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In this work we first collect and generalize several existing nonperturbative models for the interaction
between a single two-level qubit detector and a relativistic quantum scalar field in arbitrary curved
spacetimes, where the time evolution is given by simple-generated unitaries, i.e., those generated by
Schmidt rank-1 interaction Hamiltonians. We then extend the relativistic quantum channel associated to
these nonperturbative models to include a very large class of Gaussian states of the quantum field, that
includes an arbitrary combination of coherent and squeezing operations (i.e., Gaussian operations) on the
field. We show that all physical results involving the nonvacuum Gaussian states can be rephrased in terms
of interaction with the vacuum state but with Gaussian operators applied to the field operators via the
adjoint channel, effectively giving a “Fourier transformed” interpretation of the Gaussian operations in
terms of the causal propagators in spacetime. Furthermore, we show that in these nonperturbative models it
is possible to perform exact computation of the Rényi entropy and hence, via the replica trick, the von
Neumann entropy for the field state after the interactionwith the detector, without making any assumptions
about the purity of the joint initial states of the detector and the field. This gives us a three-parameter family
of “generalized cat states” of the field whose entropies are finite and exactly computable.
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I. INTRODUCTION

In standard quantum information theory, the role of
relativity is passive, in the sense that one accepts principles
such as impossibility of superluminal signaling and derives
consequences from them. Some of the no-go results such
as Bell inequality and no-cloning theorem are intimately
tied to the impossibility to send information faster than
the speed of light. At the same time, it is well known that
a relativistic quantum theory requires us to work with
quantum fields. In the absence of quantum theory of
gravity, our best understanding of the interplay between
quantum theory and gravity is given by the framework of
quantum field theory (QFT) in curved spacetimes. Much of
what is now known as relativistic quantum information
(RQI) seeks to understand various features and of QFT in
curved spacetimes using the toolbox from quantum infor-
mation theory.
One of the most common and useful approaches in RQI

involves the use of Unruh-DeWitt (UDW) particle detector
model [1,2], where one couples locally a qubit (which acts
as a localized quantum-mechanical “detector”) to a quan-
tum field living on top of a generic curved spacetime. It is a
simplified model of light-matter interaction representing a
monopole-scalar model of atomic dipole-electromagnetic

interaction in quantum optics. This model has been refined
to admit a fully covariant description that allows for
arbitrary trajectories and finite-size effects [3,4], as well
as quantized center of mass degrees of freedom [5], higher
multipoles, and spins. The UDW model is also useful for
studying fundamental physics associated to relativistic
trajectories or genuine quantum effects in curved space-
times, such as the Unruh and Hawking effects.
The more important advantages of the UDW model is

that it is versatile enough to provide answers to some
fundamental questions that cannot be directly settled within
quantum field theory in curved spacetimes. For example,
it allows us to define local measurement theory [6] for
quantum fields even though projective measurements in
quantum field theory violate relativistic causality [7].
Furthermore, since the UDW model is easily generalized
to include multiple detectors, it is straightforward to apply
it to study relativistic quantum communication between
two localized parties in curved spacetimes [8–15]. There
are numerous other applications of the UDW model in
other contexts (see, e.g., [16–26] and references therein).
Our work is largely motivated by the observation that

there has been relatively few works on the characterization
of relativistic quantum channels built using the UDW
detector model. There have been some rather general
and remarkable results, such as showing the entangle-
ment-breaking nature of certain relativistic communication*e2tjoa@uwaterloo.ca
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channels [10,11] or proving “no-go theorems” on entan-
glement extraction from the quantum field [27]. However,
these results are often restricted to Minkowski spacetime
(which is nonetheless important), and relativistic quantum
channels are much less understood compared to the non-
relativistic counterparts. More recent work [13–15] has
exploited the possibility of using nonperturbative methods
to obtain very general results regarding a certain class of
relativistic quantum communication channels in arbitrary
curved spacetimes, making use of the full power of
algebraic approach to quantum field theory (AQFT).
In this work we aim to fill this gap in the literature on

three fronts. First, we will collect and unify some of the
known nonperturbative coupling between the detector and
the field: (i) the delta-coupling model, (ii) the gapless
model, and (iii) the pure dephasing model. Each speaks
about different regimes: for example, (i) is about the short
timescale of interaction relative to all other timescales,
while (ii) and (iii) are about the internal dynamics of the
qubit detector being much slower than other relevant
timescales. We first show that these models are “essen-
tially” equivalent as far as computation of physical observ-
ables are concerned, so we do not have to treat any of them
separately until the very end when we need to crunch out
specific numerical output (e.g., computing the actual matrix
elements). Since they are all identified by the fact that
the unitary evolution is generated by Schmidt rank-1
Hamiltonians (analyzed, e.g., in [11,27] in the context of
entanglement harvesting and communication), we follow
these works and call it the family of simple-generated
interactions.
Secondly, these simple-generated interactions give rise

to (relativistic) quantum channels such that the nonpertur-
bative analysis straightforwardly extends to a very large
class of Gaussian states of the field, including those that are
not quasifree (vanishing one-point functions) such as the
coherent states. These are states that can be constructed
from a sequence of arbitrary displacement operators and
also a large subclass of squeezing operators that are not
“momentum entangled.” The idea is to embed these
Gaussian operations into the Weyl algebra of observables
for the QFT and convert calculations for Gaussian states
into calculations involving vacuum states (which are
straightforward) but with the field operators acted via
the “adjoint channel.” In effect, it is analogous to going
into the Heisenberg picture and performing Gaussian
operations on the observables instead. This seemingly
trivial switch will give us quite a nice dividend: we will
see that the calculations for arbitrary Gaussian states follow
very straightforwardly from properties of the Weyl algebra
and the Baker-Campbell-Hausdorff formula.
Finally, we show that in these nonperturbative models it

is possible to perform exact computation of the Rényi
entropy and the von Neumann entropy for the field state
after the interaction with the detector, without making any

assumptions about the purity of the joint initial states of
the detector and the field. This might appear surprising
since most interactions introduce mixedness, and there are
very few states where the von Neumann entropy can be
calculated explicitly. There are some exceptions: if the joint
state of the detector and the field is initially pure, then one
can compute the resulting von Neumann entropy of the
field by computing the von Neumann entropy of the
detector using the fact that their joint unitary evolution
maps pure states to pure states. Essentially, by representing
the Gaussian operations as elements of the Weyl algebra,
it is possible to compute the quantum entropies of the
field algebraically, and the von Neumann entropy can be
computed using, for instance, the replica trick. Therefore,
the generalization of the nonperturbative channels to
include arbitrary initial Gaussian states of the field gives
us a way to compute the entropic quantities of a three-
parameter family of “generalized cat states” of the field
that are finite and exactly computable. To the best of our
knowledge, most of these states do not admit simple path
integral representations, thus we believe our calculations
are of independent interests.
It should be stressed that by “nonperturbative regime”

we mean that the unitary induced by the detector-field
interaction for both gapless and delta-coupling approaches
can be worked out without performing any truncation in the
sense of Dyson series expansion. This relies on the fact that
we can handle the time-ordering operation directly in these
settings, so the unitary can be written as a finite linear
combination of tensor products of bounded operators. We
do not mean that this calculation is nonperturbative in the
sense that we solved exactly for the full interacting theory
of the detector-field system as a dynamical system. We will
thus refer to the latter as having an exact solution for the
dynamical system, while here we give a nonperturbative
solution, i.e., nonperturbative in the usual sense of having
no truncation of any series expansion. Some readers may
also prefer to interpret gapless and delta-coupled regimes as
the regimes where effectively we are performing “resum-
mation” of the series expansion of the unitary evolution.
As part of the goal to make the use of algebraic approach

more accessible, we have provided a more condensed
version of the review of AQFT for scalar fields described
in [15,28,29]. We also provide a very brief introduction to
von Neumann algebras for the full algebra of observables,
which are relevant to make sense of density matrices in
AQFT and the computation of the field channel. For
example, this helps us understand the computations of
Rényi entropy in terms of type I von Neumann algebra of
the algebra of observables, in contrast to the more well-
known fact about local algebras.
Our paper is organized as follows. In Sec. II we introduce

the bare minimum of AQFT approach needed in this work.
In Sec. III we introduce the Unruh-DeWitt detector model
and collect the nonperturbative models under the class of
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simple-generated interactions. In Sec. IV we study the
resulting qubit channel and the corresponding complemen-
tary channel, defined by tracing out the qubit instead of the
field. In Sec. V we show how we can embed Gaussian
operations as elements of the Weyl algebra and how it
relates to the standard calculations where the field state is
typically taken to be the vacuum state. In Sec. VI we show
how it is possible to compute explicitly the Rényi entropy
and von Neumann entropy of the field after the interaction
with the detector. We adopt the units c ¼ ℏ ¼ 1, and we use
mostly-plus signature for the metric.

II. LIGHTNING REVIEW OF AQFT

In this section we review some aspects of the algebraic
framework of QFT. We will only cover the very bare
minimum to understand or perform calculations outlined in
this work to keep it self-contained while not unnecessarily
burdening the discussion with background information.
For the AQFT part, this will be a more condensed version
of the summary given in [28,29], which in turn is based
on [30–34]. Readers can also skip to Sec. III onwards or
Sec. IV if they are more interested in the main content of
this work, referring to this section only when certain details
need to be consulted.

