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We study the process of gravitational collapse in pure Gauss-Bonnet gravity. In the homogeneous dust
collapse, we show that the D ¼ 7 pure Gauss-Bonnet theory has gravitational dynamics indistinguishable
from Einstein’s theory inD ¼ 4, meaning that collapsing particles feel the same potential as in the classical
four-dimensional general relativistic case. In D < 7 pure Gauss-Bonnet gravity becomes weaker, while
in D > 7 it becomes stronger, with respect to general relativity. In the inhomogeneous dust collapse we
find the mass modes in the expansion of the energy density in any dimensions that lead to either naked
singularities or black holes as final states of collapse.
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I. INTRODUCTION

The singularity theorems state that under certain con-
ditions, if trapped surfaces form during collapse, then a
singularity is inevitable [1–4]. One of the assumptions
necessary for the validity of the theorems is that general
relativity (GR) holds during collapse. However, the appear-
ance of singularities is usually taken as an indication that
GR does not hold beyond a certain density scale and the
theory must be replaced by a new, yet unknown, theory of
gravity. This has naturally led researchers to investigate
gravitational collapse and the validity of similar theorems
in theories alternative to GR [5–7].
Gauss-Bonnet theory (GB) is a higher-order theory

belonging to Lovelock’s class [8]. It appears as the N ¼ 2
order in the Lovelock action, with N ¼ 1 being the Ricci
scalar in GR. GB has been studied for many years as one of
the most interesting higher-order theories of gravity [9–11],
which still yields second order equations despite the action
being polynomial in Riemann, and it also arises in heterotic
string theory as the low energy limit correction to the
Einstein-Hilbert action [12,13]. Lovelock’s theorem [14]
states that terms of order N become nontrivial at D > 2N,

where D is the dimensionality of spacetime. Hence, the
Gauss-Bonnet term is a topological invariant in D ¼ 4 and
contributes in the dynamics only for D > 4. However, if
one couples it to a scalar field (or an arbitrary function of a
scalar field) [15–18], not only does it become dynamical
but also it gives an interesting property, the so-called
scalarization of black holes, which means that the no-hair
theorem is violated and scalar hair appears in black hole
solutions. For this reason several extensions of GR that
include the Gauss-Bonnet term either nonlinearly in four
dimensions or coupled to other fields have been studied in
the past [19–27].
Additionally, it has recently been suggested [28] that

there may exist a nontrivial four-dimensional (4D) limit of
Einstein-Gauss-Bonnet (EGB) gravity in a way that could
allow one to avoid Lovelock’s theorem. Specifically, if one
multiplies the GB term in D > 4 Einstein-Gauss-Bonnet
gravity, with the term 1=ðD − 4Þ, and then takes the limit
D → 4, it may be possible to get a nontrivial class of
theories inD ¼ 4 that propagate only 2 degrees of freedom.
Unfortunately, the theory in [28] is possessed by strong
coupling both in cosmology and around black hole sol-
utions. A new attempt without the strong coupling has been
pursued in [29], but the number of degrees of freedom
propagated becomes 2þ 1, meaning that the theory can be
considered as a subclass of Horndeski gravity, where there
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is an extra scalar propagating degree of freedom. In [30]
the authors suggest that if one violates the 4D diffeo-
morphism invariance, one gets a consistent (meaning
without strong coupling), but noncovariant D → 4 EGB
gravity. Since then, many applications have been inves-
tigated in the context of this theory [31–34].
The above discussion suggests that there is value in

exploring gravitation theories in D > 4 and their connec-
tion to Einstein’s theory. The term pure Lovelock gravity
has been used to describe theories that consider only one
Nth order term of the Lovelock polynomial, without
summing over the lower orders. In this sense, pure GB
gravity will utilize the N ¼ 2 Lovelock term, which is the
GB term without assuming a summation with the Ricci
scalar, namely ignoring the Einstein-Hilbert part of the
action. One of the distinguishing characteristics of the pure
Lovelock theory is that, in D ¼ 2N þ 1 (i.e., D ¼ 5 for
GB) gravity is kinematic [35–37], which means that the
Lovelock Riemann (namely the generalization of Riemann
to Lovelock order) tensor can be given entirely in terms of
the corresponding Ricci. In addition, as shown in Sec. II,
in the absence of a cosmological constant, the vacuum
solution is trivial in D ¼ 5. Nontrivial black holes exist
only in D ≥ 6 in pure GB gravity. Other applications in the
context of the theory can be found in [38–41].
In this paper, we consider gravitational collapse of

inhomogeneous dust in pure GB and investigate how it
relates to the corresponding solutions in GR. Gravitational
collapse of inhomogeneous dust in GR is known to produce
naked singularities under some conditions [42–46]. These
conditions relate to the “strength” of gravity, the initial
density profile and the initial velocity profile for the
infalling matter. Many investigations have been carried
out in GR to determine the influence of density and velocity
profiles on the final outcome of collapse [47–53]. In the
present work, on the other hand, we focus on the strength
of gravity and thus consider collapse in pure GB theory in
arbitrary dimensions and investigate how it compares to
corresponding models in GR in four dimensions as well as
GR in higher dimensions [54–60]. Gravitational collapse of
dust in pure GB and EGB has been considered in [61–66].
The article is organized as follows: In Sec. II we describe

