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Within the trace-logarithm formalism for the effective action we investigate the vacuum interaction of
cosmic strings and the influence of string’s width on this effect. For the massless real scalar field we
compute the Casimir contribution into the total vacuum energy. The dimensional-regularization technique
is used. It is shown that the regularized Casimir term contains neither the UV divergences, nor the
divergences related with the nonintegrability of the renormalized vacuum mean of the energy-momentum
tensor. In the case of two infinitely-thin strings, the limit coincides with the known result. The effect related
with the finite width becomes significant on the distances of several core diameters.
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I. INTRODUCTION

Since the mid of 20th century, the Casimir effect attracts
the more attention. Being direct evidence of the relationship
between quantized fields and macroscopic external phe-
nomena, it is of interest both from the fundamental physics
viewpoint, and from the applied physics. Making change to
the vacuum fluctuation spectra, the external conditions
generate the finite additions to the vacuum energy. It
influences to the observable forces acting on macroscopic
objects. The Casimir interaction valuably affects on various
processes on various spacetime scales. Now it is an object
of research not only by physicists working in QFT, atomic
physics, nanotechnology or condensed-matter physics, but
also by scientists working in gravitation and cosmology
(see, e.g., [1]). Among the problems of the latter type we
can notify the problem of vacuum interaction of the cosmic
strings.
Cosmic strings are one-dimensional extended (infinite or

closed) topological defects, which might be generated under
the cosmological phase transitions [2,3]. Observable data
on the cosmic microwave background exclude cosmic
strings from the set of basic sources of primary fluctuations
of the Universe density. However, they still be considered
as a possible reason of a number of observable effects (the
review on the possible appearance of cosmic strings is
available in [4]). This stimulates a search of ways to
detect the cosmic strings and, consequently, motivates

the investigation of phenomena related with the behavior
of classical/quantum matter in conical spaces.
Here we restrict ourselves by consideration of the

spacetime generated by a system of parallel straight
infinitely long cosmic strings. The striking feature of
straight cosmic string is a so called “gravitational sterility”
of it. This consists, in particular, in the absence of
gravitational interaction between the parallel strings.
However, the global distinction of conical spaces from
the Minkowski one leads to the change of vacuum
fluctuations of quantum fields and, consequently, to the
appearance of the attraction force between strings.
The first estimate of this effect for infinitely thin strings

was obtained in [5]. Subsequently this result was refined in
a series of works [6–8].
In the work [8] we considered the vacuum interaction of

cosmic strings within the local one-loop approach, where
the object of research was a vacuum expectation value of
the operator of energy-momentum tensor. It was shown that
to the lowest order of perturbation theory, the contributions
into hTμνirenvac come additively from different strings, while
the Casimir contribution into the vacuum mean (which
depends upon the interstring distance) reveals itself in the
second perturbational order.
Meanwhile, the computation of the total vacuum

energy encounters the additional difficulty. Namely, the
vacuum energy is determined by the integration of energy
density hTttirenvac over the whole space. But in the case of
infinitely thin string, the renormalized vacuum mean has a
nonintegrable singularity at the string location [9–14].
Hence the elimination of ultraviolet divergences does
not fix the whole problem. As it was shown in [15],
one may eliminate additional divergence by renormaliza-
tion of the bare string tension. In [8] we took it into
account and showed that if exclude from the vacuum
energy Evac the terms insensitive to the interstring
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distance,1 the remaining contribution becomes finite
and thus may be identified with the Casimir interaction
energy.
At the same time, the string radius is determined by the

energy scale of that phase transition with the symmetry
breaking,where stringswere generated. For the strings on the
grand unified theory (GUT) scale, one has r0 ≃ 10−28 cm.2

On these energy (or length) scales the cone vertex is to be
deformed into the smooth cap, which continuously transit to
the external (with respect to the string core) conical domain.
Therefore it gives rise to a question how the transverse
string’s size affects on the quantum-field effects in the string
neighborhood.
An influence of the string’s width on various classical/

quantum effects was discussed in the literature, and for the
single cosmic string some nontrivial field-theory effects
were discovered [16–21]. In the present work we examine
the influence of the transverse size of cosmic strings on the
character of their vacuum (Casimir) interaction.
The computation is carried out within the trace-logarithm

formalism for the effective action. In this so-called global
approach, one starts with that formal expression for the
total vacuum energy, which is determined by the effective
action.
We work withG ¼ ℏ ¼ c ¼ 1 units, the metric signature

is ðþ;−;−;−Þ, the definition of Riemann tensor is
Rμ

νλρ ¼ Γμ
νλ;ρ − � � �.

