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We study two (massless free field) models, a photon/photino model with a vector gauge field and a
Majorana spinor field, and a Wess-Zumino model. They each exhibit Lorentz symmetry violation but
retain, in an appropriate way, the supersymmetry correspondence between the particles of the two fields. In
relation to the photon field the Lorentz symmetry violation is of a simple but nontrivial kind that implies
birefringence. In relation to the spinor field the Lorentz violation is produced by a modification of the
Majorana equation that is a simplified version of more general investigations of Lorentz symmetry
violation of the Dirac equation. In the case of the Wess-Zumino model we retain the same violation of
Lorentz symmetry for the Majorana field and adjust the propagation of the scalar particles so that they
exhibit a corresponding birefringence. The advantages of the models are that they are straightforward to
investigate completely and both retain the basic aspect of supersymmetry namely the one-to-one
correspondance between bosons and fermions. As a result of this bottom-up approach it is then possible
to construct conserved supersymmetry charges and investigate their algebraic properties. To some extent
these are similar to those encountered in the case of Lorentz invariance. However, there are differences and
in particular nonlocal terms appear in the commutation relations of the supersymmetry charges and fields of
the models. We examine carefully the rather intricate nature of the limit back to Lorentz invariance.
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I. INTRODUCTION

Generally, and for good reasons, supersymmetry is
viewed as fitting into the standard scheme of Lorentz-
invariant field theory. However there are also good reasons
for investigating the possibility that Lorentz symmetry
might be violated and in particular at high energy [1-4].
One of the attractions of supersymmetry is that it can
modify the high-energy behavior of field theories rendering
them strongly renormalizable or even finite. Hence, the
possibility of retaining supersymmetry in a context in
which Lorentz symmetry is violated is to be taken seriously.
There have been a number of proposals formulating models
that retain supersymmetry while admitting Lorentz sym-
metry violation (LSV) [5-9]. A way of understanding some
of the of issues involved is to adopt a distinction between
intrinsic and extrinsic Lorentz symmetry violation. An
example is LSV in deep inelastic scattering of electrons
on hadrons [10-13]. If we assume that the electron beam is
as it is usually understood to be then LSV effects might be
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due either to a modification of the Dirac equation describ-
ing the quarks making up the hadrons (intrinsic LSV), or to
a distortion of the spacetime relationship between the
quarks, perfectly standard in their own frame that differs
however from that of the elctron beam (extrinsic LSV) (see
the discussions in Refs. [7,13]). Of course both types of
LSV together with additional spin modification of the
electron beam may be present.

We regard the case of intrinsic LSV as of particular
interest and propose two models to illustrate this. The first
comprises a vector field, the “photon,” and a massless
Majorana spinor field, the “photino.” The Lorentz sym-
metry breaking is unequivocal, both particles exhibit
birefringence in the form of a double light cone. The
parameters in the model can be adjusted so that the
dispersion relations for the photon and the photino conform
appropriately with one another. This makes it possible to
make a pairing, for each light cone, between a photon state
of given 4-momentum and a photino state with the same
4-momentum. We are then able to construct conserved
supersymmetry charges that convert one type of particle
into the other, thus justifying the photon/photino nomen-
clature. However although the supersymmetry charges are
obtained from locally conserved currents they are more
limited in scope than the standard supersymmetry charges
of the fully Lorentz invariant model. For example, they
cannot connect states on distinct light cones.
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https://orcid.org/0000-0003-0045-4101
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.108.045005&domain=pdf&date_stamp=2023-08-08
https://doi.org/10.1103/PhysRevD.108.045005
https://doi.org/10.1103/PhysRevD.108.045005
https://doi.org/10.1103/PhysRevD.108.045005
https://doi.org/10.1103/PhysRevD.108.045005
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

I. T. DRUMMOND

PHYS. REV. D 108, 045005 (2023)

The second model is a simplified Wess-Zumino
model [14] in which we retain the massless Majorana
particle and introduce scalar and pseudoscalar particles that
travel on lightcones that match the birefringent light cones
of the Majorana particle. In a manner similar to that of the
photon/photino model we find conserved supersymmetry
charges that are again of restricted scope. In both models
this feature complicates the approach to Lorentz symmetry
where the full supersymmetry should be recovered. We
examine this limiting procedure in some detail.

II. PHOTON LAGRANGIAN

On setting up the photon/photino model we introduce, on
the basis of discussions of Lorentz symmetry breaking in
Refs. [4,15-17] for the vector field of the photon, A,,(x), the
Lagrangian

Lo(x) = =3 PHCOFW() + g O F(0F, (). (1)

Here, F,,(x) = 9,A,(x) — 9,A,(x), and C*** is a tensor
with the algebraic symmetries of a Weyl tensor, namely

it — Clrw — _ vt (2)
together with a zero-trace condition
7,2 C = 0, (3)
and a Bianchi identity
Ot O Ot = 0, (4)

Here #,, is the diagonal metric tensor with entries
(1,=1,—1,—1). This framework covers all possible types
of (intrinsic) Lorentz symmetry violation for the photon
field. From the Lagrangian £p(x) we obtain the equation of
motion

OMG/“’(x) =0, (5)
where
v aﬁp _ uv _ (CHvAT
Gt = _W_F (x)=0C A 0,A.(x). (6)

Petrov [18] identified a classification of the possible
versions of C****, The Petrov classification is based on the
principal null vectors of the Weyl tensor [19]. In the general
case there are four for a given Weyl tensor. However they
may coincide in various ways and this is the basis of the
Petrov scheme. In our model we select the simplest case,
class N, in which they all coincide. If we denote this
principal null vector by /, we can include it in a Penrose
null tetrad [19] comprising vectors / s My M5 T, that satisfy

P=n>=m?*=m’=Ilm=ILm=nm=nm=0, (7)

together with
ln=-mun=1. (8)

Explicitly, we choose # = (1/+/2,0,0,1/v/2),n* = (1/+/2,
0,0,~1/v2), mt = (0,1/v2,i/V2,0), m=(0,1/V2,
—i//2,0). We can complete the construction of the photon
Lagrangian by setting (see [19])

O = K(APWA + A AR, (9)
where
AW = [Fm¥ — IYmH (10)
and
AP = ¥ — Pk, (11)

An important property of the bivector A* is self-duality,
that is

%eﬂ”MA e =AM, (12)
while the bivector A* is antiself-dual, that is

Ay = A, (13)
It is useful to note that

A" = lﬂA/‘” =0, (14)
and

AWA, =~ (15)

A. Photon dynamics

Because of the presence of the Lorentz symmetry
violating term in Eq. (1) the model has unconventional
features, we present the quantization of the photon field in
some detail. Following Refs. [16,20,21] we adopt the well
known Gupta-Bleuler method adapted to our new circum-
stances. The first step is to replace the Lagrangian in Eq. (1)
with

1 1
Lop(x) = =5 0,A, A+ C*9,A,0A,.  (16)

This is equivalent to the original version (up to total
derivative terms) for fields obeying the gauge constraint
0.A(x) = 0. The equation of motion is
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0 =0. 17
: (a(aﬂA») 1)
This becomes

—0%AY + 6,,C””“0,1A, =0. (18)

The Hamiltonian formulation of the photon dynamics
requires the construction of the field IT¥(x) canonically
conjugate to A,(x). This is given by

oLp . 3
Hy(x) = = _KDTAr(x) + CoykrakAr(x)’
0(0pA, (x)) ,;
(19)
where
Kt = nur — COOr (20)
B. Plane-wave solutions
Plane-wave solutions have the form
A¥(x) = e’eiP>, (21)
From Eq. (18) we have
2.0 _ WMUAT o
pe’ — p,p,C*"""e, = 0. (22)
The gauge condition is
p.e=0. (23)

The wave equation becomes
PPe = k(p, A p, AT+ p A p,AMT)e, = 0. (24)

