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We investigate entanglement of local spatial modes defined by a quantum field in a de Sitter universe. The
introduced modes show disentanglement behavior when the separation between two regions where local
modes are assigned becomes larger than the cosmological horizon. To understand the emergence of
separability between these local modes, we apply the monogamy inequality proposed by S. Camalet. We
embed the focusing bipartite mode defined by the quantum field in a pure four-mode Gaussian state, and
identify its partner modes. Then applying a Gaussian version of the monogamy relation, we show that the
external entanglement between the bipartite mode and its partner modes constrains the entanglement of the
bipartite mode. Thus the emergence of separability of local modes in the de Sitter universe can be understood
from the perspective of entanglement monogamy.
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I. INTRODUCTION

Cosmic inflation explains the origin of structures in our
Universe by preparing seeds of primordial fluctuations as
quantum origin, vacuum fluctuations of a quantum scalar
field called inflaton. The contribution of this quantum field
to energy density functions as a cosmological constant,
leading to the accelerated expansion of the Universe. During
the rapid expansion of the Universe, vacuum fluctuations
receive parametric amplification, and the resulting fluctua-
tions evolve to become “classical” seed fluctuations causing
gravitational instability and later forming the large scale
structures [1]. Although this is an accepted scenario of
structure formation based on cosmic inflation in standard
cosmology, the mechanism of “quantum to classical tran-
sition” of primordial fluctuation has not been well under-
stood yet.
Entanglement is a key concept to differentiate quantum

systems from classical ones and a crucial tool to investigate
the quantum nature of the initial stage of our universe. In our
previous studies [2–7], local oscillator modes defined from
the quantum scalar field in a de Sitter universe were
investigated, and it was found that the initial entangled
state becomes separable; that is, two local modes A and B,
which are assigned at two spatial regions, become separable
when their separation exceeds the Hubble horizon scale.
This disentanglement behavior can be explained as follows:
the “thermal noise” with the Gibbons-Hawking temperature
associated with the de Sitter horizon breaks quantum
correlations between two spatial regions, and therefore,

the entangled bipartite state of modes A and B becomes
separable. After these two modes become separable, only
classical correlations survive between them.
The mechanism of disentanglement can also be studied

from the property of multipartite entanglement. The
bipartite system AB is defined as a subsystem of the total
system, i.e., the field in the entire universe. Although the
total system is assumed to be in a pure state, modes AB are
in a mixed state since they are correlated with its comple-
ment AB. It is always possible to find a subsystem in AB
that purifies AB, which is called the partner mode of AB.
Then, we can understand the disentanglement of AB as a
result of entanglement sharing between these modes and
their partners. More concretely, the disentanglement of AB
can be analyzed from the perspective of entanglement
monogamy in multipartite quantum systems [8–13].
Monogamy of entanglement is an intrinsic property of
quantum correlations that is not amenable to classical
explanations. For the bipartite state AB and its comple-
ment C ≔ AB, the conventional monogamy relation is
expressed as the following inequality:

EðA∶BÞ þ EðA∶CÞ ≤ EðA∶BCÞ; ð1Þ

where EðX∶YÞ denotes a suitably chosen entanglement
measure for a bipartite system XY. The inequality restricts
the amount of the bipartite entanglement EðA∶BÞ as
sharing of correlations in the tripartite system ABC.
However, this inequality does not provide such a tight
constraint as to derive a condition on the separability
EðA∶BÞ ¼ 0 for multipartite Gaussian states [6]. See also
the Appendix where we review the monogamy property (1)
for a pure four-mode Gaussian state.
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A slightly different form of the monogamy relation was
proposed by Camalet [14–18], which relates “internal” and
“external” quantum correlations in multipartite states. Here,
for a bipartite system AB of interest, the correlation
between A and B is internal, while the one between AB
and another subsystem X in the complementary system AB
is external. Based on assumptions of general correlation
measures, a new kind of monogamy inequality was derived,
which states that internal entanglement and external entan-
glement obey a trade-off relation. As a consequence,
explicit forms of the monogamy inequality are obtained
in terms of entanglement measures for finite-dimensional
systems, such as qubits.
In this paper, we investigate the entanglement behavior of

local bipartite modes AB of a quantum field in the de Sitter
universe from the viewpoint of the monogamy of entangle-
ment. For this purpose, we identify partner modes that
purify the bipartite modes AB by using the formalism
proposed in [19–23]. We then prove a Camalet-type trade-
off relation between internal and external correlations for
these modes, i.e., a monogamy relation on the entanglement
between A and B, and the entanglement between AB and
their partners. Based on these formalisms, we find that the
emergence of separability between local modes in the de
Sitter universe can be understood from the viewpoint of
entanglement monogamy.
The paper is organized as follows. In Sec. II, we introduce

a quantum scalar field in the de Sitter universe and show the
disentanglement behavior of local modes assigned at two
spatial points. In Sec. III, we review our method of
construction of the partner modes of the two local modes
based on the formulas in [19–23]. In Sec. IV, based on the
result obtained in Sec. III, we examine Camalet’s
monogamy relation for Gaussian modes with which the
emergence of separability in the de Sitter universe is
analyzed. Section V is devoted to summary and conclusion.
We adopt units of c ¼ ℏ ¼ 1 throughout this paper.

II. SCALAR FIELD AND LOCAL MODES

To comprehend the behavior of the entanglement of
quantum fields in the de Sitter universe, we consider a
minimally coupled massless scalar field ϕ̂ in a (3þ 1)-
dimensional flat Friedmann-Lemaître-Robertson-Walker
(FLRW) universe. The scalar field obeys the Klein-
Gordon equation □ϕ̂ ¼ 0. The metric of the FLRW
universe with the conformal time η and the comoving
coordinate x ¼ ðx; y; zÞ is

ds2 ¼ a2scðηÞð−dη2 þ dx2Þ; ð2Þ

where ascðηÞ is the scale factor of the universe. We will
later fix its functional form as that which corresponds to
the de Sitter universe. The rescaled scalar field φ̂ ¼ ascϕ̂
obeys the following field equation:

φ̂00 −
�
a00sc
asc

þ δij∂i∂j

�
φ̂ ¼ 0; i; j ¼ x; y; z; ð3Þ

where 0 ¼ d=dη. We adopt this mode equation in a
(3þ 1)-dimensional spacetime, but we assume that exci-
tation propagates only in one spatial direction to simplify
the analysis. Then the field operators of the massless scalar
field are expressed as

φ̂ðxÞ ¼
Z

∞

−∞

dkffiffiffiffiffiffi
2π

p φ̂keikx; φ̂k ¼ fkðηÞâkþf�kðηÞâ†−k; ð4Þ

π̂ðxÞ¼
Z

∞

−∞

dkffiffiffiffiffiffi
2π

p π̂keikx; π̂k ¼ð−iÞðgkðηÞâk−gkðηÞ�â†−kÞ;

ð5Þ

½âk1 ; â†k2 � ¼ δðk1 − k2Þ; f00k þ
�
k2 −

a00sc
asc

�
fk ¼ 0;

gk ¼ i

�
f0k −

a0sc
asc

fk

�
; fkg�k þ f�kgk ¼ 1; ð6Þ

where âk and â†k are annihilation and creation operators,
and π̂ðxÞ is the conjugate momentum of the field variable
φ̂ðxÞ. In terms of the Fourier components of the field
operators, the creation and the annihilation operators can
be represented as

âk ¼ g�kφ̂k þ if�kπ̂k; â†−k ¼ gkφ̂k − ifkπ̂k: ð7Þ

We assume that the scalar field is in the vacuum state jψi
associated with the annihilation operator âk such that

âkjψi ¼ 0: ð8Þ

The equal-time commutation relations for the field oper-
ators are given by

½φ̂ðη; xÞ; π̂ðη; yÞ� ¼ iδðx − yÞ;
½φ̂ðη; xÞ; φ̂ðη; yÞ� ¼ ½π̂ðη; xÞ; π̂ðη; yÞ� ¼ 0: ð9Þ

Covariances of the field operators are calculated as

M11ðx; yÞ≔ hfφ̂ðxÞ; φ̂ðyÞgi ¼ 2

π

Z
∞

0

dkjfkj2 cosðkðx− yÞÞ;

ð10Þ

M22ðx; yÞ≔ hfπ̂ðxÞ; π̂ðyÞgi ¼ 2

π

Z
∞

0

dkjgkj2 cosðkðx− yÞÞ;

ð11Þ
M12ðx; yÞ ≔ hfφ̂ðxÞ; π̂ðyÞgi

¼ 1

π

Z
∞

0

dkiðfkg�k − f�kgkÞ cosðkðx − yÞÞ; ð12Þ

YASUSADA NAMBU and KOJI YAMAGUCHI PHYS. REV. D 108, 045002 (2023)

045002-2



where hi denotes the expectation value with respect to the
state jψi.