II. SPACETIME OF A SYSTEM OF PARALLEL
THICK STRINGS

Let consider the four-dimensional spacetime (V4) being
the Cartesian product of the two-dimensional Minkowski
spacetime [M1;1, with coordinates ðt; zÞ on it], and two-
dimensional Riemannian surface [V2, with coordinates
x ¼ ðx; yÞ]. Since any two-dimensional Riemannian sur-
face is locally conformal to the Euclidean plane, it allows us
to bring the metric on V4 to the form

ds2 ¼ dt2 − dz2 − e−σðxÞðdx2 þ dy2Þ: ð2:1Þ

Let specify σðxÞ as

σðxÞ ¼
X
a

σaðjx − xajÞ; ð2:2Þ

where j·j stands for the Euclidean norm: jxj ≔ ðx2 þ y2Þ1=2,
while xa is a location of the center of ath string core.
The Ricci scalar of the metrics (2.1) equals

R ¼ eσ
X
a

ΔEσa;

where ΔE stands for the two-dimensional Euclidean
Laplace operator. Thus the curvature may be presented
in additive form

R ¼
X
a

Ra:

If supports Ωa of partial contributions ΔEσa are com-
pact and do not intersect each other, then we deal with
the ultrastatic spacetime. Fixing t and z, on each two-
dimensional plane ðxyÞ the curvature does not vanish in a
number of domains Ωa.
In order to satisfy this, the partial conformal factor σa

should satisfy the two-dimensional Laplace equation out-
side the string cores:

σaðxÞ¼
�σ<a ¼2ð1−βaÞfaðjx−xajÞ; jx−xaj≤ ra;

σ>a ¼2ð1−βaÞ ln jx−xaj
ra

; jx−xaj≥ ra;
ð2:3Þ

where all parameters β are assumed to be βa < 1, and
faðρaÞ is a twice-differentiable function (of argument
ρa ≔ jx − xaj), which satisfies the boundary conditions

faðraÞ ¼ 0; f0aðraÞ ¼
1

ra
: ð2:4Þ

With such a choice of the conformal factor, the scalar
curvature vanishes everywhere where jx − xaj > ra (for all
a), and on this domain the metrics coincides with that one
of a system of parallel infinitely thin cosmic strings [22].
The criterion of the possibility to compute effects within the
perturbation-theory framework (and to realize the desired
smallness of perturbations) is got by the smallness of
parameters

β0a ≔ 1 − βa;

which are nothing but complements to each βa. It is
assumed that for the GUT-strings β0 has order ∼10−6.
Therefore, the spacetime with metric (2.1) and with the

conformal factor (2.3), is to be considered as a spacetime
generated by a system of N parallel cosmic strings with
nonzero width, with the scalar curvature

1A standard rule, which is of usage when one computes the
Casimir interaction energy.

2The stringlike solutions are predicted in various scenarios (see
the work [4], and references therein), not necessarily the phase
transitions within GUT. But in the astrophysical context one
usually assumes the cosmic-string parameters which correspond
to the GUT-strings.
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RðxÞ ¼
�
R<ðxÞ ¼ Δσ<a ¼ eσΔEσ

<
a jx − xaj ≤ ra;

R>ðxÞ ¼ 0 jx − xaj > ra for all a ¼ 1; 2;…; N:

Such a metric is a solution of the Einstein equations with
source Tμν, the energy density of which reads

Tt
t ¼

R
16π

¼ eσ

16π

X
a

ΔEσa:

Hence, the energy of a thick string equals
Z

Tt
t

ffiffiffiffiffiffi
−g

p
dzdx ¼ 1

16π

Z
∞

−∞
dz
X
a

Z
dxΔEσ

<
a

¼
Z

∞

−∞
dz
X
a

1 − βa
8π

Z
dxΔEfa:

Therefore, the quantity

μa ≔
1 − βa
8π

Z
dxΔEfa ð2:5Þ

is to be regarded as the energy-per-unit-length of ath string.
The consideration of infinitely thin string assumes the

limit ra → 0þ, where the support Ωa tends to a single point
xa, with fixed value of integrals over Ωa. It corresponds to
the fixation of the string’s linear density. In this limit the
conformal factor in the exponential (2.1)corresponds to

σðxÞ ¼ 2
X
a

ð1 − βaÞ ln jx − xaj: ð2:6Þ

Acting by Laplacian on it and regarding the limit in sense
of distributions (see, e.g., [23]), we get

lim
ra→0þ

ΔEσa ¼ 4πð1 − βaÞδ2ðx − xaÞ: ð2:7Þ

Therefore, in addition to (2.4), for the functions fa we
should require the normalization

Z
dxΔEfa ¼ 2π:

Then from Eq. (2.5) we infer

μa ¼
1 − βa

4
;

and thus in the limit ra → 0þ the following heuristic
expression holds:

TttðxÞ ¼ eσðxÞ
X
a

μaδ
2ðx − xaÞ: ð2:8Þ

If a takes the single value and r1 → 0þ, the metric (2.1)
is the one of an infinitely thin cosmic string developed

in [24]. Later it was shown in [22], that the corresponding
solution with conformal factor (2.6) does represent the
metric of N parallel infinitely thin cosmic strings with
source (2.8). The two-dimensional surface ðxyÞ represents
locally-flat hypersurface (of the spatial subspace with fixed
time) with a number of conical singularities located at
x ¼ xa, while the parameter μa defines the angular deficit
δφa ¼ 8πμa ¼ 2πβ0a, related with ath singularity.
Hereafter we shall assume that the surface ðxyÞ is

mapped by the conformal coordinates globally. For a
single singularity it takes place if μ < 1=4, while for
(N ≥ 2) if

XN
a¼1

μa <
1

2
;

so that the conical singularity does not acquire the topology
of a sphere [25–28].
In the case of single infinitely thin string (N ¼ 1) the

spacetime metric has two striking features: (i) the absence
of any lengthy parameters; (ii) higher symmetry. The first
allows to state that for the massless field the vacuum
expectation value of the energy-momentum tensor depends
upon the distance (r) from the observation point to the
singularity. In four dimensions of a spacetime it scales as
hTμνivac ∼ r−4. The second feature allows to separate
variables in the field equation, to construct the Green’s
function analytically and to compute the renormalized
hTμνivac. In the case of two strings and more (N ≥ 2),
the problem becomes too complicated, and the perturbation
theory becomes of particular significance [6–8].
The consideration of strings with finite diameter makes

the problem even more complicated technically, and in
addition, requires the knowledge of the string-substance
distribution inside the core. In other words, we need a
concretization of the expression for σ<a . A possible way to
smoothing the cone vertices is to specify the functions σ<a in
the form

σ<a ðxÞ ¼ −ð1 − βaÞ
�
1 −

�
x − xa
ra

�
2
�
; ð2:9Þ

which corresponds to the so-called “ballpoint pen” model
known in the literature.3

3The model was proposed and described in [29,30]. Some
useful representations may be found e.g., in Ref. [16].
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Therefore the scalar curvature becomes

RðxÞ ¼
�
R<
a ðxÞ ¼ 4eσβ0a=r2a; jx − xaj ≤ ra;

R>
a ðxÞ ¼ 0; jx − xaj > ra for all a:

ð2:10Þ

In other words, the partial curvature Ra is constant inside
the core of ath string, and vanishes outside.