A. Algebra of observables

We consider a real scalar field ϕ in (nþ 1)-dimensional
globally hyperbolic Lorentzian spacetime ðM; gabÞ. The
field obeys the Klein-Gordon equation

Pϕ ¼ 0; P ¼ ∇a∇a −m2 − ξR; ð1Þ

where ξ ≥ 0, R is the Ricci scalar, and ∇ is the Levi-Civita
connection with respect to gab. Global hyperbolicity means
that M ≅ R × Σ where Σ is a Cauchy surface: in such
spacetimes, the Klein-Gordon equation admits a well-posed
initial value problem throughout, and we also have a good
notion of “constant-time slices.” For example, in flat space
we have natural global coordinates ðt; xÞ, with Cauchy
surface Σ ≅ Rn and any constant-t surfaces serve as a good
Cauchy surface.
In the large scheme of things, quantization in algebraic

framework makes a great deal of use of ingredients in
classical field theory. The idea is that we need to construct
algebra of observables AðMÞ for the field theory as well
as quantum states on which AðMÞ acts. We will see that
the building blocks of the QFT come from constructing
solutions of the wave equation (1). These solutions can be
built using the appropriate choice of Green’s functions,
and we need to provide a “symplectic structure” to realize
the dynamical content of the theory, including the imple-
mentation of canonical commutation relations (CCR).
Finally, we need to construct quantum states without
reference to any Hilbert space structure, due to the

well-known existence of many unitary inequivalent
Hilbert space representations. We will see that there are
a priori too many options, and the consensus is to pick a
subclass of Hadamard states which encode the notion that
all states should look “the same” locally and as close to flat
space QFT as possible.
Let f ∈ C∞

0 ðMÞ be a smooth compactly supported test
function on M. The retarded and advanced propagators
E� ≡ E�ðx; yÞ associated to the Klein-Gordon operator P
are Green’s functions obeying

E�f ≡ ðE�fÞðxÞ ≔
Z

dV 0E�ðx; x0Þfðx0Þ; ð2Þ

where here dV 0 ¼ d4x0
ffiffiffiffiffiffi−gp

is the invariant volume
element. These solve the inhomogeneous wave equation
PðE�fÞ ¼ f. The causal propagator is defined to be the
advanced-minus-retarded propagator E ¼ E− − Eþ. The
relevant fact for us is the following: if O is an open
neighborhood of some Cauchy surface Σ and φ ∈
SolRðMÞ is any real solution to Eq. (1) with compact
Cauchy data, then there exists f ∈ C∞

0 ðMÞ with
suppðfÞ ⊂ O such that φ ¼ Ef [33].
In AQFT, the quantization of the real scalar field theory

ϕ is to be viewed as an R-linear mapping from the space
of smooth compactly supported test functions to a unital
�-algebra AðMÞ given by

ϕ̂∶C∞
0 ðMÞ → AðMÞ; f ↦ ϕ̂ðfÞ; ð3Þ

which satisfies the following properties:

(a) (Hermiticity) ϕ̂ðfÞ† ¼ ϕ̂ðfÞ for all f ∈ C∞
0 ðMÞ;

(b) (Klein-Gordon) ϕ̂ðPfÞ ¼ 0 for all f ∈ C∞
0 ðMÞ;

(c) (CCR) ½ϕ̂ðfÞ; ϕ̂ðgÞ� ¼ iEðf; gÞ1 for all f; g ∈ C∞
0 ðMÞ,

where Eðf; gÞ is the smeared causal propagator

Eðf; gÞ ≔
Z

dVfðxÞðEgÞðxÞ: ð4Þ

(d) (Time slice axiom) AðMÞ is generated by the unit
element 1 and the smeared field operators ϕ̂ðfÞ for all
f ∈ C∞

0 ðMÞ with suppðfÞ ⊂ O, where O is a fixed
open neighborhood of some Cauchy slice Σ.

We say that �-algebra AðMÞ is the algebra of observables
of the field. The smeared field operator reads

ϕ̂ðfÞ ¼
Z

dVϕ̂ðxÞfðxÞ: ð5Þ

The (unsmeared) field operator ϕ̂ðxÞ commonly used in
canonical quantization should be thought of as an operator-
valued distribution.

The dynamical content of the field theory is reflected
by the symplectic structure as follows. The vector space of
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solutions SolRðMÞ can be equipped with a symplectic
form σ∶ SolRðMÞ × SolRðMÞ → R, defined as1

σðϕ1;ϕ2Þ ≔
Z
Σt

dΣa
h
ϕ1∇aϕ2 − ϕ2∇aϕ1

i
; ð6Þ

where dΣa ¼ −tadΣ, −ta is the inward-directed unit normal
to the Cauchy surface Σt, and dΣ ¼ ffiffiffi

h
p

dnx is the induced
volume form on Σt [35,36]. The field operator ϕ̂ðfÞ can be
expressed as symplectically smeared field operator [30]

ϕ̂ðfÞ≡ σðEf; ϕ̂Þ; ð7Þ
and the CCR algebra can be written as

½σðEf; ϕ̂Þ; σðEg; ϕ̂Þ� ¼ iσðEf; EgÞ1 ¼ iEðf; gÞ1; ð8Þ
where σðEf; EgÞ ¼ Eðf; gÞ in the second equality follows
from Eqs. (5) and (7). While in our case it is not directly
necessary to construct AðMÞ with explicit reference to σ,
the symplectic form (6) will be essential when we want
to make connection to standard canonical quantization. In
particular, we will need to define the Klein-Gordon inner
product for the one-particle Hilbert space associated to
“positive-frequency solutions.”
Since ϕ̂ðfÞ ∈ AðMÞ are unbounded operators, for free

fields it is more convenient technically to work with its
“exponentiated version” which forms a Weyl algebra
WðMÞ, whose elements are bounded operators. The
Weyl algebra WðMÞ is a unital C�-algebra generated by
elements that formally take the form

WðEfÞ≡ eiϕ̂ðfÞ; f ∈ C∞
0 ðMÞ: ð9Þ

These elements satisfy Weyl relations:

WðEfÞ† ¼ Wð−EfÞ; WðEðPfÞÞ ¼ 1;

WðEfÞWðEgÞ ¼ e−
i
2
Eðf;gÞWðEðf þ gÞÞ; ð10Þ

where f; g ∈ C∞
0 ðMÞ. Note that relativistic causality

(or microcausality) is given by the third Weyl relations.
For the rest of this work we try to stick mostly withWðMÞ.

B. Algebraic states and quasifree states

In AQFT the state is called an algebraic state, defined by
aC-linear functional ω∶WðMÞ → C [similarly forAðMÞ]
such that

ωð1Þ ¼ 1; ωðA†AÞ ≥ 0 ∀A ∈ WðMÞ: ð11Þ
The state ω is pure if it cannot be written as ω ¼ αω1 þ
ð1 − αÞω2 for any α ∈ ð0; 1Þ and any two algebraic states
ω1, ω2; otherwise, we say that the state is mixed.

The relationship with standard canonical quantization
comes from the Gelfand-Naimark-Segal (GNS) re-
construction theorem [30,33,34]: we have a GNS triple
ðHω; πω; jΩωiÞ, where πω∶ WðMÞ → BðHωÞ is a Hilbert
space representation with respect to state ω. In its GNS
representation, any algebraic state ω is realized as a vector
state jΩωi ∈ Hω, and A ∈ WðMÞ are represented as
bounded operators Â≔ πωðAÞ ∈ BðHωÞ. We can thus write
ωðAÞ ¼ hΩωjÂjΩωi. Since QFT in curved spacetimes has
infinitely many unitarily inequivalent representations of the
CCR algebra, the algebraic framework allows us to not pick
any one of them until the very last step and work with all
representations at once.
One of the most basic objects in QFT is the n-point

correlation function2 defined by

Wðf1;…; fnÞ ≔ ωðϕ̂ðf1Þ…ϕ̂ðfnÞÞ; ð12Þ

where fj ∈ C∞
0 ðMÞ and for a fixed algebraic state ω. It is

to be understood that the rhs is computed within some GNS
representation of AðMÞ. The GNS representation of the
Weyl algebra WðMÞ allows us to calculate Eq. (12) by
differentiation: for example, the smeared Wightman two-
point function reads

Wðf; gÞ≡ −
∂
2

∂s∂t

����
s;t¼0

ωðeiϕ̂ðsfÞeiϕ̂ðtgÞÞ; ð13Þ

where the rhs is calculated in the GNS representation of
WðMÞ (since there is no good notion of derivatives
directly on the Weyl algebra [34]). As an example, in flat
spacetime the vacuum GNS representation associated
to vacuum state ω0 gives us the Minkowski vacuum
jΩω0

i ¼ j0Mi.
The general agreement among AQFT practitioners is

that physically reasonable states should be Hadamard
states [37,38]. Very roughly speaking, these states respect
local flatness and finite expectation values of all observ-
ables appropriately [37]. A particularly nice subclass of
Hadamard states is quasifree states: for these states, all
odd-point functions in the sense of (12) vanish, and all
higher even-point functions can be written as in terms of
just two-point functions.3 Well-known quasifree states are
(squeezed) vacuum and thermal states; coherent states are
non-quasi-free Gaussian states.
At the end of the day, the reason why quasifree states are

so useful and relevant is because it can be completely
specified once we know the Wightman two-point functions
associated to the quasifree state ω: we have

1As is well known, this definition is independent of the choice
of Cauchy surface.

2This is also known as Wightman n-point functions to
distinguish it from other correlation functions.