There are four positive energy solutions. Two are
“unphysical,” comprising a gauge solution, e, = p* and
a complementary solution e/ = [*. Both these solutions
require p> = 0 which implies that the mass-shell cone
and the light cone on which they propagate are the standard
cones associated with the metric #**. There are
also two “physical” solutions for which p* #0. It is
immediately obvious from Eq. (24) any such solution
has the form

& = ap, A" + ap,A", (25)

for some values of @ and @. On substituting this form into
Eq. (24) we obtain

pPa+«(l.p)a=0, (26)

p?a+«(l.p)*a=0. (27)
To obtain a nontrivial solution we require
(p?)? =«*(l.p)* = 0. (28)
That is
p*tx(l.p)* =0. (29)

For simplicity of presentation we assume that x > 0. It is
then obvious that the two mass-shell cones are nested, the
“—" cone lying in the interior of the “+” cone, except where
they touch along a common generator parallel to /#. Indeed
they share this generator with the standard cone p?> =0
(appropriate to the unphysical solutions) which is nested
between the physical “+” cones. However it should be
noted that when x = 2 the “—” cone acquires a generator
parallel to the 0-axis and the “4” cone acquires a generator
along the (negative) 3-axis. We impose the constraint
k < 2. We comment on the significance of this constraint
later. When k < 0 the “+” and “—" cones interchange roles
in the nesting structure. For this reason we impose also the
corresponding constraint k > —2. Ultimately then we have
(see also Ref. [22])

2 <k<2. (30)

Subject to this restriction we can identify four positive
energy solutions. The negative energy solutions are obtained
by complex conjugation. From Eq. (29) we find the allowed
momenta p’, = (Ex,p) = (Ex. 1, P2, p3), where

Be=y ilx/z (i<K/2)p3 + \/(1 +x/2)(pi + p3) +p§>~
(31)

Taking account of the relevant mass-shell conditions, the
solutions to Eq. (27) are @, = £a... The physical solutions,
conveniently normalized, are then

& (py) = (Lpy)ef — (er.p )l (32)

and

e (p_) = (I.p_)es — (es.p IV, (33)

where ¢} = (0,1,0,0) and &5 = (0,0,1,0).

C. Light cone structure

It is useful to examine the light cone behavior of the
photons since this governs the causal structure of the
model. Consider the “+” mode. Define a transform of
the momentum p, — p, where
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pho=rl +50(1py). (34)

N X

This mapping is a null shear in momentum space. It is
immediately obvious from Eq. (29) that

Pt = p? +x(l.py)*=0. (35)

The null shear maps the “+” mass-shell cone onto
the standard null cone. Similarly in spacetime introduce
x = X, where

R = —gl”(l.x). (36)

This is a null shear (of the opposite sign) in spacetime. We
have immediately

X py = xpy, (37)

and therefore the phase factor f =exp{—ix.p, }=
exp{—iX,.p, } satisfies the wave equation

Of =—pf=0. (38)
Here we have set
N 0
0., = . 39
+u 056‘1 ( )

It follows that in terms of the coordinates &/ the “+” light
cone is ¥4 = 0, which yields

x? —k(lx)? =32 =0. (40)
A similar discussion for the “—” mode leads to the
transformation
K
P = pt = pt =S (Lp-), (41)
and
K
X - 3 ="+ El”(l.x), (42)

and the conclusion that the corresponding light cone is

The light cone structure therefore is similar, to that of
the mass shells in momentum space, except that now the
interior cone, the slow cone, is the “+” cone and the
exterior cone, the fast cone, is the “—" cone.

A geometrical understanding of the need for a restriction
on the range of kx can be obtained by noting that when k = 2
the “+” cone tilts so that it acquires a generator along the
time axis. When k> 2 the positive time “4” cone
lies entirely within the region x; > 0 at which point
the coordinate system represented by x* = (f,x) =
(t,x1,x5,x3) is no longer appropriate for describing the
causal evolution of the model. This picture can be devel-
oped further by noting that observers (each associated with
a reference frame that has #*¥ as a metric) have coordinate
systems related by Lorentz transformations. One such
transformation is L(w); a boost along the (negative)
3-axis of velocity v = tanhy. It is easy to check that under
such a transformation

W= L (p)l = eV IF. (44)

The description of the model in the new frame is unchanged
provided we make the replacement k — k' = e*k. Even if
k lies within the acceptable range a sufficiently powerful
boost will shift k" out of this range. A boost in the opposite
direction can be of any strength and will cause a shift
eventually to observers who, because of limitations of
measurement accuracy, are unable to detect the Lorentz
symmetry violation. The constraint on « can be reinter-
preted as a constraint on the allowed reference frames.
Observers may not be boosted to the point at which they
can overtake particles moving on the slow light cone. We
develop this point further in Sec. VI.

D. Overlaps of the photon wave functions

In order to control the normalization of wave functions it
is necessary to define a scalar product or overlap between
them. We follow Ref. [20] and define the overlap of two
solutions, A#(x) and B¥(x), of Eq. (18) to be (A, B) where

(A,B) = —i / Px(AX(x)PB (x) — B, (x) A% (x)
—C%*(A}(x)9;B.(x) — B,(x)9,A%(x))).  (45)

It is easy to verify that it is independent of time. We denote

&2 =2 +x(lx)?=0. (43)  the wave functions as
|
‘I]Gu(p’x) = pﬂe—ip.x
Peu(p, x) = e,
Yo, (p.x) = ((I.py)ey, — (e1.pi)l,)e P+ = e (py)e P+,
Y_,(p.x) = ((Lp-)ey, — (e2.p_)l,)e™ P~ = e_,(p_)e™'P-*. (46)
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The overlaps for the unphysical wave functions are
(Ys(p). Y6(p') = (Ye(p). ¥Yc(p') =0, (47)

(¥6(p). Pe(p') = —2E(L.p)(27)°5* (p - p').  (48)

The overlaps between unphysical and physical wave
functions all vanish. The nonvanishing overlaps for the
physical wave functions are

(Wi (p). ¥, (p)) = (27)%6%) (p — p')(E, — p3)?
X <E+ +§(E+ - P3)>»
(Y_(p). Y_(p)) = (22)*6%) (p — p')(E_ — p3)?

x <E_ - g (E_ - p3)>. (49)

The structure of the overlaps of the unphysical wave
functions is equivalent to that of the standard Gupta-Bleuler
formalism. That is, they comprise a subspace, in this case
spanned by two sets of zero norm wave functions, that
contains both positive and negative norm wave functions.
Ultimately this is why the corresponding excitations do not
contribute to the values of physical, that is gauge invariant,
quantities. This is particularly significant here because the
unphysical light cone is distinct from the birefringent
structure of the physical light cones and any unphysical
signal will be transported in manner distinct from the
physical signals.

E. Quantization of the photon field

The quantization of the photon field is achieved by
imposing the (equal-time) commutation relations

[ (x), A;(x)] = —id46B) (x = x). (50)

The field I1“(x) is defined in Eq. (19), see also [20,21].
A convenient way of exploiting the canonical commu-
tation relations is through the identity

[(fA), Ay ()] = fr (), (51)

where f,(x) is any arbitrary photon wave function and
A, (x) is the quantum photon field. We can obtain this result
by noting that from the definition in Eq. (45) we obtain

(f,A) = i/d3x’f,f(x’)H”(x’) +R, (52)

where the remainder term R commutes (at equal times)
with A, (x). The identity follows.