III. CASIMIR ENERGY IN THE
TRACE-LOGARITHM FORMALISM

For the real massless scalar field ϕ, the action can be
presented in equivalent form

Sϕ ¼ −
1

2

Z
ddxϕðxÞLðx; ∂ÞϕðxÞ; ð3:1Þ

where Lðx; ∂Þ ¼ ffiffiffiffiffiffi−gp
□ represents the total field operator

and □ ¼ ∇μ∇μ stands for the covariant Laplace-Beltrami
operator on Vd.
When the external conditions (the metric, boundaries,

external fields, etc.) do not depend upon time, the effective
action Weff is proportional to the total vacuum energy Evac,
namely,

Weff ¼ −TEvac;

where T formally denotes the total (infinite) time [31].
At the other hand, the effective action can be presented in

the form

Weff ¼
i
2
tr lnL ¼ i

2
ln detL

(the trace-logarithm formalism) and hence, the vacuum
energy, defined via the effective action, reads

Evac ¼ −
i
2T

ln detL: ð3:2Þ

Now represent Lðx; ∂Þ as

Lðx; ∂Þ ¼ ∂
2 þ δLðx; ∂Þ; ð3:3Þ

where the perturbed operator is given by

δLðx; ∂Þ ¼ ffiffiffiffiffiffi
−g

p
□ − ∂

2 ð3:4Þ

and ∂
2≔∂

2
t −∂

2
z−∂

2
x−∂

2
y stands for the flat (Minkowskian)

d’Alembert operator.
In our case with metric (2.2), the perturbation operator

δLðx; ∂Þ takes the form

δLðx; ∂Þ ¼ ΛðxÞð∂2t − ∂
2
zÞ; ΛðxÞ ¼ e−σðxÞ − 1: ð3:5Þ

Considering δL as perturbation, we get formal expansion

ln detL ¼ ln det ð∂2 þ δLÞ
¼ ln detð∂2Þ þ ln det ð1þ ∂

−2δLÞ
¼ tr lnð∂2Þ þ tr ln ð1þ ∂

−2δLÞ

¼ tr lnð∂2Þ þ trð∂−2δLÞ − 1

2
trð∂−2δL∂−2δLÞ

þ � � � : ð3:6Þ

As it will be demonstrated below, the first two terms do not
contribute into the effect under consideration, hence in our
framework with the declared accuracy we infer

Weff ¼ −
i
4
trð∂−2δL∂−2δLÞ; ð3:7Þ

plus terms with higher powers of β0.
The expression (3.7) is well-defined if all operators in it

(and their products) belong to the operators-with-trace class
(see, e.g., [32]). Otherwise, the trace represents some
formal expression which diverges. Our goal is to take
advances of the dimensional-regularization technique.
However, it gives rise to another problem proper to the
curved background. As it was shown by Hawking, [33], in
this case there is no natural recipe, which dimensions
should be specified for the analytical continuation. The
result may depend drastically upon the choice and may
differ from the results got by another regularization
techniques. The way proposed in [33] for four-dimensional
curved spacetime, consists in the construction of a direct
(Cartesian) product of the curved V4 spacetime under
consideration and fictitious (D − 4)-dimensional flat space.
It is demonstrated that the analytical continuation within
the proposed way coincides with the result obtained by the
method of generalized ζ -function.
In our case under interest, the space-time V4 already

represents the product of curved space V2 and Minkowski
M1;1, and thus the Hawking’s prescript works a priori, so
the regularization will be applied to the total dimension-
ality, fixing the dimension of curved subspace.
For the massless field, the first two terms in (3.6) contain

single Green’s function ∂−2 inside themselves and therefore
correspond to the “tadpole” diagrams. In the dimensional-
regularization framework, these diagrams are regarded as
yielding zero contribution. The motivation of it has
physical [34] and mathematical [23] grounds and is widely
described in the popular textbooks.
Therefore, for the Casimir contribution to the total

vacuum energy (which diverges), to the lowest order of
the perturbation theory, we have to restrict our consider-
ation by the third term in the final expansion (3.6). As a
result, for the vacuum energy (3.2) we get eventually,
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Evac ¼
i
4T

trð∂−2δL∂−2δLÞ: ð3:8Þ

It allows to use the standard Fourier-basis formalism. It
yields,

Evac¼
i
4T

Z
d4k
ð2πÞ4

d4p
ð2πÞ4

δLðk;iðpþkÞÞδLð−k;ipÞ
p2ðpþkÞ2 ; ð3:9Þ

where

δLðk; ipÞ ≔
Z

d4xeikx½δLðx; ∂Þj
∂→−ip�: ð3:10Þ

In our problem we infer from (3.5),

δLðk; ipÞ ¼ −ΛðkÞðp2
0 − p2

zÞ; ð3:11Þ

and thus one obtains

Evac ¼
i
4T

Z
d4k
ð2πÞ4

d4p
ð2πÞ4

ðp2
0 − p2

zÞ2
p2ðpþ kÞ2 ΛðkÞΛð−kÞ: ð3:12Þ

The integral over d4p in (3.12) diverges, but it has the
form which is standard for the dimensional-regularization
technique. The Wick rotation,