3The term Gaussian states refers to generalization when the
one-point functions need not vanish and higher-point functions
only depend on one- and two-point functions.
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ωðWðEfÞÞ ¼ e−
1
2
Wðf;fÞ: ð14Þ

At this point, we can simply take Eq. (14) as the definition
of quasifree states (see, e.g., [28,29,33,37] for more
details). This is very useful because for most practical
computations, we do know how to calculate the smeared
Wightman function, especially if one is familiar with
canonical quantization (many examples of the calculations
can be found in standard texts such as [39]).
The most important one is the vacuum state ω0, where we

can write the (unsmeared) vacuum Wightman function as

W0ðx; yÞ ¼
Z

dnkukðxÞu�kðyÞ; ð15Þ

where ukðxÞ are “positive-frequency” modes of Klein-
Gordon operator P normalized with respect to Klein-
Gordon inner product ðϕ1;ϕ2ÞKG ≔ iσðϕ�

1;ϕ2Þ, where ϕj ∈
SolCðMÞ are complexified solutions to Eq. (1) (compare
this with canonical quantization discussed in [39]). In
situations where fukg are known explicitly, we can often
calculate the symmetrically smeared two-point function
(sometimes exactly):

W0ðf; fÞ ¼
Z

dVdV 0fðxÞfðyÞW0ðx; yÞ: ð16Þ

In principle, we can compute any Wightman n-point
functions for any algebraic state in their GNS representation.
However, it is often most convenient to obtain the expression
in relation to the vacuum representation, so that they take the
form

Wðf; gÞ ¼ W0ðf; gÞ þ ΔWðf; gÞ; ð17Þ

where ΔWðf; gÞ accounts for deviations from vacuum
Wightman function [30,37,40]. Some explicit calculations
of ΔWðx; yÞ in flat spacetime for Fock states, thermal states,
coherent, and squeezed states can be found in [41,42],
among many others.

III. COVARIANT UDW DETECTOR MODEL

Let us first review the covariant generalization of the
UDW detector model that was developed in [3,4]. The
detector is taken to be a two-level system with free
Hamiltonian given by

h0 ¼
Ω
2
ðσ̂z þ 1Þ; ð18Þ

where σ̂z is the usual Pauli-Z operator, whose ground and
excited states jgi; jei have energy 0;Ω, respectively. Let τ
be the proper time of the detector whose center of mass
travels along the worldline xðτÞ. The covariant generali-
zation of the Unruh-DeWitt model can be defined by the
interaction Hamiltonian density [3,4]

ĥIðxÞ ¼ fðxÞμ̂ðτðxÞÞ ⊗ ϕ̂ðxÞ: ð19Þ

Here f ∈ C∞
0 ðMÞ is the spacetime smearing function that

prescribes the interaction region between the detector and
the field in spacetime.
On physical grounds, in the center-of-mass rest frame

of the qubit detector, we should be able to separate the
“switching function” that governs the duration of the
interaction and the “spatial profile” of the detector (which
would correspond to, say, atomic orbitals of a hydrogen
atom). The coordinate system adapted to the center-of-mass
trajectory of the qubit is the Fermi normal coordinates [43]
x̄ ¼ ðτ; x̄Þ, where the spacetime smearing function f is
factorizable into

fðxðx̄ÞÞ ≔ λχðτÞFðx̄Þ; ð20Þ

where λ is the coupling strength, χðτÞ is the (dimensionless)
switching function, and Fðx̄Þ is the spatial profile. The
interaction unitary is given by (in the interaction picture) [3]

Û ¼ T τ exp

�
−i

Z
dVfðxÞμ̂ðτðxÞÞ ⊗ ϕ̂ðxÞ

�
; ð21Þ

where dV ¼ ffiffiffiffiffiffi−gp
dnx is the invariant volume element.

At this point, we may proceed to evaluate the time
evolution perturbatively or nonperturbatively. There is a
great deal of flexibility when one chooses to work within
perturbative regime, but there is mild causality violation
and “broken covariance” whose origin can be traced to the
combination of time-ordering and nonrelativistic nature of
the detector model [4]. In contrast, the nonperturbative
methods allow us to probe beyond weak-coupling regime,
though at the expense of a restricted type of dynamics
where concrete calculations can be done.
In this work, we are interested in unifying the non-

perturbative computations and extract nonperturbative
backreaction to the field due to the coupling between
the detector and the field. This would correspond to two
different types of regimes:
(A) Delta-coupled detector regime, where the interaction

occurs at very short timescale, effectively at a single
instant in time;

(B) Gapless detector regime, where the detector’s energy
level is taken to be degenerate (i.e., h0 ¼ 0);

(C) Pure dephasing regime, where the interaction
Hamiltonian density hI commutes with the free
Hamiltonian (i.e., ½h0; ĥI� ¼ 0).

We will see that up to the choice of monopole operators
and the spacetime smearing, these three regimes are, in fact,
equivalent in the sense that the induced quantum channel
has Kraus representation that is identical up to the choice of
the monopole operators of the detector and spacetime
smearing functions. Consequently, each of them have very
different physical interpretations that we will describe later.
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A. Delta coupling

The delta-coupled detector is the regime where the
interaction timescale is assumed to be much faster than
all the relevant timescales of the problem, so that the
interaction can be taken to occur at a single instant in time
(with respect to some time function, typically the detector’s
proper time or the global time function). This is often
suitable to model one-shot fast processes instead of long-
time processes such as thermalization and relaxation. If
we assume that the detector interacts with the field only at
τ ¼ τ0 in its own center-of-mass rest frame, then the
spacetime smearing is given by

fðxðx̄ÞÞ ≔ ληδðτ − τ0ÞFðxÞ: ð22Þ
One important caveat is that strictly speaking f ∉ C∞

0 ðMÞ,
so we should think of this delta smearing as an appropriate
limit of a sequence of compactly supported functions with
decreasing width in the τ-direction.
The unitary time evolution in the delta-coupling model

simplifies greatly because the time ordering T τ is removed
automatically—there is nothing to time order for a single-
time interaction. That is, the unitary reduces to a simple
exponential

Û ¼ exp
h
−iμ̂ðτ0Þ ⊗ ϕ̂ðfÞ

i
; ð23Þ

where ϕ̂ðfÞ is the smeared field operator with respect to
the delta smearing (22). Note that different τ0 simply labels
different families of “rotated” monopole operators μ̂ðτ0Þ,
since

μ̂ðτ0Þ ¼ cosðΩτ0Þσ̂x − i sinðΩτ0Þσ̂y: ð24Þ
Therefore, for each Ωτ0 ∈ ½0; 2πÞ we have a one-parameter
family of monopole operators spanned by the Pauli-X and
Pauli-Y operators (since we fix the free Hamiltonian to be
given by Pauli-Z operator).

B. Gapless detector

The gapless detector regime is obtained by setting the
energy gap in the free Hamiltonian Ω ¼ 0, or equivalently
we set the free Hamiltonian h0 ¼ 0. This is the regime
where the internal dynamics of the detector is assumed to
be much slower than all the relevant timescales of the
problem, hence its internal dynamics are effectively frozen.
Under this assumption, the expression simplifies greatly as
the monopole operator is constant in time: μ̂ðτÞ ¼ μ̂ð0Þ≡ μ̂
for all τ. The unitary operator then reduces to [13]

Û ¼ T τ exp
h
−iμ̂ ⊗ ϕ̂ðfÞ

i
; ð25Þ

where ϕ̂ðfÞ is the smeared operator for f ∈ C∞
0 ðMÞ. The

unitary operator can be evaluated nonperturbatively but we
need to pass to Magnus expansion of Û, given by

Û ¼ exp
X∞
j¼1

Ξj; ð26Þ

where

Ξ1 ¼ −iμ̂ ⊗ ϕ̂ðfÞ; Ξ2 ¼ −ð1 ⊗ 1ÞΔ;
Ξj ¼ 0 ∀ j ≥ 3: ð27Þ

Here we defined Δ to be

Δ ¼ 1

2

Z
dtdt0Θðt − t0ÞiΔðt; t0Þ; ð28aÞ

Δðt; t0Þ ≔
Z
Σt

dnx
Z
Σt0

dnx0fðt; xÞEðx; x0Þfðt0; x0Þ ð28bÞ

for some choice of Cauchy slice Σt associated to some
global time parameter t. Consequently, the joint unitary of
the detector-field system reduces to

Û ¼ e−iΔe−iμ̂⊗ϕ̂ðfÞ: ð29Þ

Note that the extra phase e−iΔ is a global phase that does not
matter to the single-detector dynamics.

C. Pure dephasing model

The pure dephasing model is defined by some nonzero
free Hamiltonian h0 with nonzero Ω, but instead the
interaction Hamiltonian density chosen such that it com-
mutes with the free Hamiltonian. That is, if we consider
h0 ∝ ðσ̂z þ 1Þ as given in Eq. (18), then the interaction
Hamiltonian is prescribed to be

ĥIðxÞ ¼ fðxÞσ̂z ⊗ ϕ̂ðxÞ: ð30Þ

Since by construction we have ½ĥ0; ĥIðxÞ� ¼ 0, we have
removed the time dependence on the monopole operator
since σ̂zðτÞ ¼ σ̂z for the above free Hamiltonian. Using the
Magnus expansion, it is clear that the pure dephasing model
has unitary time evolution given by

Û ¼ e−iΔe−iσ̂
z⊗ϕ̂ðfÞ; ð31Þ

where Δ is defined as per Eq. (28).