the theory and derive its equations of motion. As expected,
since it is a subclass of Lovelock gravity, the equations of
motion will be of second order. Also, in Sec. II we consider
a static and spherically symmetric metric and find vacuum
solutions in arbitrary D dimensions in the presence of a
cosmological constant, Λ. We show that, inD ¼ 5 pure GB
gravity does not have any nontrivial vacuum solutions; in
D ¼ 6 it is weaker than GR; in D ¼ 7 it behaves exactly
like GR, while in D ≥ 8 it becomes stronger, where we
understand the terminology “weaker” and “stronger” as
relating to the strength of the gravitational potential 1=rα

compared to GR. In Sec. III we study gravitational
collapse; in particular, we consider homogeneous dust

collapse in spacetimes with negative, zero, and positive
spatial curvature. Moreover, we consider marginally bound
inhomogeneous dust collapse and we find the critical mass
modes, i.e., the coefficients in the radial expansion of the
mass profile, in D ≥ 6 where both naked singularities and
black holes are formed. In GR the first two modes always
allow for the occurrence of naked singularities, the third
one is the critical mode, where both naked singularities and
black holes can form depending on some condition, while
for all higher modes we only have the formation of black
holes. Similarly, we find that in D ¼ 6 pure GB gravity,
where as we discussed gravitational interactions are weaker
than GR, the critical mode is the fifth, whileD ¼ 7 behaves
like GR. In D ¼ 8, there is no critical mode as the first and
second can always lead to the formation of a naked
singularity while the third or higher always leads to a
black hole. In D ¼ 9 the second mode separates between
the two outcomes while for D > 9 only the first mode may
allow for the occurrence of naked singularities. A brief
discussion of the results is then presented in Sec. IV. For
simplicity, throughout the paper we use natural units
setting G ¼ c ¼ 1.

II. GAUSS-BONNET GRAVITY
AND BLACK HOLE SOLUTIONS

Lovelock gravity is the most general metric theory of
gravity that gives second order field equations in an
arbitrary number of spacetime dimensions D. In particular,
its Lagrangian density is a polynomial that reads

L ¼
XN̄
N¼0

cNLN; ð1Þ

where

LN ¼ 1

2N
δμ1ν1���μNνNα1β1���αNβN

YN
r¼1

Rαrβr
μrνr ; ð2Þ

with

δμ1ν1���μNνNα1β1���αiβi ¼ ð2NÞ!δμ1½α1δ
ν1
β1
� � � δμNαNδνNβN � ð3Þ

being the generalized Kronecker delta and Rαβ
μν the

Riemann tensor. Only those terms with N < D=2 contrib-
ute in the dynamics of the theory, and thus the dimension-
ality in (1) can be taken to be D ¼ 2N þ 2 for even and
D ¼ 2N þ 1 for odd dimensions. In that way, inD ¼ 3 and
D ¼ 4, it coincides with GR, but in higher dimensions it
contains more terms in the action.
If one considers only theNth order terms in the Lovelock

action, the theory is called pure Lovelock gravity. For
N ¼ 2 we have the pure Gauss-Bonnet gravity, whose
action in D dimensions reads
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S ¼
Z

dDx
ffiffiffiffiffiffi
−g

p ðG − ΛÞ þ Smatter; ð4Þ

where G¼ R2 − 4RμνRμν þRμνρσRμνρσ is the Gauss-Bonnet
term and Λ is the cosmological constant.
Varying the action with respect to the metric we get

Hμν þ Λgμν ¼ Tμν; ð5Þ

where Hμν is the Lanczos tensor given by

Hμν ¼ 2
h
Rμν − 2RμαRα

ν − 2RαβRμανβ þ Rμ
αβγRναβγ

i
−
1

2
gμνG; ð6Þ

and the energy-momentum tensor of the matter fields
obtained from the variation of Smatter is considered to be
that of a perfect fluid

Tμν ¼ ðρþ pÞuμuν þ pgμν; ð7Þ

with uμ ¼ δ0μ the fluid’s 4-velocity, ρðt; rÞ the energy
density, and pðt; rÞ the isotropic pressure of the matter
source.
To describe a black hole solution let us consider the

following static and spherically symmetric line element:

ds2 ¼ −AðrÞdt2 þ BðrÞdr2 þ r2dΩ2
D−2: ð8Þ

The ðttÞ and ðrrÞ field equations in vacuum in D dimen-
sions are written as

2Crð1 − BðrÞÞB0ðrÞ − CðD − 5ÞBðrÞðBðrÞ2 þ 1Þ
þ 2CðD − 5ÞBðrÞ2 þ Λr4BðrÞ3 ¼ 0; ð9Þ