p0 ¼ ip0
E; d4p ¼ id4pE; p2 ¼ −p2

E;

and subsequent replacements d4p by dDpE, and D by
ð4 − 2εÞ bring the integral over d4p into the form [34]

iλ2ε
Z

dDpE

ð2πÞD
ðp2

0 − p2
zÞ2

p2
Eðpþ kÞ2E

¼ i
λ2ε

ð4πÞD=2

2D
ðD − 2Þ

Γ2ðD=2Þ
ΓðDþ 2Þ

× Γ
�
4 −D
2

�
ðk2EÞD=2:

Here the parameter λ (with dimensionality of length) is
introduced in order to preserve the dimension of the whole
expression under regularization.
The subsequent integration over dk0dkz is a bit tricky,

since the integrand contains the square of

ΛðkÞ ¼ 4π2δðk0ÞδðkzÞΛðkÞ;

where ΛðkÞ is a Fourier transform of ΛðxÞ given by (3.5),
with suggestive notation for k. The problem is to be
resolved in the standard for QFT way; the first delta-
function with accompanying measure will yield unity when
integrated, and will set the argument of the second delta to
zero. Then, we represent

δðk0Þjk0¼0 ¼
1

2π

Z
eik

0tdtjk0¼0 ¼
1

2π

Z
dt ¼ T

2π
;

where T stands for the total (infinite) time. The same
argumentation for kz yields

δðkzÞjkz¼0 ¼
1

2π

Z
e−ik

zzdzjkz¼0 ¼
1

2π

Z
dz ¼ Z

2π
;

where Z stands for the total (infinite) string length.
Therefore the remaining integration is two-dimensional
one over dk. By the same reasons mentioned above, k2E
becomes k2.
Now the regularized Evac in Eq. (3.12) becomes

Ereg
vac ¼ −Z

λ2ε

2ð4πÞD=2

D
ðD − 2Þ

Γ2ðD=2Þ
ΓðDþ 2ÞΓ

�
4 −D
2

�

×
Z

dk
ð2πÞ2 ðk

2ÞD=2ΛðkÞΛð−kÞ: ð3:13Þ

The prefactor of integral in (3.13) has a simple pole at
D ¼ 4, hence after the regularization removal the possible
divergence can arise due to this pole, or due to the value of
integral, or due to both reasons.
Now expand jkjD ¼ jkj4−2ε in small ε,

jkj4−2ε ¼ jkj4ð1 − 2ε ln jkjÞ þOðε2Þ: ð3:14Þ

Thus Ereg
vac rewrites as

Ereg
vac ¼ −Z

λ2ε

2ð4πÞ2−ε
4 − 2ε

ð2 − 2εÞ
Γ2ð2 − εÞ
Γð6 − 2εÞΓðεÞ

×
Z

dk
ð2πÞ2 jkj

4½ð1 − 2ε ln jkjÞ þOðε2Þ�ΛðkÞΛð−kÞ:

ð3:15Þ

Now we encounter the following two-dimensional Fourier
integrals:

I1 ≔
Z

dk
ð2πÞ2 jkj

4ΛðkÞΛð−kÞ;

I2 ≔
Z

dk
ð2πÞ2 jkj

4 ln jkjΛðkÞΛð−kÞ: ð3:16Þ

The first one can be converted to the x-integral,

I1 ¼
Z

dx½ΔEΛðxÞ�2: ð3:17Þ

Computing the Laplacian in polar coordinates, we should
neglect ½σ0ðϱÞ�2 with respect to σ00ðϱÞ and σ0ðϱÞ=ϱ, since it
contains the extra small factor β0; thus

I1 ¼
Z

dx½ΔEσðxÞ�2 ¼
Z

dxR2ðxÞ; ð3:18Þ

where, with our accuracy, we shall fix eσ equal to unity.
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The corresponding integral I2 in the x-representation
differs from I1 by the inverse Fourier transform of a
logarithm [23],