A. Local modes

We consider measurement of the field operators φ̂; π̂ at
spatial points xA and xB. The measurement process can be
represented as the interaction between the field operators
and dynamical variables of the measurement apparatus
such as Unruh-DeWitt detectors [24]. In the present
analysis, we do not specify details of the apparatus but
just assume the interaction Hamiltonian between the field
operators, and the apparatus has the following form:

Hint ¼
X
j¼A;B

λjðtÞgjðq̂D; p̂DÞ ⊗
Z

dxðw1jðxÞφ̂ðxÞ

þ w2jðxÞπ̂ðxÞÞ; ð13Þ

where gj is a function of canonical variables of the
measurement apparatus ðq̂D; p̂DÞ, w1jðxÞ; w2jðxÞ are win-
dow functions defining a spatial local mode of the field at
xA;B, and λjðtÞ is a switching function of the interaction. In
the present analysis, we do not treat details of measurement
protocols but only pay attention to the behavior of the local
modes of the quantum field introduced by the window
functions.
Let us introduce local operators at xj (j ¼ A;B) using a

window function wjðxÞ ¼ wðx − xjÞ as

q̂j ≔
Z

∞

−∞
dxwjðxÞφ̂ðxÞ ¼

Z
∞

−∞
dkφ̂keikxjwk; ð14Þ

p̂j ≔
Z

∞

−∞
dxwjðxÞπ̂ðxÞ ¼

Z
∞

−∞
dkπ̂keikxjwk; ð15Þ

where the window function is assumed to be localized
around xj and wk denotes the Fourier component of the
window function:

wk ¼
1ffiffiffiffiffiffi
2π

p
Z

∞

−∞
dxwðxÞeikx; wk ¼ w�

−k: ð16Þ

We require that the window function is fixed so that the
local operators ðq̂j; p̂jÞ define independent modes. In other
words, they satisfy the canonical commutation relations
given by

½q̂i; p̂j� ¼ i
Z

∞

−∞
dkeikðxi−xjÞjwkj2 ≡ iδij; ð17Þ

½q̂i; q̂j� ¼ ½p̂i; p̂j� ¼ 0: ð18Þ

Note that these commutators are independent of the state of
the quantum field. Covariances for the local operators are

c1ði; jÞ ≔ hfq̂i; q̂jgi ¼ 4

Z
∞

0

dkjwkj2jfkj2 cos kΔij; ð19Þ

c2ði; jÞ ≔ hfp̂i; p̂jgi ¼ 4

Z
∞

0

dkjwkj2jgkj2 cos kΔij; ð20Þ

c3ði; jÞ ≔ hfq̂i; p̂jgi

¼ 2

Z
∞

0

dkjwkj2iðfkg�k − f�kgkÞ cosðkΔijÞ; ð21Þ

where Δij ≔ xi − xj.

1. Window function

We adopt a k-top hat window function in this study:
wk ¼ w0θðkc − jkjÞθðjkj − k0Þ; kc ≥ k0, where kc is the
infrared (IR) cutoff corresponding to the total system size
(comoving size of the total universe) and kc is the ultra-
violet (UV) cutoff defining the size of localized modes.
This type of a window function was adopted in the
stochastic approach to inflation [25], which is a phenom-
enological treatment of long wavelength quantum fluctua-
tions in the de Sitter universe, and this method describes
dynamics of the quantum inflaton field as a classical
stochastic variable obeying a Langevin equation. The
normalization w0 is determined by (17):

δij ¼ 2w2
0

Z
kc

k0

dkcosðkΔijÞ ¼ 2w2
0

sinðkcΔijÞ− sinðk0ΔijÞ
Δij

:

ð22Þ

For ΔAA ¼ ΔBB ¼ 0, Eq. (22) provides the normalization
of the window function that is determined as w2

0 ¼ 1=
ð2ðkc − k0ÞÞ. For ΔAB ≠ 0, Eq. (22) provides sinðkcΔABÞ −
sinðk0ΔABÞ ¼ 0 which determines

ΔAB ¼ ð2n − 1Þπ
kc þ k0

;
ð2nÞπ
kc − k0

; n ¼ 1; 2;…: ð23Þ

As a value of ΔAB, we adopt the following in our analysis:

jΔABj ¼
π

kc þ k0
≕Δ: ð24Þ

The quantity Δ represents the distance between adjacent
two local regions A and Bwith xB − xA ¼ Δ (Fig. 1). TheΔ
also represents the size of each local region. The spatial
profile of the window function is given by

wðxÞ ¼ 2ffiffiffiffiffiffi
2π

p
Z

kc

k0

dkw0e−ikx

¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
πðkc − k0

p Þ
sinðkcxÞ − sinðk0xÞ

x
: ð25Þ

Covariances for the local operators are calculated as
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c1ðΔÞ ¼
2

kc − k0

Z
kc

k0

dkjfkj2 cos kΔ

¼ 2

1 − δ

Z
1

δ
dzjfkj2 cos

�
πz

1þ δ

�
; ð26Þ

c2ðΔÞ ¼
2

kc − k0

Z
kc

k0

dkjgkj2 cos kΔ

¼ 2

1 − δ

Z
1

δ
dzjgkj2 cos

�
πz

1þ δ

�
; ð27Þ

c3ðΔÞ ¼
1

kc − k0

Z
kc

k0

dkiðfkg�k − f�kgkÞ cosðkΔÞ

¼ 1

1 − δ

Z
1

δ
dziðfkg�k − f�kgkÞ cos

�
πz

1þ δ

�
; ð28Þ

where z ¼ k=kc; δ ¼ k0=kc. The parameter δ represents the
size of the local region normalized by the total system
size: δ ¼ ðk0Δ=πÞð1 − k0Δ=πÞ−1.
The covariance matrix of the bipartite system AB defined

by ðq̂A; p̂A; q̂B; p̂BÞ is given by

mAB ¼

2
6664
a1 a3 c1 c3
a3 a2 c3 c2
c1 c3 a1 a3
c3 c2 a3 a2

3
7775; ð29Þ

where ai ≔ ciðΔ ¼ 0Þ for i ¼ 1; 2; 3. Owing to the homo-
geneity of the universe represented by the metric (2), the
covariance matrices of each mode A and B have the same
components; i.e., the bipartite system AB is in a symmetric
Gaussian state. Symplectic eigenvalues of the covariance
matrix mAB are calculated as

ðν1Þ2 ¼ a1a2 − a23 þ c1c2 − c23 þ ja1c2 þ a2c1 − 2a3c3j;
ð30Þ

ðν2Þ2 ¼ a1a2 − a23 þ c1c2 − c23 − ja1c2 þ a2c1 − 2a3c3j:
ð31Þ

The state represented by the covariance matrix (29)
is physical, i.e., positive-semidefinite, if and only if
1 ≤ ν2 ≤ ν1.
The partially transposed covariance matrix, which is

obtained by reversing the sign of mode B’s momentum, has
the following two symplectic eigenvalues:

ðν̃1Þ2 ¼ a1a2 − a23 − c1c2 þ c23 þ jða1c2 − a2c1Þ2
þ 4ða1c3 − a3c3Þða2c3 − a3c2Þj1=2; ð32Þ

ðν̃2Þ2 ¼ a1a2 − a23 − c1c2 þ c23 − jða1c2 − a2c1Þ2
þ 4ða1c3 − a3c3Þða2c3 − a3c2Þj1=2: ð33Þ

Based on the positivity criterion of the partially transposed
covariance matrix for a bipartite Gaussian state [26–28], the
negativity gives a measure of entanglement between modes
A and B, which is defined as [29,30]

NA∶B ≔
1

2
max

�
1

ν̃2
− 1; 0

�
: ð34Þ

The modes A and B are entangled if NA∶B > 0, while the
modes A and B are separable if NA∶B ¼ 0.

