ and the quarks are in the fundamental representation
the conformal window is 9 ≤ Nf ≤ 16. The bounding
values are deduced by searching for nonzero values of
the coupling constant where the β-function vanishes. To
ensure the asymptotic freedom property of the underlying
theory [3,4] is not destroyed requires the one loop term to
be negative which determines the upper bound. That for the
lower bound comes from the coefficient of the two loop
term which has to be positive. Otherwise there is no
nonzero critical coupling constant. In this scenario the
Banks-Zaks fixed point is infrared stable with the Gaussian
critical point at the origin being ultraviolet stable as a result
of asymptotic freedom. Such conformal windows are not

restricted to QCD itself as they can also occur in super-
symmetric gauge theories for instance. Indeed the windows
have been of interest in general due to their potential
connection with constructing viable beyond the Standard
Model candidates.
One key marker of conformal window studies both

perturbatively and nonperturbatively, in the context of lattice
gauge theory, is the critical exponent of the quark mass. For
instance, with the advance in our knowledge of all the
perturbative renormalization group functions of non-Abelian
gauge theories to five loops in the MS scheme [2–23],
the location of the Banks-Zaks fixed point not only has been
hugely refined but has also for instance produced accurate
quark mass exponent estimates. These are competitive with
lattice measurements at values of Nf which are on the edge
of perturbative applicability. Most of these Banks-Zaks
fixed point analyses have been carried out in the MS
scheme. However other schemes have been considered
for the conformal window such as the minimal momentum
subtraction (mMOM) and modified regularization invariant
(RI0) schemes in [24–26]. While the renormalization group
functions in these schemes are similar in structure to that
of the MS scheme, and constructed to high loop order
too [27–34], kinematic schemes have also been studied.
These are the momentum subtraction (MOM) schemes of
Celmaster and Gonsalves [35,36]. Although there are three
schemes, based on the triple gluon (MOMg), ghost-gluon
(MOMc), and quark-gluon (MOMq) vertices, their renorm-
alization group functions are only available to three loops
for an arbitrary linear covariant gauge [35–38] but to four
loops in the Landau gauge [39]. On the whole the values of
the quark mass critical exponent are on a par with the MS
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estimates in the conformal window. This is consistent with
the underlying properties of critical exponents in that since
they are physical observables they are renormalization
group invariants. Moreover, in a gauge theory they should
have the same value in all gauges. This latter property is not
trivial for a number of reasons.
It is widely known that in the MS scheme the β-function

is independent of the gauge parameter of the linear
covariant gauge [40]. This is not the case in all the other
schemes listed earlier except for the RI0 scheme due to the
particular prescription used to define the coupling constant
renormalization. Therefore if one wished to study Banks-
Zaks fixed points as well as the conformal window in these
other schemes, account has to be taken of the gauge
parameter dependence and its underlying running. This
was highlighted in [41] for example. To do so one has to
solve for the critical points of not only the β-function but
also the anomalous dimension of the gauge parameter α,
denoted by γαða; αÞ where a is the coupling constant.
Strictly α should be regarded as a second coupling constant
and its critical values and those for a deduced from the
zeros of βða; αÞ and αγαða; αÞ. The latter is the β-function
associated with α. In the MS scheme the zeros of βðaÞ
define the critical coupling. However, it is already known
in [41] for instance that there is more than one nonzero
solution for a critical α value in a linear covariant gauge.
Indeed [41] examined this at length with the then known
renormalization group functions in the MS and MOM
schemes of [35,36]. One interesting observation was that
the Banks-Zaks fixed point, with α ¼ 0, is a saddle point
and there is an infrared stable fixed point with α ≠ 0 in the
ða; αÞ plane. In fact, while the number of such nonzero α
solutions increases with loop order, one solution appears to
be robust to the ephemeral ones which can disappear at the
next loop order. This was a remarkable observation and the
effect of running to this infrared fixed point was explored
in [41].
Given there has been a significant advance in the loop

expansion of the renormalization group functions of QCD
in the various schemes mentioned, it seems appropriate to
revisit the various previous Banks-Zaks fixed point analy-
ses and carry out a comprehensive and exhaustive study of
the critical properties of QCD in the ða; αÞ plane. This is the
purpose of this article. In particular we will find the five
loop fixed points in the RI0 and mMOM schemes as well as
the three loop ones for the MOM schemes. The five loop
MS Banks-Zaks fixed point was analyzed in [42] but we
will extend that to the case of α ≠ 0. Several main questions
of interest are the convergence of exponent estimates in the
various schemes as well as the robustness of the infrared
stable fixed point to higher order loop corrections. Since it
may be an artifact of the particular gauge fixing in the linear
covariant gauge we will include several other gauges in our
investigations. These other gauges are covariant with an

associated gauge parameter but are nonlinear. They are the
Curci-Ferrari (CF) gauge [43] and the maximal Abelian
gauge (MAG) [44–46]. By including these two gauges we
will be able to comment on whether certain exponents
exhibit the gauge independence property. The evidence for
this would be to find the critical exponents that are common
to these gauges have the same value to a reasonable level of
accuracy. It is important to recognize that this is not the
same as saying that exponents are independent of the gauge
parameter since that is a separate coupling constant that
takes a value at criticality. Equally another question is if
there is also an infrared stable fixed point in these other
gauges whether or not there is a common value for the
gauge parameter. While this is unlikely, various analyses
in [24,41,47–56] in the linear covariant gauge case have
also identified α ¼ −3 as perhaps being a special case in a
variety of different contexts. It would be interesting to
examine whether a similar negative integer value for the
Curci-Ferrari gauge and MAG emerges in parallel. We
finally remark that a complementary approach to finding
critical exponents based on a scheme independent expan-
sion has also been investigated in detail in [57–61].
The article is organized as follows. The field theory

background to fixed points in gauge theories is reviewed in
Sec. II where we discuss the core methods of our study as
well as the properties of the different gauge fixed QCD
Lagrangians we are interested in. Section III details the main
results of the investigation which proceeds in two parts. This
centers on determining the actual fixed points in the ða; αÞ
plane together with their stability properties prior to numeri-
cally analyzing the core critical exponents of QCD in
Sec. IV. As there were no Banks-Zaks fixed points at five
loops in the MS β-function [42], we reproduce the Padé
analysis of [42] in Sec. V before extending it to the ða; αÞ
plane for not only the MS scheme but also the mMOM and
RI0 schemes at five loops. Concluding remarks are provided
in Sec. VI.

II. BACKGROUND

As we will be considering QCD fixed in several different
gauges, it is instructive to recall the different properties of
each. The appropriate way of viewing this is through the
various Lagrangians. First, the most commonly used covar-
iant gauge is the Lorenz one where the gauge fixing
functional is linear in the fields and produces the Lagrangian

L ¼ −
1

4
Ga

μνGa μν þ iψ̄=Dψ −
1

2α
ð∂μAa

μÞ2 þ c̄a∂μ∂μca

−
g
2
fabcAa

μ∂
μc̄bcc ð2:1Þ

where g will be the gauge coupling throughout, fabc are the
structure constants, and Nf will be the number of quarks.
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The gauge parameter α will have a different origin in the
three gauges we consider, but it will be clear from the
context in our later discussions which gauge we will be
referring to. In (2.1) the color index on the gluon and ghost
fields lie in the range 1 ≤ a ≤ NA where NA is the
dimension of adjoint representation. By contrast gauge
fixing QCD in the MAG gauge leads to a much more
involved set of interactions [44–46,62]. This stems partly
from the nonlinear nature of the gauge fixing functional
but also because the gauge field itself is split into two
sectors. One sector contains those gluons associated with
the group generators that commute among themselves and

form an Abelian subgroup. In general there will be Nd
A

such fields with Nd
A ¼ 2 for SUð3Þ. The remaining fields

are in what is termed the off-diagonal sector and there are
No

A such fields with No
A ¼ 6 for SUð3Þ. Overall we have

Nd
A þ No

A ¼ NA. On top of this the fields of each sector are
gauge fixed differently. Those in the Abelian subgroup are
fixed in the Landau gauge while the off-diagonal ones have
a nonlinear gauge functional. As a consequence the
Faddeev-Popov ghosts of each sector emerge with different
interactions. In light of this explanation the MAG
Lagrangian is [63]

LMAG ¼ −
1

4
Ga

μνGa μν −
1

4
Gi

μνGiμν þ iψ̄=Dψ −
1

2α
ð∂μAa

μÞ2 þ c̄a∂μ∂μca þ c̄i∂μ∂μci

þ g

�
fabkAa

μc̄k∂μcb − fabcAa
μc̄b∂μcc −

1

α
fabk∂μAa

μAb
νAkν − fabk∂μAa

μcbc̄k

−
1

2
fabc∂μAa

μc̄bcc − 2fabkAk
μc̄a∂μc̄b − fabk∂μAk

μc̄bcc
�

þ g2
�
facifbdiAa

μAbμc̄ccd −
1

2α
fakcfblcAa

μAbμAk
νAlν þ fadbfcjbAa

μAjμc̄ccd

−
1

2
fajbfcdbAa

μAjμc̄ccd þ fajbfclbAa
μAjμc̄ccl þ falbfcjbAa

μAjμc̄ccl

−fcjbfdibAi
μAjμc̄ccd −

α

4
fabifcdic̄ac̄bcccd −

α

8
fabefcdec̄ac̄bcccd

þ α

8
facefbdec̄ac̄bcccd −

α

4
fabefclec̄ac̄bcccl þ α

4
facefblec̄ac̄bcccl

−
α

4
falefbcec̄ac̄bcccl þ α

2
fakefblec̄ac̄bckcl

�
ð2:2Þ

where the indices a to e label the off-diagonal sector and i to
l label the fields of the Abelian subgroup. For completeness
we note that if Ai

μ was gauge fixed in the full linear covariant
gauge, rather than the Landau gauge specifically, then the
term 1

2ᾱ ð∂μAi
μÞ2 would be appended to (2.2) where ᾱ is the

sector’s gauge parameter. Although the indices of the off-
diagional sector have a different range from that of the linear
gauge we retain that notation, as the fields of the Nd

A-
dimensional subgroup in effect act as a background field.
This is due to the fact that there is a Slavnov-Taylor identity
in the MAG which implies that the wave function renorm-
alization of the commuting gluon fields equates to the
coupling constant renormalization. A similar property holds
in the background field gauge [64–67]. The other reason
why we retain this index labeling for the off-diagonal sector
is when the formal limit whereNd

A → 0 is taken. In (2.2) this
equates to deleting terms with Abelian subgroup fields or
products of structure constants where there is a summation
over an index of the Abelian subgroup. The resulting
Lagrangian is

LCF ¼ −
1

4
Ga

μνGa μν þ iψ̄=Dψ −
1

2α
ð∂μAa

μÞ2 þ c̄a∂μ∂μca

−
g
2
½fabcAa

μc̄b∂μcc − fabcAa
μ∂

μc̄bcc�

þ 1

8
αg2½facbdc̄ac̄bcccd − fabcdc̄ac̄bcccd� ð2:3Þ

which corresponds to the nonlinear Curci-Ferrari gauge
originally discussed in [43]. In (2.3) the gluon and ghost
color indices have the same range as (2.1). While the terms
of each gauge fixed Lagrangian that are derived from the
square of the field strength are the same due to gauge
invariance, the essential difference in the remaining cubic
interaction terms concern the ghost-gluon ones. In the
Curci-Ferrari gauge there are two such terms distinguished
by which ghost field the spacetime derivative acts on. There
is only one such term in (2.1). Both the MAG and Curci-
Ferrari gauges have quartic ghost interactions directly as a
result of their gauge fixing functional depending on a ghost
antighost bilinear term. Such quartic ghost terms do not
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make the respective Lagrangians nonrenormalizable. On the
contrary the Lagrangians have been shown to be renorma-
lizable through the construction of the Slavnov-Taylor
identities [43,45,46,62].
Another difference with regard to the renormalization in

the various gauges rests in the renormalization of the
respective gauge parameters. If one defines the renormal-
ization of α with the convention

αo ¼ Z−1
α ZAα ð2:4Þ

with the subscripts denoting a bare parameter then the
associated anomalous dimension is given by

γαða;αÞ ¼
�
βða;αÞ ∂

∂a
lnZα − γAða;αÞ

��
1− α

∂

∂α
lnZα

�
−1
:

ð2:5Þ

This is the general relation between Zα and γαða; αÞ but
when Zα ¼ 1, as is the case in the linear covariant gauge, it
reduces to the more familiar relation between γAða; αÞ and
γαða; αÞ. However in both the nonlinear gauges considered
here Zα ≠ 1 and so

γAða; αÞ þ γαða; αÞ ≠ 0: ð2:6Þ

Although this is an unusual property of the renormalization
group functions, in a gauge theory it is important in the
context of the present analysis. The explicit form of γαða; αÞ
will be used to determine the critical properties of QCD
since α is interpreted as a second coupling constant. This is
partly the reason why we included α as a second argument
of the β-function in (2.5). The other reason is that in general
the β-function is gauge dependent. It is only independent of
a covariant gauge parameter in the MS scheme [40], as well
as the RI0 scheme among the suite of schemes we consider.
In kinematic schemes such as the MOM ones of [35,36] the
explicit gauge parameter dependence has been determined
for instance to several loop orders.
Indeed it is this gauge parameter dependence of the

β-function that formed the foundation for the critical point
analysis of [41] that we extend to several loop orders,
schemes, and gauges. Therefore it is instructive to recall the
essence of that approach. The two key renormalization
group functions that determine the critical behavior in the
ða; αÞ plane are defined by

μ
da
dμ

¼ βða; αÞ; μ
dα
dμ

¼ αγαða; αÞ ð2:7Þ

where μ is the mass scale associated with the renormaliza-
tion group equation where the functions appear together.
Equally the order by order solution of the coupled differ-
ential equations of (2.7) determines how a and α depend on
μ. In particular at a critical point a system is scale free which

means in the renormalization group context that βða; αÞ and
γαða; αÞ are key with the solutions of