I2 ¼ −
1

2π

Z
dxdx0

ΔEΛðxÞΔ0
EΛðx0Þ

jx − x0j2 ; ð3:19Þ

and with the required accuracy we have similar

I2 ¼ −
1

2π

Z
dxdx0

RðxÞRðx0Þ
jx − x0j2 : ð3:20Þ

The pole contribution into the effective action (and to
Ereg
vac, respectively), which corresponds to the first integral in

Eq. (3.15), should be ignored within the procedure of
renormalization of the effective action. The reason is that
with the required accuracy, it corresponds to a2-similar
term in the Schwinger-De Witt expansion [35]. Notice, in
the massless-field case, the a0- and a1-proportional terms
of the expansion vanish completely. In four dimensions of a
space-time it provides the finiteness of the renormalized
energy-momentum tensor, but does not guarantee the
convergence of the remaining formal expression for Eren

vac.
The latter in our approximation takes the form

Eren
vac ¼ −

Z
30ð4πÞ3

Z
dxdx0

RðxÞRðx0Þ
jx − x0j2 : ð3:21Þ

Within the problem formulation, common for the
Casimir effect, the criterion of elicitation of the Casimir
contribution from the total vacuum energy is a dependence
upon the distance between “walls” (or other interacting
objects). One proves that for the finite-sized bodies,
separated by the finite distance, the corresponding
Casimir contribution into the total (generally, diverging)
vacuum energy turns out to be finite (see, e.g., [1]). In our
problem this condition holds, since we demand that the
supports Ωa of partial curvatures Ra do not intersect. In
particular, this prescript allows to neglect those terms in
the integrand, which contain products RaRa. Furthermore,
with our accuracy eσ ¼ 1þOðβ0Þ, and the partial contri-
butions Ra constitute the curvature R additively, and thus to
the lowest in ðβ0aÞ order the Casimir interaction looks as
pairwise,

Eren
vac ¼ −

Z
15ð4πÞ3

X
a<b

Z
dxdx0

RaðxÞRbðx0Þ
jx − x0j2 : ð3:22Þ

For two strings, separated by distance d, the Casimir energy
(3.21) is expressed as

Ecas ¼ −
Z

15ð4πÞ3
Z

dxdx0
R<
1 ðxÞR<

2 ðx0Þ
jx − x0 þ dj2 ;

d ¼ x1 − x2: ð3:23Þ

Introducing two polar-coordinate systems with origins in
the center of each string, both two angular integrations may
be carried out with the help of table integral

Z
2π

0

dφ
Aþ B cosφ

¼ 2πffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2 − B2

p :

It yields

Ecas

Z
¼ −

16

15π

μ1μ2
r21r

2
2

Z
r1

0

ϱdϱ

×
Z

r2

0

ϱ0dϱ0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½ðdþ ϱ0Þ2 − ϱ2�½ðd − ϱ0Þ2 − ϱ2�

p :

For simplicity, we take both string diameters equal;
r1 ¼ r2 ¼ r0. Introducing ξ ≔ r0=d, the Casimir energy
may be expressed as

Ecas

Z
¼ 4

15π

μ1μ2
d2

1

ξ4

Z
ξ2

0

dζ

× ln
1þ ζ − ξ2 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ ζ − ξ2Þ2 − 4ζ

p
2

; ð3:24Þ

where the requirement ξ < 1=2 means that two strings do
not intersect each other.
Finally, integrating over ζ, for the energy of Casimir

interaction of two parallel thick cosmic strings per unit
length we arrive at

EcasjZ¼1¼−
4

15π

μ1μ2
d2

1

ξ2

×

�
1−2ln

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−4ξ2

p
2

−
1−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−4ξ2

p
2ξ2

�
: ð3:25Þ

The plot of the Casimir attraction energy (omitting the
common prefactor 16μ1μ2=15π) versus the interstring
distance is presented on Fig. 1.
For the case of ultrathin strings ðd ≫ r0Þ, we expand

in ξ ≪ 1,

EcasjZ¼1 ¼ −
4

15π

μ1μ2
d2

�
1þ r20

d2
þ 5

3

r40
d4

þOðd−6Þ
�
; ð3:26Þ

what to the leading order coincides with the results
obtained for the infinitely thin cosmic strings [6–8].
Introducing the relative influence η of the string width as