The quantum field A, (x) can be separated into a number
of terms. They are

Au(x) = A (x) + Ao, (%) + Ay (%), (53)

where

Ais) = [ o5 s o ()P (0.
+al(p)¥L,(p. x)], (54)

and Ay, (x) contains the unphysical mode contributions.
We include a normalizing factor 1/N . (p) in Eq. (54) in
order to permit the imposition of the nonvanishing com-
mutation relations in the form

las(p).al(p))] = (27)°6 (p - p'). (55)
It follows, for example, that

0. (0)- 4,0 = s ¥ (656

We also have from the overlap calculation

(¥, (p).A) = N:

(p) (E+ - p3)2

< (B +5E ) 6D

\S]

If we choose f,(x) =¥, ,(p.x) in the identity Eq. (51)
then using Egs. (56) and (57) we find

(%, (p), A). AL, (x)] = Wl(p)) (E, = ps)?
< (B 458, =) )00

(58)

K
2

It follows that

N (o) = \/ (&= piP (B 45 (E = p0)). (59

By a parallel discussion we can show that

N_(p) = \/ (&= p?(E-=5 (B =) (60)

F. Photon energy-momentum tensor

The energy-momentum tensor for photons in the Gupta-
Bleuler formalism can be computed along conventional
lines in the form
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aEGB

O (x) = 30,A,) A, =" L. (61)
If we define
oL
== a(aﬂi) ’ (62)
then the Lagrangian is
Lgg = lG””FW, (63)
4
and the equation of motion is
9,G" = 0. (64)

The energy-momentum tensor becomes

1
O (x) = =G (x)0"A;(x) + ;"G (x) Fie(x).  (65)
It follows readily that
0,00 (x) = 0. (66)
This version of the energy-momentum tensor, just as in the
Lorentz symmetric case, is unsatisfactory as a physical
quantity because it is not gauge invariant. The remedy is the
same also see [23]. We introduce a correction
OF (x) = GM09,;A(x). (67)
The physical energy-momentum tensor is then
0" (x) = Ogp(x) + O (x). (68)
It is conserved

0,0 (x) = 0. (69)

The 4-momentum operator is

P = / Bx0 (x). (70)

In terms of mode operators we have
PY=PY{ + P, (71)

where

3
PL=s / 5;)’3 (al(p)as(p) + as(p)al(P)ps.  (72)

In the Lorentz symmetric case the procedure we have
adopted in constructing ®**(x) also renders it symmetrical.

This is not true in the presence of Lorentz symmetry
violation, the reason being that the generators of Lorentz
transformations L** are computed as

L= / Px(0%(x) = O (x)). (73

Now
0,(x*0%(x) — x*@*(x)) = O (x) — O@*(x). (74)
The absence of symmetry for @ (x) then implies that the

generators L are not time independent which is the case in
our model.

III. MAJORANA SPINOR FIELD

The Lorentz-invariant Lagrangian, Ly (x) for the
Majorana field y(x), is

Lu(x) = S ()P o). (75)

Here y# are the standard Dirac matrices appropriate to the
metric #*. We will follow [24] and adopt a chiral
representation. The Majorana field satisfies the massless
Dirac equation,

7.0y (x) = 0. (76)

The charge-conjugation transformation is y — w where

ye=Cy)". (77)

The y* obey the conditions

CyrC™t = —(y")", (78)
and

cr=C"=-cC,

Cc?=-1. (79)

These properties are satisfied by the representation

c= (i‘j —?&)' (80)

These properties imply that y(x) also satisfies Eq. (76).
We are then free to impose the Majorana condition
w(x) =we(x) thus reducing the Majorana field to the
two independent components appropriate for a photino
field.
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A. Lorentz symmetry violation and the Majorana field

In order to introduce Lorentz symmetry violation into
the evolution of the Majorana field we follow the work of
a number of authors [24-26] who have considered the
implications of introducing Lorentz symmetry violation by
means of generalisations of the Dirac equation. In con-
structing our model we require only a simplified version of
that approach applied to the Majorana equation. We adopt
then the modified Majorana Lagrangian £,, where

Lu() = PO, (81)

where
I =y % T+ g0, (82)
and 6%’ = (i/2)[y*, y”]. The modified Majorana equation is
[.oy(x) =0. (83)
It is easy to check that y(x) is also a solution of Eq. (83)

so we can indeed impose the condition wc(x) = w(x)
on the solutions. The field z(x) canonically conjugate to

w(x) is
m(x) = i (x)r°, (84)
and the canonical equal time anticommutation relation is

{we(x), 15 ()} = i858 (x = x'), (85)

or more succinctly

f(x). (IO = 69 (x = x'). (86)

B. Plane waves and dispersion relation

Crucial to constructing a supersymmetric model is
arranging for a concordance between the photon and
photino dispersion relations [5]. To investigate this we
need the plane-wave solutions of Eq. (83). These have the
form

w(p.x) = ue™, (87)

where p = (E,p) with E > 0 and u(p) is spinor with
components (i, u,, us, uy). Equation (83) implies

Mu =0, (88)

where

1
M=T.p=yp+ ETaﬂGaﬂ’ (89)
and
Top = puT" op. (90)

Following the reasoning in [24-26] we introduce the dual
tensor

~ 1
T(lﬂ = zeaﬂIthT, (91)
together with
@ Lo i 92
aff *5( ap l (1/7’)’ ( )

the self-dual and antiself-dual parts of 7. It then follows
(see [24-26]) that A(p) = det M is given by

Ap) = () + (TH)ATOR 4+ 8VELVE, (93)

Ve = i) (04)
The dispersion relation we require is
A(p) =0. (95)

In order to fix the model precisely we must choose a
specific form for TS,E)” . In doing so it helps to recall that the
photon model involved the null vector /, and the self- and
antiself-dual tensors A,; and A,z These suggest them-
selves as candidates for the chiral structure we seek. Our
initial proposal is then

TH(0) = E1 Ay, (96)
together with the complex conjugate relation, € being real,

T35 (0) = Ee 1Ay, (97)
In turn this yields

Th4(0) = &1 (A s + €04 4p). (98)

If we make the replacements m — m' = e”m and
m — m' = e~ m in the choice of Penrose tetrad in the
Majorana field we see that relative to the photon tetrad this
represents a clockwise rotation in the (1, 2)-plane about
the 3-axis. However the extra generality represented by the

angle @ is spurious. If we define

045005-7



I. T. DRUMMOND

PHYS. REV. D 108, 045005 (2023)

1
D4(0) = 7 + 5 Ty (00" (99)

then we can easily show that

I“(0) = X(0)I*X(0), (100)
where I'* =T*(6 = 0) and
1 i 1 —
X(0) = 0215 4 pion 7Y (o)
2 2
The Majorana Lagrangian becomes
i _
Lu(x) = SFOXOTXOw(x).  (102)

By means of the field transformations X(0)y(x) — y(x)
and (consistently) @ (x)X(0) — w(x) we have

Ly(x) = p(Top(x). (103)

N |

The implication is that we can choose any value of 0
without changing the model. For convenience we then
choose 6 = 0 and replace Eq. (98) with

Thy = S (Agp + Agp).- (104)
For our model then we easily see that 7(*)2 = 0 and find
for the dispersion relation

(p?)* =88 (L.p)* =0. (105)
This coincides with the result in Eq. (28) when x? = 8&2.
There are then two possibilities

Kk = £2V2¢. (106)

In either case the birefringent mass-shell cone structure of
the Majorana field corresponds exactly with that of the
birefringent photons though with a differing matching of
states in the two cases. We make the choice & = x/(2v/2)
(implying & > 0) for simplicity of exposition. We will
however deal with the case &= —«/(2v/2) later when
considering the limiting case of Lorentz invariance. There
are a number of approaches to deriving the expression for
A(p) but it will reemerge straightforwardly when we
examine the explicit form of the spinor wave functions.