B. Entanglement of local modes in the de Sitter universe

We adopt the de Sitter expansion of the scale factor
asc ¼ −1=ðHηÞ;−∞ < η < 0, where H is the Hubble
constant. Mode functions corresponding to the Bunch-
Davies vacuum state, which coincides with the Minkowski
vacuum state in the short wavelength limit, are given by

fk ¼
1ffiffiffiffiffiffiffiffi
2jkjp �

1þ 1

ijkjη
�
e−ijkjη; gk ¼

ffiffiffiffiffi
jkj
2

r
e−ijkjη: ð35Þ

FIG. 1. Left panel: setup of spatial regions A and B. Right panel: the window functions for A: wðxþ Δ=2Þ and B: wðx − Δ=2Þ with
k0=kc ¼ 0.2. Although the two window functions overlap, local modes A and B are independent and well-defined as the commutation
relation (17) is satisfied.
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Covariances of the field operators are calculated as

M11 ¼
1

π

Z
∞

0

dk
k

�
1þ 1

k2η2

�
cos kðx − yÞ; ð36Þ

M22 ¼
1

π

Z
∞

0

dkk cos kðx − yÞ; ð37Þ

M12 ¼
1

πη

Z
∞

0

dk
k
cos kðx − yÞ: ð38Þ

We choose the UVand IR cutoff in the window functions as
kc ¼ πH=δ; k0 ¼ πH. The IR cutoff represents the physical
size of the whole universe ascH−1 and the UV cutoff
represents the physical size of the focusing spatial region
δ × ascH−1; 0 ≤ δ ≤ 1. Covariances (26), (27), (28) of the
local modes are

c1 ¼
1

πH
δ

1 − δ

Z
1

δ

dz
z

�
1þ a2scδ2

π2z2

�
cos

�
πz

1þ δ

�
; ð39Þ

c2 ¼
πH

δð1 − δÞ
Z

1

δ
dzz cos

�
πz

1þ δ

�
; ð40Þ

c3 ¼ −
1

πH
ascHδ

1 − δ

Z
1

δ

dz
z
cos

�
πz

1þ δ

�
: ð41Þ

The left panel of Fig. 2 shows the evolution of negativity of
the bipartite mode AB, with a fixed comoving size δ. The
initial nonzero negativity evolves to be zero at some
specific value of the scale factor. The physical size of a
local region is characterized by δp ≔ ascδ. The right panel
of Fig. 2 shows the plot of negativity as a function of
ðδp; ascÞ. For a fixed δ ∈ ð0; 1Þ, this figure shows that

entanglement (quantum correlation) between the two local
modes A and B is lost after the physical size of the
comoving region exceeds the Hubble horizon scale and the
“classical” behavior of the quantum field emerges [2–6].
The disentanglement behavior in this figure can be

intuitively understood as a result of the fact that “thermal”
noise at the Gibbons-Hawking temperature TH ¼ H=ð2πÞ
associated with the cosmological horizon destroys quantum
correlations between A and B. The rest of this paper aims to
provide a more quantitative understanding of the disentan-
glement phenomenon in terms of entanglement monogamy.
The bipartite state AB is usually mixed because it is defined
as a subsystem embedded in the total universe. As the
monogamy relation proposed by Camalet [14–18] suggests,
the amount of quantum correlation between A and B (i.e.,
internal correlation) is affected by the amount of quantum
correlation between AB and its complement (i.e., external
correlation). Therefore, we look for the partner modes that
purify the bipartite mode AB and investigate the entangle-
ment structure among them in the following sections.

III. PURIFICATION OF LOCAL GAUSSIAN
MODES IN QUANTUM FIELDS

To understand the behavior of entanglement between
spatial local modes, we look for their partners, i.e., the
modes that purify them. In [31], a partner mode of a given
mode is calculated in specific examples, including a system
with Hawking radiation. A general partner formula that
identifies a partner mode for a single mode in any pure
Gaussian state is proven in [19]. Generalizing these results,
a systematic method to identify any number of modes in a
pure state has been developed in [21–23]. Such a subsystem
composed of modes in a pure state is called a quantum
information capsule (QIC). Although the QIC formula

FIG. 2. Behavior of negativity. Left panel: dependence on the scale factor with different values of the comoving size δ. Right panel:
dependence on the physical size of the local region δp ¼ ascδ and the scale factor asc. The dotted line is δp ¼ asc that represents the
evolution of the total size of the universe. The modes A and B are initially entangled (asc ¼ 0) and become separable after the physical
separation between them exceeds the Hubble horizon scale ∼H−1 with kc=asc ≪ k0 and the effect of the IR cutoff becomes negligible.
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in [21–23] provides an algebraic way to identify modes in a
pure state, it cannot be directly used for our purpose of
analyzing the disentanglement structure of two local modes
AB [2–5] from the viewpoint of monogamy. In this section,
we derive a more useful formula to identify the partner
modes that purify given two modes AB.
In Sec. III A, we briefly review the QIC argument with

which modes in a pure state are identified. In Sec. III B, we
derive a formula identifying the partner mode of a single
mode, which reproduces the partner formula in [19]. In
Sec. III C, we generalize the partner formula to identify the
partner of a two-mode system.

A. QICs in Gaussian states

The partners here are a special class of QIC. In [21–23],
it has been shown that a linear map, denoted by fψ for a
pure Gaussian state jψi, plays a key role in identifying a
QIC. We here briefly review the results in [21–23],
including the properties of fψ .
Let us first consider a system composed of N harmonic

oscillators, which is assumed to be in a pure Gaussian
state jψi. The canonical variables are defined by r̂ ¼
ðq̂1; p̂1;…; q̂N; p̂NÞT . For simplicity, we assume that the
first moments of the canonical variables vanish, i.e.,
hr̂i ¼ 0, where hi denotes the expectation value in jψi.
The covariance matrix with respect to these canonical
variables is defined by m ≔ hfr̂; r̂Tgi.1 Because the total
system is assumed to be in a pure Gaussian state, all the
symplectic eigenvalues ofm are one. That is, there exists a
symplectic matrix S such that

m ¼ SST; ð42Þ

where S satisfies STΩNS ¼ ΩN and ½r̂; r̂T � ¼ iΩN for

ΩN ≔ ⨁
N

i¼1

J; J ¼
�

0 1

−1 0

�
: ð43Þ

Note that the pure state condition (42) is equivalent to the
following relation:

mΩNm ¼ ΩN: ð44Þ

If we introduce a new basis r̂0 for the canonical variables
by r̂0 ¼ S−1r̂, we get

m0 ¼ hfr̂0; r̂0Tgi¼SmðSTÞ−1¼ I2N; ½r̂0; r̂0T � ¼ iΩN: ð45Þ

The canonical variables defined by r̂0 specify N uncorre-
lated modes, each of which is in a pure state. Now we
define a linear map fψ by

fψ ðq̂0iÞ ¼ p̂0
i; fψðp̂0

iÞ ¼ −q̂0i; ð46Þ

or equivalently,

fψðr̂0Þ ¼ ΩN r̂0: ð47Þ

This map has the following properties:

½r̂0; fψ ðr̂0ÞT � ¼ iI2N; ð48Þ

hfr̂0; r̂0Tgi ¼ I2N; hfr̂0; fψ ðr̂0ÞTgi ¼ 0;

hffψ ðr̂0Þ; fψ ðr̂0ÞTgi ¼ I2N: ð49Þ

On the one hand, Eq. (48) means that ½r̂j0; fψðr̂j0Þ� ¼ i; i.e.,
ðr̂j0; fψ ðr̂j0ÞÞ defines a mode for any j ¼ 1;…; 2N. On the
other hand, Eq. (49) implies that the mode defined by
ðr̂j0; fψ ðr̂j0ÞÞ is in a pure state. Of course, these are
straightforward consequences of the definition in Eq. (46).
Let us generalize this observation. Consider an operator

Ô given by a linear combination of canonical variables. We

first rescale this operator as Ô → Ô=
ffiffiffiffiffiffiffiffiffiffiffiffi
2hÔ2i

q
so that

hÔ2i ¼ 1=2. Expanding Ô in the basis r̂0 as

Ô ≔
XN
i¼1

w0
ir̂

0
i ¼ w0T r̂0; ð50Þ

where w0T ¼ ðw0
1; w

0
2;…; w0

2NÞ, the normalization condi-
tion is equivalent to

w0Tw0 ¼ 1: ð51Þ

Introducing operators ðQ̂; P̂Þ ≔ ðÔ; fψðÔÞÞ for Ô with this
normalization, from Eqs. (48), (49), and (51), we find

½Q̂; P̂� ¼ i; ð52Þ

hfQ̂;Q̂gi¼1; hfQ̂;P̂gi¼hfP̂;Q̂gi¼0; hfP̂;P̂gi¼1:

ð53Þ

Equation (52) means that ðQ̂; P̂Þ satisfies the canonical
commutation relation and hence defines a mode. Further,
Eq. (53) implies that the covariance matrix for this mode is
equal to the 2 × 2 identity matrix, implying that it is in a
pure state.
In a series of studies [21–23,32] on the carriers of

information, the smallest subsystem in a pure state that
carries the whole encoded information is termed a QIC. The
encoded information can be fully retrieved by extracting a
QIC from the system. Equations (52) and (53) imply that
the mode defined by ðQ̂; P̂Þ ≔ ðÔ; fψðÔÞÞ is the QIC when
the encoding operation is generated by Ô. In a more general
case where the encoding operation is generated by fÔigni¼1,