βða; αÞ ¼ 0; αγαða; αÞ ¼ 0 ð2:8Þ

determining the fixed points of the system. While the
properties of the first equation have been examined at
depth since the discovery of the Banks-Zaks fixed
point [1,2], the scheme that was focused on was the MS
one in a linear covariant gauge. In [24,41] it was observed
that the second equation could not be ignored. In particular
it was noted in [24,41] that there was a second fixed point
with a nonzero gauge parameter at criticality. This arose
from the solution of γαða; αÞ vanishing giving a nonzero
critical value for α—in other words a non-Landau gauge
solution. One might be tempted to assume that there is
always a gauge parameter fixed point that produces the
Landau gauge. This is only the case if γαða; αÞ is not
singular at α ¼ 0. By contrast in the MAG γαða; αÞ has a
singularity at α ¼ 0 [62].
In order to gain as large a viewpoint as possible of the

critical parameter plane we will determine the critical
couplings in the three gauges of interest in a variety of
schemes. These will be the MS, RI0, and mMOM schemes
to five loops in the linear covariant gauges and to three
loops in the other two gauges. The three MOM kinematic
schemes of [35,36] will also be considered for all three
gauges but only to three loops given the difficulty of
computing the underlying master integrals for the non-
exceptional momentum configuration of the vertex func-
tions necessary for the MOM scheme prescription. In this
respect we will use the results derived over a number of
years from [2–23,63,68]. Although the four loop MOM
scheme renormalization group functions are available
in [39] they were only determined in the Landau gauge
rather than a general linear covariant gauge. One reason for
carrying out a high loop order fixed point analysis rests in
the issue of convergence. For instance evaluating the
anomalous dimensions at a fixed point produces critical
exponents which are renormalization group invariants.
In other words, the exponents are physical quantities
but in estimating them perturbatively one has to have a
measure of their convergence. This can be studied not only
by considering values at successive orders in perturbation
theory but also by computing the same exponents in a
different renormalization scheme. In addition the expo-
nents ought to be independent of the choice of gauge. So
evaluating anomalous dimensions that are common to all
gauges at criticality are an additional measure of consis-
tency. Though for completeness we have analyzed the
anomalous dimensions of all the fields as well as the quark
mass operator. The remaining exponents which are impor-
tant to our analysis are those dealing with the stability
properties of the fixed point. In general these properties are
derived from the eigenvalues of the matrix
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βijðgkÞ ¼
∂βi
∂gj

ð2:9Þ

for a theory of n couplings where 1 ≤ i; j; k ≤ n. Here we
have n ¼ 2 with g1 ¼ a, g2 ¼ α and

β1ða; αÞ≡ βða; αÞ; β2ða; αÞ≡ αγαða; αÞ: ð2:10Þ

The main aim is to ascertain whether there are critical
points that are fully stable in the infrared rather than saddle
points. We will denote the two critical eigenexponents
of (2.9) by ωi.

III. FIXED POINT ANALYSIS

While perturbative results are available at various loop
orders in different schemes and gauges for a general gauge
group, our results will focus on the particular group of
SUð3Þ as it is the strong sector of the Standard Model.
Equally we will concentrate on fermions in the fundamental
representation of SUð3Þ. One issue that we will consider is
the properties of the conformal window and whether the
interrelation of real critical points at various values of Nf, as
determined perturbatively, provide a clue as to when it
ceases to exists for low Nf. First we make several obser-
vations concerning our analysis method. As a mathematical
problem finding the solutions to (2.8) is a straightforward
exercise numerically. We have used various tools such as
MAPLE to do this. Consequently as the loop order increases
one finds a large number of zeros for the critical coupling
and gauge parameter. However given the origin of the two
renormalization group functions and the underlying theory
they represent, we have filtered out solutions that are not
physical. For instance we have ignored solutions that are
complex as well as those where a < 0 since the coupling
constant has to be positive. Equally cases where the critical
coupling is large can be discounted as it would exceed the
limits of the perturbative approximation. Although for
values of Nf toward the lower boundary of the conformal
window this latter scenario arises, we have retained these in
order to have an overall perspective similar to the original
work of [1,2].
What remains after this general sieving is a handful of

critical points at three and higher loops. However as we are
dealing with polynomials in the coupling with increasing
order, some fixed points arise at a particular order which
have no candidate partner at the next order in the
neighborhood of the critical coupling and gauge parameter.
Instead it arises at the order subsequent to that one. This is
because at the intermediate order there is a complex fixed
point and so we regard such critical points as artifacts.
Indeed they tend to be associated with saddle points or
unstable fixed points. After the general filtering of the
fixed points our next stage was to determine their stability
properties from the eigenvalues of (2.9). These are either

ultraviolet stable, ultraviolet unstable, or saddle points.
One of our general observations was that the Banks-Zaks
fixed point [1,2] in each of the gauges and schemes was
infrared stable in the coupling constant direction but
infrared unstable in the gauge parameter direction making
it a saddle point. However in the running away from the
infrared stable direction there was an infrared stable fixed
point for both nonzero coupling and gauge parameter
confirming earlier observations of [41]. Moreover the
value of the critical coupling at this infrared stable point
was in general the same value of the coupling at the Banks-
Zaks itself. Therefore we will invariably refer to the fully
infrared stable fixed point as the mirror or twin point.
Having provided an overview of the analysis, it is

instructive to look at the specific situation and for the
moment we will concentrate on the SUð3Þ linear covariant
gauge fixed points in the MS scheme. We have recorded the
location of the critical points at two, three, four, and five
loops in Tables I, II, III, IV, and V.1 These are banked into
groups with the same Nf values. The quantities a∞ and α∞

TABLE I. Two loop MS scheme SUð3Þ fixed points in the
linear covariant gauge in the conformal window.

Nf a∞ α∞ ω1 ω2

Infrared
stability

9 0.416667 0.000000 −4.153646 2.083333 saddle
0.416667 −2.146730 2.353470 2.083333 stable
0.416667 −4.953270 −5.430293 2.083333 saddle

10 0.175676 0.000000 −1.118449 0.761261 saddle
0.175676 −2.303972 0.749845 0.761261 stable
0.175676 −6.990900 −2.275239 0.761261 saddle

11 0.098214 0.000000 −0.520338 0.360119 saddle
0.098214 −2.432707 0.391895 0.360119 stable
0.098214 −9.855172 −1.587611 0.360119 saddle

12 0.060000 0.000000 −0.290250 0.180000 saddle
0.060000 −2.548046 0.237660 0.180000 stable
0.060000 −14.063065 −1.311685 0.180000 saddle

13 0.037234 0.000000 −0.171886 0.086879 saddle
0.037234 −2.655694 0.149886 0.086879 stable
0.037234 −20.749068 −1.171065 0.086879 saddle

14 0.022124 0.000000 −0.099863 0.036873 saddle
0.022124 −2.758253 0.091485 0.036873 stable
0.022124 −32.875081 −1.090390 0.036873 saddle

15 0.011364 0.000000 −0.050894 0.011364 saddle
0.011364 −2.857085 0.048523 0.011364 stable
0.011364 −61.309582 −1.041235 0.011364 saddle

16 0.003311 0.000000 −0.014853 0.001104 saddle
0.003311 −2.952985 0.014638 0.001104 stable
0.003311 −203.880349 −1.010609 0.001104 saddle

1More detailed tables upon which all of the tables are based
are available in a data file associated with the arXiv version of
this paper.
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TABLE II. Three loop MS scheme SUð3Þ fixed points in the
linear covariant gauge in the conformal window.

Nf a∞ α∞ ω1 ω2

Infrared
stability

9 0.081803 0.000000 −0.193341 0.737728 saddle
0.081803 −0.858773 0.172635 0.737728 stable

10 0.060824 0.000000 −0.175883 0.435887 saddle
0.060824 −1.298293 0.154800 0.435887 stable

11 0.046039 0.000000 −0.151892 0.258488 saddle
0.046039 −1.692825 0.134329 0.258488 stable

12 0.034607 0.000000 −0.125974 0.147759 saddle
0.034607 −2.039860 0.113066 0.147759 stable

13 0.025191 0.000000 −0.099007 0.077790 saddle
0.025191 −2.339613 0.090641 0.077790 stable

14 0.017070 0.000000 −0.071194 0.034949 saddle
0.017070 −2.591922 0.066678 0.034949 stable

15 0.009818 0.000000 −0.042753 0.011153 saddle
0.009818 −2.795125 0.041052 0.011153 stable

16 0.003162 0.000000 −0.014138 0.001102 saddle
0.003162 −2.945839 0.013943 0.001102 stable

TABLE III. Four loop MS scheme SUð3Þ fixed points in the
linear covariant gauge for 9 ≤ Nf ≤ 12.

Nf a∞ α∞ ω1 ω2

Infrared
stability

9 0.085291 0.000000 0.017807 0.732193 stable
0.085291 0.078057 −0.018214 0.732193 saddle
0.085291 −5.882389 −1.983191 0.732193 saddle
0.962002 0.000000 −542.394739 3638.528050 saddle
0.962002 2.372214 −12107.306162 −542.394739 unstable
0.962002 −2.710372 −4877.065906 −542.394739 unstable

10 0.064860 0.000000 −0.096514 0.426703 saddle
0.064860 −0.758788 0.084116 0.426703 stable
0.064860 −7.285851 −1.593756 0.426703 saddle
0.446940 0.000000 −72.410221 216.607652 saddle
0.446940 2.631336 −770.095520 −72.410221 unstable
0.446940 −2.802990 −276.712319 −72.410221 unstable

11 0.049832 0.000000 −0.125835 0.249017 saddle
0.049832 −1.444524 0.107670 0.249017 stable
0.049832 −9.164022 −1.495291 0.249017 saddle
0.262159 0.000000 −18.805627 32.056161 saddle
0.262159 2.797166 −114.552315 −18.805627 unstable
0.262159 −3.009747 −40.855724 −18.805627 unstable

12 0.037434 0.000000 −0.121873 0.141164 saddle
0.037434 −1.945284 0.106950 0.141164 stable
0.037434 −11.872619 −1.477787 0.141164 saddle
0.182641 0.000000 −8.151111 9.044557 saddle
0.182641 2.874023 −31.268962 −8.151111 unstable
0.182641 −3.270103 −11.852903 −8.151111 unstable

TABLE IV. Four loop MS scheme SUð3Þ fixed points in the
linear covariant gauge for 13 ≤ Nf ≤ 16.

Nf a∞ α∞ ω1 ω2

Infrared
stability

13 0.026853 0.000000 −0.101310 0.074565 saddle
0.026853 −2.312632 0.091708 0.074565 stable
0.026853 −16.124358 −1.476144 0.074565 saddle
0.141687 0.000000 −4.907150 3.754144 saddle
0.141687 2.881045 −12.298078 −4.907150 unstable
0.141687 −3.553712 −5.175980 −4.907150 unstable

14 0.017793 0.000000 −0.073373 0.033906 saddle
0.017793 −2.588296 0.068423 0.033906 stable
0.017793 −23.713794 −1.471549 0.033906 saddle
0.117756 0.000000 −3.633611 1.980404 saddle
0.117756 2.842775 −6.094849 −3.633611 unstable
0.117756 −3.843479 −2.923578 −3.633611 unstable

15 0.010001 0.000000 −0.043478 0.010988 saddle
0.010001 −2.795819 0.041706 0.010988 stable
0.010001 −41.152460 −1.462900 0.010988 saddle
0.102368 0.000000 −3.051413 1.218110 saddle
0.102368 2.778768 −3.516462 −3.051413 unstable
0.102368 −4.129750 −1.950938 −3.051413 unstable

16 0.003170 0.000000 −0.014174 0.001099 saddle
0.003170 −2.945935 0.013978 0.001099 stable
0.003170 −126.835296 −1.453369 0.001099 saddle
0.091700 0.000000 −2.761435 0.828759 saddle
0.091700 2.700828 −2.247803 −2.761435 unstable
0.091700 −4.407403 −1.453956 −2.761435 unstable

TABLE V. Five loop MS scheme SUð3Þ fixed points in the
linear covariant gauge for 13 ≤ Nf ≤ 16.