2CrðBðrÞ − 1ÞA0ðrÞ þ AðrÞð2CðD − 5ÞBðrÞ
− CðD − 5ÞðBðrÞ2 þ 1Þ þ Λr4BðrÞ2Þ ¼ 0; ð10Þ

where

C ¼ ðD − 2ÞðD − 3ÞðD − 4Þ
2

: ð11Þ

Multiplying Eq. (10) by B=A and adding it to Eq. (9),
we get

B ¼ c
A
; ð12Þ

where c is an integration constant and in order for the
asymptotics to be Minkowski, we can set it to unity. Then
solving Eq. (9) for A, we get the black hole solution as

AðrÞ ¼ 1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Mr5−D þ Λr4

C

r
: ð13Þ

As already mentioned in the Introduction, the critical
case D ¼ 2N þ 1 ¼ 5 (here we have N ¼ 2 in Lovelock
gravity) does not have any nontrivial vacuum solutions if
the cosmological constant is vanishing. Once we assume
that Λ ≠ 0 the theory accepts black hole solutions which
are of Bañados, Teitelboim and Zanelli type. In D ≥ 6 the
gravitational potential falls off as r−ðD−5Þ=2 in the absence of
Λ. This means that in D ¼ 6 we expect pure GB theory to
be weaker than GR, in D ¼ 7 we expect it to behave like
GR, while inD ≥ 8 we expect the theory to be stronger. As
we will show in the next section, this is indeed the case as it
is realized in gravitational collapse.

III. GRAVITATIONAL COLLAPSE

Let us consider the Lemaítre-Tolman-Bondi (LTB) line
element in comoving coordinates, that is,

ds2 ¼ −dt2 þ Bðt; rÞ2dr2 þ Rðt; rÞ2dΩ2
D−2; ð14Þ

with dΩ2
D−2 being the metric of the unit (D − 2)-dimensional

sphere.
From the r-component of the continuity equation in any

dimensions we get p ¼ pðtÞ while from the t-component
we get

ρ̇þ ðpþ ρÞ
�
Ḃ
B
þ ðD − 2Þ Ṙ

R

�
¼ 0: ð15Þ

The amount of matter contained within the comoving
shell r at the comoving time t may be obtained from the
definition of the quasilocal mass in comoving coordinates
which generalizes the static case of the mass contained
within a spherical volume. This is known as the Misner-
Sharp mass, and it can be written as

Fðt; rÞ ¼ RD−1

R2N

�
1 − B−2R02 þ Ṙ2

�
N
; ð16Þ

with N ¼ 2. The off-diagonal component of the field
equations (5) in any dimension gives

h
B2
�
Ṙ2 þ 1

�
− R02

i�
BṘ0 − ḂR0

�
¼ 0: ð17Þ

From the above, we get two branches for collapse depend-
ing on the form of Bðt; rÞ. The first one is

Bðt; rÞ ¼ � R0ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ṙ2 þ 1

p ; ð18Þ

while the second one is
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Bðt; rÞ ¼ R0

EðrÞ ; ð19Þ

where EðrÞ is an integration function related to the initial
velocity of the collapsing particles. The first branch does
not give any massive dynamical collapse solutions since,
substituting it into the definition of the Misner-Sharp mass
Eq. (16) it is easy to see that we get F ¼ 0. Therefore in
what follows, we work with (19) which resembles the
metric potential in GR. The remaining nontrivial field
equations are

ρðt; rÞ ¼ C
F0

RD−2R0 − Λ; ð20Þ

pðtÞ ¼ −C
Ḟ

RD−2Ṙ
þ Λ; ð21Þ

where C is the constant in Eq. (11) and we have used
Eq. (19) to define the mass function F as

Fðt; rÞ ¼ RD−5
�
1 − E2 þ Ṙ2

�
2
: ð22Þ

Equation (22) can be used as the equation of motion to be
solved to obtain the solution R of the collapse model. In the
following we shall focus on pressureless, usually called
“dust,” models. In addition, it will be useful to apply the
following rescaling to the area-radius R, Misner-Sharp
mass F, and velocity profile E:

Rðt; rÞ ¼ raðt; rÞ; ð23Þ

Fðt; rÞ ¼ rD−1mðt; rÞ; ð24Þ

EðrÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − bðrÞr2

q
: ð25Þ

With the above rescaling we have replaced the arbitrary
integration function EðrÞ that appears in Eq. (19) with the
new function bðrÞ. To have a straightforward interpretation
of both quantities we may look at Eq. (22). The initial
velocity of the collapsing particles located at the shell r is
given by Ṙðti; rÞ, which depends only on the initial matter
distribution, i.e., the initial Misner-Sharp mass function
Fðti; rÞ and EðrÞ. Therefore we may understand both EðrÞ
and bðrÞ as providing the initial condition for the velocity
of particles at the shell r. Since we know that grr ¼ B2,
from Eq. (19) we can also interpret the function EðrÞ as
related to the spatial curvature. In fact, as we shall see later,
for a homogeneous spacetime we have precisely E2 ¼
1 − kr2 with k the curvature.
As it is well known, to have a global solution one needs