1½r̂; r̂T � is the antisymmetric part of the operator r̂r̂T and fr̂; r̂Tg
is the symmetric part of the operator r̂r̂T.
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where each of which is assumed to be a linear combination
of canonical variables, it is proven [23] that the QIC is
given by a subsystem composed of (at most) n modes,
which is algebraically defined by

fðÔi; fψðÔiÞgni¼1: ð54Þ

It is shown that operators fðQ̂i; P̂iÞgi defined in Eq. (73) in
[23] satisfy

½Q̂j; P̂k� ¼ iδjk; ½Q̂j; Q̂k� ¼ ½P̂j; P̂k� ¼ 0; ð55Þ

hfQ̂j; Q̂kgi ¼ δjk; hfQ̂j; P̂kgi ¼ hfP̂j; Q̂kgi ¼ 0;

hfP̂j; P̂kgi ¼ δjk; ð56Þ

which generalizes Eqs. (55) and (56). It implies that the
mode characterized by fðQ̂i; P̂iÞgi is in a pure state when
the total system is in jψi, and therefore, they are the QIC as
the encoded information is carried by them.
Although the subsystem composed of n modes playing

the role of QIC is uniquely determined, there are several
ways to decompose it into n independent modes. From
Eq. (56), the Gaussian state jψi of the total system is
decomposed into

jψi ¼ jψ 0i12���n ⊗ jψ 00i12���n; jψ 0i12���n ≔ ⊗
n

j¼1
j0ij; ð57Þ

where j0ij denotes the “vacuum” state for the jth mode

annihilated by âj ≔ ðQ̂j þ iP̂jÞ=
ffiffiffi
2

p
and jψ 00i12���n denotes

a pure state for the complementary system. Since each of
the n modes is in a pure state in this decomposition, the
analysis of the entanglement structure is not straightfor-
ward. In the following subsections, we introduce another
decomposition that is more useful in analyzing the entan-
glement structure among partners.
For later convenience, we summarize here the properties

of fψ . From the definition in Eq. (47), fψ maps the original
basis r̂ to

fψðr̂Þ ¼ fψ ðSr̂0Þ ¼ SΩNS−1r̂ ¼ mΩN r̂; ð58Þ

where we have used S−1 ¼ −ΩNSTΩN . From Eqs. (48) and
(49), for any operators Ô and Ô0 given by linear combi-
nations of canonical operators by (65) [22,23], it can be
directly checked that

hÔi ¼ 0; hfψðÔÞi ¼ 0; fψðfψ ðÔÞÞ ¼ −Ô; ð59Þ

½Ô; fψ ðÔ0Þ� ¼ ihfÔ; Ô0gi; hfÔ; fψðÔ0Þgi ¼ i½Ô; Ô0�;
ð60Þ

½fψðÔÞ; fψ ðÔ0Þ� ¼ ½Ô; Ô0�;
hffψ ðÔÞ; fψðÔ0Þgi ¼ hfÔ; Ô0gi ð61Þ

hold.
So far, we have reviewed the properties of map fψ in a

harmonic oscillator system. The analyses can readily be
extended to a scalar field by the following procedure. For a
scalar field φ̂ and its conjugate momentum π̂ at a fixed time
t, we denote

R̂ðxÞ ≔
�
φ̂ðt; xÞ
π̂ðt; xÞ

�
: ð62Þ

Here, for notational simplicity, we omit the time variable t
on the left-hand side. The equal-time commutation rela-
tions in Eq. (9) are written as

½R̂ðxÞ;R̂TðyÞ�¼ i

�
0 δðx−yÞ

−δðx−yÞ 0

�
¼ iJδðx−yÞ; ð63Þ

where J ¼
�

0 1

−1 0

�
, while the covariance of the field

operators in the state jψi are denoted by

Mðx; yÞ ≔ hfR̂ðxÞ; R̂TðyÞgi ¼
�
M11ðx; yÞ M12ðx; yÞ
M21ðx; yÞ M22ðx; yÞ

�

¼
� hfφ̂ðxÞ; φ̂ðyÞgi hfφ̂ðxÞ; π̂ðyÞgi
hfπ̂ðxÞ; φ̂ðyÞgi hfπ̂ðxÞ; π̂ðyÞgi

�
: ð64Þ

We introduce an operator

Ô ≔
Z

dx½w1ðxÞφ̂ðxÞ þ w2ðxÞπ̂ðxÞ� ¼
Z

dxWTðxÞR̂ðxÞ;

ð65Þ

where

WðxÞ ¼
�
w1ðxÞ
w2ðxÞ

�
ð66Þ

denotes weighting functions. In the analogy with Eq. (58),
we define [23] a map fψ by

fψðÔÞ ≔
Z

dxdydzWTðxÞMðx; yÞJδðy − zÞR̂ðzÞ

¼
Z

dxWT
fψ ðÔÞðxÞR̂ðxÞ; ð67Þ

where Wfψ ðÔÞ is the window function defining fψðÔÞ,
given by
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Wfψ ðÔÞðxÞ ≔ −
Z

dyJMðx; yÞWðyÞ: ð68Þ

When the covariance of the field operator satisfies a purity
conditionZ

dydzMðx; yÞJδðy − zÞMðz; wÞ ¼ Jδðx − wÞ; ð69Þ

which corresponds to Eq. (44), it is shown [22,23] that
the map fψ satisfies all the properties in Eqs. (59), (60),
and (61). Therefore, for operators fOigni¼1 given by linear
combinations of field operators, the set of operators

fðÔi; fψðÔiÞgni¼1 ð70Þ

defines (at most) n modes in a pure state, provided that the
field is in a pure Gaussian state jψi. Note that Eq. (69) can
be explicitly confirmed for the covariances given in
Eqs. (36)–(38).
Based on these results, we derive the partner formula for

a single mode in Sec. III B, which reproduces the formula
in [19]. We further generalize it for the partner formula for
two modes in Sec. III C, which we shall use to analyze
entanglement monogamy among local modes in a field. See
Fig. 3 for the schematic picture of these setups.

B. Purification of a single Gaussian mode

As a practical application of the map fψ , we look
for a partner mode that purifies a given single mode A
[Fig. 3(a)]. In particular, we apply the partner formula for a
local mode ξ̂A ¼ ðq̂A; p̂AÞT at a spatial point xA defined in
the previous section. As we have seen in Sec. III A, four
operators

q̂A; p̂A; fψ ðq̂AÞ; fψðp̂AÞ ð71Þ

define a two-mode system that is in a pure state, provided
that the field is in a pure Gaussian state. To identify the
partner mode of ξ̂A, we here construct a mode generated by
the operators in Eq. (71), which is orthonormal to the mode
A. The covariance matrix for ξ̂A is

mA ≔ hfξ̂A; ξ̂TAgi ¼
�

2hq̂2Ai hq̂Ap̂A þ p̂Aq̂Ai
hq̂Ap̂A þ p̂Aq̂Ai 2hp̂2

Ai

�

¼
�
c1 c3
c3 c2

�
: ð72Þ

Commutators and covariances between these operators are
given by

½ξ̂A; ξ̂TA� ¼ ½fψðξ̂AÞ; fψðξ̂TAÞ� ¼ iJ; ½ξ̂A; fψðξ̂TAÞ� ¼ imA;

ð73Þ

and

hfξ̂A; ξ̂TAgi ¼ hffψ ðξ̂AÞ; fψðξ̂TAÞgi ¼ mA;

hfξ̂A; fψðξ̂TAÞgi ¼ −J: ð74Þ

To extract a mode orthogonal to the original mode ξ̂A from
fψðξ̂AÞ, we define operators

ζ̂ ≔ fψ ðξ̂AÞ −mAJξ̂A: ð75Þ

They indeed commute with ξ̂A as

½ζ̂; ξ̂TA� ¼ ½fψðξ̂AÞ; ξ̂TA� − ½mAJξ̂A; ξ̂
T
A�

¼ −mA −mAJ½ξ̂A; ξ̂TA�
¼ 0: ð76Þ

Therefore, they define a mode orthogonal to ξ̂A.
The commutator of ζ̂ is calculated as

½ζ̂; ζ̂T � ¼ iðJ −mAJmAÞ: ð77Þ

If the mode A is in a pure state, it holdsmAJmA ¼ J which
corresponds to the relation of the density operator ρ̂2A ¼ ρ̂A,
implying that the commutator of ζ̂ is trivial. In this case,
because ξ̂A is in a pure state, its partner mode does not exist.
If the mode A is not pure, its partner is characterized by ζ̂.
We normalize ζ̂ to make it a canonical pair of operators. For
this purpose, we introduce ξ̂C by ζ̂ ¼ Aξ̂C with a matrix A
so that ½ξ̂C; ξ̂TC� ¼ iJ holds. The condition on the matrix A is
given by

AJAT ¼ J −mAJmA: ð78Þ

To obtain A, we consider the standard form of the
covariance matrix mA:

mA ¼ S

�
a 0

0 a

�
ST ¼ aSST; SJST ¼ J; ð79Þ

A

C

A B

C D

(a) (b)

FIG. 3. (a) Purification of a single mode A. The mode C is a
partner of A. (b) Purification of two modes AB. The modes C and
D are partners of the bipartite system AB.
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where S represents a symplectic transformation to diago-
nalize mA and a is the symplectic eigenvalue of mA.
Although the partner mode C itself is unique, the matrix

S satisfying Eq. (78) is not uniquely determined because of
the remaining freedom in fixing a canonical set of operators
for the mode C. In other words, when A satisfies Eq. (78),
so does A0 ≔ S0A, where S0 is an arbitrary 2 × 2 symplectic
matrix. Since Eq. (78) is recast into AJAT ¼ ð1 − a2ÞJ, we
can choose

A ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 − 1

p
X; ð80Þ

or equivalently

A−1 ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 − 1

p X; ð81Þ

where X ¼
h
0 1

1 0

i
.