Nf a∞ α∞ ω1 ω2

Infrared
stability

13 0.032315 0.000000 −0.122684 0.036682 saddle
0.032315 −2.386609 0.109561 0.036682 stable
0.041343 0.000000 −0.151397 −0.072312 unstable
0.041343 −2.470802 0.131351 −0.072312 saddle

14 0.018526 0.000000 −0.076782 0.031152 saddle
0.018526 −2.603426 0.071510 0.031152 stable
0.046357 0.000000 −0.365291 −0.176646 unstable
0.046357 −2.932818 0.152600 −0.365291 saddle

15 0.010078 0.000000 −0.043850 0.010828 saddle
0.010078 −2.797897 0.042058 0.010828 stable
0.047107 0.000000 −0.587861 −0.190657 unstable
0.047107 −3.326390 0.168639 −0.587861 saddle

16 0.003171 0.000000 −0.014178 0.001098 saddle
0.003171 −2.945965 0.013982 0.001098 stable
0.046999 0.000000 −0.780464 −0.202969 unstable
0.046999 −3.682521 0.185665 −0.780464 saddle
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are the critical coupling values in the same notation as [41]
with ωi being the values of the eigenvalues of (2.9). These
determine the stability properties in the infrared limit which
is indicated in the final column. In all tables of fixed points
we omit the trivial Gaussian, one at the origin which is
infrared unstable. The data relating to the original Banks-
Zaks fixed point agrees with earlier analyses [24–26,41,42].
The mirror point is clearly evident in all five tables.
For the lower values of Nf in the conformal window, the

perturbative approximation ceases to be reliable. Indeed it
was an initial surprise when the five loop MS QCD
β-function became available in [17] that the Banks-Zaks
fixed point did not appear to exist for Nf < 13 when the
standard solution method was employed [42]. This was
clearly resolved in the same article [42], where the five loop
conformal window was accessed via Padé resummation
methods. At four loops a second set of connected solutions
arises in Tables III and IV that has no relation to a lower or
five loop solution. These can be regarded as artifacts and
moreover have no physical importance given that none
relate to a stable point. Equally they have a large critical

coupling and might have suggested a type of asymptotically
safe solution being ultraviolet stable but the lack of a
connection with lower loop order rules that out. One other
interesting feature is the value of the critical gauge param-
eter at the mirror fixed point. For Nf values close to the top
of the conformal window, the value is always in the
neighborhood of α∞ ≈ −3. This value has been observed
before in different contexts [24,41,47–56] and in particular
several instances related to infrared issues in QCD. We
qualify this observation by noting that α∞ ¼ −3 arose in the
particular case of the linear covariant gauge. There is no
reason to expect this property to arise in other gauges let
alone for the same value of the critical gauge parameter.
In order to visualize the renormalization group flow we

have constructed flow plots in the coupling constant and
gauge parameter plane. These are provided in Figs. 1 and 2
for SUð3Þ at two, three, four, and five loops for Nf ¼ 12
and 16 respectively in the case of the linear covariant
gauge. The flow arrow is toward the infrared away from the
Gaussian fixed point at the origin. Our notation is that a
fixed point is indicated by various markers where their

FIG. 1. Flow plane for the MS scheme SUð3Þ linear gauge at two, three, four, and five loops when Nf ¼ 12.
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shapes indicate their stability property. In particular an
infrared stable fixed point is indicated by ×, the Banks-Zaks
critical point is denoted by ▪ where the other saddle points
are marked by ⧫. The remaining shape, ★, denotes an
infrared unstable fixed point and therefore an ultraviolet
stable one. Examining Fig. 1 by way of example one sees
the Banks-Zaks fixed point in line with its mirror partner at
each loop order and Nf value. By contrast infrared unstable
fixed points are present at three and higher loops order but
their location varies by a significant amount at successive
orders and has no physical significance. The general
locations of the Banks-Zaks and its stable mirror partner
are clearly unaffected by the increasing loop order. The five
loop plot of the flow forNf ¼ 12 reflects the absence of the
Banks-Zaks fixed point noted in [42].
We have repeated the same analysis for the Curci-Ferrari

gauge and MAG but only to three loop order as no
renormalization group functions are available beyond that.
While this may appear to limit what can be extracted from a
fixed point analysis, it transpires that although a similar
general picture emerges the details are necessarily different.

The fixed point values at two and three loops together with
their stability for the MS scheme are provided in Tables VI
and VII for the Curci-Ferrari gauge with the parallel data
for the MAG presented in Tables VIII and IX. Various flow
plots for both gauges at two and three loops are provided in
Figs. 3 to 6. For both gauges we include three loop results
for Nf less than the perturbatively accepted value of 8 for
the lower boundary of the conformal window. This is to
illustrate the changing nature of the Banks-Zaks fixed point
in both gauges as it ceases being a saddle point and
transforms into an infrared stable point when Nf ≤ 7.
However for that range the analysis cannot be regarded
as reliable as one is clearly beyond the region of perturba-
tive validity.
We need to qualify what we mean by a Banks-Zaks fixed

point in the case of the MAG. In a linear gauge it
corresponds to a nontrivial β-function zero in the MS
scheme which is gauge parameter independent and so lies
on the α axis in an ða; αÞ flow plot. Given the nature of the
MAG gauge parameter anomalous dimension there is no
fixed point when α ¼ 0 but as is evident from Tables VIII

FIG. 2. Flow plane for the MS scheme SUð3Þ linear gauge at two, three, four, and five loops when Nf ¼ 16.
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and IX there is a fixed point with a value of α close to zero.
This is the one we refer to as the MAG Banks-Zaks fixed
point. We have also checked that when the Nd

A → 0 limit is
taken this fixed point smoothly tends to the Banks-Zaks
fixed point of the Curci-Ferrari model. The flows for both
gauges are given in Figs. 3 and 4 for the Curci-Ferrari
gauge and the corresponding ones for the MAG can be
seen in Figs. 5 and 6 where again we focus onNf ¼ 12 and
16. What is also apparent in the tables for the MAG is that
an additional stable fixed point arises when Nf ≤ 10.
Whether such extra solutions are an artifact of the loop
order is not clear but they are present in an Nf range where
perturbative reliability could be questioned. One feature
that differs from the linear covariant gauge is the value of
the critical gauge parameter at the stable fixed point in both
gauges. In the linear gauge the value was around (−3) but
in the two nonlinear gauges the value appears to be in the
neighborhood of (−5) for Nf near the top end of the
conformal window which has not been noted previously.
Of course the parameters are not the same in each gauge
and such parameters are not physically measurable. Their
main application is in the determination of critical expo-
nents which are renormalization group invariants and
discussed later.

To this point the focus has been on the MS scheme for
different gauges. It is instructive to analyze the fixed points
in another scheme. As the renormalization group functions
are available to five loops in the mMOM scheme [30–33]
for an arbitrary linear gauge parameter, we have solved for
the critical values of a and α in that scheme. In this scheme
the β-function depends on α in contrast to the MS scheme.
The results for two, three, four, and five loops are recorded
in Tables X, XI, XII, and XIII respectively. In general terms
the tables reflect very similar properties to those observed
in the MS scheme. The Banks-Zaks fixed point is evident
across all loop orders and is a saddle point. The associated
infrared stable fixed point is also a feature but with the
caveat that it does not have the same critical coupling as the
Banks-Zaks one. Instead its critical coupling value is very
close to it. The critical gauge parameter value of the
infrared stable points are all again in the neighborhood
of α ¼ −3. For low loop order toward the lower end of the
conformal window there is a larger deviation of this
scenario. However at five loops there is a marked reduction
in the discrepancy from (−3) which is apparent at low
Nf values. This reinforces the MS observation that this
gauge parameter choice may be a deeper property of the
underlying theory.

TABLE VI. Two loop MS scheme SUð3Þ Curci-Ferrari gauge
fixed points for 9 ≤ Nf ≤ 16.

Nf a∞ α∞ ω1 ω2

Infrared
stability

9 0.416667 0.000000 −4.153646 2.083333 saddle
0.416667 −2.387888 3.596809 2.083333 stable
0.416667 −17.812112 −26.829882 2.083333 saddle

10 0.175676 0.000000 −1.118449 0.761261 saddle
0.175676 −2.981627 0.964118 0.761261 stable
0.175676 −21.608116 −6.987048 0.761261 saddle

11 0.098214 0.000000 −0.520338 0.360119 saddle
0.098214 −3.548192 0.452028 0.360119 stable
0.098214 −27.027566 −3.443224 0.360119 saddle

12 0.060000 0.000000 −0.290250 0.180000 saddle
0.060000 −4.078489 0.256566 0.180000 stable
0.060000 −35.143733 −2.210791 0.180000 saddle

13 0.037234 0.000000 −0.171886 0.086879 saddle
0.037234 −4.569040 0.155606 0.086879 stable
0.037234 −48.240484 −1.642904 0.086879 saddle

14 0.022124 0.000000 −0.099863 0.036873 saddle
0.022124 −5.020489 0.092924 0.036873 stable
0.022124 −72.246178 −1.337198 0.036873 saddle

15 0.011364 0.000000 −0.050894 0.011364 saddle
0.011364 −5.435844 0.048748 0.011364 stable
0.011364 −128.897489 −1.155936 0.011364 saddle

16 0.003311 0.000000 −0.014853 0.001104 saddle
0.003311 −5.819105 0.014644 0.001104 stable
0.003311 −413.847562 −1.041453 0.001104 saddle

TABLE VII. Three loop MS scheme SUð3Þ Curci-Ferrari
gauge fixed points for 6 ≤ Nf ≤ 16.

Nf a∞ α∞ ω1 ω2

Infrared
stability

6 1.012686 0.000000 40.841486 92.653913 stable
1.012686 0.773985 −101.745391 40.841486 saddle

7 0.195518 0.000000 0.161289 2.986261 stable
0.195518 0.134812 −0.163479 2.986261 saddle

8 0.116505 0.000000 −0.176683 1.329441 saddle
0.116505 −0.525277 0.169160 1.329441 stable

9 0.081803 0.000000 −0.193341 0.737728 saddle
0.081803 −1.239118 0.177887 0.737728 stable

10 0.060824 0.000000 −0.175883 0.435887 saddle
0.060824 −1.988405 0.158258 0.435887 stable

11 0.046039 0.000000 −0.151892 0.258488 saddle
0.046039 −2.744498 0.135852 0.258488 stable

12 0.034607 0.000000 −0.125974 0.147759 saddle
0.034607 −3.479125 0.113468 0.147759 stable

13 0.025191 0.000000 −0.099007 0.077790 saddle
0.025191 −4.169158 0.090635 0.077790 stable

14 0.017070 0.000000 −0.071194 0.034949 saddle
0.017070 −4.796907 0.066620 0.034949 stable

15 0.009818 0.000000 −0.042753 0.011153 saddle
0.009818 −5.347954 0.041032 0.011153 stable

16 0.003162 0.000000 −0.014138 0.001102 saddle
0.003162 −5.808458 0.013942 0.001102 stable
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While the mMOM and the MS tables display a degree of
similarity there are clearly several major differences. The
first is that the eigenvalues of (2.9) are complex conjugates
at several fixed points. The stability property is determined
by the sign of the real part of the eigenvalues and the
nonzero imaginary part indicates a spiral flow to or away
from criticality. However as the loop order increases the

TABLE IX. Three loop MS scheme SUð3Þ MAG fixed points
for 6 ≤ Nf ≤ 16.

Nf a∞ α∞ ω1 ω2

Infrared
stability

6 1.012686 1.066181 −936.218875 40.841486 saddle
1.012686 −0.302082 614.234192 40.841486 stable
1.012686 −3.789323 −1653.674943 40.841486 saddle
1.012686 −14.751998 22323.155240 40.841486 stable

7 0.195518 0.707879 −5.833518 2.986261 saddle
0.195518 −0.392201 4.297884 2.986261 stable
0.195518 −4.599116 −14.711952 2.986261 saddle
0.195518 −14.877015 148.756038 2.986261 stable

8 0.116505 0.382036 −1.072675 1.329441 saddle
0.116505 −0.513620 0.854383 1.329441 stable
0.116505 −5.459359 −3.633976 1.329441 saddle
0.116505 −14.732061 27.031397 1.329441 stable

9 0.081803 0.110647 −0.405334 0.737728 saddle
0.081803 −0.777901 0.330414 0.737728 stable
0.081803 −6.679483 −1.414481 0.737728 saddle
0.081803 −14.196635 6.776714 0.737728 stable

10 0.060824 −0.052653 −0.267212 0.435887 saddle
0.060824 −1.269137 0.209188 0.435887 stable
0.060824 −9.374058 −0.420956 0.435887 saddle
0.060824 −12.260630 0.747665 0.435887 stable

11 0.046039 −0.141846 −0.217669 0.258488 saddle
0.046039 −1.943195 0.161834 0.258488 stable

12 0.034607 −0.201159 −0.179724 0.147759 saddle
0.034607 −2.691103 0.132673 0.147759 stable

13 0.025191 −0.250104 −0.141632 0.077790 saddle
0.025191 −3.414438 0.109473 0.077790 stable

14 0.017070 −0.296880 −0.102009 0.034949 saddle
0.017070 −4.074876 0.084750 0.034949 stable

15 0.009818 −0.345873 −0.061234 0.011153 saddle
0.009818 −4.684705 0.054889 0.011153 stable

16 0.003162 −0.400455 −0.020208 0.001102 saddle
0.003162 −5.273175 0.019487 0.001102 stable

FIG. 3. Flow plane for the MS scheme SUð3Þ Curci-Ferrari gauge at two and three loops when Nf ¼ 12.

TABLE VIII. Two loop MS scheme SUð3Þ MAG fixed points
for 9 ≤ Nf ≤ 16.

Nf a∞ α∞ ω1 ω2

Infrared
stability

9 0.416667 0.373983 −14.338702 2.083333 saddle
0.416667 −1.775685 12.032176 2.083333 stable
0.416667 −12.989602 −74.798981 2.083333 saddle

10 0.175676 0.246040 −2.897017 0.761261 saddle
0.175676 −2.041475 2.432727 0.761261 stable
0.175676 −14.027308 −15.179420 0.761261 saddle

11 0.098214 0.113996 −1.082583 0.360119 saddle
0.098214 −2.385628 0.909308 0.360119 stable
0.098214 −15.503072 −5.681145 0.360119 saddle

12 0.060000 −0.013878 −0.515865 0.180000 saddle
0.060000 −2.822900 0.434197 0.180000 stable
0.060000 −17.757425 −2.742662 0.180000 saddle

13 0.037234 −0.131066 −0.275179 0.086879 saddle
0.037234 −3.356225 0.233719 0.086879 stable
0.037234 −21.537553 −1.551277 0.086879 saddle

14 0.022124 −0.234163 −0.150092 0.036873 saddle
0.022124 −3.968278 0.130471 0.036873 stable
0.022124 −28.797559 −0.998010 0.036873 saddle

15 0.011364 −0.322652 −0.073940 0.011364 saddle
0.011364 −4.620179 0.067083 0.011364 stable
0.011364 −46.665865 −0.723403 0.011364 saddle

16 0.003311 −0.397788 −0.021258 0.001104 saddle
0.003311 −5.263519 0.020511 0.001104 stable
0.003311 −138.990867 −0.584233 0.001104 saddle
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FIG. 4. Flow plane for the MS scheme SUð3Þ Curci-Ferrari gauge at two and three loops when Nf ¼ 16.

FIG. 5. Flow plane for the MS scheme SUð3Þ MAG at two and three loops when Nf ¼ 12.