to match the collapsing interior to the vacuum exterior
across a suitable boundary. In the case of dust collapse the
exterior is given by the static and spherically symmetric

line element (8) with AðrÞ ¼ 1=BðrÞ given by Eq. (13).
Then due to the absence of pressures the matching can be
performed at any arbitrary comoving radius r ¼ rb in the
interior spacetime, corresponding to a collapsing boundary
r ¼ RbðtÞ in the exterior. Note that the time and radial
coordinates used for the interior and exterior metrics are
different, even though for simplicity here we used the same
notation. Imposing that the interior and exterior line
elements coincide on the boundary surface gives two
equations, one that relates the time coordinates on both
sides and another that relates the collapsing boundary
radius on both sides, namely Rðrb; tÞ ¼ RbðtÞ. Then a
continuous matching is obtained if one ensures continuity
of the extrinsic curvature Kab across the boundary surface
(where the indices a, b run over the three dimensions of the
hypersurface).
For simplicity let us look at the marginally bound case,

i.e., E2 ¼ 1, with the understanding that the more general
case is obtained in the same manner with a suitable
redefinition of the radial coordinate, similar to what is
done in GR. Because of spherical symmetry we need to
consider only two components of the extrinsic curvature,
namely Ktt and Kθθ. After a brief calculation it turns out
that the two corresponding equations for continuity of Kab
across the surface are equivalent. In fact, the equation for
the jump of Ktt is obtained from the derivative with respect
to t of the equation for the jump of Kθθ, which can be
written as

AðRbÞ þ Ṙ2
b ¼ 1: ð26Þ

Now using A from Eq. (13), we obtain the remaining
matching condition as

Ṙ4
b ¼ MR5−D

b ; ð27Þ

while from Eq. (22), keeping in mind that for dust
F ¼ FðrÞ, we see that at the boundary the Misner-Sharp
mass is

FðrbÞ ¼ RD−5
b Ṙ4

b: ð28Þ

The two equations obviously coincide if we prescribe that
the Misner-Sharp mass at the boundary is FðrbÞ ¼ M. This
result has a simple intuitive understanding, since for dust
the collapsing particles on the boundary feel no pressures
and hence must follow the same geodesic as a radial
infalling particle in the exterior spacetime.
The case where there is a discontinuity in the extrinsic

curvature across the boundary may also be considered, and
it implies an additional matter distribution on the surface.
However, it is worth noticing that in the general case
where the action contains both the Einstein term and the
Gauss-Bonnet term and there is an additional δ-like matter
distribution on the boundary, the equations are not so
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simple. More importantly, the equation of motion for the
collapsing shell does not simply relate to the corresponding
equation for a collapsing interior as is the case in GR
[67,68]. The junction conditions in Lovelock gravity have
been studied in [69,70].

A. Homogeneous dust collapse

Let us first consider a pressureless homogeneous fluid in
the absence of a cosmological constant; i.e., we shall set
p ¼ 0 ¼ Λ. The above rescaling in Eqs. (23)–(25) becomes
Rðt; rÞ ¼ raðtÞ, Fðt; rÞ ¼ rD−1m0, and EðrÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − kr2

p
,

with m0 and k being constants. Then, from Eqs. (20)–(22)
and (15), the metric (14) becomes

ds2 ¼ −dt2 þ a2
�

dr2

1 − kr2
þ r2dΩ2

D−2

�
; ð29Þ

where the scale factor aðtÞ should satisfy the equation of
motion

m0 − aD−5ðkþ ȧ2Þ2 ¼ 0; ð30Þ

and the energy density of the fluid is

ρðtÞ ¼ CðD − 1Þ m0

aD−1 : ð31Þ

(a) Marginally bound collapse:—This case is obtained for
k ¼ 0, and it is easy to see that in D ¼ 7 it is formally
equivalent to the equation of motion for dust collapse
in GR, which is ȧ2 ¼ m̃0=a, with the identification
of m̃0 ¼ ffiffiffiffiffiffi

m0
p

. In fact, Eq. (30) with k ¼ 0 gives the
general solution

aðtÞ ¼
�
D − 1

4

� 4
D−1
�
�m1=4

0 tþ a0
� 4

D−1; ð32Þ

where the case with the þ describes expansion, while
the one with the − describes collapse. There are two
remaining solutions that are complex. It is important
to notice that the solution for aðtÞ in D ¼ 5, which is
given by aðtÞ ¼ 1 −m1=4