To obtain explicit plane-wave solutions we follow
Refs. [24-26] and adopt the chiral representation for the

y#, namely
0 o
H = , 107
r=(o %) (107

with o = (1,6',6%,6%) and & = (1,-0',-0%, —0°),
cck=1,2,3 being the standard Pauli matrices and

_<1 o>
"=\o 1)

It is a little simpler to deal with the modified version of
Eq. (88)

(108)

Mu =0, (109)
where
M =y.pM = p? ~I—%Ta/;y.p0"/}. (110)
Using the well-known identity
vo =iy —nPy) —ePryys, (111)
M can be put in the form
= (21.‘,1?:.0_ 2”;(;)’5) (112)
where V,(,i) are defined in Eq. (94). We then obtain the

equations for the spinor u

puy — i2V2E(Lp)(m.p)us = 0,
Pruy + i2V2E(1.p)2usy =0,
—i2V2E(1.p)2us + p2usy = 0,

—i2V2E(L.p) (m.p)uy + p2uy = 0. (113)

In order to yield a nontrivial solution the first and last of
these equations show that u, and u3 cannot both vanish.
The other two equations therefore require that

2 : 2
et( P 2V24(Lp) ) =0. (114)
—i2/2¢(1.p)? P’

That is, of course, identical to the dispersion relation from
Eq. (105) and, on imposing the relation k = 21/2& (which
we will asume from here on), the same as that from
Eq. (28). The mass-shell “£” cones are identical between

photon and photino. The plane-wave solutions are

wi(p.x) = uy(py)e P, (115)

where
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—(m.py)
(l.ps)
us(ps) = , (116)
Fi(l.ps)
Fi(m.p+)
The positive-energy plane waves are therefore
Wi (p,x) = us(ps)e™ " (117)

The negative energy plane waves are the charge-conjugate
wave functions

el ) = CF D) = wacpa)e=s, (119
where
teelp:) = Cla(pa))” = F iwslp). (19)
For general 4-vector g we write
~(m.q)
vl = | o (120
Fi(m.q)

It is easily checked, in the chiral representation for
y-matrices, that

us(q) = r.quf, (121)
where
Fi/V2
0
ul? = . (122)
1/V2
It also obvious that
ui(q +sl) = us(q), (123)
for any value of the scalar s. We have then
us(ps) = y.piuf) = J’-f’i”(f)’ (124)
with the result
rheus(pe) = (rpe)ul) =0, (125)

The Majorana wave functions can be put in the form

wi(p.x) = iy.0.u e ire (126)

and
yec(p.x) = Cra(p.x)) = —iy.dculpe=,  (127)
where
0 _(0
ull = c@dyr (128)
We then have the result
7-8:tl//j:(p’x) = ﬁU/i(P’@ =0. (129)

The complete Majorana field comprises a superposition of
these plane-wave solutions. It can be split into two parts
y . (x) each associated in the obvious way with the “+”
light cones. We can write

w(x) =i (x) +y_(x), (130)

where

Y—ai‘l’i(x) =0. (131)

C. Overlaps of the Majorana wave functions

If y(x) and ¢(x) are Majorana wave functions then the
current J#(x) = ¢(x)I*y(x) is conserved
9,7 (x) = 0. (132)

It is then possible to define a time-independent overlap

(¢.w),

(boy) = / PPy (x). (133)

The nonvanishing overlaps between the plane-wave
solutions are easily computed as

(w2 (p).y=(p) = (22)*6%) (p — P')2(E~ = p3)

x (Ei + 5. - p3)>.

5 (134)

The same holds true (y — y) for the charge conjugate
wave functions.

D. Quantization of the Majorana field

We introduce mode operators b (p), b’ (p) for the
Majorana field by expanding y(x) in the form

o d3p 1 e—ipi.x
v = [ G -0

F ibL(p)e P+ s (p).

(135)
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The factor = i in the second term of the integrand renders
the field even under charge conjugation.The normalizing
factor N, (p) is chosen so that the nonvanishing anti-
commutation relations

{b.(p).bL(p")} = (276D (p - p').

are consistent with the canonical anticommutation relations
in Eq. (86). It is easily checked that

(136)

Ni(p) = V2(Es = p3)(Ex £ (k/2)(Ex — p3)).  (137)

E. Energy-momentum tensor for the Majorana field

The energy-momentum tensor for the Majorana field in
our model is ®);(x) where

i

O (x) = PPy (x) = Ly(x).  (138)
When w(x) satisfies the equations of motion the
Lagrangian contribution vanishes and
0,0 (x) = 0. (139)
The 4-momentum P* is then given by
P = / PxO%(x), (140)

and is independent of time. Expressed in terms of mode
operators we have

PY =P, +P, (141)

where

3
po L[

= 2/ (2x)
It is immediately obvious that the vacuum contributions
of the Majorana spinors to the 4-momentum cancel the
corresponding contributions of the gauge fields. This must

be necessarily the case if supersymmetry is to be main-
tained in the Lorentz symmetry breaking model.

P4 (b5 (p)b(p) — b (D)L (D))

(142)

IV. SUPERSYMMETRY CHARGES

The photon/photino model is potentially supersymmet-
ric, even in the presence of Lorentz symmetry breaking,
because it is possible to align the birefringent mass-shell
cones and light cones of the photons and photinos. The
crucial stage in completing the model is the construction
of supersymmetry charges. We show that this is indeed
possible although with a somewhat unconventional

approach forced on us by the birefringence that expresses
the Lorentz symmetry violation in the model. The conven-
tional procedure is to derive a conserved Noether current
from a symmetry of the Lagrangian. We reverse the
procedure and postulate a current that we show to be
conserved. Subsequently, we explore the algebra of con-
served charges and their efficacy in connecting photon and
photino states.

Guided by the conventional form of the current we
postulate currents, one for each mass-shell cone, J*,, (x)
where

(%) = Fage (o pyr (x). (143)
Here, we are using
Fiﬂu(x) = éiyAiy - aiuAiu(x)’ (144)
where [recall that [.A_(x) = 0]
A, (x) = (5,& + g zﬂzﬁ>Aﬂ(x) —A().  (145)
It is then easy to see that
0,.A (x) =0.A,(x) =0, (146)
and that
aiﬁi,w(x) = 52iAiu(x> =0. (147)
We have also the Bianchi identity
aiﬂi?iﬂb (x) + aiﬂﬁivﬂ(x) + aibﬁiﬂﬂ (x)=0. (148)

Using the identity in Eq. (111) and the Bianchi identity we
see by a standard argument that

3iﬂﬁﬂr(x>5h?” =0. (149)
Also from Eq. (126) we have
r.dwa(x) = 0. (150)
It follows immediately that
d.,J" . (x) = 0. (151)
Introducing
Fo) = V() £50LT (), (152)

we find
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9,J%  (x) = 0. (153)
It is worth noting that we can also introduce the currents
T (x), where
T (x) = F e (x)o™ rpa (x). (154)
However these currents, for the present choice of
&= +x/ (2\/5) are not conserved. For example we can
easily show that
0., _(x) = kF 4 (x)o* Lyl.oy_(x) #£0.  (155)
The corresponding supersymmetry charges are therefore
not independent of time and reflect the presence of Lorentz
symmetry violation in the model when & = +x/(2v/2).
Suitably interpreted however when & = —«/(21/2), they do
provide conserved charges because of the interchange of
photino mass shells that occurs in this case. We consider
this possibility later.
The conserved supersymmetry charges with which we
are concerned are given by

0., = / PxI (x). (156)

When expressed in terms of the mode operators we have

d*p 1
=2
O / (27)* (E; = p3)

x (a,(p)b}(p) —ia' (p)b.(p))ui(ps). (157)
and
B d’p 1
0-=2 [ty =
x (ia_(p)bL(p) — al(p)b_(p))us(p-). (158)

We draw attention to the apparently anomalous factor
u,(p_) in the integrand in Eq. (158). This factor can be
reexpressed as ysu_(p_) which leaves it more seemingly
natural but requires the explicit presence of ys. We leave
Eq. (158) as it stands. We define also the conjugate charges

Q.y = QLJO- (159)
We have immediately
{Qii’ qu$} — 0 (160)

The nonvanishing anticommutators are

(0r 0ii} =8 / %ﬁ(a*i(p)ai(p)

+ b (p)be(p))uy (pr)i, (ps),  (161)

using the result (which can be checked by taking the trace
with a complete basis of y-matrices)

[(Ex = p3)psy + ﬁfi(l’i)f’i"m]-
(162)

up(pe)i (ps) =

N[ =

We can then show that

Qe 0} =4 [ Sl + DL 01 9)

8/1 AT
[zt

The first term in the integrand in Eq. (163) yields a
contribution to the anticommutator of the supersymmetry
charges of the form

(163)

{041, 0 )} =4PLy+- -, (164)
where P, is the appropriately modified 4-momentum
operator for the photon/photino system. This term is a
contribution to the anticommutator similar to the standard
result for the Lorentz symmetric case and to which it
reduces when & — 0 + . The remaining term seems to stand
in the way of reproducing the standard result in the limit
¢ — 0. However an examination of the corresponding limit
& — 0— provides the appropriate canceling contributions.