FIG. 6. Flow plane for the MS scheme SUð3Þ MAG at two and three loops when Nf ¼ 16.
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spiral flow to the infrared stable fixed point appears to
disappear. Perhaps the most significant aspect of the
mMOM analysis is that there are real solutions for both
a and α for Nf ≤ 12 unlike the MS scheme. This therefore
supports the five loop MS analysis of the Banks-Zaks
critical point of [42] which required a Padé analysis to
access fixed points for Nf ≤ 12. We have included all of the
real solutions to (2.8) partly for completeness but also for
background when viewing the associated mMOM flow
plots. These are given in Figs. 7 and 8 for Nf ¼ 12 and 16
respectively. Clearly some of the extra fixed points in the
mMOM tables are beyond the region of perturbative
validity. However their presence is responsible for the flow
in the regions immediately outside the boundaries of
the plots.
We complete this section by recording the situation with

the kinematic scheme fixed points in the three gauges of
interest. Unlike the MS and mMOM schemes the full
renormalization group functions for the MOM schemes
of [35,36] are only available at three loops for arbitrary
gauge parameter. In order to compare the fixed point
properties with other schemes we have provided the Nf ¼
12 and 16 three loop flow plots for the linear covariant and
Curci-Ferrari gauges as well as the MAG in Figs. 9, 10,
and 11 respectively. In all three gauges and MOM schemes
the Banks-Zaks and the infrared stable fixed points are
clearly evident for Nf ¼ 16. For Nf ¼ 12 the situation is
similar except in one or two schemes the infrared stable
fixed point is not present in the flow plane. While the value
of the critical gauge parameter of the infrared stable fixed
point is consistently around the values of (−3) for the linear
gauge and (−5) for the Curci-Ferrari gauge and MAG the

TABLE X. Two loop mMOM scheme SUð3Þ linear covariant gauge fixed points for 8 ≤ Nf ≤ 16.

Nf a∞ α∞ ω1 ω2 Infrared stability

8 0.052219 −3.795565 −0.151187þ 0.374262i ω�
1 unstable

9 0.416667 0.000000 2.083333 −6.171875 saddle
0.048504 −3.705259 −0.074519þ 0.326283i ω�

1 unstable

10 0.175676 0.000000 0.761261 −1.508081 saddle
0.043898 −3.608171 −0.013262þ 0.266097i ω�

1 unstable

11 0.098214 0.000000 0.360119 −0.651766 saddle
0.038351 −3.505155 0.029014þ 0.199294i ω�

1 stable

12 0.060000 0.000000 0.180000 −0.342900 saddle
0.031919 −3.398484 0.050721þ 0.133051i ω�

1 stable

13 0.037234 0.000000 0.086879 −0.193548 saddle
0.024812 −3.292241 0.053562þ 0.074726i ω�

1 stable

14 0.022124 0.000000 0.036873 −0.108001 saddle
0.017389 −3.191979 0.042741þ 0.029067i ω�

1 stable

15 0.011364 0.000000 0.011364 −0.053170 saddle
0.010070 −3.103310 0.013247 0.037372 stable

16 0.003311 0.000000 0.001104 −0.015057 saddle
0.003200 −3.030182 0.001115 0.014086 stable

TABLE XI. Three loop mMOM scheme SUð3Þ linear covariant
gauge fixed points for 8 ≤ Nf ≤ 16.

Nf a∞ α∞ ω1 ω2

Infrared
stability

8 0.089050 0.000000 1.014521 −0.712285 saddle
0.247362 1.634268 4.420438 26.650609 stable

9 0.064438 0.000000 0.594550 −0.406353 saddle
0.188070 1.757395 3.267307 15.301919 stable

10 0.049421 0.000000 0.368071 −0.275001 saddle
0.162126 1.839694 2.847656 11.795069 stable

11 0.038603 0.000000 0.227456 −0.199789 saddle
0.042908 −3.513882 0.075548 0.453675 stable
0.093269 −3.787885 −0.107796 5.240065 saddle
0.147705 1.893386 2.651692 10.179310 stable
0.481048 −3.475076 2.964235 647.235163 stable

12 0.029962 0.000000 0.134887 −0.148283 saddle
0.031269 −3.323533 0.087686 0.196713 stable
0.138858 1.925597 2.556433 9.295937 stable

13 0.022535 0.000000 0.073340 −0.108285 saddle
0.023188 −3.213214 0.065347 0.109665 stable
0.133279 1.940673 2.518423 8.776404 stable

14 0.015786 0.000000 0.033847 −0.074248 saddle
0.016146 −3.138534 0.033290 0.070371 stable
0.129903 1.941314 2.519382 8.470959 stable

15 0.009383 0.000000 0.011019 −0.043354 saddle
0.009537 −3.080626 0.011009 0.041625 stable
0.128198 1.929163 2.551400 8.310242 stable

16 0.003118 0.000000 0.001100 −0.014158 saddle
0.003138 −3.027421 0.001100 0.013960 stable
0.127908 1.905111 2.611967 8.260995 stable
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associated critical coupling is actually large. While it is
outside the range plotted it is also outside the domain of
perturbative reliability. As an example Tables XIV and XV
record the fixed point data for the two and three loop MAG
fixed points in the MOMc scheme. Given the improvement
with convergence at Nf ¼ 12 that was apparent in the
higher order MS and mMOM scheme fixed points, we
would expect that situation to improve if the full four loop
renormalization group functions with α ≠ 0 were available.

IV. CRITICAL EXPONENTS

While the location of fixed points is important for
understanding the renormalization group flow in QCD,
the quantities of physical relevance are the critical expo-
nents. Their values define the properties of the critical theory
and are important for discerning the underlying conformal
field theory at a fixed point. In our case values or estimates
for the exponents are derived from the renormalization group
functions of QCD by evaluating them at the various fixed

points. In this section we will discuss the critical exponents
derived from the anomalous dimensions of the gluon, ghost,
and quark fields as well as the quark mass dimension in the
various gauges and schemes. The exponent derived from the
quark mass anomalous dimension is gauge independent. So
one aspect of our analysis will be to examine this in the
various schemes and gauges. Moreover by comparing their
values for a variety of schemes and gauges, the issue of
perturbative convergence can be examined. In addition the
exponents ω1 and ω2 are derived from the underlying
β-functions (2.10) and therefore should also be independent
of the gauge fixing procedure. We qualify this outline of the
analysis by recalling that data for the MOM kinematic
schemes will be restricted to three loops unlike the MS,
mMOM, and RI0 schemes where five loop data are available.
Previous exponent studies of the QCD critical points in
various schemes was restricted to the Banks-Zaks fixed point
in the MS, RI0, and mMOM schemes [24,25,69,70] and the
kinematic schemes [71]. Since we have examined the ða; αÞ
flow plane in depth here, our main focus will be on the

TABLE XII. Four loop mMOM scheme SUð3Þ linear covariant gauge fixed points for 8 ≤ Nf ≤ 16.

Nf a∞ α∞ ω1 ω2 Infrared stability

8 0.072796 0.000000 0.966044 −0.474778 saddle
0.363423 0.712602 31.432482 87.465149 stable
0.060959 −3.485534 0.121193þ 0.476810i ω�

1 stable

9 0.054935 0.000000 0.582834 −0.292463 saddle
0.164446 0.956855 5.810601þ 4.718666i ω�

1 stable
0.055612 −3.212828 0.297571þ 0.228641i ω�

1 stable

10 0.044230 0.000000 0.368153 −0.218958 saddle
0.132289 1.038384 3.245073þ 3.666805i ω�

1 stable
0.046629 −3.124397 0.254470þ 0.096501i ω�

1 stable

11 0.036070 0.000000 0.229542 −0.173654 saddle
0.118918 1.056106 2.251850þ 3.334076i ω�

1 stable
0.038443 −3.114044 0.186719þ 0.043680i ω�

1 stable

12 0.028981 0.000000 0.136117 −0.137930 saddle
0.112300 1.032029 1.603291þ 3.208646i ω�

1 stable
0.030859 −3.126726 0.129691þ 0.017731i ω�

1 stable

13 0.022329 0.000000 0.073621 −0.105460 saddle
0.109339 0.972815 1.038648þ 3.154356i ω�

1 stable
0.023543 −3.131342 0.071258 0.099595 stable

14 0.015838 0.000000 0.033786 −0.074090 saddle
1.129859 0.000000 −2949.963120 10907.035799 saddle
0.109027 0.877422 0.435182þ 3.095324i ω�

1 stable
0.016445 −3.114255 0.033121 0.070396 stable

15 0.009431 0.000000 0.010979 −0.043538 saddle
0.315742 0.000000 −78.894602 58.143613 saddle
0.111199 0.736988 −0.328756þ 2.911875i ω�

1 unstable
0.009636 −3.076936 0.010922 0.041922 stable

16 0.003121 0.000000 0.001099 −0.014174 saddle
0.190288 0.000000 −20.905119 5.336964 saddle
0.116265 0.528607 −1.453173þ 2.166313i ω�

1 unstable
0.003143 −3.027354 0.001099 0.013980 stable
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exponents of the infrared stable fixed point. In the linear
covariant gauge the value of the critical coupling for the
Banks-Zaks and infrared stable fixed points are the same.
Therefore there is a natural question as to whether the
corresponding exponents are similar. If so this would
reinforce the notion that the infrared stable fixed point is
a mirror of the Banks-Zaks one.
First we concentrate on the four and five loop estimates

for the MS, mMOM, and RI0 schemes with values recorded
in Tables XVI to XXI. In these and other such tables the
syntax is that BZ indicates Banks-Zaks and IRS denotes the
infrared stable fixed point which is closest to the α axis on
the flow plane. In addition type (IRS) in a table denotes
another infrared stable fixed point that was identified in the
corresponding earlier list of fixed points. Only Banks-Zaks
and infrared stable fixed point exponents are recorded in the
tables as exponents at saddle or infrared unstable fixed
points are not of physical relevance. We recall that it is not
always the case that values for exponents are available for

each fixed point type across each scheme. Indeed this is not
the case at five loops in the MS scheme as noted in [42]
with the same situation for the RI0 scheme since its
β-function is formally the same as the MS one. The
quantities γϕ where ϕ ∈ fA; c;ψg in the tables denote
the critical exponents for the gluon, ghost, and quark fields.
The final column of each of our exponent tables will be the
exponent ρm which is related to the quark mass anomalous
dimension and is given by

ρm ¼ −2γψ̄ψ ða∞; α∞Þ: ð4:1Þ

In focusing on the MS, mMOM, and RI0 schemes in the
first instance, the four loop tables are provided for
orientation with the main task of studying the effect of
the next order correction. We note that exponent estimates
for these and the MOM schemes had been recorded earlier
in [72] for the Banks-Zaks critical point. That study

TABLE XIII. Five loop mMOM scheme SUð3Þ linear covariant gauge fixed points for 8 ≤ Nf ≤ 16.

Nf a∞ α∞ ω1 ω2 Infrared stability

8 0.050162 0.000000 0.928758 −0.249221 saddle
0.047937 −3.192836 0.742629 0.261331 stable
0.178070 1.377827 4.732069 173.467310 stable
8.186013 1.470023 −7742265.147766 32959305743.666241 saddle

9 0.044015 0.000000 0.608228 −0.202835 saddle
0.043123 −3.003521 0.510250 0.209211 stable
0.116454 1.315030 3.633119 18.970870 stable

10 0.039122 0.000000 0.391910 −0.178382 saddle
0.039060 −2.975110 0.348737 0.178474 stable
0.103319 1.204261 5.029211þ 2.081153i ω�

1 stable

11 0.034349 0.000000 0.239411 −0.158660 saddle
0.034890 −3.025124 0.223755 0.153415 stable
0.096774 1.021248 2.047620þ 3.312087i ω�

1 stable

12 0.028976 0.000000 0.136151 −0.135918 saddle
0.029873 −3.093637 0.119065 0.140522 stable
0.092477 0.737912 0.042881þ 2.607927i ω�

1 stable

13 0.022746 0.000000 0.071625 −0.107263 saddle
0.023575 −3.130751 0.068903 0.101307 stable
0.088935 0.273310 −2.008768 −0.682213 unstable
0.103541 0.000000 −5.382778 0.691961 saddle

14 0.016067 0.000000 0.032997 −0.075242 saddle
0.016555 −3.118834 0.032707 0.070665 stable
0.073378 0.000000 −2.190706 −0.257694 unstable
0.083341 −0.745879 −3.737705 0.245837 saddle

15 0.009476 0.000000 0.010888 −0.043759 saddle
0.009660 −3.078166 0.010878 0.041996 stable
0.057124 −3.612651 −0.513955 0.630062 saddle
0.062696 0.000000 −1.652417 −0.333851 unstable