0 t, is not physical since the
fact that ä ¼ 0 implies that gravity is not dynamical
in D ¼ 5, a fact that is reflected in the exterior black
hole solution (13), which in turns implies that the only
acceptable solution is the flat vacuum one with ȧ ¼ 0
and m0 ¼ 0, corresponding to M ¼ 0 for the exterior
metric. It is immediate to see that in D ¼ 7 one gets
a ∼ t2=3 as in GR. Normalizing the radial coordinate
so that at the initial time ti ¼ 0 we have Rð0; rÞ ¼ r,
i.e., að0Þ ¼ 1, we get the integration constant a0 as

a0 ¼
4

D − 1
; ð33Þ

which leads to

aðtÞ ¼
�
1 −

D − 1

4
m1=4

0 t

� 4
D−1

: ð34Þ

However, it is obvious that in this case the collaps-
ing fluid cannot be at rest at t ¼ 0, i.e., ȧð0Þ ≠ 0,
because otherwise that would imply m0 ¼ 0. This is a
consequence of the choice of marginally bound
collapse, namely k ¼ 0. In fact, to have ȧð0Þ → 0
we would have to require að0Þ → þ∞, meaning that
the particles can start collapsing from rest if they are
initially at spatial infinity; otherwise, their initial
velocity is always positive. As a consequence the
potential of the marginally bound case can be regarded
as analogous to the gravitational potential and has
been used to study the strength of gravity in the pure
Gauss-Bonnet theory [10]. In Fig. 1 we show the
comparison of the scale factor in various dimensions
with the Oppenheimer-Snyder-Datt (OSD) case in
four-dimensional GR. As we can see in the left panel
of Fig. 1 in D ¼ 6 (dashed line) the singularity is
delayed compared to general relativity, meaning that
gravity is weaker. In D ¼ 7 (solid line) Gauss-Bonnet
gravity behaves in the same way as GR, while in
D ¼ 8 (dotted line) and D ¼ 9 (dot-dashed line),
gravity becomes stronger, thus causing the singularity
to occur earlier.
The Kretschmann scalar is given by

K ¼ 12

a4
½a2ä2 þ ðkþ ȧ2Þ2� ¼ 3m0

aD−1
ð5 −DÞ2 þ 16

4
:

ð35Þ
In the only physically viable case in D ¼ 5 the
Kretschmann scalar is vanishing, since the scale factor
is a ¼ 1 at all t andm0 ¼ 0. Then, since when k ¼ 0 in
D ¼ 7 the scale factor has the same behavior as the
OSD case, the Kretschmann scalar also exhibits
the same behavior, i.e., K ∼ 1=a6. The strength of
the singularity achieved at a ¼ 0 then grows with D.
The singularity forms at the time ts when aðtsÞ ¼ 0

which in this case is

ts ¼
4m−1=4

0

D − 1
: ð36Þ

The formation of trapped surfaces in the collapsing
matter cloud is then signaled by the apparent horizon
in the interior which is given by the condition
gμν∂μR∂νR ¼ 0; i.e., the surface Rðt; rÞ becomes null.
This is expressed by

1 −
ffiffiffiffiffiffiffiffiffiffi
F

RD−5

r
¼ 0 or 1 −

ffiffiffiffiffiffi
m0

p
r2

a
D−5
2

¼ 0: ð37Þ
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Thus, the apparent horizon curve is

rahðtÞ ¼ m−1=4
0 a

D−5
4 : ð38Þ

Obviously rahðtÞ → 0 for t → ts, and therefore the
apparent horizon forms at the boundary at a time t < ts
and reaches the center at the time of formation of the
singularity, thus leaving the singularity hidden at all
times. In the right panel of Fig. 1 we show the
evolution of the apparent horizon in D ¼ 6, 7, 8, 9
as well as in the Einstein gravity. As already discussed
above, theD ¼ 7 case coincides with the OSD case, in
five dimensions there is no dynamics, and in D ¼ 6
the formation of the trapped surfaces as well as the
singularity are delayed compared to GR.

(b) Bound collapse:—This case is obtained for k > 0 and
in principle one can set k ¼ 1 with a suitable rescaling
of r. However, in the plots we have setm0 ¼ 1 to more
easily compare with the GR case, which is equivalent
to a different rescaling of r, and thus we must choose
k < 1. Then, as an example, the collapsing solution of
Eq. (30) in D ¼ 6 reads

tðaÞ ¼ −
4m0

k3

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m0

p ffiffiffi
a

p − k

s !
2F1

�
1

2
; 3;

3

2
; 1−

ffiffiffiffiffiffi
m0

p
k
ffiffiffi
a

p
�
;

ð39Þ

which needs to be inverted to obtain aðtÞ. Here 2F1 is
the ordinary hypergeometric function that is given by

2F1ða; b; c; zÞ ¼
X∞
n¼0

ðaÞnðbÞn
ðcÞn

zn

n!
; ð40Þ

with ðqÞn being the Pochhammer symbol defined as

ðqÞn ¼
�
1 for n ¼ 0;

qðqþ 1Þ � � � ðqþ n− 1Þ for n > 0:
ð41Þ

In contrast with the k ¼ 0 case, the bound collapse
case allows for the fluid to be at rest at a finite radius
at the initial time ti ¼ 0. Again we see that the case
D ¼ 7 is formally identical to GR, since Eq. (30) is the
same as the one in GR.
In Fig. 2 we compare the above solutions for bound

pure GB collapse to the OSD case in GR. In the left
panel we show the behavior of the scale factor in
D ¼ 6, 7, 8, and 9 as compared to the OSD case, while
in the right panel we show the apparent horizon curve.
The qualitative behavior is the same as in GR; i.e., the
apparent horizon forms at the boundary and reaches
r ¼ 0 at the time of formation of the singularity, but its
development is delayed with respect to the GR case for
D ¼ 6 and otherwise for D ≥ 8.