A. Interchange of mass-shell cones

The result of setting & = —k/(2+/2) is not only directly
interesting but is crucial in understanding the limit x — 0
when Lorentz invariance is restored. We retain the =+
identification of the mass-shells established by the photon
field. The reversal of sign for £ interchanges the mass shells
for the photino field with the outcome that

[ dp 1
"“F(x)‘/ @27 N-(p)

X (b (p)e™P+* £ ib% (p)eP**)uz(ps). (165)

The time independent supersymmetry charges Q. _ and
Q__ can be constructed from the now conserved currents
JA_(x) and J  (x), where

Pio(x) = P () £ (/2P LT (x). (166)

and
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T (x) = Fage(x)0" Py (x). (167)
The supersymmetry charges take the form
- d’p 1
R keriikviery
x (ay(p)bL(p) + id'(p)b_(P))u-(ps).  (168)
Similarly, we have
B d’p 1
o= | G
x (ia_(p)bL(p) + al(p)by (p))u_(p-).  (169)

Following the scheme of previous calculations we find
the nonvanishing anticommutators to be

B d’p 1 .
Q++_2/(2”)3 (E—p3)( +

B d’p 1
0 =2 G JE—p)

B d*p 1 ;
0= 2/<2n>3 E=py

B &’p 1 _
0 =2 | G T

The full list of anticommutation relations is given in
Appendix A. The diagonal relations can be read off from
Egs. (163) and (170) by setting k = 0. We have

3 (o2
{0:1.04:} :4/([21 3 [ y+v2 é )[;2 M}
x (ai(p)as(p) +bL(p)b=(p)), (172)
and
d’p & (p)poy,
(Qur 0ur} = /<z> R =
x (al(p)as(p) + b:(p)b<(p)). (173)

Of the off-diagonal anticommutators some are directly
zero. The others as can be seen from Appendix A, yield
contributions that cancel in pairs. It follows that if we set

0=0,,+0__+0,_+0_,, (174)

~(p)bL(p) -

(p)b'(p) + al(p)b (P)u_(p).

(0ini0s ) —4 / %@(p)ai@) b (p)b+ (D))
5 & (p2)Pios
[p” V2 E - ) (170)

Note the change of sign for the second term in square
brackets relative to the corresponding term in Eq. (163).

B. Lorentz invariant limit
Lorentz invariance is achieved in the model by setting
£=0. We have then that p, and p, all reduce to a
common value of p where p?> = 0. We have also in this
limit N, (p) =N_(p) =N (p) = V(E~-p3)°E and
N,(p) =N_(p) =N(p) = \/2(E— p3)E. In that case

the supersymmetry charges, all of which are constant, take
the form

(p)b'(p) —ia’.(p)b (P))u: (p),

al(p)b_(p))u(p).

(p)b%(p) + ia' (p)b_(p))u_(p).

(171)

[
then we find

(0.0} =38 / a.(p) + " (p)a_(p)

+ b4 (p)by (p) +bL(p)b_(p)) = 8y.P, (175)
where P* is the complete 4-momentum operator for the
model in the Lorentz invariant limit. This demonstrates that
in the Lorentz invariant case, we can recover the complete
constant supersymmetric charge with the correct anticom-
mutation relation. However it is evident that to achieve this
outcome it is necessary to include contributions from both
limits & — 0+.

C. Action of supersymmetry charges
on modes and fields

the broken symmetry case with

& = +x/(2v/2). The action of the supersymmetry charges
on mode operators can be read off from their definition in
Egs. (157) and (158). We have

We return to
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0, a.(p)] = ﬁm(p)mm
+ D3
01l p)] = —E b))
_ 2i _
{byi(p), 0y} = ma+(l’)”+(l’+)s
(L) 01} = el ilp). (170
and
2
0 a-(B)) = —7m—sh (B ()
(0 b)) = 72— b))
) ) )
(b-0).0-) = = ) ).
_ =2i _
{pL(p).0__} = mai(l’)h(m)- (177)

The (anti)commutators therefore convert the photon/pho-
tino mode operators correctly into the corresponding
photino/photon mode operators. The action of the super-
symmetry charges on fields can be deduced immediately.

1. Anticommutators for Majorana fields
From Egs. (135) and (137) we have

{yi(x), 04} = l\/_/ 27) 3N (p)

X (ai(p)e P+ — al(p)eip+~X)u+(p+)

X ity (py)- (178)
We have used the result
N, (p)(E, — p3)'/* = V2N, (p). (179)

From Eq. (162) we conclude that right-hand side of
Eq. (178) becomes

P A T
oue | Gy A
x [y (Lpy) + e(ps)a™.

(p)e™ P+ + al (p)e'?+)

Expressed in terms of fields Eq. (178) takes the form
{wi(x), 0.4} = F+ﬂr(7’17 —7.04L.0¢_ (x), (180)

where

dS—p# a e~iPyx aT eiP+X
@) Lp)er).

(181)

¢ (x) =

Similarly we have

.0 y=-va [ 2L

x (a_(p)e™ "+ —ale )u_(p_)a, (p-).

(182)
Making use of the identities
Y56 = —e’”"ﬁa (183)
and
e,(p-)P_yso” = ip_se_(p-)o*, (184)
we can show that
_ 1.
{l[/_(X), Q——} = EF—/IT —ysY 6_[6(]5 ( ) (185)

a_(p)e”""-* = al (p)e'’-).
(186)

These anticommutation relations for the supersymmetry
charges involve the newly introduced additional fields
¢ (x). Since they are built from the mode operators

a.(p),d(p) they involve the same degrees of freedom
as the original vector fields.

2. Commutators for the photon fields

The commutation relations with the photon field yield

dp 1
0, A, (x)]= 2i/
[ ++ +/4( )] (2”)3 N+(p)
x (b (p)e~r+ = bl (p)e'7-~)
e
X <31u ll p+l >”+(P+)’ (187)
+
which can be put in the form
[0 AL ()] = 2iy (x)ey, +21,(e,.0)Q2, (x),  (188)

where the additional field €, (x) depends on the photino
mode operators in the form
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[ dp 11
Q+(x)_/(2”)3N+(P)Z-P+

x (b (p)eP* + ibl(p)e™  )uy(p,), (189)
and Q, (x) satisfies
i1.0Q, (x) = w,(x). (190)
We also have
- &dp 1
049 =2 | G
x (b_(p)e~'P-~ + ibl (p)e'P-)
(=202 o) (o)
leading to
(0 AL(¥)] = 20_(x)es, = 20l,(e20)Q_(x), (192)
where
[ dp 11
0= | G
x (b_(p)e~ "= —ibL(p)e"")u_(p-). (193)
and Q_(x) satisfies
i1.0Q_(x) = w_(x). (194)

It is interesting to note that the solutions of Eqgs. (190)
and (194) can be expressed in the form

Q.(x) =i A Y dse ey (x+sl).  (195)

The limit € — 04 is assumed. The integration over s
creates the factor 1/(l.p.) in the integrands on the
right-hand sides of Egs. (189) and (193). The point here
is that although, in this form, the right-hand side of
Eq. (195) can be expressed directly in terms of the
Majorana field, the result is not local but requires an
integration over a line of points emerging from x in the
lightlike direction /. A similar factor appeared in the
integrand of the right side of Eq. (163) for the anticom-
mutators of Q. This suggests that a nonlocal structure is
intrinsic to the supersymmetry algebra that can be formu-
lated in the presence of Lorentz symmetry breaking (of the
type we have considered). This may help to explain why
there seems to be no obvious Noether method for con-
structing the supersymmetry charges in our model. In this
context we should recall that while this is not true for an

extrinsic Lorentz symmetry violation our model has a

violation that is intrinsic.
Finally, we note that the fields ¢, (x) and Q. (X) are
related through the commutation relations
[Qs. pr] = —Qu (), (196)

and

(Q.(0).0.1} =i / ®dses{y, (x+ s1). 0, ). (197)

and similarly

{Q_(x),0__} = i/0°° dse={y_(x+sl),0__}. (198)

Again we note the nonlocal character of these results.