D. Simple-generated unitaries and comparison
of each detector model

Here we make brief comments on the comparison of the
different regimes. First of all, since the global phases in the
gapless and dephasing models are physically irrelevant
(they cancel when we compute the time evolution in the
density matrix formalism), all the unitaries are essentially
of the form
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Û ∼ exp
h
−iðÔ ⊗ R̂Þ

i
; ð32Þ

where Ô acts on the detector’s Hilbert spaceHD ≅ C2, and
R̂ acts on the field’s Hilbert space Hϕ (in a particular GNS
representation). Given a set of linearly independent oper-
ators fÔjg acting on HD and fR̂jg acting on Hϕ, the joint
operator,

Ĥ ≔
Xr
j¼1

cjÔj ⊗ R̂j cj ≠ 0; ð33Þ

is said to be of Schmidt rank r. The unitary of the form (32)
we considered are all generated by an operator with
Schmidt rank r ¼ 1—they are sometimes called simple-
generated unitaries [27]. Simple-generated unitaries have
been used extensively in the context of relativistic quantum
communication channels [14,15].
Clearly, the delta-coupling regime differs from the

gapless and the pure dephasing regimes in that by con-
struction the delta-coupling model restricts the kind of
spacetime smearing allowed. Since in the rest frame of
the qubit the interaction is effectively at a single instant in
time, the delta-coupling regime is unable to capture non-
perturbatively the dynamics of long-time processes such as
thermalization and relaxation. This model is also in a way
quite insensitive to the detector’s trajectories since one
needs to interact for sufficiently long times to obtain
information about the trajectories. It is, however, possible
to consider delta-coupling regime where the detector
couples to the field N times along its trajectory: such
N-delta interactions will produce dynamics that are equiv-
alent to collisional models in the open quantum systems
literature [44].
It is also clear that the pure dephasing model is very

similar to the gapless model (as recognized in [14]) because
they both share the property that ½ĥ0; ĥIðxÞ� ¼ 0. However,
they achieve this through different means and with different
physical intuition in mind. In the gapless model, the
intuition is that of a qubit detector whose gap is much
smaller than all the frequency scales of the problem, hence
its internal dynamics are much slower than the rest.
Therefore, all of the qubit observables essentially do not
evolve in time in the interaction picture, and we are free,
in this context, to take the monopole operator to be any
Hermitian operator Â† ¼ Â. Note that because of effec-
tively degenerate energy levels, a gapless detector model
has no well-defined notion of thermal states, since

ρ̂DðβÞ ≔
e−βh0

tre−βh0
≡ 1

2
: ð34Þ

In effect, the gapless detector can be interpreted, in a way,
as going into the high-temperature regime βΩ ≪ 1. That
said, if we also assume that the zero-gap Hamiltonian is an

approximation of small energy gap, then despite the
degenerate energy levels one would like to still think of
the energy eigenstates as given by the eigenstates of say σ̂z.
In contrast, since the pure-dephasing model has nonzero

energy gap, thus it allows thermal states to be defined for
the qubit detector. Unlike the gapless model, the pure
dephasing model does not imply that all observables do not
evolve, but rather one chooses the coupling to the field
appropriately to make the interaction Hamiltonian com-
mute with the free Hamiltonian of the qubit detector. The
resulting dynamics due to the interaction with the field are
functionally similar to the gapless model, but the model
speaks about different physical setups. Indeed, as far as the
dephasing behavior is concerned, there is no distinction
between the gapless and pure dephasing models, thus in
what follows we will always favor the pure dephasing
model, and all results will carry through for the gap-
less model.
Since the global phase in the gapless and pure dephasing

models will not matter, it is now convenient to unify all
three regimes since we always have a simple-generated
unitary with Schmidt rank r ¼ 1. Let us define a universal
simple-generated unitary for all three models, given by

Û ≔ exp
h
−iÔ ⊗ ϕ̂ðfÞ

i
; ð35Þ

where it is understood that Ô ¼ σ̂xðτ0Þ; μ̂; σ̂z for the
monopole operator of the delta-coupled, gapless, and pure
dephasing models, respectively.4 The smeared field oper-
ator ϕ̂ðfÞ corresponds to the choice of spacetime smearing
f chosen appropriately (given by (22) for delta coupling
regime and any f ∈ C∞

0 ðMÞ for gapless and dephasing
models). The universal form of the unitary will enable us to
deal with all three models simultaneously when we con-
struct the relativistic quantum channels for both the qubit
and the field, respectively, in the next section.

IV. QUANTUM CHANNELS INDUCED
BY SIMPLE-GENERATED UNITARY

EVOLUTION

In this section we construct the qubit channel Φ induced
by the nonperturbative interactions with the field. We will
also construct the so-called the complementary channel Φc

associated to Φ that we will define below. The goal of our
calculations is to extend our results to include field states
that can be obtained from a quasifree state by Gaussian
operations such as displacement and squeezing.
Let DðHÞ be the space of density operators acting on

some Hilbert space H, and let HD and Hϕ be the Hilbert
spaces of the qubit detector and the field, respectively.

4Note that for gapless model the monopole μ̂ could be any
Hermitian field observables.
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In what follows we assume that the detector and the field is
prepared initially in some uncorrelated state,

ρ̂0Dϕ ¼ ρ̂0D ⊗ ρ̂0ϕ: ð36Þ

The joint unitary dynamics given by the simple-generated
Schmidt rank-1 unitary Û (32) gives rise to a quantum
channel Φ∶DðHDÞ → DðHDÞ, which reads

Φðρ̂0DÞ ¼ trϕðÛðρ̂0D ⊗ ρ̂0ϕÞÛ†Þ: ð37aÞ

The corresponding complementary channel is defined to be
Φc∶ DðHDÞ → DðHϕÞ, which reads

Φcðρ̂0DÞ ¼ trDðÛðρ̂0D ⊗ ρ̂0ϕÞÛ†Þ: ð37bÞ

Related to these two channels, we can define another
quantum channel acting on the field state Φ̃∶DðHϕÞ →
DðHϕÞ, given by

Φ̃ðρ̂0ϕÞ ¼ trDðÛðρ̂0D ⊗ ρ̂0ϕÞÛ†Þ: ð37cÞ

Note that Eq. (37b) is distinct from Eq. (37c) in that the
complementary channel Φc is defined for a fixed initial
field state ρ̂0ϕ, while the channel Φ̃ is defined for a fixed
qubit initial state ρ̂0D. Furthermore, it is now clear from these
definitions that the global phase factor e−iΔ that appears
in the gapless and pure dephasing models drops out of
the calculations, hence the universal simple-generated
unitary (32) suffices to specify these channels.
In order to obtain closed-form expressions for these

channels, it is convenient to rewrite the unitary as a finite
sum of bounded operators,

Û ¼ 1 ⊗ cos ϕ̂ðfÞ − iÔ ⊗ sin ϕ̂ðfÞ: ð38Þ

By writing Cf ¼ cos ϕ̂ðfÞ and Sf ¼ sin ϕ̂ðfÞ, the joint
state after the unitary evolution reads

ρ̂Dϕ ¼ Ûρ̂0DϕÛ
†

¼ ρ̂0D ⊗ Cfρ̂
0
ϕCf þ Ôρ̂0DÔ ⊗ Sfρ̂0ϕSf

− iÔρ̂0D ⊗ Sfρ̂0ϕCf þ iρ̂0DÔ ⊗ Cfρ̂
0
ϕSf: ð39Þ

From this expression we can obtain the three quantum
channels and the resulting actions on the field and detector
states as given in Eqs. (37a)–(37c).

A. The qubit channel Φ
First, let us calculate the final state of the detector ρ̂D

after the interaction. This is given by ρ̂D ¼ Φðρ̂0DÞ, which
reads

Φðρ̂0DÞ ¼ ωðC2
fÞρ̂0D þ ωðS2fÞÔρ̂0DÔþ iωðSfCfÞ½ρ̂0D; Ô�;

ð40Þ

where we have used the fact that we can write5

ωðAÞ≡ trϕðρ̂0ϕÂÞ: ð41Þ

The cyclic property of the trace makes sense since Cf, Sf
are bounded operators. For our purposes this expression is
good enough, but from the perspective of quantum channel
theory it pays to express the channel in its Kraus repre-
sentation. The idea is to rewrite the unitary Û in terms of
eigenprojectors of Ô: let P̂� ≔ 1

2
ð1� ÔÞ with eigenvalues

p� ¼ �1, so that we have

Û ¼ P̂− ⊗ eiϕ̂ðfÞ þ P̂þ ⊗ e−iϕ̂ðfÞ: ð42Þ

Following the convention in [13,15], let us define

νf ≔ ωðe2iϕ̂ðfÞÞ ∈ C: ð43Þ

We can now rewrite the channel in its Kraus representation,

Φðρ̂0DÞ ¼
X2
j¼0

Kjρ̂
0
DK

†
j ; ð44Þ

where the Kraus operators are

K0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − jνfj

2

r
1; K1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − jνfj

2

r
Ô;

K2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jνfj þ Reνf

2

r
1 − i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jνfj − Reνf

2

r
Ô: ð45Þ

In order to make connections with the expressions involv-
ing Cf and Sf, it is useful to note that

ωðCfÞ ¼
1

2

�
ωðei ˆϕðfÞÞ þ ωðe−i ˆϕðfÞÞ

�
¼ Reνf=2;

ωðSfÞ ¼
1

2i

�
ωðei ˆϕðfÞÞ − ωðe−i ˆϕðfÞÞ

�
¼ Imνf=2: ð46Þ

We can then use “functional calculus” in the sense that Cf,
Sf can be evaluated as if they are the usual trigonometric
functions: for example, we have

5This follows from the fact that algebraic states assign expect-
ation value of observables [34]. Alternatively, we can think of the
rhs as being evaluated in the GNS representation associated to the
algebra of observables AðMÞ and the state ω.
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ωðC2
fÞ ¼

1

2
ð1þ C2fÞ ¼

1þ Reνf
2

;

ωðS2fÞ ¼
1

2
ð1 − C2fÞ ¼

1 − Reνf
2

;

ωðCfSfÞ ¼
1

2
S2f ¼

Imνf
2

: ð47Þ

We can now see that the restriction of ω to the class of
quasifree states (cf. Sec. II) gives us νf ¼ e−2Wðf;fÞ ∈ ð0;1�,
and in particular, νf is real valued. In this work part of our
goal is to avoid this restriction and extend the standard
calculations involving vacuum state of the field (which is
quasifree) to a much more general class of Gaussian states
that may not be quasifree, such as the (squeezed) coher-
ent state.
Using these expressions, the action of the quantum

channel now reads

Φðρ̂0DÞ ¼
1þ Reνf

2
ρ̂0D þ 1 − Reνf

2
Ôρ̂0DÔþ i

Imνf
2

½ρ̂0D; Ô�:
ð48Þ

In the quasifree case we can give a very clean interpretation
of this qubit channel. Consider the case where Ô ¼ σ̂x