In summary, the partner mode C of mode A is obtained
as the following formula:

ξ̂C ¼ A−1ζ̂ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 − 1

p Xðfψðξ̂AÞ −mAJξ̂AÞ

¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 − 1

p
�
c2q̂A − c3p̂A þ fψðp̂AÞ
c3q̂A − c1p̂A þ fψðq̂AÞ

�
≕
�
q̂C
p̂C

�
; ð82Þ

which is equivalent to the partner formula for a single
mode [19] in a Gaussian state. Covariances of operators
ðξ̂A; ξ̂CÞ are given by

hfξ̂A; ξ̂TAgi ¼ mA; ð83Þ

hfξ̂C; ξ̂TAgi ¼ A−1ðJ −mAJmAÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 − 1

p
Z; ð84Þ

hfξ̂C; ξ̂TCgi ¼ −A−1ðmA þmAJmAJmAÞðA−1ÞT ¼ XmAX;

ð85Þ

where Z ¼
�
1 0

0 −1
�
. In a matrix form, they are summa-

rized as

mAC ≔ hfξ̂AC; ξ̂TACgi ¼
�

mA

ffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 − 1

p
Zffiffiffiffiffiffiffiffiffiffiffiffiffi

a2 − 1
p

Z XmAX

�
;

ξ̂AC ≔
�
ξ̂A

ξ̂C

�
: ð86Þ

One can explicitly confirm that this covariance matrix
satisfies the following purity condition of the state AC:

mACΩ2mAC ¼ Ω2; Ω2 ¼ ⨁
2

i¼1

J; ð87Þ

implying that it represents a pure two-mode squeezed state
characterizing the pair of partners AC. The total state is
decomposed as

jψi ¼ jψ 0iAC ⊗ jψ 00iAC; ð88Þ

where jψ 0iAC is the pure Gaussian state defined bymAC and
has no correlation with its complement system AC in
another pure state jψ 00iAC.

1. Spatial profile of partner mode

Using Eq. (68), the spatial profiles of the partner mode
can be visualized. As a window function of local mode A,
we adopt WqA ¼ wAðxÞð1; 0ÞT and WpA

¼ wAðxÞð0; 1ÞT ,
which we have used to introduce local modes from the
scalar field in (14) and (15). From Eq. (68), we get

Wfψ ðqAÞðxÞ ¼ −
Z

dy

�
M12ðx; yÞ M22ðx; yÞ
−M11ðx; yÞ −M12ðx; yÞ

��
wAðyÞ
0

�

¼
Z

dy

�−M12ðx; yÞ
M11ðx; yÞ

�
wAðyÞ; ð89Þ

Wfψ ðpAÞðxÞ ¼ −
Z

dy

�
M12ðx; yÞ M22ðx; yÞ
−M11ðx; yÞ −M12ðx; yÞ

��
0

wAðyÞ

�

¼
Z

dy

�−M22ðx; yÞ
M12ðx; yÞ

�
wAðyÞ; ð90Þ

and

fψðq̂AÞ ¼
Z

dxWT
fψ ðqAÞðxÞR̂ðxÞ

¼
Z

dxdy½−φ̂ðxÞM12ðx; yÞwAðyÞ

þ π̂ðxÞM11ðx; yÞwAðyÞ�; ð91Þ

fψðp̂AÞ ¼
Z

dxWT
fψ ðpAÞðxÞR̂ðxÞ

¼
Z

dxdy½−φ̂ðxÞM22ðx; yÞwAðyÞ

þ π̂ðxÞM12ðx; yÞwAðyÞ�: ð92Þ

In other words, the window functions of fψðξ̂AÞ are
expressed by convolutions of the window function wA with
the covariance matrix Mij of the field operators, given by
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Z
dyM11ðx; yÞwAðyÞ ¼

4ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
πðkc − k0Þ

p Z
kc

k0

dkjfkj2 cos kðx − xAÞ

¼ 2

π
ffiffiffiffi
H

p
ffiffiffiffiffiffiffiffiffiffi
δ

1 − δ

r Z
1

δ

dz
z

�
1þ a2scδ2

π2z2

�
cos

�
z
πHðx − xAÞ

δ

�
; ð93Þ

Z
dyM22ðx; yÞwAðyÞ ¼

4ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
πðkc − k0Þ

p Z
kc

k0

dkjgkj2 cos kðx − xAÞ

¼ 2

π
ffiffiffiffi
H

p
ffiffiffiffiffiffiffiffiffiffi
δ

1 − δ

r �
πH
δ

�
2
Z

1

δ
dzz cos

�
z
πHðx − xAÞ

δ

�
; ð94Þ

Z
dyM12ðx; yÞwAðyÞ ¼

2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
πðkc − k0Þ

p Z
kc

k0

dkiðfkg�k − f�kgkÞ cos kðx − xAÞ

¼ −
2

π
ffiffiffiffi
H

p
ffiffiffiffiffiffiffiffiffiffi
δ

1 − δ

r
ðascHÞ

Z
1

δ

dz
z
cos

�
z
πHðx − xAÞ

δ

�
: ð95Þ

From these equations, we obtain spatial profiles of the
partner mode C. The upper panel of Fig. 4 shows the
window function of the mode Awith δ ¼ 0.1 as a function
of the physical coordinate xp ≔ ascx (we set H ¼ 1).
Because of cosmic expansion, the width of the window
function (spatial size of the local mode A) increases from
0.1H−1 to H−1. The lower panels are the convolution of w
with the covariance of field operators, which appear in the
partner formulas (91) and (92). As we can observe from the
behavior of convolutions with M11, M12, amplitudes of
these functions become larger as the universe expands and

typical wavelengths become ∼10H−1, which is far larger
than the width of wA; this behavior of the partner’s window
functions implies that the information of the original modeA
shared with its partner C delocalizes and extends over the
superhorizon scale. These facts provide the following intui-
tive understanding of the mechanism of disentanglement
between local modes: Because the partner of a local mode A
is spread over the superhorizon scale for a large scale factor, it
is slightly different from another local mode B, implying that
modes AB cannot share much entanglement. This observa-
tion becomes more quantitative in Sec. IV, wherewe analyze

FIG. 4. Upper panel: the window function wA that represents the spatial profile of mode A at asc ¼ 1; 10. We set xA ¼ 0. xp ¼ ascx
denotes the physical coordinate. Owing to cosmic expansion, the width of the profile increases as ascδ. Lower panels: convolution of wA
with covariances of the field operators. These functions represent spatial profiles of the partner mode C.
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the disentanglement from the viewpoint of entanglement
monogamy.

2. Negativity between AC

The standard form of the covariance matrix for the mode
A is

mA ¼
�
a 0

0 a

�
; ð96Þ

where a is the symplectic eigenvalue of mA. As shown in
Eq. (86), the covariance matrix of A and its partner C is
given by

mAC ¼

2
66664

a 0
ffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 − 1

p
0

0 a 0 −
ffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 − 1

p
ffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 − 1

p
0 a 0

0 −
ffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 − 1

p
0 a

3
77775:

ð97Þ

The smaller symplectic eigenvalue of its partial trans-
position of mAC is calculated as

ν̃2 ¼ a −
ffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 − 1

p
¼ 1

aþ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 − 1

p ≤ 1: ð98Þ

Thus the negativity between the modes A and C is given by

NA∶C ¼ 1

2
ðaþ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 − 1

p
− 1Þ ≥ 0: ð99Þ

For a > 1, the bipartite state AC is entangled. Figure 5
shows the behavior of the symplectic eigenvalue a ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a1a2 − a23

p
as functions of the scale factor and δ, where

a1, a2, a3 are components of the covariance matrix (29).
The left panel of Fig. 5 shows that for a fixed value of δ, the
symplectic eigenvalue a and the negativity between AC

increase as the scale factor increases. The right panel of
Fig. 5 shows that for a fixed value of scale factor asc, the
symplectic eigenvalue a increases as the size δ of the region
A decreases. Thus the state AC is more squeezed for a
smaller value of δ. In the limit of δ → 1, the negativity
NA∶C vanishes since a → 1, implying that the purity of the
state of mode A approaches one.
In terms of the symplectic eigenvalue a, the entangle-

ment entropy of the mode A is given by

SA ¼
�
aþ 1

2

�
log2

�
aþ 1

2

�
−
�
a − 1

2

�
log2

�
a − 1

2

�
:

ð100Þ

As the symplectic eigenvalue a monotonically increases
with the scale factor, the entanglement entropy of the mode
A also increases with the scale factor. Thus the information
shared between two modes A and C increases because the
mixedness of the state A grows. This explains the delo-
calization of the information stored in A and the spread of
the partner’s window function as visualized in Fig. 4. In the
limit of δ → 1, SA approaches zero, and A and C share no
information.