16 0.003122 0.000000 0.001098 −0.014178 saddle
0.003143 −3.027377 0.001098 0.013982 stable
0.050584 −3.866561 −0.515577 0.687634 saddle
0.057710 0.000000 −1.551958 −0.359307 unstable
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together with [24] included results for SUð2Þ and SUð4Þ as
well as for the quark in a variety of representations. For the
ρm exponent one obvious property that is evident here in the
MS scheme at all loop orders is that the BZ and IRS values
of ρm are the same at each loop order. This follows simply
from the fact that the anomalous dimension of the quark
mass operator is gauge parameter independent in the MS
scheme. Therefore the value of the critical gauge parameter
is irrelevant for the exponent. In the mMOM and RI0
schemes the quark mass operator does depend on the gauge
parameter. So one would expect some deviation of the
values for ρm at the BZ and IRS fixed points. This is quite
clearly the case at four loops for both schemes, although at
each fixed point for Nf ¼ 15 and 16 ρm is virtually
identical which is the part of the conformal window where
perturbative reliability is best. What is striking is that at five
loops the value of ρm at the BZ and IRS fixed points
appears to show a marked convergence to a common value
even down to Nf ¼ 12 for mMOM and Nf ¼ 13 for RI0.
Below that Nf value for the RI0 scheme there are no five
loop solutions of (2.8). This strongly suggests that the MS

property of ρm at the BZ and IRS fixed points will become a
scheme independent property with more accuracy.
The convergence for the gluon, ghost, and quark expo-

nents is not as accurate except of course for the gluon at the
IRS fixed point in the linear covariant gauge. This is
because in that gauge the gluon anomalous and gauge
parameter anomalous dimensions are equal and opposite
and the vanishing of the latter is used to find the critical
point values. For the BZ fixed point the gluon exponent is
reasonably consistent down to Nf ¼ 14 for the three
schemes at four and five loops. For Nf ≤ 13 there is a
marked distinction between the value for RI0 compared to
the other two schemes. This can simply be put down to the
lack of fixed points at five loops for Nf ≤ 12 in the MS and
RI0 schemes. The deviation is apparent at four loops. The
picture for γc is somewhat similar but with the value for the
BZ fixed point is in better agreement across the three
schemes even down to Nf ¼ 12 at five loops. By contrast
the critical value of γψ at the IRS fixed point appears to be
more consistent in the three schemes down to the Nf ¼ 12

demarcation. More importantly there is a clear improvement

FIG. 7. Flow plane for the mMOM scheme SUð3Þ linear gauge at two, three, four, and five loops when Nf ¼ 12.
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in convergence comparing the values of γψ at four loops
with their five loop counterparts. This reinforces the earlier
observation that the extra loop order is pointing to the
emergence of a more accurate picture deeper into the
conformal window. It is worth remarking at this point that
a similar observation has been made recently in this respect
but in a different context in [73]. There dimensionless ratios
involving meson decay constants were studied in the
conformal window using the perturbative expansion method
about the Banks-Zaks fixed point introduced in [1]. Using a
fourth order expansion Nf ¼ 12 was identified as a boun-
dary where the perturbative approach was reliable [73].
The situation with the kinematic schemes and nonlinear

gauges is not as clear cut. The values of exponents at three
loops in the three MOM schemes and the gauges of interest
are given in Tables XXII to XXX. For the tables with MAG
results the type (BZ) indicates the saddle point that would be
in the neighborhood of the Banks-Zaks fixed point of the
other two gauges. In terms of relevance the gluon and ghost
critical exponents can only be compared for convergence
within each gauge and not in any other gauge. This is

because these fields are not strictly the same object in
different gauges. The only exponents that can be compared
across gauges are ρm and ωi. Examining ρm for the MOM
schemes shows up several patterns of consistency. First for
Nf close to the top of the conformal window the value of ρm
at both the Banks-Zaks and infrared stable fixed points are
generally in very good agreement to three decimal places in
the three gauges and MOM schemes. There is one exception
though which is MOMg value at the infrared stable point in
the Curci-Ferrari gauge. Similar exceptions to the general
pattern for other exponents in the various gauges and
schemes are apparent in the various tables. They can usually
be attributed to accidental cancellations in evaluating the
perturbative expansion. This actually lends weight to
ensuring exponent estimates are derived in as many different
ways as possible in order to extract the general trends. At
lower values of Nf in the conformal window the MOM
scheme exponents are not as accurate as one would expect.
For instance examining theNf ¼ 12 case there is reasonable
consistency at the Banks-Zaks point across the three gauges
for each scheme. However there is a discrepancy across

FIG. 8. Flow planes for the mMOM scheme SUð3Þ linear gauge at two, three, four, and five loops when Nf ¼ 16.
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schemes within each gauge. For the infrared stable fixed
point only the MOMq results have a degree of accuracy but
the values for both fixed points undershoot the three loop
MS values. We recall that at Nf ¼ 12 there is no infrared
stable fixed point in the MOMg scheme. Clearly what is
lacking for these lower values of Nf are the higher order
corrections in the perturbative series.

While the only four loop MOM scheme renormalization
group functions that are available are in the Landau
gauge [39], we can try this information to probe whether
the exponent convergence improves albeit at the Banks-
Zaks fixed point. The results of this exercise are presented
in Table XXXI in the conformal window. What is evident
from comparing the values of ω in the three schemes is that

FIG. 9. Flow planes for the three MOM schemes in SUð3Þ at three loops for Nf ¼ 12 (left set) and Nf ¼ 16 (right set).
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there is a degree of agreement for down to Nf ¼ 14 at
which point the estimates in the MOMg scheme cease to be
commensurate. In the MOMq case the values of ω are in
reasonable agreement with those of MOMc down to
Nf ¼ 11. What is interesting is that comparing the ω

estimates for MOMc with the four loop mMOM ones there
is remarkable agreement down to Nf ¼ 9. Although both
schemes are based on the properties of the same vertex
function the momentum configuration where the subtrac-
tion is carried out is different. One is for a nonexceptional

FIG. 10. Flow planes for the three MOM schemes in SUð3Þ Curci-Ferrari at three loops for Nf ¼ 12 (left set) and Nf ¼ 16 (right set).
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momentum setup while the other is exceptional respec-
tively. In this instance it would seem to reflect that there is
an improvement in convergence. Comparing with the same
region of the conformal window for the MS scheme is
probably not a reliable exercise given that there was no five

loop Banks-Zaks fixed point solution for low Nf.
Regarding the MOMg scheme the drop off in the ω
estimate as Nf reduces might be indicative of a slow
convergence or an indication that the Banks-Zaks fixed
point might disappear at five loops. As such an eventuality

FIG. 11. Flow planes for the three MOM schemes in SUð3Þ MAG at three loops for Nf ¼ 12 (left set) and Nf ¼ 16 (right set).
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arises in one scheme the same behavior in another cannot
be excluded.
The other exponents that should have a degree of

consistency across schemes and gauges are those connected
with corrections to scaling which are ω1 and ω2. First
examining the MS values of ωi in the linear covariant gauge
in Tables III, IV, and V several observations emerge that are
also evident in other schemes and gauges. The obvious one
is that one of the eigenvalues of (2.9) is the same for both
the Banks-Zaks and infrared stable fixed point. Curiously
the other stability eigenvalues are roughly equal in magni-
tude which is a feature of all Nf values in the conformal
window. Whether their equality will emerge with higher
precision is an open question. Moreover the convergence
from four to five loops is present down to Nf ¼ 14 but the
loss of a solution for the conformal below Nf ¼ 13 is again
reflected in the values for ωi at this latter Nf value. To
gauge the structure at five loops better it is convenient to
examine the ωi for the mMOM scheme which are given in
Tables XII and XIII as the latter covers the conformal
window more fully.2 Comparing the four loop values there
is good agreement at the top of the conformal window
down toNf ¼ 13 but the positive exponent that is supposed

to be the same at both the Banks-Zaks and infrared stable
fixed points begins to differ at this Nf value consistent with
the appearance of the complex values for ωi for Nf ≤ 12

and the switch of the stable infrared fixed point away from a
critical gauge parameter value in the neighborhood of
α ¼ −3. At five loops for both schemes the consistency
for the top end of the window improves as expected from
the increased perturbative accuracy. What is more striking
though can be seen from the Nf ¼ 13 values of the four
loop MS and five loop mMOM ωi estimates. These are
much more in keeping with each other indicating the
importance of studying the properties in more than one
scheme.
While these comments concern the linear covariant

gauge in particular it is instructive to look at the situation
in the two nonlinear gauges. However for a fair comparison
we will focus on the three loop values as nothing is
available beyond that order for the Curci-Ferrari gauge
and MAG. First examining the values of ωi in the linear
covariant and Curci-Ferrari gauges given in Tables II
and VII there are several points to note. First while the
ω2 values are the same for both fixed points in 9 ≤ Nf ≤ 16

this reflects the α independence of the common β-function
in both gauges in the MS scheme. What is more interesting
is that the values ω1 are remarkably consistent for the same
range of Nf with a slight discrepancy in value at the lower
end. What has to be remembered is that the critical gauge

TABLE XIV. Two loop MOMc scheme SUð3Þ fixed points for the MAG for 9 ≤ Nf ≤ 16.

Nf a∞ α∞ ω1 ω2 Infrared stability

9 0.033833 −8.143603 −0.141127þ 0.284271i ω�
1 unstable

10 0.034117 −7.784169 −0.089868þ 0.260414i ω�
1 unstable

0.323141 0.519306 1.041758 −4.497781 saddle

11 0.033655 −7.364723 −0.033540þ 0.222947i ω�
1 unstable

0.123479 0.165298 0.406388 −1.137423 saddle
5.519238 1.674527 188.897763 396.630816 stable

12 0.031606 −6.879356 0.020789þ 0.167020i ω�
1 stable

0.067453 −0.046271 0.190327 −0.515078 saddle
1.476988 1.916484 42.559782þ 20.144833i ω�

1 stable

13 0.026761 −6.364145 0.055556þ 0.095535i ω�
1 stable

0.039716 −0.191430 0.089168 −0.273455 saddle
0.806259 2.117233 18.914033þ 11.732178i ω�

1 stable

14 0.019089 −5.932927 0.055911þ 0.026515i ω�
1 stable

0.022912 −0.293143 0.037277 −0.149419 saddle
0.546940 2.294665 11.561464þ 8.159073i ω�

1 stable

15 0.011554 −0.364086 0.011402 −0.073734 saddle
0.010713 −5.675674 0.012346 0.056948 stable
0.412326 2.456372 8.208946þ 6.298732i ω�

1 stable

16 0.003326 −0.412862 0.001104 −0.021234 saddle
0.003263 −5.575657 0.001109 0.020108 stable
0.330726 2.606374 6.351019þ 5.181185i ω�

1 stable

2Our tables for the stability exponents were generated and
written automatically using MAPLE. So the values of ω1 and ω2

for the mMOM scheme tables need to be swapped in order to
compare with their MS counterparts.
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TABLE XV. Three loop MOMc scheme SUð3Þ fixed points for the MAG for 9 ≤ Nf ≤ 16.

Nf a∞ α∞ ω1 ω2 Infrared stability

9 0.001323 −63.474435 −0.144700þ 0.059892i ω�
1 unstable

0.060025 −0.761340 0.568218 −0.381005 saddle
2.014127 −4.819139 387.341962 37185.984046 stable

10 0.001338 −63.103585 −0.145138þ 0.059715i ω�
1 unstable

0.048050 −0.606026 0.365311 −0.288998 saddle
0.525666 −5.116521 25.061445 792.707980 stable

11 0.001352 −62.729216 −0.145579þ 0.059527i ω�
1 unstable

0.038617 −0.508019 0.230425 −0.229882 saddle
0.296834 −5.387866 7.437932 165.517733 stable

12 0.001368 −62.351201 −0.146021þ 0.059328i ω�
1 unstable

0.030574 −0.447329 0.138002 −0.183365 saddle
0.203684 −5.644839 3.182526 60.810915 stable

13 0.001383 −61.969404 −0.146465þ 0.059117i ω�
1 unstable

0.023297 −0.412168 0.075176 −0.141737 saddle
0.152357 −5.896500 1.565192 28.638488 stable

14 0.001399 −61.583684 −0.146910þ 0.058892i ω�
1 unstable

0.016412 −0.396570 0.034530 −0.101482 saddle
0.018678 −5.773235 0.017981 0.147102 stable
0.033568 −6.408346 −0.036840 0.581060 saddle
0.118778 −6.152061 0.789257 15.231931 stable

15 0.001416 −61.193890 −0.147358þ 0.058653i ω�
1 unstable

0.009714 −0.398207 0.011136 −0.061017 saddle
0.009926 −5.607244 0.009922 0.061538 stable
0.042793 −6.748763 −0.068640 1.158181 saddle
0.093250 −6.426348 0.350284 8.353139 stable

16 0.001433 −60.799859 −0.147806þ 0.058400i ω�
1 unstable

0.003168 −0.416277 0.001102 −0.020198 saddle
0.003158 −5.568650 0.001093 0.019646 stable

TABLE XVI. Four loop MS scheme SUð3Þ linear covariant
gauge critical exponents.

Nf Type γA γc γψ ρm

8 (IRS)/BZ −0.595200 0.297600 −0.095887 −1.562280
9 BZ −0.017807 0.008903 −0.048726 −0.143490
10 BZ 0.096514 −0.048257 −0.026915 0.155885

IRS 0 −0.070828 −0.098415 0.155885

11 BZ 0.125835 −0.062918 −0.012892 0.249686
IRS 0 −0.105421 −0.115454 0.249686

12 BZ 0.121873 −0.060936 −0.005073 0.253328
IRS 0 −0.109067 −0.108915 0.253328

13 BZ 0.101310 −0.050655 −0.001559 0.209757
IRS 0 −0.094220 −0.089777 0.209757

14 BZ 0.073373 −0.036686 −0.000337 0.147421
IRS 0 −0.070098 −0.064964 0.147421

15 BZ 0.043478 −0.021739 −0.000034 0.083600
IRS 0 −0.042422 −0.038564 0.083600

16 BZ 0.014174 −0.007087 0.000001 0.025895
IRS 0 −0.014069 −0.012594 0.025895

TABLE XVII. Five loop MS scheme SUð3Þ linear covariant
gauge critical exponents.