(in the delta-coupling case we can always adjust Ωτ0 to
obtain this). If the field state is quasifree, then νf ∈ ð0; 1�
and the final state (in the interaction picture) simplifies to

Φðρ̂0DÞ
���
qf
¼ 1þ e−2Wðf;fÞ

2
ρ̂0D þ 1− e−2Wðf;fÞ

2
σ̂xρ̂0Dσ̂

x; ð49Þ

which is nothing but the bit-flip channel. Furthermore, this
tells us that when the fluctuations of the field are large, i.e.,
Wðf; fÞ ≫ 1, then the channel is so noisy that in effect we
lose all information about the field: the channel reduces to
uniform random bit flip in the limit of large fluctuations
Wðf; fÞ → ∞. If we now consider Ô ¼ σ̂z as in the pure
dephasing (or gapless) model, then the channel reduces to
the phase-flip channel. Furthermore, in the limit of large
fluctuations the channel becomes a completely dephasing
channel, thus we also lose all information about the field.
It is interesting to note that the regime of large fluctua-

tions Wðf; fÞ ≫ 1 can be attained in several ways. For
example, we can consider very sharply localized f, since in
the limit f → δnþ1ðxÞ the Wightman two-point function is
ultraviolet (UV) divergent. Alternatively, we can increase
the coupling strength λ of the detector-field interaction.
Since Wðf; fÞ scales with λ2, the value of νf ¼ e−2Wðf;fÞ

decays exponentially with λ2. Consequently, the strong
coupling quickly also erases all information about the
field from the detector’s (final) state. This is consistent
with the physical intuition that the strong coupling regime
is equivalent to the UV (high-energy) regime. In contrast,
in the limit of small fluctuations (e.g., using careful

adiabatically switched detectors, or by going to the very
weak coupling λ → 0), we have Wðf; fÞ → 0 and hence
the resulting channel approaches a noiseless channel
Φðρ̂0DÞ → ρ̂0D.

B. Output of the complementary channel Φc

and the field channel Φ̃
Arguably, the more interesting channels are the comple-

mentary channel Φc and also the field channel Φ̃ since they
are much less studied in the RQI literature. This is because
the Hilbert space of the field is infinite dimensional, and in
free space there are uncountably many degrees of freedom
(unlike quantum harmonic oscillators). This makes concrete
calculations much more difficult. There are some known
results: for example, the complementary channel Φc is an
entanglement-breaking channel [27], which is the reason
why the quantum communication channels based on simple-
generated interactions considered in [13,15] cannot transmit
quantum information (the quantum channel capacity is zero).
At this stage, it is quite difficult to study the channels

directly, but we can learn something about these channels
by studying their output field states. That is, after the
interaction the field state is given by

ρ̂ϕ ¼ Φcðρ̂0DÞ ¼ Φ̃ðρ̂0ϕÞ: ð50Þ

It is worth stressing that the channels themselves are
not equivalent: for example, Φ̃ will not be entanglement
breaking while Φc is entanglement breaking.6 For our
purposes, however, we would like to reframe Eq. (50) in
terms of the algebraic state ω so that we can express our
result in a representation-independent manner.
The idea goes as follows. First, from Eq. (39) we write

the output state ρ̂ϕ as the action of the channel Φ̃ðρ̂0ϕÞ,
which reads

ρ̂ϕ ≡ Φ̃ðρ̂0ϕÞ ¼ Cfρ̂
0
ϕCf þ Sfρ̂0ϕSf

þ ihÔiðCfρ̂
0
ϕSf − Sfρ̂0ϕCfÞ; ð51Þ

where hÔi ¼ trðÔρ̂0DÞ. Using Eq. (41), we can think of the
action of Φ̃ as mapping from the initial algebraic state ω
to a new algebraic state ω0, such that for any A ∈ WðMÞ
we have

ω0ðAÞ ¼ ωðCfACfÞ þ ωðSfASfÞ
þ ihÔiðωðSfACfÞ − ωðCfASfÞÞ: ð52Þ

6This has to do with the fact that an entanglement-breaking
channel E can be recast in the form EðρÞ ¼ P

j trðEjρÞσ̂j, where
Êj are Positive Operator-Valued Measure (POVM) elements, and
σ̂j are density operators. Suitably generalized to the infinite-
dimensional case, we see that Φ̃ cannot be put in this form while
Φc readily does.
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Each of these terms can be evaluated purely using the Weyl
relations of WðMÞ.
For completeness, let us show that the state ω0 is a mixed

state in accordance to the algebraic definition. One simple
way to see this is to consider the special case when hÔi ¼ 0

(by choosing a suitable state of the detector). For hÔi ¼ 0
we get

ω0ðAÞ ¼ ωðCfACfÞ þ ωðSfASfÞ: ð53Þ

Now we define two algebraic states ω1 and ω2:

ω1ðAÞ ¼
ωðCfACfÞ
ωðC2

fÞ
; ω2ðAÞ ¼

ωðSfASfÞ
ωðS2fÞ

; ð54Þ

we can rewrite ω0 as a convex combination,

ω0 ¼ ωðC2
fÞω1 þ ωðS2fÞω2; ð55Þ

with ωðC2
fÞ þ ωðS2fÞ ¼ 1. Since a state is pure if and only if

it cannot be written as a strict convex combination of two
algebraic states [33], it follows that ω0 is mixed, as we
expect. Furthermore, this means that the detector and the
field are necessarily entangled after the interaction.

V. GAUSSIAN OPERATIONS AS ADJOINT
CHANNELS ON OBSERVABLES

In this section we will exploit the concept of adjoint
channel, which is essentially the formulation of quantum
channels in the “Heisenberg picture,” to encode Gaussian
operations such as displacement and squeezing. This will
enable us to reformulate the UDW-type interactions with
the field in a Gaussian but non-quasi-free state in terms of
known results using quasifree states. In effect, this allows
us to provide a “configuration space” reinterpretation of the
displacement and squeezing operations in terms of the
detector observables.

A. Displacement and squeezing
operations

In UDW settings, one of the most common choices for
the field’s initial state is the vacuum state, which we denote
here by ω0. This is only one of the many classes of
Gaussian states (fully characterized by one-point and two-
point functions) in quantum field theory. There are at least
three types of nonvacuum states that are of great interest:
thermal states, squeezed vacuum states, and coherent states.
Thermal and squeezed vacuum are quasifree states (vanish-
ing one-point functions), while coherent states are Gaussian
states that are not quasifree. We can construct more
Gaussian states by a series of coherent displacement and
squeezing operations on any Gaussian state. Below we will

show that we can rephrase coherent and squeezing oper-
ators as elements of the Weyl algebra,7 which also provides
us with straightforward generalization of quasifree calcu-
lations with minimal effort.
A generic coherent state is given by the displacement

operator acting on the vacuum state:

jαi ≔ D̂ðαÞj0i; ð56Þ

where α is the coherent amplitude (which is typically
multimode, see [41]), and D̂ðαÞ is the displacement
operator. In the Fock space representation induced by
the GNS theorem, it reads

D̂ðαÞ ¼ e
R

dnkðαðkÞâk−αðkÞ�â†kÞ: ð57Þ

Observe that we can take some α̃ ∈ C∞
0 ðMÞ and define

αðkÞ ≔ i
Z

dVα̃ðxÞukðxÞ: ð58Þ

By construction α ∈ L2ðRnÞ, i.e., R dnkjαðkÞj2 < ∞ since
α̃ðxÞ is a compactly supported smooth function, although
αðkÞ will not, in general, be compactly supported.
Equation (58) implies that we can view

D̂ðαÞ ¼ eiϕ̂ðα̃Þ ∈ WðMÞ ð59Þ

for some α̃ ∈ C∞
0 ðMÞ. Note that we have used the notation

α̃ to make a suggestive analogy to Fourier transform (which
is indeed the Fourier transform when M is Minkowski
space up to a prefactor i).
With a similar approach, we can also define squeezed

vacuum state by the action [41]

jŜðζÞi ≔ ŜðζÞj0i; ð60Þ

where in the Fock representation it is given by

ŜðζÞ ¼ e
1
2

R
dnkdnk0ðζðk;k0Þâkâk0−H:c:Þ: ð61Þ

Now let ζ̃ ∈ C∞
0 ðMÞ, using suggestive notation as before,

and define

ζðk; k0Þ ≔ 2i
Z

dVdV 0ζ̃ðxÞζ̃ðx0ÞukðxÞuk0 ðx0Þ: ð62Þ

7We are not the first to regard coherent states and squeezed
states in QFT this way (see, e.g., [45–47]), though usually this is
framed “backwards”: they define coherent and squeezed states
directly via eiϕ̂ðgÞ and eiϕ̂ðgÞ2 , respectively, instead of a more
optically-motivated definition via ladder operators âk; â

†
k.
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We assume in this case that the squeezing amplitudes
ζðk; k0Þ can be written in this way,8 hence as before we can
view the squeezing operator as an element of the Weyl
algebra, namely

ŜðζÞ ¼ eiϕ̂ðζ̃Þ2 ∈ WðMÞ: ð63Þ

In other words, it is the exponentiation of bilocal smeared
operator ϕ̂ðζ̃Þ2 ∈ AðMÞ. This covers a large class of
squeezing operations we are interested in.
By interpreting these operations as Weyl elements, we

can define an adjoint channel associated to the displace-
ment and squeezing operations, essentially moving into the
Heisenberg picture form of these operations. Suppose
we consider a coherent state jαi. At the level of the
GNS representation of the vacuum state ω0, we have the
coherent state density matrix ρ̂0ϕ;α ≔ D̂ðαÞρ̂0ϕD̂ðαÞ† where
ρ̂0ϕ ¼ j0ih0j. More generally, we can treat displacement
operation as a unitary channel Uα∶ DðHϕÞ → DðHϕÞ
given by