C. Purification of the bipartite Gaussian mode

In this subsection, we construct partner modes CD for the
two-mode system ξ̂AB ¼ ðq̂A; p̂A; q̂B; p̂BÞT . See Fig. 3(b)
for the schematic picture of the setup. To the authors’
knowledge, an explicit formula to obtain the partner modes
of a two-mode system has not yet appeared in the literature.
Therefore, we explain here the derivation, although it is
quite similar to the arguments in the previous subsection,
i.e., the derivation of the partner formula for a one-mode
system.
From the arguments in Sec. III A, the eight operators ξ̂AB

and fψ ðξ̂ABÞ, i.e.,

q̂A; p̂A; q̂B; p̂B; fψ ðq̂AÞ; fψðp̂AÞ; fψðq̂BÞ; fψðp̂BÞ; ð101Þ

FIG. 5. Behavior of the symplectic eigenvalue a. Left panel: dependence on the scale factor. The symplectic eigenvalue a is an
increasing function of the scale factor, and entanglement between AC grows as the universe expands. Right panel: dependence on the
normalized comoving size δ of the region A.
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define a system composed of four modes ABCD, which is
in a pure state. We aim to construct two modes CD
orthonormal to modes AB. Commutators between these
operators are given by

½ξ̂AB; ξ̂TAB� ¼ iΩ2; ½ξ̂AB; fψðξ̂TABÞ� ¼ imAB;

½fψðξ̂ABÞ; ξ̂TAB� ¼ −imAB; ½fψðξ̂ABÞ; fψ ðξ̂TABÞ� ¼ iΩ2;

ð102Þ

wheremAB denotes the covariance matrix for the two mode
system ξ̂AB:

mAB ≔ hfξ̂AB; ξ̂TABgi ¼ hffψ ðξ̂ABÞ; fψðξ̂TABÞgi;
hfξ̂AB; fψðξ̂TABÞgi ¼ −Ω2: ð103Þ

To find modes orthogonal to the original mode ξ̂AB, we
introduce operators

ζ̂ ≔ fψðξ̂ABÞ −mABΩ2ξ̂AB: ð104Þ

They satisfy ½ζ̂; ξ̂TAB� ¼ 0 since

½ζ̂; ξ̂TAB� ¼ ½fψðξ̂ABÞ; ξ̂TAB� − ½mABΩ2ξ̂AB; ξ̂AB�
¼ −imAB −mABΩ2½ξ̂AB; ξ̂TAB�
¼ 0 ð105Þ

and therefore define modes orthogonal to the original
modes AB. The commutators and the covariances for ζ̂
are calculated as

½ζ̂; ζ̂T � ¼ iðΩ2 −mABΩ2mABÞ;
hfζ̂; ζ̂Tgi ¼ −ðmAB þmABΩ2mABΩ2mABÞ: ð106Þ

If Ω2 ¼ mABΩ2mAB, the two-mode system AB is in a pure
state, implying their partners do not exist. We therefore
assume that Ω2 ≠ mABΩ2mAB. We normalize ζ̂ as ζ̂ ¼
Aξ̂CD using a matrix A so that the standard canonical
commutation relation for modes C and D

½ξ̂CD; ξ̂TCD� ¼ iΩ2 ð107Þ

is satisfied. This is equivalent to a constraint on the 4 × 4
matrix A given by

AΩ2AT ¼ Ω2 −mABΩ2mAB: ð108Þ

By using matrix A satisfying this condition, covariances of
normalized operators ξ̂CD are expressed as

hfξ̂CD; ξ̂TCDgi ¼ A−1hfζ̂; ζ̂TgiðA−1ÞT
¼ −A−1ðmAB þmABΩ2mABΩ2mABÞ

ðA−1ÞT ≕mCD; ð109Þ

hfξ̂CD; ξ̂TABgi ¼ A−1ðΩ2 −mABΩ2mABÞ≕mT
AB;CD; ð110Þ

hfξ̂AB; ξ̂TCDgi¼ ½A−1ðΩ2−mABΩ2mABÞ�T≕mAB;CD; ð111Þ

hfξ̂AB; ξ̂TABgi≕mAB: ð112Þ

These covariances define a state for the four-mode system
ABCD as

mABCD ¼
� mAB mAB;CD

mT
AB;CD mCD

�
: ð113Þ

Since the four-mode system ABCD is in a pure state, the
purity condition is satisfied,

mABCDΩ4mABCD ¼ Ω4; ð114Þ

where Ω4 ¼ ⨁4
i¼1J. In this case, the state of the total

system is decomposed as

jψi ¼ jψ 0iABCD ⊗ jψ 00iABCD; ð115Þ

where jψ 0iABCD denotes a pure state of the four-mode
system ABCD defined by the covariance matrix mABCD,
while jψiABCD is a pure state for its complement system
ABCD. This decomposition implies that there is no
correlation between the four-mode system ABCD and its
complement ABCD. Therefore, all the information on the
correlation between AB and its complement is confined to
the four-mode system ABCD.
We look for the matrix A satisfying Eq. (108) by using

the standard form of the covariance matrix of a two-mode
Gaussian state [33,34]. Our aim is to find the partner
modes of local modes A and B defined at spatial points xA
and xB. Because of the spatial translation symmetry, the
symplectic eigenvalue of the covariance matrix of mode A
is equal to that of B. Therefore, without loss of generality,
we can assume that the covariance matrix of the bipartite
system AB is given by the standard form of symmetric
Gaussian state

mAB ¼

2
6664

a 0 d1 0

0 a 0 d2
d1 0 a 0

0 d2 0 a

3
7775; ð116Þ

after performing a local symplectic transformation on
each mode.
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Using the standard form of mAB, the right-hand side of
Eq. (108) is expressed as

Ω2 −mABΩ2mAB ¼
� ð1−a2−d1d2ÞJ −aðd1þd2ÞJ

� ð1−a2−d1d2ÞJ

�
:

ð117Þ

As noted in the previous section, the solution A of Eq. (108)
is not uniquely determined as there is remaining freedom
for fixing canonical operators for CD. As an ansatz for the
matrix A, we adopt

A ¼
�
gX hX

hX gX

�
: ð118Þ

Because

AΩ2A ¼ −
� ðg2 þ h2ÞJ 2ghJ

2ghJ ðg2 þ h2ÞJ

�
; ð119Þ

the constraint in Eq. (108) is equivalent to

g2 þ h2 ¼ a2 þ d1d2 − 1; 2gh ¼ aðd1 þ d2Þ; ð120Þ

and the solution is

g ¼ 1

2
ð ffiffiffiffiffiffiffiffiffiffiffi

xþ y
p þ ffiffiffiffiffiffiffiffiffiffiffi

x − y
p Þ; h ¼ 1

2
ð ffiffiffiffiffiffiffiffiffiffiffi

xþ y
p

−
ffiffiffiffiffiffiffiffiffiffiffi
x − y

p Þ;
ð121Þ

where we introduced

x ¼ a2 þ d1d2 − 1; y ¼ aðd1 þ d2Þ: ð122Þ

Because the inverse of A is given by

A−1 ¼ 1

g2 − h2

�
gX −hX
−hX gX

�
; ð123Þ

the covariance matrix of the pure state of the four-mode
system ABCD is obtained from (109) to (112) as

mABCD ¼
� mAB mAB;CD

mT
AB;CD mCD

�
; ð124Þ

mAB ¼

2
6664
a 0 d1 0

0 a 0 d2
d1 0 a 0

0 d2 0 a

3
7775; mCD ¼

2
6664
a 0 d2 0

0 a 0 d1
d2 0 a 0

0 d1 0 a

3
7775;

mAB;CD ¼

2
6664
g 0 h 0

0 −g 0 −h
h 0 g 0

0 −h 0 −g

3
7775: ð125Þ

The canonical operators describing partner modes CD are
given by

ξ̂CD ¼ A−1ðfψðξ̂ABÞ −mABΩ2ξ̂ABÞ

¼ 1

g2 − h2

�
gX −hX
−hX gX

�
ðfψðξ̂ABÞ −mABΩ2ξ̂ABÞ;

ð126Þ

which establishes the partner formula for a two-mode
symmetric Gaussian state. Note that as fψðξ̂BÞ is obtained
by replacing xA → xB in fψðξ̂AÞ, their window functions

are calculated by shifting the window functions of fψðξ̂AÞ
given in Eqs. (91) and (92). Therefore, their behaviors are
expressed by Fig. 4, except for the shift of the centers. Since
Eq. (126) implies that the window functions of the partner
CD of AB are expressed by operators given by ξ̂AB and
fψðξ̂ABÞ, we find that they are given by linear combinations
of functions which are localized around xA and xB, whose
tails change depending on the scale factors asc.