(c) Unbound collapse:—This case is obtained for k < 0.
As an example, the collapsing solutions of Eq. (30) for
k ¼ −1 in D ¼ 7 and D ¼ 8 read, respectively,

tðaÞ ¼ t0 −
affiffiffiffiffijkjp

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

ffiffiffiffiffiffi
m0

p
jkja

s

þ
ffiffiffiffiffiffi
m0

p
jkj3=2 tanh

−1

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

ffiffiffiffiffiffi
m0

p
jkja

s !
; ð42Þ

tðaÞ ¼ t0 −
affiffiffiffiffiffi
−k

p 2F1

�
−
2

3
;
1

2
;
1

3
;−

ffiffiffiffiffiffi
m0

p
ka3=2

�
: ð43Þ

The unbound case corresponds to particles having
positive initial velocity at spatial infinity, and again
we see that in D ¼ 7 it is formally identical to GR.

FIG. 1. Left panel: The scale factor for homogeneous dust collapse in D ¼ 6, 7, 8, 9 together with the one in Einstein’s gravity (OSD)
for k ¼ 0. We set m0 ¼ 1 and að0Þ ¼ 1. Right panel: Radius of the apparent horizon rahðtÞ for homogeneous dust collapse in D ¼ 6, 7,
8, 9 together with the one in Einstein’s gravity (OSD) for k ¼ 0. The OSD case is identical to the D ¼ 7 in pure Gauss-Bonnet gravity.
Since the collapse starts at t ¼ 0, we see that in D ¼ 6 each shell r is trapped later than the corresponding shell in GR, while in D ¼ 8
and D ¼ 9 this happens faster.
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To illustrate this, in the left panel of Fig. 3 we compare
the solutions for D ¼ 6, 7, 8, and 9 to the OSD case.
The apparent horizon is given by Eq. (38), and in the
right panel of Fig. 3 we show its evolution over
time in D ¼ 6, 7, 8, and 9 in pure GB gravity as
compared to GR.

B. Inhomogeneous dust collapse

Let us now consider the case with Λ ¼ 0 but allow for
the scale factor to have an r dependence, namely describing
an inhomogeneous fluid. To implement this we set the
scaling as in Eqs. (23)–(25) so that Eqs. (20)–(22) become

ρðt; rÞ ¼ C
ðD − 1Þmþ rm0

aD−2ðra0 þ aÞ ; ð44Þ

pðtÞ ¼ −C
ṁ

ȧaD−1 ; ð45Þ

mðrÞ ¼ aD−5ðbðrÞ þ ȧ2Þ2: ð46Þ

Considering an inhomogeneous dust cloud, meaning
p ¼ 0, implies that the mass profile is a function of only
r. Inhomogeneous dust collapse in GR is usually referred to
as Lemaítre-Tolman-Bondi [71–73], and it has been shown
to allow for the occurrence of naked singularities [46].
Considering an inhomogeneous density profile, with van-
ishing pressures leads to inhomogeneous mass and velocity
profiles and to a scale factor that depends on both r and t.
Then for the marginally bound case, for which bðrÞ ¼ 0,
we get

FIG. 3. Left panel: The scale factor aðtÞ inD ¼ 6 (dotted line),D ¼ 7 pure Gauss Bonnet, together with the OSD case (solid line) and
D ¼ 8 (dashed line), D ¼ 9 (dot-dashed line) pure GB gravity, for k ¼ −0.1. We set m0 ¼ 1 and að0Þ ¼ 1. Right panel: Radius of the
apparent horizon in the OSD case with k ¼ −1 (solid line) compared to theD ¼ 6 (dotted line),D ¼ 7 (solid line),D ¼ 8 (dashed line),
and D ¼ 9 (dot-dashed line) pure Gauss-Bonnet gravity, also with k ¼ −0.1.

FIG. 2. Left panel: We plot the scale factor aðtÞ inD ¼ 6 (dotted line),D ¼ 7 (solid line),D ¼ 8 (dashed line), andD ¼ 9 (dot-dashed
line), together with the OSD case (solid line), for k ¼ 0.1. We set m0 ¼ 1 and að0Þ ¼ 1. Notice that even though we have spatial
curvature, D ¼ 7 pure GB shows the same behavior as in GR. Right panel: Radius of the apparent horizon in the OSD model together
with D ¼ 7 pure GB (solid line) and in D ¼ 6 (dotted line), D ¼ 8 (dashed line), and D ¼ 9 (dot-dashed line) in pure Gauss-Bonnet
gravity, in the case when k ¼ 0.1.
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aðt; rÞ ¼
�
1 −