D. Algebra of supersymmetric charges and fields
in the Lorentz invariant limit

We again consider the limit of Lorentz symmetry.
The four supersymmetry charges are given in Eq. (171).
The nonvanishing anticommutators of the charges with the
fields become

- 1
{wi(x). 01} =5F 0" —y.0l.op. (),

2
~ 1

{y. (x).0-4} = EF—M’M + iysy.ol.op_(x),
~ 1

{l//_(X), Q——} = EF—MGM - zysydlﬁrﬁ_(x),

_ 1
[0} = 3 F 10’ + 70100, (x). (199)

Using the definition in Eq. (174) for the total supersym-
metry charge Q we can deduce that

{w(x). 0} = Fe0™, (200)
where, of course
w(x) =y (x) +w_(x), (201)
and
Fio=Fo o+ F_j(x). (202)

This is exactly what we expect for this Majorana field
anticommutator in the Lorentz symmetric case.

The nonvanishing commutators for the photon fields
become in the Lorentz invariant limit is most conveniently
considered in two stages. In the first stage we find directly
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[0, A (x)] = 2iy  (x)ey, + 2ilﬂel.0/) dse “y  (x + sl),
[0, AL, (x)] = =2iy_(x)ey, — 2ilﬂel.0/0 dse “y_(x + sl),

0 A~y (0] = 215w (x)es, + 2ysesd [ dse eyt 5,

[Q—+’A—y(x)] = _275W+(x)€2;4 - 21,47562-5[) dse‘“u@(x + Sl)- (203)
|

These equations, together with the related vanishing anti-  where 40 = —y, u(+O> and u,_(p) = —ysi,, (p). This
commutators, imply that leads to
[0.A,(x)] = 2(iey, — rsey,) (Wi (x) —w_(x)) —rw_(x) = =2id,w O (x) + Ly, (x)

+ 21, (ie; - y5ez).0/ dse™® + (ier, = rsex)w—(x), (211)

0
X (yy(x+sl) —w_(x+ sl)), (204)  where

where Q is the total supersymmetry charge [see Eq. (174)] ( [ &p 1 Cipx ot ipy,(0)
fl([lld zf\ﬂ(x) =A,,(x) +A_,(x). We now make use of the ¥~ (x) =i (27) N(p) (b_(p)e™"* —ib’(p)e”*)ul,
identity

(212)
yutt(p) = 2p,u) = L (p) + (iey, — yses, )y (p). and
(205) 3
where ()= [ S (- ) L ) (),
i (p) = . pnpu?. (206) 213)

F Eq. (205) th btai Subtracting Eq. (211) from Eq. (207) we obtain
rom Eq. we then obtain
- () = 2i0p' 0 () = Ly, ()
]/Ml//+(x) = 20/4’/’3?) (x) - lu‘l’n+(x) + (161,4 - 7562M)W+(X). ! ” U
(207) + (fer, = rsex) (Wi (x) —w_(x)).  (214)

where (0 = l//S?) (x) + w9 (x) etc. We can use Eq. (214)

We have fi ience, introduced
© ave Tor convenience, IHoduee to eliminate (y (x) —w_(x)) from Eq. (204) with the

y'? (x) = i/ d’p L(m(p)e—m.x b (p)er ) result
(27)3 N(p) 08) [0, A,(x)] = 2y,w(x) — 40,y (x) + 20, (x)

+ 21,0 /00 dse ™ (yp(x + sl)
0

- 20(11//(0) ()C) + laWn(x —+ Sl)) (215)

and

dp 1 : .
Wn+(x) —/ﬁmULr(p)e_’p'x—ib:_(p)elp'x)un+(p). We note that 7.0[//()6) — aZW(O) (x) — 0 and
(209)

l.a/ dse Sy, (x + sl) = =y, (x), (216)
By multiplying the terms in Eq. (205) by y5 we obtain
we find
_yﬂu—(p) = —ZP”M@) + lﬂul‘l—(p) + (elﬂ - }/5€2ﬂ)u—<p>’
(210) 0. 4,(x)] = 27, w(x) =40,y (x).  (217)
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The outcome is exactly what we expect for the Lorentz
symmetric model apart from the derivative term on the
right-hand side of Eq. (217). This can be accommodated by
incorporating an appropriate gauge transformation of A, (x)
and in any case does not affect the result for [Q, F, (x)]. In
fact we could have approached the whole analysis in the
Lorentz symmetric case along the lines we have set out
above without reference to Lorentz symmetry breaking. It
would of course seem a rather roundabout approach. The
key point is that when we have Lorentz symmetry there are
four conserved supersymmetry charges that may be com-
bined to make up the total supersymmetry charge, whereas
there are only two when we violate Lorentz symmetry in
the manner of our model.

V. WESS-ZUMINO MODEL

It is interesting to compare the results of the photon/
photino model with similar birefringent phenomena that
can be obtained in a simple non-interacting Wess-Zumino
model [14] with the Majorana photino field and two scalar
fields. We retain the Majorana Lagrangian of Eq. (103). We
introduce a scalar field ®, (x) and a pseudoscalar field
®_(x) with a Lagrangian Lg(x), where

£5(0) = 5 (0 + (5/2)1L0), ()2
+ % (0= (k/2)lL.o)®_(x))*>.  (218)
The fields @, (x) satisfy the equations of motion
(0* £ x(1.0)*)®,(x) = 0. (219)

The plane waves satisfying these wave equations are

D, (x) = e7iP=, (220)

where

pr tx(l.py)*=0. (221)
It is obvious that these dispersion relations for the scalar
particles associated with these plane waves yield the same
“£” light cones as for the photons and the photinos.

The quantum fields can be expanded in terms of these
wave functions in the form

0u10) = [ o7y oW cLlpren)
(222)
where
[ex(p),ck(p)] = 2n)8(p —p').  (223)

and N g, (p) is chosen to guarantee the canonical commu-
tation relations, that is

Nss = /2(Ex £ (/2)(Es — p3)). (224)

A. Supersymmetry charges with scalar fields

Because of the conformity of the scalar and photino light
cones we can realize the associated supersymmetry by
means of conserved currents J¢,  (x) that give rise to
conserved supersymmetry charges Qg. ., where

Osi+ = /d3XJ(s)ii (x). (225)
First we note the modified currents
j§++(x) = i3+,1(1)+(x)y’1y”y/+ (x), (226)
and
T5__(x) = ys0_,@_ (x)r'yy_(x), (227)
satisfy
5¢uj§ii (x) =0. (228)

The factor ys in Eq. (227) is for future convenience. It
relates to the fact that @ (x) and ®_(x) have opposite
parities. We then set

T (x) = T (x) £ (k/2) 11T e (x). (229)
It follow from the equations of motion, that
s (x) = 0. (230)

The associated supersymmetry charges are then also con-
served. We find

d’p 1

(27)* \/(E, = p3)
x (=icy (p)bY () = ¢\ (P)by (p)us(py). (231)

Osi+ =

[ dp 1
s~ / (27)* /(E_ = p3)

x (c_(p)bL(p) +icl(p)b_(p))us(p-).  (232)

These have the same form (up to a normalization) as the
corresponding charges linking photons and photinos. The
nonvanishing anticommutation relations are
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(Qsis. 0} =2 / %m@p)cim)

+ 5L (p)be(p)uy (pu)iy (ps).  (233)

Making use of the identity in Eq. (162) we have

3 .
(O 1. 0501} = / (‘2’7‘; (ch(p)es (p) + b(0)bs (1))

% A 8i(p+)f71+0/17:
G rerm
and
3
(0505} = [ S (e @)e (o) + 0L 0)b-(0)
% ~ Si(p_)[’\)idh
[y.p_ + ﬁ—(E_ —o) | (235)