IV. MONOGAMY AND SEPARABILITY

We regard the bipartite system AB as a subsystem
embedded in the pure four-mode state ABCD. Then an
entanglement measure ẼðA∶BÞ between A and B (internal
entanglement) and an entanglement measure EðAB∶CDÞ
between AB and CD (external entanglement) are expected
to obey the following monogamy inequality [14–18]:

ẼðA∶BÞ þ EðAB∶CDÞ ≤ Ẽmax; ð127Þ

where Ẽmax is the maximum of ẼðA∶BÞ. This inequality
represents a trade-off relation between internal and exter-
nal entanglement and has been proven to hold for finite-
dimensional Hilbert space cases, including qubit systems.
For qubit cases, explicit forms of inequalities are presented
in terms of various entanglement measures (concurrence,
entanglement of formation, and negativity). In this paper,
based on the specific representation of the four-mode
Gaussian state (124) and (125) which purifies AB, we
show this type of monogamy inequality also holds for
Gaussian states.
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A. Parametrization of the bipartite Gaussian state

In the standard form, the covariance matrix (116) of the
bipartite symmetric Gaussian state AB includes three
parameters a; d1; d2. For later convenience, we parametrize
it with a, x, y where x, y are defined by (122). By solving
Eq. (122) with respect to d1, d2, we get

d1 ¼
y
2a

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y2

4a2
− ðx − a2 þ 1Þ

s
;

d2 ¼
y
2a

−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y2

4a2
− ðx − a2 þ 1Þ

s
; ð128Þ

and d1 − d2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y2=a2 − 4ðx − a2 þ 1Þ

p
≥ 0, d1d2 ¼

x − a2 þ 1. Thus d1 and d2 are expressed using a, x, y.
Symplectic eigenvalues of the covariance matrix mAB are
given by

ν21 ¼ ðaþ d1Þðaþ d2Þ ¼ xþ yþ 1 ≥ 1;

ν22 ¼ ða − d1Þða − d2Þ ¼ x − yþ 1 ≥ 1; ð129Þ

and det mAB ¼ ða2 − d21Þða2 − d22Þ ¼ ν21ν
2
2 ¼ ν̃21ν̃

2
2 ¼

ðx þ 1Þ2 − y2. Symplectic eigenvalues of the partially
transposed covariance matrix m̃AB are expressed as

ν̃21 ¼ ðaþ d1Þða − d2Þ
¼ 2a2 − x − 1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y2 − 4a2ðx − a2 þ 1Þ

q
; ð130Þ

ν̃22 ¼ ða − d1Þðaþ d2Þ
¼ 2a2 − x − 1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y2 − 4a2ðx − a2 þ 1Þ

q
: ð131Þ

The sum of these symplectic eigenvalues satisfies
ν21 þ ν22 þ ν̃21 þ ν̃22 ¼ 4a2. For real values of d1 and d2,
it holds

y2 ≥ 4a2ðx − a2 þ 1Þ: ð132Þ

The modes A and B are entangled if 0 < ν̃2 < 1 < ν̃1, or
equivalently, ðxþ 2Þ2 − y2 < 4a2. The negativity of the
state AB is given by

NA∶B ¼ 1

2
max

�
1

ν̃2
− 1; 0

�
: ð133Þ

For a fixed a, the minimum of ν̃2 is attained at x ¼ y ¼ 0
and given by

ν̃2jmin ¼ a −
ffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 − 1

p
: ð134Þ

In this case, the bipartite state AB is a two-mode squeezed
pure state with a squeezing parameter r ¼ cosh−1 a, and its

covariance matrix is given by Eq. (116) with d1 ¼ −d2 ¼ffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 − 1

p
. Thus the maximum of NA∶B is

NA∶Bjmax ¼
1

2
ða − 1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 − 1

p
Þ: ð135Þ

The bipartite state AB becomes separable at ν̃2 ¼ 1, and this
condition is equivalent to

ðxþ 2Þ2 − y2 ¼ 4a2: ð136Þ

With a fixed value of a, it is possible to draw a parameter
region in the ðx; yÞ plane where mAB represents a physical
Gaussian state (Fig. 6). The region is bounded by x ¼ jyj
corresponding to ν ¼ 1 (positivity of the state) and y2 ¼
4a2ðx − a2 þ 1Þ corresponding to the reality condition of
d1;2. The region is divided into two regions: one corre-
sponds to entangled state, and the other corresponds to
separable states. A pure state is located at x ¼ y ¼ 0,
corresponding to a two-mode squeezed pure state. The
state becomes separable for a ¼ 1.
Symplectic eigenvalues of the four-mode state ABCD

are given by

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ða − d1Þða − d2Þ − ðg − hÞ2

q
¼ 1;ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðaþ d1Þðaþ d2Þ − ðgþ hÞ2
q

¼ 1; ð137Þ

FIG. 6. The parameter region representing bipartite Gaussian
states in the ðx; yÞ plane (shaded region). The region ðxþ 2Þ2 −
y2 < 4a2 corresponds to entangled states, and the region
ðxþ 2Þ2 − y2 > 4a2 corresponds to separable states.
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which implies the state ABCD is pure. Symplectic eigen-
values of the partially transposed state with bipartition
AB:CD are given by

ðν̃2�Þ2 ¼ ða − d1Þða − d2Þ þ ðg − hÞ2

� 2jg − hj
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ða − d1Þða − d2Þ

p
¼

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x − yþ 1

p
� ffiffiffiffiffiffiffiffiffiffiffi

x − y
p �

2
; ð138Þ

ðν̃1�Þ2 ¼ ðaþ d1Þðaþ d2Þ þ ðgþ hÞ2

� 2jgþ hj
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðaþ d1Þðaþ d2Þ

p
¼

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xþ yþ 1

p
� ffiffiffiffiffiffiffiffiffiffiffi

xþ y
p �

2
: ð139Þ

Therefore, ν̃2� ¼ ν2 �
ffiffiffiffiffiffiffiffiffiffiffiffi
ν22 − 1

p
; ν̃1� ¼ ν1 �

ffiffiffiffiffiffiffiffiffiffiffiffi
ν21 − 1

p
, and

the negativity for the bipartition AB:CD is calculated as

NAB∶CD ¼ 1

2
ðν1þ

ffiffiffiffiffiffiffiffiffiffiffiffi
ν21− 1

q
Þðν2þ

ffiffiffiffiffiffiffiffiffiffiffiffi
ν22− 1

q
Þ− 1

2
> 0: ð140Þ

B. Monogamy relation for Gaussian states

We examine the monogamy inequality (127) for
Gaussian states. For the qubit case treated in [14], as
the entanglement measure in this monogamy inequality,
ẼðA∶BÞ can be the negativity NA∶B. EðAB∶CDÞ is a
decreasing function of the negativity NAB∶CD, and the
explicit form of this function is presented in [14]. In the
present analysis with Gaussian states, we also adopt
negativity as an entanglement measure to show a
monogamy inequality.

As we have already presented, negativities NA∶B and
NAB∶CD are expressed as functions of a, x, y:

NA∶Bðx; y; aÞ ¼
1

2

�
1

ν̃2
− 1

�
;

ν̃22 ¼ 2a2 − x − 1 −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y2 − 4a2ðx − a2 þ 1Þ

q
;

ð141Þ

NAB∶CDðx; yÞ ¼
1

2
ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xþ yþ 1

p
þ ffiffiffiffiffiffiffiffiffiffiffi

xþ y
p Þ

×
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x − yþ 1
p

þ ffiffiffiffiffiffiffiffiffiffiffi
x − y

p �
−
1

2
: ð142Þ

To capture qualitative behavior of the monogamy relation
between NA∶B and NAB∶CD, we randomly generate param-
eters x, y of bipartite Gaussian states with fixed a. The left
panel of Fig. 7 shows the distribution of ðNAB∶CD; NA∶BÞ
for randomly generated bipartite Gaussian states.
We observe that all bipartite Gaussian states are confined
in a region surrounded by lines NA∶B ¼ g1ðNAB∶CDÞ;
NA∶B ¼ g2ðNAB∶CDÞ, and NA∶B ¼ 0, i.e.,

8>><
>>:
g1ðNAB∶CDÞ ≤ NA∶B ≤ g2ðNAB∶CDÞ for 0 ≤ NAB∶CD≤ α;

0 ≤ NA∶B ≤ g2ðNAB∶CDÞ for α ≤ NAB∶CD≤ β;

NA∶B ¼ 0 for β ≤ NAB∶CD;

ð143Þ

where functions g1 and g2 define the relations betweenNA∶B
and NAB∶CD on jyj ¼ x and y ¼ 0, respectively. They are
monotonically decreasing functions of NAB∶CD. The

FIG. 7. Left panel: distribution of ðNAB∶CD; NA∶BÞ for randomly generated bipartite Gaussian states with fixed a [11189 sets of
parameters ðx; yÞ]. States are located in the region surrounded by the dashed green line (corresponds to y ¼ 0) and the dashed red line
(corresponds to jyj ¼ x). In this case with a ¼ 2, for states with β ¼ 2þ ffiffiffi