D − 1

4

�
mðrÞ1=4

�
t

	 4
D−1

; ð47Þ

where, similar to the homogeneous case, we have set the
initial condition as að0; rÞ ¼ 1. Notice that if mðrÞ is a
constant m0, the solution (47) coincides with (34). Both in
GR and in pure GB to obtain the solution of the inhomo-
geneous case we just need to replace m0 with mðrÞ. Notice
that again the caseD ¼ 7 is equivalent to the GR case if we
identify the density profile m̃ in GR with the density profile
in pure GB via m̃ðrÞ ¼ ffiffiffiffiffiffiffiffiffiffi

mðrÞp
. Each comoving radius r

becomes singular along the curve tsðrÞ corresponding to
the time when the scale factor vanishes, i.e.,

tsðrÞ ¼ ti þ
4

ðD − 1ÞmðrÞ1=4 ; ð48Þ

where ti ¼ 0 is the initial time from which the collapse
develops. The apparent horizon develops for each shell r at
the time tahðrÞ which is given by the implicit solution of
gμν∂μR∂νR ¼ 0. In our case, this condition is again given by
Eq. (37), or RðtahðrÞ; rÞD−5 ¼ FðrÞ, or equivalently, mak-
ing use of the scaling,

r4mðrÞ ¼ aðtahðrÞ; rÞD−5: ð49Þ

Using Eq. (47) we find the apparent horizon curve as

tahðrÞ ¼ tsðrÞ −
4

D − 1
r
D−1
D−5mðrÞ 1

D−5: ð50Þ

It is straightforward to notice that tahð0Þ ¼ tsð0Þ ¼ t0 for
all D > 5, since ðD − 1Þ=ðD − 5Þ > 1 and ðD − 1Þ=ðD −
5Þ → 1 for D growing. A generic inhomogeneous mass
profile can be expanded near r ¼ 0 as

mðrÞ ¼ m0 þ
mn

n
rn þ oðrnÞ; ð51Þ

with n ≥ 1 and where m0 is related to the initial density at
the center via CðD − 1Þm0 ¼ ρð0; 0Þ ¼ ρið0Þ. Here we
have defined the nth mass mode mn=n to simplify the
notation, so that in the following we have m0 ¼ mnrn−1. To
ensure that the density profile decreases outwards one must
impose mn < 0 for the first nonvanishing mass mode. This
also ensures that throughout collapse shell crossing singu-
larities do not occur. These are weak singularities that
appear when shells overlap, and looking at Eq. (44) we see
that the condition for the appearance of shell crossing
singularities is R0 ¼ aþ ra0 ¼ 0. Avoidance of shell cross-
ing singularities is guaranteed if aþ ra0 > 0 throughout
collapse [74]. Notice also that in general for a physically
realistic profile one would also want to impose that the
density does not present a cusp at the center, thus requiring
m1 ¼ 0. We may expand tsðrÞ near r ¼ 0 as

tsðrÞ ¼
4

ðD − 1Þm1=4
0

�
1 −

mnrn

4m0

þ � � �
�
: ð52Þ

Under the above conditions we then see that the singularity
curve tsðrÞ originates at the center at the time t0 and moves
to outer radii at later times, at least in a close neighborhood
of r ¼ 0. On the other hand, for mn > 0 we would get a
density profile increasing radially outwards, which is less
physically realistic, and the singularity curve reaching the
center at later times with respect to shells in a close
neighborhood of r ¼ 0. For a black hole to form at the
end of collapse, trapped surfaces must appear before
the singularity in such a way that no geodesic from the
immediate vicinity of the singularity can propagate outside
the apparent horizon.
Therefore a sufficient condition for the formation of a

black hole occurs if in the vicinity of r ¼ 0 we have

tahðrÞ ≤ t0: ð53Þ

In fact, in this case the apparent horizon traps the region
surrounding the singularity before the singularity has
formed. We may expand the apparent horizon curve in
the vicinity of r ¼ 0 as

tahðrÞ ¼
4

ðD − 1Þm1=4
0

�
1 −

mnrn

4m0

− ðm1=4
0 rÞD−1

D−5 þ � � �
�
;

ð54Þ

from which we see that if the first nonvanishing term
mn has

n >
D − 1

D − 5
; ð55Þ

then the sufficient condition for the formation of the black
hole is met. On the other hand, if tahðrÞ > t0 there exists the
possibility that the singularity is visible. In fact, even if
tsðrÞ is in the future of tahðrÞ for every r ≠ 0, there is still
the possibility that geodesics originating at r ¼ 0 at the
time t0 [where tsð0Þ ¼ tahð0Þ ¼ t0] may escape. To deter-
mine the condition under which that may happen we need
to consider the trajectory of a radial outgoing null geodesic
tgðrÞ originating at tgð0Þ ¼ t0

1 and determine if there exists
an interval r∈ ð0; r0� for which tgðrÞ < tahðrÞ. From the
line element (14), the equation for the trajectory of an
outgoing radial null geodesic in the marginally bound case,
i.e., EðrÞ ¼ 1, is