Nf Type γA γc γψ ρm

8 � � � � � � � � � � � � � � �
9 � � � � � � � � � � � � � � �
10 � � � � � � � � � � � � � � �
11 � � � � � � � � � � � � � � �
12 � � � � � � � � � � � � � � �
13 BZ 0.122684 −0.061342 −0.001436 0.238701

IRS 0 −0.115113 −0.109348 0.238701

14 BZ 0.076782 −0.038391 −0.000170 0.154060
IRS 0 −0.073395 −0.067884 0.154060

15 BZ 0.043850 −0.021925 −0.000019 0.084340
IRS 0 −0.042786 −0.038884 0.084340

16 BZ 0.014178 −0.007089 0.000001 0.025903
IRS 0 −0.014074 −0.012597 0.025903
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parameter for each Nf value is not the same unlike the
critical coupling. This lends weight to the observation that
the infrared stable fixed point is a Banks-Zaks twin point.
This pattern is less conclusive for the MOM schemes in the
Curci-Ferrari gauge with only the MOMq data for ωi

producing comparable values with those in the MS scheme
for Nf down to 13 flavors at three loops. In the MOMg
scheme only in the Nf ¼ 16 case is there a stable infrared
fixed point and then the ωi values are not in keeping with
the other schemes and gauges. This is again perhaps related
to the absence of a similar critical point for lower values of
Nf in this scheme for the Curci-Ferrari gauge. The values
for ωi are not as accurate at the Banks-Zaks point either
aside from ω2 down to Nf ¼ 11. For this fixed point in the
MOMc scheme the situation at three loops is almost on par
with the MOMq results. However aside from Nf ¼ 16 the
values of ωi in the MOMc scheme are not reliable. In light
of this one natural question concerns why the picture in the
MOMq scheme is better than those in the MOMg and
MOMc ones. Perhaps this can be explained by the position
in the respective two loop cases. For MOMg there are no
infrared stable fixed point solutions and only one appears at
three loops unlike the linear covariant gauge. In the MOMc

case at two loops there are infrared stable fixed points but
aside from Nf ¼ 16 the ωi are complex conjugates which
become real at three loops. So it seems clear that for these
two schemes the existence and properties of this infrared
stable fixed point requires several more loop orders to
become manifest on a comparable level to other schemes.
To complete our commentary on the situation with the

corrections to scaling exponents we turn to the MAG
results where the two and three loop MS results are given
in Tables VIII and IX. Focusing for the moment on three
loops it is clear that the ω2 value is in good agreement for a
wide range of Nf with the other two gauges. For the other
exponent there is a wide disparity even for the fixed point
close to the origin. This seems particularly peculiar given
that the Curci-Ferrari gauge and MAG are intimately
connected but the MS ωi values are better aligned with
those of the linear covariant gauge. This is perhaps
indicative of a specific property of the MAG itself rather
than a particular breakdown in the connection with the
Curci-Ferrari gauge. In this respect we recall that the MAG
treats the diagonal and off-diagonal gluons differently in
the gauge fixing functional. The parameter α in this gauge
relates to the nonlinear gauge fixing for the off-diagonal
gluons but the diagonal ones are fixed in the Landau
gauge. In the same way that we explored the ða; αÞ plane

TABLE XVIII. Four loop mMOM scheme SUð3Þ linear covar-
iant gauge critical exponents.

Nf Type γA γc γψ ρm

8 BZ 0.474778 −0.237389 −0.017956 2.025675
(IRS) 0 −2.258175 −60.188725 260.687360
IRS 0 −0.265079 −0.226746 1.044736

9 BZ 0.292463 −0.146232 −0.010391 0.979184
(IRS) 0 0.001655 −2.579132 7.594993
IRS 0 −0.222793 −0.215257 0.836272

10 BZ 0.218958 −0.109479 −0.006569 0.620806
(IRS) 0 0.117721 −1.072557 1.658957
IRS 0 −0.184374 −0.182289 0.593885

11 BZ 0.173654 −0.086827 −0.003834 0.436592
(IRS) 0 0.154522 −0.702656 0.071329
IRS 0 −0.154669 −0.151401 0.434220

12 BZ 0.137930 −0.068965 −0.001939 0.317156
(IRS) 0 0.171764 −0.572375 −0.740644
IRS 0 −0.127538 −0.122541 0.320300

13 BZ 0.105460 −0.052730 −0.000786 0.226367
(IRS) 0 0.180910 −0.539644 −1.365889
IRS 0 −0.099963 −0.094153 0.229135

14 BZ 0.074090 −0.037045 −0.000220 0.150241
(IRS) 0 0.184904 −0.573180 −2.017939
IRS 0 −0.071427 −0.066024 0.151374

15 BZ 0.043538 −0.021769 −0.000027 0.083816
IRS 0 −0.042586 −0.038701 0.084007

16 BZ 0.014174 −0.007087 0.000001 0.025896
IRS 0 −0.014072 −0.012595 0.025899

TABLE XIX. Five loop mMOM scheme SUð3Þ linear covariant
gauge critical exponents.

Nf Type γA γc γψ ρm

8 BZ 0.249221 −0.124610 −0.001137 1.005585
(IRS) 0 2.952013 6.488203 20.134644
IRS 0 −0.189463 −0.182394 0.692361

9 BZ 0.202835 −0.101418 −0.005582 0.672233
(IRS) 0 0.575398 0.816390 0.424152
IRS 0 −0.166196 −0.162738 0.551290

10 BZ 0.178382 −0.089191 −0.005186 0.503784
(IRS) 0 0.414674 0.449910 −1.079122
IRS 0 −0.151697 −0.148790 0.450991

11 BZ 0.158660 −0.079330 −0.003476 0.395544
(IRS) 0 0.325593 0.276743 −1.666897
IRS 0 −0.139217 −0.135229 0.373631

12 BZ 0.135918 −0.067959 −0.001749 0.309177
(IRS) 0 0.227143 0.131599 −2.007590
IRS 0 −0.123246 −0.117907 0.302656

13 BZ 0.107263 −0.053632 −0.000633 0.228539
IRS 0 −0.100243 −0.094248 0.227759

14 BZ 0.075242 −0.037621 −0.000158 0.152168
IRS 0 −0.071998 −0.066518 0.152228

15 BZ 0.043759 −0.021879 −0.000019 0.084206
IRS 0 −0.042706 −0.038808 0.084220

16 BZ 0.014178 −0.007089 0.000001 0.025902
IRS 0 −0.014073 −0.012597 0.025902
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TABLE XX. Four loop RI0 scheme SUð3Þ linear covariant
gauge critical exponents.

Nf Type γA γc γψ ρm

8 BZ 6.471485 −0.141493 −0.216872 10.793654
(IRS) 0 −2.424696 3.827038 19.536414

9 BZ 1.758067 0.145285 −0.189162 1.462828
(IRS) 0 −0.419659 0.935252 3.663383

10 BZ 0.655285 0.059319 −0.099279 0.342432
(IRS) 0 −0.121571 0.388783 1.145796

11 BZ 0.287141 −0.011344 −0.042769 0.221298
(IRS) 0 −0.056209 0.264999 0.589514
IRS 0 −0.020924 −0.095855 0.186593

12 BZ 0.159018 −0.042487 −0.014862 0.224515
(IRS) 0 −0.025747 0.250893 0.442411
IRS 0 −0.082487 −0.104959 0.209696

13 BZ 0.107236 −0.045861 −0.003945 0.199534
(IRS) 0 0.006053 0.249136 0.348713
IRS 0 −0.087072 −0.087682 0.196374

14 BZ 0.073867 −0.035894 −0.000711 0.145441
(IRS) 0 0.033897 0.227024 0.245013
IRS 0 −0.068745 −0.064264 0.144981

15 BZ 0.043484 −0.021684 −0.000059 0.083448
(IRS) 0 0.049227 0.181022 0.139471
IRS 0 −0.042316 −0.038493 0.083421

16 BZ 0.014174 −0.007087 0.000001 0.025894
(IRS) 0 0.043509 0.105463 0.043333
IRS 0 −0.014069 −0.012593 0.025894

TABLE XXI. Five loop RI0 scheme SUð3Þ linear covariant
gauge critical exponents.

Nf Type γA γc γψ γm

8 � � � � � � � � � � � � � � �
9 � � � � � � � � � � � � � � �
10 � � � � � � � � � � � � � � �
11 � � � � � � � � � � � � � � �
12 � � � � � � � � � � � � � � �
13 BZ 0.070465 −0.051662 −0.004040 0.187491

(IRS) 0 −0.033365 0.181740 0.313061
IRS 0 −0.081046 −0.060264 0.187045

14 BZ 0.073887 −0.037954 −0.000270 0.151600
(IRS) 0 0.016256 0.203936 0.249187
IRS 0 −0.071499 −0.064958 0.151500

15 BZ 0.043744 −0.021913 −0.000020 0.084266
(IRS) 0 0.038957 0.163924 0.138931
IRS 0 −0.042724 −0.038782 0.084269

16 BZ 0.014178 −0.007089 0.000001 0.025902
(IRS) 0 0.038776 0.097100 0.043049
IRS 0 −0.014074 −0.012597 0.025902

TABLE XXII. Three loop MOMg scheme SUð3Þ linear covar-
iant gauge critical exponents.

Nf Type γA γc γψ ρm

8 BZ 0.276082 −0.413130 0.099159 1.331235

9 BZ 0.224312 −0.262619 0.042710 0.954324

10 BZ 0.193650 −0.182608 0.020019 0.701362

11 BZ 0.166770 −0.131130 0.009440 0.516777

12 BZ 0.138971 −0.094074 0.004212 0.374024

13 BZ 0.109064 −0.065442 0.001649 0.259356
IRS 0 −0.155825 −0.139024 0.343730

14 BZ 0.077336 −0.042319 0.000497 0.165375
IRS 0 −0.093956 −0.084584 0.196204

15 BZ 0.045066 −0.023188 0.000086 0.088262
IRS 0 −0.048493 −0.043719 0.095293

16 BZ 0.014301 −0.007163 0.000003 0.026154
IRS 0 −0.014374 −0.012860 0.026451

TABLE XXIII. Three loop MOMc scheme SUð3Þ linear
covariant gauge critical exponents.

Nf Type γA γc γψ ρm

9 BZ 0.329837 −0.149574 0.017904 0.375534
(IRS) 0 0.391474 −0.086183 −9.428263
IRS 0 −0.347993 −0.304238 0.754394

10 BZ 0.233644 −0.110954 0.006969 0.377682
(IRS) 0 0.277219 0.102546 −4.979258
IRS 0 −0.241319 −0.224706 0.544544

11 BZ 0.176390 −0.086067 0.002517 0.330763
(IRS) 0 0.228272 0.166763 −3.142147
IRS 0 −0.179505 −0.169441 0.408303

12 BZ 0.135538 −0.067109 0.000730 0.270097
(IRS) 0 0.202150 0.193153 −2.170112
IRS 0 −0.136076 −0.128086 0.305591

13 BZ 0.102106 −0.050907 0.000115 0.206167
(IRS) 0 0.186388 0.203886 −1.568987
IRS 0 −0.101443 −0.094591 0.220930

14 BZ 0.071889 −0.035931 −0.000017 0.142818
(IRS) 0 0.176148 0.206352 −1.150713
IRS 0 −0.071000 −0.065379 0.147737

15 BZ 0.042821 −0.021412 −0.000007 0.082094
(IRS) 0 0.169193 0.203158 −0.827549
IRS 0 −0.042282 −0.038392 0.083079

16 BZ 0.014138 −0.007069 0.000001 0.025826
(IRS) 0 0.164339 0.194794 −0.550086
IRS 0 −0.014052 −0.012578 0.025860
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for fixed points in the linear covariant and Curci-Ferrari
gauge from the point of view of a critical point analysis of
the renormalization group functions, full gauge fixing a
separate gauge parameter should be considered for the
diagonal gluons. In other words the infrared stable fixed
point associated with the gauge parameter in the neighbor-
hood of α ¼ −5 may not be stable in the direction toward
that extra gauge parameter. There may be an infrared stable
fixed point in the ða; α; ᾱÞ hyperspace. If so then it would
be the one for comparing the values of ρm and two of the
three ωi exponents. Trying to explore this is beyond the
scope of the present work. The reason for this is we would
have to renormalize the QCD in a maximal Abelian gauge
fixing with one or more extra parameters. By this we mean
that an interpolating gauge was constructed in [74] which

TABLE XXIV. Three loop MOMq scheme SUð3Þ linear
covariant gauge critical exponents.

Nf Type γA γc γψ ρm

9 BZ 0.189612 −0.170966 0.020033 0.553462
IRS 0 −0.225997 −0.144117 0.482308

10 BZ 0.173917 −0.125391 0.009356 0.452897
IRS 0 −0.180608 −0.134742 0.406464

11 BZ 0.151840 −0.094592 0.004063 0.364656
IRS 0 −0.146612 −0.120352 0.336490

12 BZ 0.126653 −0.071608 0.001526 0.285218
IRS 0 −0.118634 −0.103174 0.269817

13 BZ 0.099677 −0.052935 0.000439 0.212345
IRS 0 −0.093224 −0.083658 0.205116

14 BZ 0.071577 −0.036630 0.000074 0.144860
IRS 0 −0.067999 −0.061735 0.142206

15 BZ 0.042870 −0.021550 0.000005 0.082504
IRS 0 −0.041642 −0.037698 0.081920

16 BZ 0.014144 −0.007073 0.000002 0.025840
IRS 0 −0.014030 −0.012556 0.025819

TABLE XXV. Three loop MOMg scheme SUð3Þ Curci-Ferrari
gauge critical exponents.

Nf Type γA γc γψ ρm

9 BZ 0.224312 −0.262619 0.042710 0.954324
(IRS) 1.452883 −0.120220 2.190266 2.552738

10 BZ 0.193650 −0.182608 0.020019 0.701362
(IRS) 5.227316 0.353456 7.616440 7.175322

11 BZ 0.166770 −0.131130 0.009440 0.516777

12 BZ 0.138971 −0.094074 0.004212 0.374024

13 BZ 0.109064 −0.065442 0.001649 0.259356

14 BZ 0.077336 −0.042319 0.000497 0.165375

15 BZ 0.045066 −0.023188 0.000086 0.088262

16 BZ 0.014301 −0.007163 0.000003 0.026154
IRS −0.017872 −0.026734 −0.032502 0.033489

TABLE XXVI. Three loop MOMc scheme SUð3Þ Curci-Ferrari
gauge critical exponents.

Nf Type γA γc γψ ρm

9 BZ −0.240091 −0.133464 0.002704 0.306029
(IRS) 0 0.003384 0.147923 −0.471734
IRS 0 −0.541331 −0.439621 0.684557

10 BZ −0.188899 −0.102092 0.000514 0.326369
(IRS) 0 0.028004 0.173992 −0.254634
IRS 0 −0.399200 −0.360987 0.582751

11 BZ −0.153163 −0.080911 −0.000309 0.298706
(IRS) 0 0.044654 0.192948 −0.142850
IRS 0 −0.312859 −0.306670 0.490657

12 BZ −0.123892 −0.064194 −0.000459 0.252326
(IRS) 0 0.057411 0.209116 −0.074662
IRS 0 −0.252137 −0.263491 0.407208

13 BZ −0.096909 −0.049431 −0.000326 0.197780
(IRS) 0 0.068224 0.224669 −0.025628
IRS 0 −0.202447 −0.223580 0.326803

14 BZ −0.070077 −0.035343 −0.000140 0.139805
(IRS) 0 0.078333 0.241159 0.016759
IRS 0 −0.151857 −0.177302 0.237937

15 BZ −0.042456 −0.021275 −0.000025 0.081477
(IRS) 0 0.088848 0.260182 0.062111
IRS 0 −0.074893 −0.092871 0.106324

16 BZ −0.014126 −0.007064 0.000001 0.025806
(IRS) 0 0.101281 0.283939 0.123768
IRS 0 −0.020939 −0.025335 0.026249

TABLE XXVII. Three loop MOMq scheme SUð3Þ Curci-
Ferrari gauge critical exponents.