B. Commutation relations of supersymmetry charges
with fields

We have for the mode operators

1

Ot 0)) = —mees b ()1 ().
+
05111 B)] = bR )
(01 0). 0514} = e 0V 1),
+ 3
(LB 051} = =), (230
and
[Qs——.c_(p)] = mb—(P)M(P—)’
[Qs——. cL(p)] = \/ﬁbi(l’)h(ﬂ),
{b_(p), Qs--} = mc—(l’)h(l?—),
_ 1 _
{bL(p), 05—} = mCT—(P)M(P—)a (237)

giving rise to the results

Qs+, @1 (1)) = (x),

{v.(x), 0541} = _7[ {7-3+(D+(x) + eué,a’“dhr(x)

+ ¢,.01,0, 6" /oo dse D (x + sl)|,
0
(238)

and
[Qs——, @_(x)] = —iysy_(x),

(v-().05} = 17 [y.é_cb_ (x) + €100 ®_(x)

+ e,.0L,0_.6"" /oo dse=®_(x + sl)|.
0
(239)

These results are similar in character to those for the
photon/photino model and reveal the presence of nonlocal
terms in the anticommutators of the conserved supersym-
metry charges with the photino fields. The commutators
with the scalar fields are in this case purely local and yield
the photino fields without any further contributions.

C. Interchange mass-shell cones in Wess-Zumino model

Just as for the photon/photino model we can inter-
change the mass-shell cones of the Majorana particles
by setting & = —«/(2+/2). This leads in a straightforward

way to conserved supercurrents J,_(x) = Tz (x)£
(k/2)11.J, _ (x), where

j§+—(x) = i3+,1CD+(x)y’1y”y/_(x), (240)
and

j§—+(x) = 759—/1(1)—(x)7'17”l//+ (x). (241)

Here y - (x) has the form given by Eq. (165). Computing
the now conserved supercharges in the usual way we find

[ &p 1
Ose-= / (22)* \/(E{ = p3)

x (ic, (p)bL(p) = L (P)b_(p)u_(ps), (242)
[ &p 1
Os—+ = / (27)* \/(E_ = p3)
x (—c_(p)b'.(p) + it (p)b (p))u_(p-). (243)

We have, following the same pattern of argument as
Sec. IVA
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i &p [ . V2e,(pi)pi.o”
{Qsi5: Osis} = /W [y.pi - E{i _ip;

ci(p) + b (p)b+(p)).

x (c}.(p) (244)
The nonvanishing (anti)commutation relations of these
charges are

Qs @ (x)] = w_(x),

-().05) = [y.fma(x) 1920, (1)

— ¢,.00,0, 6" /Ooo dse @ (x+ sl)|,

(245)

and

[Q—+’ o_ (x)} = —iysy (x),

(.05} = 175 [y.é_ob_ (x) - e10_,0®_(x)

— e,.00,0_,6"" /oo dse™®_(x + sl)|.
0

(246)

The results in Egs. (245) and (246), although a little simpler
than the corresponding results for the photon/photino
model, have in common the feature of involving nonlocal
terms with integrals over a line starting at x and parallel to
the null 4-vector I

D. Lorentz-invariant limit for the Wess-Zumino model

In the same way as for the photon/photino model we
can examine the limit of Lorentz invariance for the Wess-
Zumino model. Recall that when ¥ — 0+ the 4-momenta
satisfy p, = p,. = p where p?> = 0 and all of the super-
charges are conserved. The form of the of the super-
symmetry charges is listed in Appendix B together
with the complete set of anticommutators. We again find
that the off-diagonal anticommutators cancel in pairs. We
may therefore define an overall supersymmetry charge

Os =05+ +0s__+ Qg+ Qs_,. It is easy to estab-
lish that

{0s. 05} =2r.P, (247)

where P* is the 4-momentum operator for the fields in
the model.

From Egs. (238), (239), (245), and (246) we can, in the
Lorentz invariant limit, obtain the results

[Os44. @y (x)] =y (x),
[Qs5——. @_(x)] = —iysy_(x),
[Os1—. @ (x)] = y_(x),

-] =

[Qs—+’ X —175W+( ).

(248)
These may be combined appropriately to yield

Q5. @, (x) £iD_(x)] = (1 £y5)w(x).  (249)

We can also extract the results

{w(x), QS++} = *7 oD, (x) +---,

fw_(x), 05} = éysy.acb_(x) .
{w_(x), Os,_} = —iy.amx) .

{wy(x). 054} = 757 0D_(x) + (250)

The ellipses in Eq. (250) indicate terms that cancel from the
final result. In particular these cancelling terms include the
nonlocal contributions. Finally, we obtain the purely local
result

{w(x). Os} = =iy.0®. (x) +ys7.00_(x).  (251)

This result may be reexpressed as

{(1 £75)w(x), Os} = £i(1 £y5)y.0(@ (x) £ id_(x)),
(252)

which is the standard result for the Lorentz invariant Wess-
Zumino model.

VI. CONCLUSIONS

We have argued for a distinction between an extrinsic
breaking of Lorentz symmetry that can be “removed” by an
appropriate coordinate transformation and an intrinsic
breaking that cannot be so removed. In the extrinsic case
such a model can retain in full the original supersymmetry
in a “disguised" form but with essentially the same formal
algebraic structure. This does not mean that the violation of
Lorentz invariance is illusory but merely that the allowed
observer frames may differ from the coordinate frames
natural to the model under investigation. In the intrinsic
case the origin of Lorentz symmetry violation is irremov-
able by a change of coordinates. A clear case is the presence
of birefringence. It is then less obvious a priori that any
supersymmetry can be retained. However, we have shown
from an examination of two simple models, a photon/
photino model and a Wess-Zumino model (both exhibiting
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birefringence), that some supersymmetry can indeed be
retained.

In the photon/photino model the Lorentz symmetry
violation for the photons is provided by coupling the
vector field to a Weyl tensor background field. The
Weyl tensor is of class N in the Petrov classification
scheme. This is the simplest case. The result is a birefrin-
gent form of photon propagation. The photino field is a
(massless) Majorana field coupled to a Lorentz symmetry
violating background bivector field related to the (Petrov
class N) Weyl field controlling photon propagation. By
adjusting the strength of the coupling it is possible to align
the birefringence of the photinos with that of the photons.
This means that for every photon of spatial momentum p
there is an appropriate companion photino with the same
momentum and energy. This is the basis of the supersym-
metry in the model. In the Wess-Zumino model we retain
the Majorana field and adjust the scalar field propagation so
that it exhibits birefringence that matches appropriately the
propagation of the Majorana field.

Consideration of the double light cone structure that
governs the propagation of both photons and photinos or
scalar particles and Majorana particles, shows that there are
limitations on the ensemble of allowed observational
reference frames. No boost to a reference frame is accept-
able if it requires the observer to travel faster than particles
on the slower light cone. This constraint can be re-
expressed as a bound on the magnitude of the coupling
to the Lorentz violating background fields. When this
bound is broken the (positive time) slow cone tilts over
so far that the time axis of the observer’s coordinate system
no longer lies within it thus rendering the coordinates
inappropriate for describing the unitary evolution of the
model. Of course in order to genuinely observe the system
there has to be an interrogating interaction between
model and observer. In that case an observer breaking
the slow cone speed barrier will generate an associated
shower of Cerenkov radiation (see Refs. [27,28]) thus
paying a speeding penalty by ceasing to be an observer and
effectively becoming part of the model. This Cerenkov
phenomenon can of course be detected by observers that
are obeying the speed limit. These considerations apply
more generally to any model with multiple light cones.

If we accept the speeding restriction on our observation
frame we can proceed to study the equations of motion of
the model and quantize it in a conventional way. We use a
slightly modified version of the Gupta-Bleuler method to
quantize the vector field A, (x) of the photon resulting in a
breakup into three parts, A, ,(x), associated with the slow
cone, A_,(x) associated with the fast cone and Ay, (x)
which comprises a pure derivative gauge field and a
conjugate zero norm term. They do not contribute to matrix
elements of physical observables. Interestingly the light
cone appropriate for the propagation of Ay, (x), is the
standard cone that is invariant under the Lorentz

transformations that connect the coordinate systems of
the set of observers. For this additional reason it is essential
that Ay, (x) is not involved in the construction of observ-
ables which relate to the energies and momenta of photons
and photinos traveling on the fast and slow light cones.