Uαðρ̂0ϕÞ ¼ D̂ðαÞρ̂0ϕD̂ðαÞ†: ð64Þ

It follows then

ωαðAÞ ¼ tr
�
ρ̂0ϕ;αÂ

�
¼ tr

�
ρ̂0ϕD̂ðαÞ†Â D̂ðαÞ

�

≡ ω0ðU†
αðAÞÞ; ð65Þ

where U†
αð·Þ ≔ D̂ðαÞ†ð·ÞD̂ðαÞ is the adjoint channel of Uα,

and ω0 is the vacuum state. For squeezed vacuum state we
have the unitary squeezing channel

Vζðρ̂0ϕÞ ¼ ŜðζÞρ̂0ϕŜðζÞ†: ð66Þ

The squeezed vacuum state is ρ̂0ϕ;ζ ≔ ŜðζÞρ̂0ϕŜðζÞ† with
ρ̂0ϕ ¼ j0ih0j and it follows that

ωζðAÞ ¼ tr
�
ρ̂0ϕŜðζÞ†Â ŜðζÞ

�
¼ ω0ðV†

ζðAÞÞ; ð67Þ

where V†
ζð·Þ ≔ ŜðζÞ†ð·ÞŜðζÞ is the corresponding adjoint

channel. These conversions seem to be a very trivial move,
however, we will see in the next subsection that it is
precisely this step that allows us to generalize various
calculations to coherent and squeezed states despite not
being quasifree. This is because we do know how to take
expectation values with respect to ω0 based on the
definition of the quasifree state (14).

Since D̂ðαÞ and ŜðζÞ are both unitary elements of the
Weyl algebra, it is straightforward to calculate how the
local noise of the field given by the symmetrically-smeared
Wightman function changes with these operations. For
coherent states, we have

Wαðf; fÞ ¼ ωαðϕ̂ðfÞϕ̂ðfÞÞ
¼ ω0ðD̂ðαÞ†ϕ̂ðfÞϕ̂ðfÞD̂ðαÞÞ: ð68Þ

However, using Eq. (59), the Baker-Campbell-Hausdorff
(BCH) formula, and the CCR we have

D̂ðαÞ†ϕ̂ðfÞD̂ðαÞ ¼ ϕ̂ðfÞ − i½ϕ̂ðα̃Þ; ϕ̂ðfÞ�
¼ ϕ̂ðfÞ þ Eðα̃; fÞ1: ð69Þ

Therefore, we get

Wαðf; fÞ ¼ W0ðf; fÞ þ Eðα̃; fÞ2 ≥ W0ðf; fÞ: ð70Þ

We immediately get the result that the coherent state has
larger noise contribution than the vacuum state by an
amount that depends on the causal propagator between α̃
and f, and furthermore, this is only nonzero if α̃ and f have
supports that are causally connected by the field. This can
be understood as follows: since coherent states are not
invariant under the full spacetime isometry group (in flat
space it is the Poincaré group), the coherent amplitude’s
“Fourier transform” must be localized somewhere in
spacetime with support given by that of α̃, and it is here
that the coherent excitations add to the field fluctuations.
Similarly, for squeezed state we get

ŜðζÞ†ϕ̂ðfÞŜðζÞ ¼ ϕ̂ðfÞ − i½ϕ̂ðζ̃Þ2; ϕ̂ðfÞ�
¼ ϕ̂ðfÞ þ 2Eðζ̃; fÞϕ̂ðζ̃Þ
≡ ϕ̂ðhζÞ: ð71Þ

This has the nice interpretation that the squeezing operation
“squeezes the smearing profile” f into hζ ≔ f þ 2Eðζ̃; fÞ.
Therefore, we get

Wζðf; fÞ ¼ W0ðf; fÞ þ 2Eðζ̃; fÞω0ðfϕ̂ðζ̃Þ; ϕ̂ðfÞgÞ
þ 4Eðζ̃; fÞ2W0ðζ̃; ζ̃Þ: ð72Þ

Unlike the case for coherent state, it is no longer the case
that any choice of squeezing amplitude leads to larger noise
than the vacuum since the second term is not positive
semidefinite. What remains true, however, is that again the
impact of squeezing on the field fluctuations is not uniform
in spacetime, since it is controlled by the Fourier transform
ζ̃. Observe that in flat space where ζ̃ is indeed the Fourier
transform of ζ, we can choose L2-integrable function ζ with
ζ̃ compactly supported, so that the squeezing only impacts

8A priori this is not covering all possible squeezing operations,
since it includes possibly momentum-entangling squeezing
where ζðk; k0Þ ≠ ζ1ðkÞζ2ðk0Þ for some functions ζj. We restrict
our attention to this subclass for simplicity.
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the region suppðζ̃Þ causally connected to interaction region
f. A version of this spatial dependence of squeezing on
detector dynamics in flat spacetime was analyzed in [41].
This calculation generalizes to multiple displacement

and squeezing without having to solve any momentum
integrals: for example, if we consider

jβ þ αi ≔ D̂ðβÞD̂ðαÞj0i; ð73Þ

then we see that Eq. (69)

D̂ðαÞ†D̂ðβÞ†ϕ̂ðfÞD̂ðβÞD̂ðαÞ ¼ D̂ðαÞ†ϕ̂ðfÞD̂ðαÞ þEðβ̃; fÞ1
¼ ϕ̂ðfÞ þEðα̃þ β̃; fÞ1
¼ D̂ðαþ βÞ†ϕ̂ðfÞD̂ðαþ βÞ:

ð74Þ

In the second equality we have used the linearity of the
causal propagator. Thus we see that arbitrary sequence of
displacement operators does not pose any extra effort. Note
that a sequence of squeezing operations is straightforward
because the state remains quasifree: we have

V†
η∘V†

ζðϕ̂ðfÞÞ ¼ Vηðϕ̂ðhζÞÞ ¼ ϕ̂ðhη·ζÞ; ð75aÞ

hη·ζ ≔ hζ þ 2Eðη̃; hζÞ; ð75bÞ

with hζ ¼ f þ 2Eðζ̃; fÞ.
As a more nontrivial example, consider a squeezed

coherent state jζ; αi ≔ ŜðζÞD̂ðαÞj0i. Using Eq. (69) and
Eq. (71) we get

D̂ðαÞ†ŜðζÞ†ϕ̂ðfÞŜðζÞD̂ðαÞ
¼ D̂ðαÞ†ϕ̂ðfÞD̂ðαÞ þ D̂ðαÞ†ð2Eðζ̃; fÞϕ̂ðζ̃ÞÞD̂ðαÞ
¼ ϕ̂ðfÞ þ Eðα̃; fÞ1þ 2Eðζ̃; fÞϕ̂ðζ̃Þ þ 2Eðζ̃; fÞEðα̃; fÞ1
¼ ϕ̂ðhζÞ þ Eðα̃; hζÞ1; ð76Þ

where hζ ≔ f þ 2Eðζ̃; fÞζ̃. Equation (76) suggests that
the action of adjoint coherent and squeezing channels on
ϕ̂ðfÞ is equivalent to the displacement operator acting on
“deformed smearing” ϕ̂ðhζÞ, and hence, the two unitary
adjoint channels commute up to a phase:

ðU†
α ∘ V†

ζ − V†
ζ ∘ U†

αÞðϕ̂ðfÞÞ ¼ Eðζ̃; fÞEðα̃; ζ̃Þ1: ð77Þ

Compared to the usual momentum-space calculations
involving ladder operators, this computation is manifestly
simpler. Furthermore, by definition of adjoint we also
get the same result for the state, i.e., displacement and
squeezing acting on the state commutes up to a phase.
However, there is something less obvious that we can glean
from this: the fact that the phase depends on Eðα̃; ζ̃Þ shows

that squeezing and displacement commutes if and only if
the Fourier transforms of the displacement and squeezing
amplitude α̃; ζ̃ are causally disconnected with respect to the
field. Indeed, if two regions are spacelike separated and
one observer adds coherent excitations to one region and
the other performs local squeezing, then their operations
should not influence one another.

B. Qubit channel revisited: Coherent
and squeezed states

The expressions we just obtained give us a very straight-
forward generalization of the qubit channel in Sec. IV to two
important classes of non-quasi-free Gaussian states, namely
for algebraic states associated to coherent and squeezed
states. This works because we can treat the coherent and
squeezing as adjoint channel acting on the observable
elements and then take expectation values with respect to
a reference quasifree state (such as the vacuum). Since
expectation values associated to quasifree states are given
directly in terms of the Wightman two-point functions, the
change into Heisenberg picture gives us a way to algebrai-
cally generalize the qubit channel calculations into more
general non-quasi-free (but Gaussian) settings.
More concretely, for coherent state with coherent ampli-

tude α, we have

Φαðρ̂0DÞ ¼ ωαðC2
fÞρ̂0D þωαðS2fÞÔρ̂0DÔþ i½ρ̂0D; Ô�ωαðSfCfÞ:

ð78Þ

Using the adjoint channel (65), we have

ωαðC2
fÞ ¼ ω0ðCα̃C2

fCα̃Þ þ ω0ðSα̃C2
fSα̃Þ

¼ 1þ νf cosð2Eðα̃; fÞÞ
2

; ð79aÞ

ωαðS2fÞ ¼ ω0ðCα̃S2fCα̃Þ þ ω0ðSα̃S2fSα̃Þ

¼ 1 − νf cosð2Eðα̃; fÞÞ
2

; ð79bÞ

ωαðSfCfÞ ¼ −iω0ðSα̃SfCfCα̃Þ þ iω0ðCα̃SfCfSα̃Þ

¼ 1

2
νf sinð2Eðα̃; fÞÞ; ð79cÞ

where νf ¼ e−2W0ðf;fÞ. As expected, unlike the quasifree
case, ωαðSfCfÞ is no longer zero. These can be straight-
forwardly computed by direct computation using Weyl
relations, or more neatly using “trigonometric lemma” in
[28, Lemma 1], which we quote for convenience:

2CiCj ¼ Ciþje−iEij=2 þ Ci−jeiEij=2; ð80aÞ

−2SiSj ¼ Ciþje−iEij=2 − Ci−jeiEij=2; ð80bÞ
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2CiSj ¼ Siþje−iEij=2 − Si−jeiEij=2; ð80cÞ

2SiCj ¼ Siþje−iEij=2 þ Si−jeiEij=2; ð80dÞ

where Ci�j ≡ cos ϕ̂ðfi � fjÞ, Si�j ≡ sin ϕ̂ðfi � fjÞ, and
Eij ≔ Eðfi; fjÞ is the smeared causal propagator.
It is interesting to observe that the coefficients in Eq. (78)

can also be computed in the same way as what goes into the
calculations involving two-qubit communication settings
(see, e.g., Eqs. (44)–(49) of [28]). The resulting expression
appears as some sort of modulation of νf that appears in
Eq. (48) by the sine and cosine of the causal propagator,
and we reproduce the vacuum result (which is quasifree)
when α → 0. This also shows that the coherent state of the
field modifies expectation values of the field state non-
uniformly in spacetime, which is to be expected since
physically meaningful coherent states must have excita-
tions that are sufficiently localized in spacetime, and its
influence is propagated by the field via the propagator E. In
particular, this leads to the nice interpretation that coherent
states are localized in such a way that any observer/detector
that is causally disconnected from α̃ will not “feel” the
coherent excitations and view the field as being essentially
the vacuum state.
For squeezed states, we can perform the analogous

calculation, but we will have to work out the coefficients
more directly as follows. Using the adjoint channel (67) and
the BCH formula, we have

ŜðζÞ†eiϕðfÞŜðζÞ ¼ eiðϕ̂ðfÞ−2Eðf;ζ̃Þϕ̂ðζ̃ÞÞ: ð81Þ

Therefore, we have, for instance,

ωζðC2
fÞ ¼

1

2
þ 1

2
ωζðe2iϕ̂ðfÞ þ e−2iϕ̂ðfÞÞ

¼ 1

2
þ 1

2

�
ω0ðe2iϕ̂ðhþÞÞ þ ω0ðe−2iϕ̂ðh−ÞÞ

�

¼ 1þ ðe−2W0ðhþ;hþÞ þ e−2W0ðh−;h−ÞÞ
2

; ð82Þ

where h� ¼ �f ∓ 2Eðf; ζ̃Þζ̃. Using the fact that
ω0ðeiϕ̂ðh�ÞÞ ¼ e−2W0ðh�;h�Þ, it follows that

W0ðh�; h�Þ ¼ W0ðf; fÞ þ 4Eðf; ζ̃Þ2W0ðζ̃; ζ̃Þ
− 2Eðf; ζ̃ÞReðW0ðf; ζ̃ÞÞ

≡Wζðf; fÞ: ð83Þ

This agrees with the computation in Eq. (72), and it shows
that indeed the local noise of squeezed states can be
interpreted as a vacuum noise of a squeezed smearing
function via replacement f → h�. The same approach can
be used for the other coefficients involving ωζðSfCfÞ and
ωζðS2fÞ: we get

ωζðS2fÞ ¼
1 − ðe−2W0ðhþ;hþÞ þ e−2W0ðh−;h−ÞÞ

2
; ð84Þ

and ωζðSfCfÞ ¼ 0 since ωζ is quasifree. The question of
whether squeezing can reduce noise from field fluctuations
is equivalent to the question of whether h� satisfies

W0ðh�; h�Þ ≤ W0ðf; fÞ; ð85Þ

which can be checked by direct computation in specific
examples such as the Minkowski spacetime.
In principle, we can generalize this to arbitrary Gaussian

states obtainable from the vacuum state via a sequence of
displacement and squeezing operations by making use of
the sort of computations done in Eqs. (74) and (76), hence
our preceding calculations are very general.

VI. APPLICATION: QUANTUM ENTROPY
OF THE FIELD AFTER INTERACTION

In this section we provide one application of the non-
perturbative formalism, namely the computation of quan-
tum entropies after a simple-generated interaction with a
qubit detector. We will, in fact, see that it is possible to
compute the field entropy exactly with the aid of replica
trick that is not based on path integral formalism.
As shown in Sec. IV, after interaction with the detector we

know that the field state becomes mixed (which we denoted
by ω0 in Sec. IVB): this is, of course, not surprising since
we have a joint interacting system and the subsystems do get
entangled, in general, after the interaction.9 However, while
the von Neumann entropy can be evaluated easily for the
qubit detector, it is a completely different story for the field10

due to the infinite-dimensionality of the Hilbert space of the
field and the continuum of field modes (unlike finitely many
harmonic oscillators).
More precisely, if ω is the initial state, then ρ̂ω0 is the

density matrix in the GNS representation of ω, and we have

Sðρ̂ω0 Þ ¼ −
Z
specðρ̂ω0 Þ

dμρ0 ðλÞλ log2 λ; ð86Þ

where μρ0 defines a projective-valued measure associated to
ρ̂ω0 . This expression is essentially the infinite-dimensional
generalization of spectral decomposition evaluated on the
spectrum of ρ̂ω0 (see [48] for more details). There is no
problem with this formula per se, but most of the time we
do not have a good control over how to evaluate such an
integral. The situation is worse if the algebra of observables
we consider is a local algebraWðOÞwhereO is some open

9This will not be the case if we choose the detector to be in a
state that is a fixed point of the channel, i.e., initial states that
commute with the monopole operator Ô.

10This is so even with the fact that the GNS representation of
the algebra πωðWðMÞÞ is a type I von Neumann algebra [34].
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subset of M, since it gives rise to a type III algebra where
von Neumann entropy simply does not exist (see, e.g., [49]
for details).

A. Rényi entropy and replica trick for von
Neumann entropy

First, let us demonstrate how to calculate the Rényi
entropy [50] associated to the field state after backreaction
from the qubit detector despite not having the explicit
spectral decomposition of ω0 in the sense of Eq. (86). The
quantum Rényi entropy of order α (hereafter α-Rényi
entropy) is defined to be

Sαðρ̂Þ ¼ −
1

α − 1
log2 trðρ̂αÞ; ð87Þ

where α ∈ ½0; 1Þ ∪ ð1;∞Þ. The limit α → 1 is the von
Neumann entropy. Usually the quantum Rényi entropy is
motivated and defined in terms of α-Rényi divergence,
which generalizes the concept of relative entropy between
two states. There are countless important applications of
Rényi divergence, with several generalizations and opera-
tional implications (see, e.g., [51] and Refs. therein). The
special case where α ¼ 2 is naturally identified with purity
of a state,11 which is also a measure of entanglement if the
joint state is initially pure.
For simplicity, we first restrict our attention to the case

when the field is in the quasifree state, and the detector’s
initial state ρ̂0D satisfies hÔi ¼ 0. In terms of the density
matrix in the GNS representation of ω, we have

ρ̂ω0 ¼ CfjΩωihΩωjCf þ SfjΩωihΩωjSf: ð88Þ

It follows that

trðρ̂2ω0 Þ ¼ trðρ̂ωC2
fÞ2 þ trðρ̂ωS2fÞ2 þ 2trðρ̂ωCfSfÞ2

¼ ωðC2
fÞ2 þ ωðS2fÞ2 þ 2ωðCfSfÞ2

¼ 1

2
ð1þ ν2fÞ ≤ 1: ð89Þ

In the third equality we have used the quasifree property
that sets ωðSfCFÞ ¼ 0. Hence the 2-Rényi entropy after
interaction can be written in terms of smeared Wightman
function,

S2ðω0Þ≡ S2ðρ̂ω0 Þ ¼ 1 − log2ð1þ ν2fÞ; ð90Þ

where νf ¼ e−2Wðf;fÞ is the local noise factor. In effect, we
have succeeded in computing the purity of a quantum field
state after a nontrivial interaction with a qubit detector.

How does Eq. (90) compare to the entropy of the qubit
detector? Suppose we take ρ̂0D ¼ ajeihej þ ð1 − aÞjgihgj
and Ô ¼ σ̂x so that it fulfils hÔi ¼ 0. Then the 2-Rényi
entropy for the detector is given by

S2ðΦðρ̂0DÞÞ ¼ 1 − log2 ð1þ ð1 − 2aÞ2ν2fÞ
≥ S2ðω0Þ; ð91Þ

with equality only if a ¼ 0, 1 (i.e., ρ̂0D is pure). This shows
that, in general, the detector’s 2-Rényi entropy (purity) is
bounded below by the field for arbitrary quasifree states
subject to hÔi ¼ 0.
The fact that we are only taking powers of ρ̂nω0 for the

computation of quantum Rényi entropy suggests that we
might be able to actually calculate the resulting von
Neumann entropy of the field state after the interaction
exactly, even without the knowledge of the spectrum.
Indeed, we will now show that this can be achieved using
the so-called replica trick in QFT, and we do this without
invoking the path integral representation of the field. The
idea is to calculate, formally, the expression for the von
Neumann entropy in terms of the Rényi entropy:

Sðρ̂ω0 Þ ¼ −
∂

∂n
log trρ̂nω0

���
n¼1

≡ lim
n→1

trðρ̂nω0 Þ − 1

1 − n
: ð92Þ

Here we use natural logarithm for convenience, and we can
convert to base-2 logarithm at the end.
For clarity, let us consider the initially vacuum state of

the field j0i which is also quasifree. Observe that we can
recast the action of Cf, Sf as producing a “cat state,” i.e.,
superposition of coherent states j � αfi ¼ D̂ð�αfÞj0i
where αf is the coherent amplitude associated to the
spacetime smearing function f ∈ C∞