Nf Type γA γc γψ ρm

9 BZ 0.189612 −0.170966 0.020033 0.553462
(IRS) 0.312662 −0.008175 0.475178 0.589581
IRS −0.153980 −0.292270 −0.245203 0.493722

10 BZ 0.173917 −0.125391 0.009356 0.452897
(IRS) 0.256557 0.063582 0.393010 0.363224
IRS −0.130485 −0.231574 −0.221890 0.412805

11 BZ 0.151840 −0.094592 0.004063 0.364656
(IRS) 0.177706 0.088548 0.280144 0.169961
IRS −0.110305 −0.186018 −0.198121 0.338608

12 BZ 0.126653 −0.071608 0.001526 0.285218
IRS −0.092896 −0.150331 −0.174062 0.269299

13 BZ 0.099677 −0.052935 0.000439 0.212345
IRS −0.076738 −0.120097 −0.147352 0.203649

14 BZ 0.071577 −0.036630 0.000074 0.144860
IRS −0.059450 −0.090785 −0.114343 0.141085

15 BZ 0.042870 −0.021550 0.000005 0.082504
IRS −0.038683 −0.058270 −0.072841 0.081552

16 BZ 0.014144 −0.007073 0.000002 0.025840
IRS −0.013724 −0.020589 −0.024909 0.025802
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involved six additional gauge parameters to ensure renor-
malizability. Taking separate limits of these parameters
produces the usual linear covariant and maximal Abelian
gauges. Once these limits were verified at three loops one
would then have to examine the fixed point structure to
ascertain whether there was a stable infrared fixed point. If
there were more than one such solution the absolute
minimum should be the one that is the natural partner
of the infrared stable fixed point of the other two gauges.

V. PADÉ ANALYSIS

The absence of a Banks-Zaks fixed point at five loops
in the MS scheme for the full range of the conformal
window [42], was unexpected. This was especially the case
since perturbative estimates of the ρm exponent are of
importance to compare with lattice methods. Consequently
an additional tool was employed to explore the lower
reaches of the conformal window in this scheme which
was Padé approximants [42]. The approach was to establish
a more accurate fixed point and thence a better estimate of
ρm. Given that our five loop mMOM analysis has revealed
that the absence of the MS five loop Banks-Zaks fixed point
can be attributed to a scheme artifact, it is a worthwhile
exercise to repeat the Padé analysis of [42] for the mMOM
scheme but also for the RI0 one. By doing so we will be able
to see if a consensus emerges for exponent values at the
lower end of the conformal window below Nf ≤ 12.
Moreover we will not restrict the analysis to the Banks-
Zaks case but include its twin partner. To facilitate such a
study therefore requires incorporating the gauge parameter
into the rational polynomials of the Padé approximants.
By way of establishing our approach we focus first on

the MS scheme with the aim of reproducing the data of [42]
for the Banks-Zaks case which will also play the role of a
check on the setup as it will include α dependence. This
will be of importance for the mirror fixed point since
ultimately exponent estimates should be independent of the
gauge. As before searching for stationary running means
searching for solutions ða∞; α∞Þ to βða∞; α∞Þ ¼ 0 and
α∞γαða∞;α∞Þ ¼ 0. However both βða; αÞ and γαða; αÞwill
be supplied by Padé approximants such that

TABLE XXIX. Three loop MOMc scheme SUð3Þ MAG critical exponents.

Nf Type γA γc γψ ρm

9 (BZ) 0.295832 −0.240449 −0.034696 0.409975
IRS −2715.990473 −15974.919978 −7524.837593 9467.421651

10 (BZ) 0.234670 −0.175561 −0.025879 0.372691
IRS −56.221412 −301.361636 −170.525780 231.933695

11 (BZ) 0.191903 −0.135957 −0.019136 0.320416
IRS −11.249839 −57.735060 −38.212415 54.336768

12 (BZ) 0.155944 −0.106659 −0.014011 0.262295
IRS −3.920648 −19.973268 −15.156930 22.089447

13 (BZ) 0.122059 −0.081811 −0.009984 0.201901
IRS −1.731560 −9.032689 −7.739827 11.403803

14 (BZ) 0.088049 −0.058618 −0.006705 0.141149
IRS 0.006603 −0.090235 −0.113243 0.185858
(IRS) −0.849158 −4.683999 −4.483094 6.606901

15 (BZ) 0.053091 −0.035578 −0.003909 0.081733
IRS 0.004338 −0.046830 −0.055569 0.087995
(IRS) −0.414965 −2.533893 −2.698436 3.938682

16 (BZ) 0.017550 −0.011991 −0.001317 0.025814
IRS 0.001402 −0.015624 −0.017464 0.026006

TABLE XXVIII. Three loop MOMg scheme SUð3Þ MAG
critical exponents.

Nf Type γA γc γψ ρm

9 (BZ) 0.335178 −0.440643 −0.034855 1.079969
IRS −0.009456 −0.193145 −0.197174 0.506658

10 (BZ) 0.275999 −0.306410 −0.027619 0.758291
IRS 0.001070 −0.171865 −0.185892 0.450244

11 (BZ) 0.228961 −0.220004 −0.021271 0.544096
IRS 0.005716 −0.145500 −0.164339 0.367052

12 (BZ) 0.185274 −0.157883 −0.015932 0.387345
IRS 0.007434 −0.119473 −0.139186 0.284884

13 (BZ) 0.142121 −0.109950 −0.011408 0.265692
IRS 0.007438 −0.094446 −0.111933 0.210196

14 (BZ) 0.099005 −0.071251 −0.007537 0.168103
IRS 0.006239 −0.069643 −0.082647 0.142984

15 (BZ) 0.056867 −0.039180 −0.004211 0.089115
IRS 0.004116 −0.043831 −0.051081 0.081838

16 (BZ) 0.017803 −0.012188 −0.001338 0.026215
IRS 0.001392 −0.015520 −0.017328 0.025816
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β0 ¼ −
1

3
½11CA − 4TFNf�;

γ1 ¼
1

6
½8TFNf − 13CA þ 3αCA� ð5:2Þ

and only a acts as the expansion parameter in the approx-
imant with α entering in the coefficients. While we could
have approximated βða; αÞ and αγαða; αÞ with different

½p; q� approximants, since any approximation will be
correct to the order in perturbation theory we consider
here, for simplicity we have used the same ½p; q� structure
for both functions. Although we use the same method as
Sec. III to search for fixed point solutions we need to ensure
they are in the region of validity of the approximation. By
this we mean the approximant to both renormalization
group functions has no poles or denominator zeros that
are closer to the axis than the critical point when the gauge
parameter is fixed to α∞. The fixed points will be classified
into three categories. The first class is the valid fixed points
which are those for which no zero of the denominator has a
smaller absolute coupling constant value than the fixed
point. The second class is termed the zero pole (zp) fixed
points which are those where there exist zeros in the
denominator closer to the origin than the fixed point but
these are also zeros of the numerator. Thus these zero pole
zero numerator pair will cancel each other. The final group
are critical points with a pole closer to a ¼ 0 but these will
be discarded from further analysis. With regard to using the
critical point data for the first two classes the last step will be
to determine the quark mass anomalous dimension. We do
this by evaluating the regular polynomial perturbative series
for the renormalization group function at the fixed point.
The results of our Padé analysis for the MS scheme are

recorded in Table XXXII. Since the values of the coupling
constant and quark mass exponent have already appeared
in [42] it is satisfying to note that we find full agreement
allowing for the difference in convention for the coupling
constant. Given that reassuring check we now restrict the
discussion to the sector with nonzero gauge parameter
values. Since the β-function and mass anomalous dimension
are gauge parameter independent in the MS scheme we
again see that their values are consistent across multiple
gauge parameter values. As all approximations presented
are accurate to an order in perturbation theory within their
region of validity, if we can identify the Banks-Zaks’s twin
then we can use the values from different approximations to
provide a range for the location of the fixed point.
We note the fixed point we label as the Banks-Zaks twin is

chosen on the basis of consistency across schemes, loop
order, anomalous dimensions, and Nf but still its identi-
fication is not absolutely defined. As one would expect of
something whose value is accurate to the truncation order
under consideration we see that the critical gauge parameter
values are more congruous with like values in the other
approximations at high Nf where the corresponding a∞ is
lower than at smaller Nf. For example, at Nf ¼ 16 the
difference provided by these values is 5 × 10−6, whereas at
Nf ¼ 13 this difference is 0.03.While there were more fixed
points outside of the region of validity it is of interest to note
that in this case the fixed points that were retained for the
different Padé approximants are, in the case of [2, 2] and
[1, 3], only the Banks-Zaks fixed point and its partner. For
Nf ¼ 12 we can compare the nonzero gauge parameter for

TABLE XXX. Three loop MOMq scheme SUð3ÞMAG critical
exponents.

Nf Type γA γc γψ ρm

9 (BZ) 0.297538 −0.279798 −0.027555 0.592685
IRS −0.077144 −0.495177 −0.299364 0.530421

10 BZ 0.250981 −0.204323 −0.020839 0.479055
IRS −0.041489 −0.313878 −0.239936 0.434601

11 (BZ) 0.207877 −0.154160 −0.016380 0.380314
IRS −0.018655 −0.209733 −0.193922 0.351356

12 (BZ) 0.167371 −0.117002 −0.012761 0.293629
IRS −0.004711 −0.145483 −0.155019 0.276501

13 (BZ) 0.128545 −0.086897 −0.009551 0.216209
IRS 0.002606 −0.102882 −0.119598 0.207414

14 (BZ) 0.090759 −0.060566 −0.006621 0.146218
IRS 0.004944 −0.071411 −0.085559 0.142727

15 (BZ) 0.053726 −0.036016 −0.003913 0.082779
IRS 0.003965 −0.043956 −0.051686 0.081985

16 (BZ) 0.017573 −0.012008 −0.001319 0.025849
IRS 0.001391 −0.015517 −0.017339 0.025820

TABLE XXXI. Four loop Landau gauge Banks-Zaks fixed
points and ω in the MOMq, MOMc, and MOMg schemes.

Nf aMOMq
∞ ω aMOMc

∞ ω aMOMg
∞ ω

8 0.074165 0.688880 0.109629 0.889557 0.040112 0.596453
9 0.055773 0.480084 0.067722 0.594048 0.032173 0.393796
10 0.045054 0.322398 0.052237 0.371608 0.026493 0.263778
11 0.036815 0.209040 0.041634 0.229043 0.022025 0.173972
12 0.029594 0.127769 0.032764 0.134706 0.018232 0.109698
13 0.022785 0.070870 0.024643 0.072715 0.014765 0.063414
14 0.016132 0.033179 0.017001 0.033501 0.011320 0.031089
15 0.009571 0.010922 0.009835 0.010946 0.007536 0.010668
16 0.003143 0.001099 0.003165 0.001099 0.002882 0.001097
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the [3, 1] approximant with those of the other approximants
in order to ask whether the zp fixed points provide an
accurate representation of the fixed point. In this case we see
the difference between the [3, 1] fixed point and the [1, 3]
fixed point is roughly ten times the difference between [2, 2]
and [1, 3] in both the coupling constant and the gauge
parameter. While this is not necessarily promising, we point
out that the quark mass exponent values are not considerably
more consistent between the valid fixed points than between
the zp and valid fixed points. We will not draw any firm
conclusions about this before examining other schemes.
With regard to this the critical coupling constants are the

same in the MS and RI0 scheme because their β-functions
are formally equivalent. However the two schemes are
unique and the gauge parameter running of both is differ-
ent. This therefore allows for a simple point of comparison
in relation to their Padé approximations. Table XXXIII
gives the RI0 scheme results that is the parallel to
Table XXXII and is accurate to the five loop level. First
we note that the location of the secondary α ¼ 0 fixed point
changes drastically between [4, 0] and [3, 1] approximants
even at Nf ¼ 16. This suggests this value is not perturba-
tively reliable. By contrast the Banks-Zaks fixed point
value itself is stable for the entire conformal window when
compared between different Padé approximants. This is as
expected since the critical coupling constant values are the

same as in the MS scheme as they ought to be given the way
the two scheme β-functions are related. While the mass
anomalous dimension is not gauge parameter independent
in the RI0 scheme, we will identify the Banks-Zaks twin as
the fixed point whose ρm and coupling constant best
matches the Banks-Zaks values. At Nf ¼ 16 the Banks-
Zaks twin is approximately in the same place in all Padé
approximants with a range of 0.000030 between the
maximum and minimum values. It is less clear what would
be referred to as the Banks-Zaks twin at lower Nf values
since the truncation errors affect both the mass exponent
and the gauge parameter position. At Nf ¼ 14 this value is
at α ≈ −4 with a range of 0.2 but at Nf ¼ 13 this range is 2.
Below this we cannot identify any with this on more than
one approximant. At the upper end of the conformal
window the value of ρm is consistent for the different
Banks-Zaks pairs across the different approximations. This
decreases as we move towards the lower end. At Nf ¼ 13

the values are compatible with values of approximately
0.19 and a secondary value of 0.3 appears for some of the
other fixed points. As only the [3, 1] approximant has a
positive ρm as Nf is reduced, further comparison is difficult
beyond this point. However considering the four loop
approximation we do see agreement between fixed point
values at Nf ¼ 12 but not really lower Nf.