The Majorana equation appropriate to the photino field
w(x) is modified in a way that breaks Lorentz invariance.
The resulting birefringence, makes it possible to view it as
the sum of two parts, y, (x) associated with the slow cone
and y_(x) associated with the fast cone. From A ,(x) and
w . (x) we can construct a (spinor-valued) current J, . ,(x)
that is conserved and which gives rise to a constant
supersymmetry charge Q. .. Similarly a supersymmetry
charge Q__ can be obtained from a conserved current
J__,(x) constructed from A_,(x) and y_(x). The nonzero
anticommutation relations satisfied by the two charges each
have two contributions [see Eq. (163)]. One part has the
form y.P.. and is analogous to the standard result but with
the momentum operator P, replaced by Isiﬂ. The second
part has a more elaborate form that we argue later has
indications of nonlocality. In the Lorentz invariant limit
(x =0) the first part reduces to the standard form
but the second part remains. The full understanding of
this limit requires an examination of the regime in which
& = —k/2+/2. In this case the fast and slow light cones for
photinos interchange and the conserved supersymmetry
currents are J,_,(x) and J_,,(x) [see Eq. (170)]. When
x = 0 all four currents are conserved and it is then possible
to build a total supersymmetry charge that has the standard
anticommutation relations (see Sec. IV B). It is evident then
that the limit back to Lorentz invariance is not straightfor-
ward and issues related to the complexity of the algebra of
conserved charges reappear when their effect on the photon
and photino fields are considered.

The various (anti)commutation relations with the mode
operators is straightforward and the conversion a(p) <
b.(p) is as expected [see Egs. (176) and (177)]. The
(anti)commutation relations of Q. with the dynamical
fields is rather less conventional and involves the intro-
duction of the modified fields ¢ (x) and Q. (x) that have a
nonlocal relationship with A, (x) and y_ (x) even though
they are constructed from the same sets of mode operators.
We speculate that this nonlocal property is related to the
apparent impossibility of constructing in our photon/
photino model, conserved supersymmetry currents by
means of the Noether method. Nevertheless, if we accept
these complexities and limitations of the model we can
argue that even in this model with intrinsic Lorentz
symmetry violation it is possible to identify a remaining
supersymmetry structure.

The Wess-Zumino model with Lorentz symmetry break-
ing exhibits the same features as the photon/photino model.
There is the same reduced number of conserved super-
symmetry currents and charges. The (anti)commutation
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relations with the fields again show nonlocal out-
comes. The limit back to Lorentz symmetry yields a second
set of conserved charges that permit the construction of a
complete conserved charge Qg with the appropriate alge-
braic properties for the Lorentz invariant Wess-Zumino
model. The nonlocal terms again cancel in a satisfactory
manner.

Of course a major limitation of our models is that the
fields and their associated particles are noninteracting. It
would therefore be of interest to generalise the models so
that the fields do have interactions such as a non-Abelian
gauge invariance. The task would, in particular, be to find a
method of identifying A, ,,(x), y.,(x), and ®,,(x) (a
being the group multiplet label). This would presumably be
achieved perturbatively and would intersect with the related
task of confirming the renormalization properties of the
interacting model. It would also be interesting to generalise
the nature of the Lorentz symmetry violation for the
photon/photino model to other Petrov classes. In this
context it should be noted that Petrov class D is the only
other example of the Weyl tensor giving rise to a dispersion
relation that factorises into two lightcones. The other
classes, I, II, and III of Weyl tensor yield dispersion
relations that are intrinsically quartic in the photon momen-
tum [17]. Since a product structure for the dispersion
relation holds generally for modified Dirac equations [29]
this may prevent the aligning of the photon and photino
|

_ B &Ip 1
{044,041} = 8/WE——P%
{Q++’Q——} =0,

_ - &Fp 1
{Q++’ Q+—} - 4/ (27[)3E— D3

d*p

(000} =-4i [

00 y=s 1P

{Q——5Q++} =0,

(2”)3 E—p;

{o__, Q+—} = 4i/ (6212_1; E—p,
3
(00 y=4 [ Sh
3
{o.-. Q+—} = 8/ (3”1;3%%
{Q+—’Q—+} =0,
3
{Q+—’Q++} = 4/(6217’;3E_1p3

(2”)3 E—p3

dispersion relations and the achieving of supersymmetry in
the photon/photino model in those cases.

Finally, we remark that there is an intriguing parallelism
of supersymmetry structure between our models and the
N = 1/2 supersymmetry proposed by Seiberg [30] in the
context on noncommutative spacetime geometry. A major
difference between the models is that the Seiberg model is
based on the standard chiral structure of supersymmetry
and retains Lorentz invariance whereas in the models
analyzed here the violation of Lorentz invariance replaces
chiral structure with charge-conjugation symmetry.
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APPENDIX A: ANTICOMMUTATORS FOR
SUPERSYMMETRY CHARGES IN LORENTZ
SYMMETRY LIMIT

We list here the anticommutators, in the Lorentz sym-
metry limit, for the supersymmetry charges of the photon/
photino model. The 4-momentum p satisfies p? = 0.
We have made the contractions a.(p) — ay etc. for
compactness:

(a1a+ + b1b+)u+(p)u+(19),

(blb_ + b+bi)u+(p)ﬁ_(p),

(ala_+a.alyu (p)a_(p),

(ala_ +bIb_)u,(p)a,(p).

(ala, + a_ai)qu(p)lZ_(p),
(bib, + b—bb”Jr(P)b_‘—(P)’

(a1a+ +bLb_Yu_(p)a.(p),

(bLby +b_bL)u_(p)i,(p),
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(0.0} =~ [ S B (ala+ asalu_(p)ic ().
3
(0.0} =8 / Sl Db ()

{o-., Q+—} =
(0.,.0.) = / S el + e (P (o)

(0.,.0_}=4 / %E%mwib_ T bybtu_(p)iy (p).

The canceling pairs of off-diagonal contributions are obvious from the above list.

APPENDIX B: LORENTZ SYMMETRIC LIMIT FOR THE WESS-ZUMINO MODEL

Using the same notational conventions as in Appendix A we have, in the limit of Lorentz invariance,

&’p 1 . ¥
Osi4 = /Wﬁ(—lc+b+ —cybyui(p),

0 :/d3—p¥(ch+ich)u()
T Qe VE=ps TR

d? 1 .
Osi- = / (2;;3 ﬁ(ic+bi —clb_)u_(p),

&3 1 . ]
Qs = /ﬁﬁ(—c—bl +ictb Ju_(p).

The anticommutation relations for these charges are

_ &3
{QS++’QS++} :/(2;))3

{QS++’ Qs——} =0,

{051 05} = / s (bLb + B ()i (),

2 " T -
E—ps (chey +bLbu(p)ag(p),

(che_+cleyup(p)a(p),

(0505} = [ 2B

P3
{05 . 0s: 1} =0,
_ &> 2
{05 05} = | Shsm——(cle_ +blbJu, () (p).
- D3
{05, C j’ (e +cteu (n)a(p)

{0505} = / 27[3,5_ (=bLb. -+ B b () (p),

(00t = [ Sl (bbbl ) () (1)

i

(050051 = [ Sl (e, Bl (p)a ()
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(0505t = [ S22 (cley + 00 ()i (),

{QS+—’ QS—+} =0,
{05+, C

{QS—+s QS+—} =

. &
{Qs—+9 Qs—+} :/ p

(=bib_+bib,)

(cle_ +bLb)u_(p)a_(p).

(27)*E - ps

i T —

! —(ches+cleu(p)a.(p).

(0505 ) = / T

u_(p)ii(p),

By inspection it is clear that the off-diagonal anticommutators cancel in the sum.
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