6
p

< NAB∶CD, NA∶B ¼ 0; thus the external correlation
between AB and CD limits the amount of the internal entanglement between A and B. The same relation also holds for any values of
a > 1. Right panel: Behavior of NA∶B and g̃ðNAB∶CDÞ as functions of x (with y ¼ 0). A trade-off relation between the internal
entanglement NA∶B and the external entanglement NAB∶CD can be observed. For β ¼ 2ða − 1Þ ≤ x, NA∶B ¼ 0.
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parameters α and β are defined by g1ðαÞ ¼ 0 and g2ðβÞ ¼ 0.
WhenNA∶B attains its maximum for a fixed a,NAB∶CD ¼ 0,
and hence, the bipartite state AB is pure. The explicit
expression of functions g2 and β are obtained as

g2 ¼
1

2

0
B@−1þ

0
B@a−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 −

ðNAB∶CD þ 1Þ2
2NAB∶CD þ 1

s 1
CA

−1
1
CA; ð144Þ

β ¼ −
1

2
þ ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a − 1=2

p
þ

ffiffiffiffiffiffiffiffiffiffiffi
a − 1

p
Þ2: ð145Þ

For α ≤ NAB∶CD ≤ β with fixed a, the following inequality
holds:

NA∶B ≤ g2ðNAB∶CD; aÞ: ð146Þ

Thus the function g2 determines the upper bound of NA∶B
for given values of NAB∶CD and a. Here, g2 is a decreasing
function of NAB∶CD and becomes zero at NAB∶CD ¼ β. We
rewrite this inequality as

NA∶B þ g̃ðNAB∶CD; aÞ ≤ NA∶BjmaxðaÞ; ð147Þ

where we introduced

g̃ðNAB∶CD; aÞ ≔

8>><
>>:

0 ðNAB∶CD ¼ 0Þ;
NA∶BjmaxðaÞ − g2ðNAB∶CD; aÞ ð0 ≤ NAB∶CD ≤ βÞ;
NA∶BjmaxðaÞ ðβ ≤ NAB∶CDÞ;

ð148Þ

and NA∶Bjmax is defined by (135). Note that for fixed a, g̃ is
a non-negative monotonically increasing function of
NAB∶CD. Furthermore, it vanishes if NAB∶CD ¼ 0. In this
sense, the function g̃ defines an entanglement measure for
bipartition AB:CD for each a. Thus for Gaussian states
with fixed a, we have obtained the monogamy inequality
(147) that represents a trade-off relation between the
internal entanglement NA∶B and the external entanglement
g̃ðNAB∶CD; aÞ. When β ≤ NAB∶CD, g̃ðNAB∶CD; aÞ attains its
maximum, and the negativity between A and B automati-
cally vanishes, i.e., NA∶B ¼ 0.
The right panel of Fig. 7 shows the behavior of NA∶B and

g̃ðNAB∶CDÞ as functions of x when y ¼ 0. This case
corresponds to saturation of the inequality (147) and the
following equality holds:

NA∶B þ g̃ðNAB∶CD; aÞ ¼ NA∶BjmaxðaÞ: ð149Þ

C. Monogamy for local modes in the de Sitter universe

For the scalar field in the de Sitter universe, components
of the covariance matrix of local Gaussian modes are
functions of asc and δ. Figure 8 shows the evolution of
NA∶B and NAB∶CD with fixed δ. The left panel shows
relations between NA∶B and NAB∶CD with different values
of δ. The state evolves from asc ¼ 0 that corresponds to the
left edges of each line. As we have already observed, NA∶B
becomes zero when the physical size δ × asc of local modes
exceeds the Hubble horizon scale H−1. On the other hand,
NAB∶CD increases monotonically with the scale factor for a
fixed value of δ; thus, NA∶B becomes zero as NAB∶CD
reaches some critical value.
The right panel of Fig. 8 shows the evolution of

negativities and β as functions of the scale factor for
δ ¼ 0.2. The behavior of NA∶B and NAB∶CD represents
a trade-off relation between them. From the argument in

FIG. 8. Left panel: relation between NA∶B and NAB∶CD for fixed values of δ. Right panel: evolution of NA∶B, NAB∶CD, and β as
functions of the scale factor. The solid red circle denotes the location at NAB∶CD ¼ β, and the solid black line indicates a value of the
scale factor. For the right side of this point, β < NAB∶CD and the monogamy inequality (150) implies NA∶B ¼ 0.
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the previous subsection, they satisfy the monogamy
relation

NA∶Bþ g̃ðNAB∶CD;aðasc;δÞÞ≤NA∶Bjmaxðaðasc;δÞÞ: ð150Þ

Note that this inequality is essentially the same as (147),
but the parameter a becomes a function of asc and δ. It
explains the separable behavior of the bipartite system AB
as a monogamy relation between internal entanglement
and external entanglement; for βðaðasc; δÞÞ ≤ NAB∶CD, the
function g̃ attains its maxima while NA∶B vanishes. Thus,
this inequality provides a sufficient condition of sepa-
rability for the bipartite system AB. Although NA∶B
becomes zero before NAB∶CD reaches β (see right panel
of Fig. 8), this behavior is consistent with (150). The
tightness of the monogamy inequality depends on the
parameter δ in the present setup. Actually, as δ increases,
the difference between g2ðNAB∶CD; aðasc; δÞÞ and NA∶B
decreases. In the limit of δ → 1 (pure state limit), NA∶B ¼
g2ðNAB∶CD; aÞ holds because NA∶B → 0 and NAB∶CD → 0,
which implies that equality in (150) trivially holds.

V. SUMMARY AND CONCLUSION

We investigated the emergence of separability for local
bipartite modes assigned to two spatial regions in the de
Sitter universe. The bipartite mode AB becomes separable
after their separation exceeds the Hubble horizon scale. To
understand the emergence of this separability from the
viewpoint of entanglement monogamy, we considered
purification of the local mode AB and obtained the pure
four-mode state ABCD applying the partner formula. Then,
we found the monogamy inequality between the negativity
NðA∶BÞ andNðAB∶CDÞ for the four-mode Gaussian state,
which is an extension of Camalet’s monogamy relation to
continuous variable systems. It is demonstrated that the
separability of the mode AB can be understood as the
monogamy property between the internal and the external
entanglements, and the monogamy inequality provides a
sufficient condition for the separability of the local mode
AB defined from the quantum field. In the stochastic
approach to inflation [25], local oscillator modes are
defined as long wavelength components of the inflaton
field. The introduced local modes are treated as “classical”
stochastic variables, and they obey a Langevin equation
with a stochastic noise originating from the short wave-
length quantum fluctuations. Although the stochastic
approach to inflation is a phenomenological treatment of
quantum fields in the de Sitter spacetime and is widely
employed to investigate the physics related to cosmic
inflation, its justification is still missing. Our investigation
of this paper provides one reasoning to this method from
the viewpoint of quantum information; local modes in the
de Sitter universe lose quantum correlation when their
separation exceeds the cosmological horizon, and this
behavior is related to delocalization of partner modes.

The partner formula adopted in this study may provide a
new perspective on information sharing in multipartite
quantum systems. Indeed, as shown in Fig. 4, the spatial
profiles of partner modes can be visualized, and they are
helpful in capturing how the information of a system is
shared with its partners. The information stored in a system
is lost but classical properties of the system appear as a
result of decoherence via information sharing with its
partners (environments). This direction of investigation is
closely related to the concept of “quantumDarwinism” [35]
which states that the emergence of a classical behavior of a
quantum system, such as objectivity, is connected with the
amount of information of the system redundantly shared or
stored in the environment. Thus spatial profiles of partner
modes of the system may help to quantify this redundancy
of the information and to understand the quantum to
classical transition in the early universe.
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APPENDIX: CONVENTIONAL
MONOGAMY RELATION

We present the conventional monogamy relation for
Gaussian states [10–12]. For the four-mode pure Gaussian
state ABCD with the covariance matrix (124),

EðA∶BÞ þ EðA∶CÞ þ EðA∶DÞ ≤ EðA∶BCDÞ; ðA1Þ

where E denotes a suitably chosen entanglement measure
and this inequality holds with the square of negativity or
square of logarithmic negativity as entanglement measures.
We demonstrate it for randomly generated Gaussian states
by taking E as the square of negativity. Negativities are
given by

NA∶BCD ¼ 1

2
ðaþ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 − 1

p
− 1Þ; ðA2Þ

NA∶C ¼ max

�
1

2a − ð ffiffiffiffiffiffiffiffiffiffiffi
xþ y

p þ ffiffiffiffiffiffiffiffiffiffiffi
x − y

p Þ −
1

2
; 0

�
; ðA3Þ

NA∶D ¼ max

�
1

2a − ð ffiffiffiffiffiffiffiffiffiffiffi
xþ y

p
− ffiffiffiffiffiffiffiffiffiffiffi

x − y
p Þ −

1

2
; 0

�
; ðA4Þ

andNA∶B is given by (133). We can observe the monogamy
inequality (A1) indeed holds for this four-mode Gaussian
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state (Fig. 9) because generated states are located below the
dashed red lines that represent equality of (A1). However,
Fig. 9 shows that states deviate from the dashed red lines as

the parameter a increases. Therefore, the monogamy
inequality (A1) does not provide a useful tight constraint
on the separability of the bipartite state AB.
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