ηðξÞ ≔ Ecasðr0Þ
Ecasðr0 ¼ 0Þ

¼ 1

ξ2

�
1 − 2 ln

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4ξ2

p
2

−
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4ξ2

p
2ξ2

�
;
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we notice that the ratio tends to unity as ξ → 0þ,
as expected. Vice versa, η reaches its maximal value for
the pair of infinitesimally separated parallel strings
(ξ ¼ 1=2),

ηmax ¼ 4ð2 ln 2 − 1Þ ≈ 1.545: ð3:27Þ

The plot of the relative influence of the string width on the
Casimir energy is presented on the Fig. 2.
Therefore, we conclude that the finiteness of the string’s

core radius makes the Casimir interaction larger at small
distances, than the that one for infinitely thin cosmic
strings.

IV. DISCUSSION

In the present work we examined the influence of the
transverse size of cosmic strings on the character of their
vacuum interaction. Idealized model of the string’s space-
time, where the curvature does not vanish on the cone’s
apex only and has a deltalike singularity there, is valid on
the large distances from the cosmic string. Meanwhile, the
core radius is determined by the energy scale of the
Universe’s phase transition (with breaking symmetry) at
the epoch where strings were generated. For the GUT-
strings the radius is of order r0 ∼ 10−28 cm. At these
lengthy scales, the cone apex should be considered not
as a single point, but as smoothed cap, which is contin-
uously united with the external conical region. At the other
hand, the way of smoothing [the choice of smooth
functions faðϱÞ in Eq. (2.3)] should not have a crucial
significance if it admits the proper limit, corresponding to
the infinitely thin cosmic string. Our way is conventional
and widely used and, besides that it satisfies all the
necessary requirements, it allows to carry out all compu-
tations we need, analytically.
In theworkwehave used themethod proposed in ourwork

on the Casimir effect of infinitely thin cosmic strings [8]. It
was continued in subsequent works [7] and was of usage
for the research of other field effects on the conical back-
grounds [36,37]. The key point of the method is a usage of
conformal coordinates on the two-dimensional submanifold
transverse to a string. With help of dimensional regulariza-
tion of the total vacuum energy we separate the finite final
expression for the Casimir energy.
Our computation shows that interactions in the cosmic-

string net look as pairwise only in the lowest order in
ð1 − βaÞ. It reflects that fact that the field theory (classical
or quantum) is effectively nonlocal—in that sense that
solutions of the field equations carry the information on the
spacetime structure in toto. In our case it appears as
follows: the perturbed operator δL (3.5) depends upon
the partial contributions from the single string not addi-
tively, but in multiplicative way [through the conformal-
factor exponential in (2.1)[. The change of the string
number in the net changes the value of “pairwise” con-
tributions into the total vacuum energy. If so, it changes the
structure of interactions in toto. However, the effects related
with the finite width, are valuable at the distances of several
core diameters.
The latter has a simple qualitative explication. Indeed,

the Π-theorem, which is central for the dimensional
analysis, allows to state that for single string and for the
massless field the vacuum expectation value scales as

hTttirenvac ∼
1

r4
Θ
�
r0
r

�
;

where r is a distance from the observation point to the
string’s center, Θ—some monotonically decaying function,

FIG. 2. Relative Casimir attraction energy versus the interstring
distance, with respect to the attraction of infinitely thin strings.

FIG. 1. Casimir energy (normilized by the factor 16μ1μ2=15π)
versus the distance between centers for fixed equal string radii (in
r0 ¼ 1 units, solid), compared with the infinitely thin string
(dashed). The value ηmax is given by (3.27).
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which goes to a constant in the limit r0 → 0þ. Hence one
might expect that the influence of transverse size will be
perceptible on the scales of several r0. In analogy, for the
Casimir effect the nonzero string width should make the
significant influence on the same-order distances. Our
computation confirms these estimates quantitatively; the
resulting expression is in perfect agreement with the

computations on the Casimir interaction between zero-
width cosmic strings [6–8].
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