0 ðMÞ of the detector
(cf. Sec. V). We can write

jCfi ≔ Cfj0i≡ 1

2
ðjαfi þ j − αfiÞ;

jSfi ≔ Sfj0i≡ 1

2i
ðjαfi − j − αfiÞ: ð93Þ

What is nice is that since h�αfj � αfi ¼ 1 and from the
Weyl algebra we get

h−αfjαfi ¼ ω0ðD̂ð2αfÞÞ ¼ e−2W0ðf;fÞ ≡ νf; ð94Þ

it follows that hCfjSfi ¼ 0—that is, the two cat states are
in fact orthogonal. Next, for convenience let us define

p� ¼ 1�νf
2

∈ ð0; 1�. It is now straightforward to calculate
integral powers of ρ̂ω0 :

ρ̂nω0 ¼ pn−1þ jCfihCfj þ pn−1
− jSfihSfj; ð95Þ

which gives

112-Rényi entropy is also distinguished by the fact that it is
measurable experimentally without state tomography, i.e., com-
putable without directly knowing the state of the system [52].
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trðρ̂nω0 Þ ¼ pnþ þ pn
−: ð96Þ

Finally, using the replica formula (92), it follows immedi-
ately that the von Neumann entropy is

Sðρ̂ω0 Þ ¼ −pþ log2 pþ − p− log2 p−; ð97Þ

which is nothing but the binary Shannon entropy with
discrete probability distribution fp�g. Note that this
von Neumann entropy is explicitly calculable: all we
need to know is the value of νf, which only depends on
the symmetrically smeared Wightman two-point func-
tion Wðf; fÞ.
We have used the replica trick in the above because we

wanted to get the von Neumann entropy by direct compu-
tation without knowing the explicit spectrum of the field
state (which is difficult). That said, in hindsight there is a
nice way to rewrite the calculations above in a manner that
is analogous to the spectral decomposition in finite dimen-
sions because of the orthogonality of the cat states: if this is
possible, then we could even avoid the replica trick
altogether. Observe that since hCfjSfi ¼ 0, we can think
of ρ̂ω0 as essentially being in a spectral decomposition over
two orthogonal subspaces:

ρ̂ω0 ¼ pþjþihþj þ p−j−ih−j; ð98Þ

where we define two vector states

jþi ≔ p−1=2
þ jCfi; j−i ≔ p−1=2

− jSfi; ð99Þ

which are well defined since p� ≥ 1=2. These states give
rise to two orthogonal projectors j�ih�j, and these have the
nice property that we can use the functional calculus on
linear operators: using fðxÞ ¼ xn, we see that

fðρ̂ω0 Þ ¼ pnþjþihþj þ pn
−j−ih−j; ð100Þ

which immediately yields Eq. (96) by evaluating trfðρ̂ω0 Þ.
Consequently, the von Neumann entropy is indeed the
binary Shannon entropy with discrete probability distribu-
tion fp�g associated to the projectors j�ih�j. Since the
projectors are built from the cat states, strictly speaking,
these projectors can have infinite rank (as Sf, Cf can have
uncountable spectrum).
How does the von Neumann entropy (97) compare with

the von Neumann entropy for the detector? Using the same
initial detector state ρ̂0D ¼ ajeihej þ ð1 − aÞjgihgj and
Ô ¼ σ̂x as before, we see that

SðΦðρ̂0DÞÞ ¼ −ðpþ − aνfÞ logðpþ − aνfÞ
− ðp− þ aνfÞ logðp− þ aνfÞ

≥ Sðρ̂ω0 Þ; ð101Þ

with equality achieved only when a ¼ 0, 1 (i.e., when ρ̂0D is
pure). Therefore, similar to 2-Rényi entropy we see that,
in general, the von Neumann entropies are not equal, and
here we have a situation where we can perform exact
computation of the quantum entropies for both the detector
and the field after the interaction.

B. Generalization to arbitrary Gaussian states

We can actually avoid making restrictions about hÔi or
restricting to quasifree states. The way to do this is to first
rewrite the general field state in Eq. (51) after interaction as

ρ̂ω0 ¼ qþjþ0ihþ0j þ q−j−0ih−0j
þ ihOi ffiffiffiffiffiffiffiffiffiffiffi

qþq−
p ðjþ0ih−0j − j−0ihþ0jÞ; ð102Þ

where q� ¼ 1
2
ð1� ReνfÞ and where now j�0i are now

projectors associated to “generalized” cat states of the GNS
vector jΩωi:

jþi ¼ q−1=2þ CfjΩωi; j−i ¼ q−1=2− SfjΩωi: ð103Þ

Crucially, for generic Gaussian states the cat states are not
orthogonal, since

y ≔ hþj−i ¼ ðqþq−Þ−1=2Imνf: ð104Þ

For quasifree states we have y ¼ 0 and q� → p�.
The nonorthogonality of j�0i does not actually pose a

problem. Following the similar strategy in Eq. (89), we can
still calculate trðρ̂nω0 Þ, which gives

trðρ̂nω0 Þ ¼ p̃nþ þ p̃n
−; ð105Þ

where

p̃� ≔
1

2

�
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4ð1 − hÔi2Þðqþq− − y2Þ

q 	
: ð106Þ

For hÔi ¼ 0 and y ¼ 0 we have p̃� → p� that we derived
earlier. From this, the Rényi entropy and von Neumann
entropy (via replica trick, for instance) can be computed
to give

Snðω0Þ ¼ −
1

n − 1
log2ðp̃nþ þ p̃n

−Þ; ð107aÞ

Sðω0Þ ¼ −p̃þ log2 p̃þ − p̃− log2 p̃−: ð107bÞ

These are the results that apply for arbitrary Gaussian states
of the field and also for arbitrary state of the detector where
hÔi ≠ 0: thus the quantum entropies above form a three-
parameter family indexed by ðhÔi;Re νf; Im νfÞ. The
quasifree state corresponds to the subfamily Im νf ¼ 0.
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Overall, we have shown that for the nonperturbative
interaction between a qubit and a quantum field prepared
in an arbitrary Gaussian state, it is possible to calculate
the quantum entropies of the field independently of the
detector’s entropy: in particular, unless the joint state is pure,
we have found that the entropy generated by the field is not
the same as that of the detector. Furthermore, we showed this
by directly computing the entropy of the field without
performing infinite-dimensional spectral decomposition
(where the computations are typically hard to control, if
not impossible to extract the numbers directly). Our calcu-
lations work even for initially mixed states for either
subsystem. The fact that they can be computed exactly using
the conventional replica trick without knowing the detailed
spectrum of the field is somewhat surprising. To the authors’
knowledge, there is no simple path-integral representation to
date for the large class of three-parameter family of states
considered above, hence our calculations demonstrate the
utility of the nonperturbative calculations to understand the
field’s output state, not just the qubit output state that is
typically considered in the literature.

VII. CONCLUSION AND OUTLOOK

In this work we collected and generalized several existing
nonperturbative models for the interaction between a single
two-level qubit detector and a relativistic quantum scalar field
in arbitrary curved spacetimes, where the time evolution is
given by simple-generated unitaries. We then extended the
relativistic quantum channel associated to these nonpertur-
bative models to include a very large class of Gaussian states
of the quantum field. We showed how the results involving
the nonvacuum Gaussian states can be rephrased in terms of
those associated to the case when the field is in the vacuum
state by embedding the displacement and squeezingoperators
into the Weyl algebra, effectively giving a Fourier trans-
formed interpretation of the Gaussian operations in terms of
the causal propagators in spacetime. Thus the extension for
arbitrary Gaussian states of the field to those that are not
necessarily quasifree turns out to be quite straightforward.
One of the nice bonuses from our calculations is the

fact that it is possible to show with minimal effort that, for
these simple-generated interactions, the Rényi entropy of
the field state after interaction with the detector can be
calculated explicitly and independently of the calculations
of the detectors’ entropy. By using the replica trick,
the von Neumann entropy for the field state can also be
computed. These can be done without making any
assumptions about the purity of the joint initial states
of the detector and the field. Consequently, the non-
perturbative models give us a three-parameter family
of generalized cat states of the field whose entropies
are finite and exactly computable. To the best of our
knowledge, most of these states do not admit simple path
integral representations, thus we believe our calculations
are of independent interests.

There are several further extensions that we can consider
following this work, and we will briefly mention three of
them that appear more immediately relevant. First, there are
situations where one would like to think of multiple rapid-
repeated interactions in the delta-coupling model as being
analogous to collision models [53–56], and indeed, this
connection was studied for nonrelativistic bosonic bath
in [44]. The authors were able to frame the analysis in terms
of Weyl relations of the canonical commutation relations,
so we expect that relativistic generalization is straight-
forward, and it is interesting to see if relativistic consid-
erations have anything to say regarding CP-divisibility12 of
the induced qubit channel.
Second, the tractability of our calculations in this work

suggests that, at the very least, extending our results for
two-qubit and three-qubit nonperturbative interactions may
not be too difficult. For two-qubit systems, in particular,
where two-party communication is most naturally set in,
there has been quite a few known results in the non-
perturbative regimes in flat spacetimes (see, e.g., the
thorough work in [10,11,27]), though this has changed
recently to include curved backgrounds exploiting the sort
of generalities we consider here [13–15,28,57]. The three-
qubit system calculation has been only confined to
entanglement and mutual information harvesting in flat
space [26,58,59], and there is also an example on sabo-
taging of correlations where they consider an arbitrary
number of detectors were considered in flat space) [25]. It is
actually not difficult to show that there are ways to organize
these calculations in the same spirit as this work in curved
spacetimes. For every qubit introduced to the system, one
can enlarge the family of field states whose quantum
entropies can be computed exactly. Furthermore, because
there are multiple parties involved in spacetime, it would be
interesting to see how the entropies of the field behave
as a function of causal relations between the detectors
(i.e., the causal propagators). This is currently an ongoing
investigation.
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