TABLE XXXII. Values of a and α in the MS scheme from the Padé analysis.

Nf a½3;1� α½3;1� ρm½3;1� a½2;2� α½2;2� ρm½2;2� a½1;3� α½1;3� ρm½1;3�

9 0.081552zp 0.000000 −0.355655 � � � � � � � � � � � � � � � � � �
0.081552zp −0.009802 −0.355655 � � � � � � � � � � � � � � � � � �
0.081552zp −4.117330 −0.355655 � � � � � � � � � � � � � � � � � �

10 0.060179zp 0.000000 0.211071 � � � � � � � � � � � � � � � � � �
0.060179zp −0.708479 0.211071 � � � � � � � � � � � � � � � � � �
0.060179zp −3.428390 0.211071 � � � � � � � � � � � � � � � � � �

11 0.044777zp 0.000000 0.293997 � � � � � � � � � � � � � � � � � �
0.044777zp −1.299001 0.293997 � � � � � � � � � � � � � � � � � �
0.044777zp −3.069015 0.293997 � � � � � � � � � � � � � � � � � �

12 0.032429zp 0.000000 0.255133 0.050422 0.000000 0.215820 0.048898 0.000000 0.229795
0.032429zp −1.777608 0.255133 0.050422 −2.076662 0.215820 0.048898 −2.111467 0.229795

13 � � � � � � � � � 0.029939 0.000000 0.230199 0.029869 0.000000 0.229907
� � � � � � � � � 0.029939 −2.355729 0.230199 0.029869 −2.370730 0.229907

14 � � � � � � � � � 0.018432 0.000000 0.153358 0.018430 0.000000 0.153346
� � � � � � � � � 0.018432 −2.600534 0.153358 0.018430 −2.603503 0.153346

15 0.010131 0.000000 0.084781 0.010075 0.000000 0.084311 0.010075 0.000000 0.084311
0.022171 0.000000 0.173566 0.010075 −2.797725 0.084311 0.010075 −2.797936 0.084311
0.010131 −2.799955 0.084781 � � � � � � � � � � � � � � � � � �
0.022171 −3.269499 0.173566 � � � � � � � � � � � � � � � � � �

16 0.003171 0.000000 0.025904 0.003171 0.000000 0.025902 0.003171 0.000000 0.025902
0.024469 0.000000 0.179317 0.003171 −2.945965 0.025902 0.003171 −2.945965 0.025902
0.003171 −2.945970 0.025904 � � � � � � � � � � � � � � � � � �
0.024469 −3.831623 0.179317 � � � � � � � � � � � � � � � � � �
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We close this section by extending this analysis to
schemes with a gauge parameter dependent β-function
which means the mMOM scheme as it is the only
one available at five loops. The results are given in
Table XXXIV. Examining Nf ¼ 16 we again see good
agreement between the two critical point parameters and the
quark mass exponent calculated at the fixed points for the
different Padé approximants. The case Nf ¼ 14 provides us
with the first zero pole pair fixed point which has a close
analogue in the set of fixed points in the canonical
perturbative expansion. However at Nf ¼ 10 this is no
longer the case with a range of values from 0.056 for the
[3, 1] zp case to 0.024 for the [1, 3] fixed point with the [2, 2]
approximant best matching the fixed point from the regular
expansion. At Nf ¼ 11 the critical coupling constant value
for the [3, 1] zp approximant is congruous with that of the
Banks-Zaks one as well as showing agreement with the mass
exponent suggesting that the zp fixed points should be taken

into consideration. Examining the range of gauge parameter
values for the Banks-Zaks twin we find it is 3 × 10−6 when
Nf ¼ 16, 0.004 at Nf ¼ 13 but 2 at Nf ¼ 10 if we include
the α ¼ −1.6 fixed point for the [1, 3] approximant. In this
case the critical coupling constant has a difference of 0.01
which is at the same order as the coupling constant itself. For
the quark mass exponent of the Banks-Zaks fixed points
we see again a decreasing degree of consistency as Nf

decreases. For Nf ¼ 14 where we find a zp there is still a
good compatibility between this value and those calculated
for the Banks-Zaks fixed point of the other approximants.
Even at Nf ¼ 12 we see good agreement with a range of
values from 0.306 to 0.284.

VI. DISCUSSION

We have provided a comprehensive analysis of the fixed
point structure of the renormalization group functions in

TABLE XXXIII. Values of a and α in the RI0 scheme from the Padé analysis.

Nf a½3;1� α½3;1� ρm½3;1� a½2;2� α½2;2� ρm½2;2� a½1;3� α½1;3� ρm½1;3�

9 0.081552zp 0.000000 −2.193550 � � � � � � � � � � � � � � � � � �
10 0.060179zp 0.000000 −0.635482 � � � � � � � � � � � � � � � � � �
11 0.044777zp 0.000000 0.056006 � � � � � � � � � � � � � � � � � �
12 0.032429zp 0.000000 0.209582 0.050422 0.000000 −0.296439 0.048898 0.000000 −0.209082

0.032429zp 2.511522 0.445578 � � � � � � � � � � � � � � � � � �
0.032429zp −1.557388 0.204125 � � � � � � � � � � � � � � � � � �
0.032429zp −6.482723 0.617028 � � � � � � � � � � � � � � � � � �

13 � � � � � � � � � 0.029939 0.000000 0.196188 0.029869 0.000000 0.196332
� � � � � � � � � 0.029939 2.893770 0.456669 0.029869 2.890160 0.453356
� � � � � � � � � 0.029939 −4.293260 0.210744 0.029869 −6.304360 0.413156
� � � � � � � � � 0.029939 −6.348796 0.428731 � � � � � � � � �

14 � � � � � � � � � 0.018432 0.000000 0.150990 0.018430 0.000000 0.150979
� � � � � � � � � 0.018432 3.414938 0.235117 0.018430 3.350179 0.229641
� � � � � � � � � 0.018432 −4.055378 0.155694 0.018430 −4.086352 0.155884
� � � � � � � � � � � � � � � � � � 0.018430 −6.934702 0.241291

15 0.010131 0.000000 0.084699 0.010075 0.000000 0.084238 0.010075 0.000000 0.084238
0.022171 0.000000 0.165259 0.010075 4.664518 0.118824 0.010075 4.533597 0.115735
0.010131 4.575310 0.117700 0.010075 −3.561433 0.084894 0.010075 −3.562379 0.084896
0.010131 −3.555677 0.085353 � � � � � � � � � 0.010075 −8.200740 0.122989
0.022171 3.134973 0.266982 � � � � � � � � � � � � � � � � � �
0.022171 −3.762350 0.170434 � � � � � � � � � � � � � � � � � �
0.022171 −6.703760 0.282523 � � � � � � � � � � � � � � � � � �
0.022171 −7.981369 0.656479 � � � � � � � � � � � � � � � � � �

16 0.003171 0.000000 0.025903 0.003171 0.000000 0.025902 0.003171 0.000000 0.025902
0.024469 0.000000 0.171220 0.003171 −3.027379 0.025902 0.003171 9.180136 0.036049
0.003171 9.158681 0.035969 0.003171 −12.733830 0.037015 0.003171 −3.027380 0.025902
0.003171 −3.027359 0.025903 � � � � � � � � � 0.003171 −12.812101 0.037342
0.003171 −12.734028 0.037018 � � � � � � � � � � � � � � � � � �
0.003171 −27.524404 1.952290 � � � � � � � � � � � � � � � � � �
0.024469 2.987578 0.273801 � � � � � � � � � � � � � � � � � �
0.024469 −3.565082 0.177193 � � � � � � � � � � � � � � � � � �
0.024469 −6.591011 0.298554 � � � � � � � � � � � � � � � � � �
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QCD where the gauge parameter is treated as an additional
coupling constant. While there have been earlier studies in
this respect [41], which revealed interesting structure
given the progress in determining the renormalization
group functions to much higher order in recent years it
was important to revisit that work. This was not just in the
context of one scheme and gauge. Instead our analysis not
only included the canonical linear covariant gauge fixing
as well as the MS and MOM schemes of [35,36] we
incorporated the RI0 and mMOM schemes in addition to
two nonlinear covariant gauges. Although five loop results
are not yet available for the latter two gauges it was
important to study the extent to which critical exponent
estimates of observables were not only scheme indepen-
dent but also independent of the choice of gauge. This is
because when solving for the fixed points numerically, as
with any perturbative truncation, there will always be a
degree of tolerance in final estimates. Within the con-
formal window at the centre of our investigation one of the
main observations was that in the regime where the
perturbative approximation is reliable good agreement
with exponent estimates across schemes and gauges
emerged. Indeed where five loop results were available
it was clear that these higher orders increased the range of

perturbative applicability. In addition at five loops the
absence of a solution for the Banks-Zaks fixed point in the
MS scheme for Nf ≤ 12 was shown to be a scheme
artifact. Instead solving for the zeros of the β-functions in
the mMOM scheme produced solutions at and below
Nf ¼ 12 at five loops. With data from these two schemes
as well as the RI0 one Padé approximants were used to
study if convergence could be improved away from the top
end of the conformal window.
One observation of [41] was the existence of a fixed

point in the interior of the ða; αÞ plane away from either
axis in addition to the Gaussian and Banks-Zaks one. As its
critical coupling in the linear covariant gauge was the same
as the latter fixed point we referred to this as its mirror or
twin fixed point. Moreover we verified that it was infrared
stable unlike the Banks-Zaks one which is a saddle point
on the ða; αÞ plane. To answer the obvious question as to
whether this was an artifact of the linear covariant gauge
we searched for a similar infrared stable fixed point in the
two nonlinear covariant gauges. Intriguingly such a similar
critical point is present in both cases. While this is
qualified by noting that the critical gauge parameter values
differ in each of the three gauges since this is not an
observable what did emerge was the consistency of the

TABLE XXXIV. Values of a and α in the mMOM scheme from the Padé analysis.

Nf a½3;1� α½3;1� ρm½3;1� a½2;2� α½2;2� ρm½2;2� a½1;3� α½1;3� ρm½1;3�

9 0.068777zp 0.000000 1.555108 0.034658 0.000000 0.459046 0.015650 0.000000 0.156758
0.037028 −3.586442 0.411340 0.021048 −3.613442 0.207376 0.016895 −0.385698 0.172742

10 0.019275zp 0.000000 0.199491 0.035297 0.000000 0.438099 0.022986 0.000000 0.248950
0.021361zp −1.236002 0.227161 0.027313 −3.724616 0.273199 0.023299 −1.634361 0.251958
0.035930 −3.625784 0.376564 � � � � � � � � � � � � � � � � � �

11 0.026800zp 0.000000 0.292618 0.033149 0.000000 0.379081 0.027364 0.000000 0.300178
0.115245 1.079306 −5.582485 � � � � � � � � � 0.028914 −2.681089 0.307396
0.033687 −3.664896 0.337578 � � � � � � � � � � � � � � � � � �

12 0.028658 0.000000 0.305342 0.028698 0.000000 0.305832 0.026874zp 0.000000 0.283733
0.017894 −2.195156 0.173967 0.030517zp −3.159403 0.308537 0.028747 −3.067509 0.290452
0.031308zp −3.208981 0.316187 � � � � � � � � � � � � � � � � � �

13 0.021998 −1.158753 0.221442 0.022688zp 0.000000 0.227889 0.022319zp 0.000000 0.223707
0.102810 −2.332708 −3.089860 0.023447 −3.139124 0.226299 0.023378 −3.137254 0.225576
0.023456 −3.135595 0.226429 � � � � � � � � � � � � � � � � � �

14 0.015768zp 0.000000 0.149002 0.016059 0.000000 0.152079 0.016013zp 0.000000 0.151600
0.016559 −3.122146 0.152248 0.015603 4.098613 0.125880 0.016520 −3.121172 0.151856
0.021578 −3.473532 0.200960 0.016521 −3.121165 0.151871 � � � � � � � � �

� � � � � � � � � 0.021567 −3.476577 0.200823 � � � � � � � � �
15 0.009664 −3.078780 0.084260 0.009475 0.000000 0.084205 0.009473 0.000000 0.084181

� � � � � � � � � 0.009658 −3.078493 0.084202 0.009657 −3.078420 0.084194
� � � � � � � � � 0.016853 −3.622266 0.151513 � � � � � � � � �

16 0.003122 0.000000 0.025904 0.003122 0.000000 0.025902 0.003122 0.000000 0.025902
0.015066 0.000000 0.139013 0.003143 −3.027379 0.025902 0.003143 −3.027379 0.025902
0.003143 −3.027381 0.025902 0.014135 −3.897042 0.123605 � � � � � � � � �
0.012358 −3.769284 0.107543 � � � � � � � � � � � � � � � � � �
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estimate for the critical exponent ρm in the region of
perturbative reliability at this infrared stable point.
Moreover in the MAG the Banks-Zaks fixed point is
absent in the conventional sense since there is no point on
the coupling constant axis although there is a saddle point
in its neighborhood. Given that the existence of such a
stable infrared critical point in QCD appears to be
independent of the covariant gauge fixing procedure it
reinforces the observation of [41] that retaining the gauge
parameter in studies might assist infrared analyses of color
confinement. This would be an interesting topic to pursue
but would clearly require a nonperturbative approach.
Finally we remark that we have completely focused on
the SUð3Þ color group with quarks in the fundamental
representation. There is no a priori reason why one should
restrict gauge theory fixed point analyses to this particular
Lie group or matter representation. Rather it might be of
interest to embed the SUð3Þ analysis in the Standard

Model as well as other gauge theories that seek to explore
beyond that fundamental theory. Indeed in this context it is
worth noting that the choice of α ¼ −3 for the linear
covariant gauge fixing in the electroweak sector was
singled out as a special case in [75]. In particular at this
value the Z boson is renormalized multiplicatively.

The data representing the full fixed point and critical
exponent analysis of the work presented here are accessible
in electronic form from [76].
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(2000).
[28] K. G. Chetyrkin and A. Rétey, arXiv:hep-ph/0007088.
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