1Strictly speaking the Cauchy problem for the geodesic
equation cannot be defined at the singularity, and therefore
one would have to consider the limit for r going to zero from
the right of the initial condition.
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dtg
dr

¼ R0ðr; tgðrÞÞ; ð56Þ

with R0 ¼ aþ ra0 given by

R0ðr; tÞ ¼ 1

4m3=4

1 − ðD − 1Þmt −m0rt
ð1 − D−1

4
m1=4tÞðD−5Þ=ðD−1Þ : ð57Þ

For the geodesic to originate from the singularity the
integration constant must be chosen in such a way that
tgðrÞ → t0 for r going to zero. We know that such null
geodesics exist for any valid initial condition in a positive
neighborhood of r ¼ 0. Therefore, we only need to check
the condition for the geodesic to be outside the apparent
horizon. To do that we consider a trajectory

txðrÞ ¼ t0 þ xrn ð58Þ

and check the values of x, if any, for which tx is below the
horizon and above tg. If there exist some value of x for
which these two conditions are met, then tg must also be
below tah and therefore outside the horizon in a right
neighborhood of the singularity. Let us first look at the
apparent horizon. We already said that for n >
ðD − 1Þ=ðD − 5Þ the only possible outcome of collapse
is a black hole. So we are left with only two possibilities:
(1) For n < ðD − 1Þ=ðD − 5Þ we have that

tahðrÞ ¼ t0 −
mn

ðD − 1Þm5=4
0

rn þ � � � ; ð59Þ

and taking mn < 0 (and m0 ¼ 1) we need to choose
x < −mn=ðD − 1Þ to have tx < tah.

(2) For n ¼ ðD − 1Þ=ðD − 5Þ we have that

tahðrÞ ¼ t0 −
1

D − 1

�
mn

m5=4
0

þ 4

�
rn þ � � � ; ð60Þ

and takingmn < −4 (form0 ¼ 1) we need to choose
x < −ðmn þ 4Þ=ðD − 1Þ and x > 0 to have tx < tah.

Let us now look at the condition for tx to be above tg.
Having assumed that tg is an increasing function in r it is
enough to find x for which

t0x ¼ nxrn−1 > R0ðr; txðrÞÞ: ð61Þ

After some calculations we find

R0ðr; txðrÞÞ ≃ ΓðxÞr 4n
D−1; ð62Þ

with

ΓðxÞ ¼ −

�
D−1
4

m1=4
0 xþ Dþ3

D−1Mn

�
�
− D−1

4
m1=4

0 x −Mn

�D−5
D−1

; ð63Þ

where we have definedMn ¼ mn=ð4m0Þ. Therefore t0x goes
to zero as rn−1 while R0ðr; txðrÞÞ goes to zero as r4n=ðD−1Þ,
and we have the following two possibilities:
(1) If n − 1 < 4n=ðD − 1Þ, we will have that t0x > R0

near r ¼ 0 for any value of Γ and consequently x.
This means that in this case, for mn < 0 it is always
possible to find an outgoing null geodesic originat-
ing at the singularity.

(2) If n − 1 ¼ 4n=ðD − 1Þ, we have that t0x and R0 both
go to zero as rn−1, and therefore we have a value of
Mn separating between the two outcomes and given
by the solution of nx ¼ ΓðxÞ. Then a naked singu-
larity will form if values of Mn exist such that the
condition in Eq. (53) is violated [i.e., 0 < x <
−ðmn þ 4Þ=ðD − 1Þ with mn < −4] and nx > ΓðxÞ.

Notice that n − 1 ¼ 4n=ðD − 1Þ is exactly equivalent to
n ¼ ðD − 1Þ=ðD − 5Þ, and therefore this condition is con-
sistent with the one found previously.
Let us now look at some specific cases and for simplicity

let us take m0 ¼ 1 (this is always possible since m0 only
sets the scale of the radial coordinate r) when looking for
the conditions for the formation of naked singularities.
For theD ¼ 6 case we have that ðD − 1Þ=ðD − 5Þ ¼ 5, and
therefore the sufficient condition for the formation of a
black hole is violated for the first four terms, i.e., n ¼ 1, 2,
3, 4 when mn < 0. For n ¼ 5 we can have a black hole
only if

4

5

�
−ðr5ðm0 þm5r5ÞÞ þ

1

ðm0 þm5r5Þ1=4
−

1

m1=4
0

�
≤ 0;

near r ¼ 0: ð64Þ

In the left panel of Fig. 4 we can see that, setting m0 ¼ 1,
we can have a black hole when 0 ≥ m5 ≥ −4. On the other
hand, for n ≥ 6, the condition in Eq. (53) is always satisfied
and a black hole always forms. For n ¼ 5 and m5 < −4 we
need to also look at the condition nx > ΓðxÞ from Eq. (63).
The condition nx ¼ ΓðxÞ can be rewritten as

ð5xþ 9m5Þ5 −
5

4
ð20xÞ5ðxþm5Þ ¼ 0; ð65Þ

which is a well-defined algebraic equation for which it is
possible to find values ofm5 < −4 such that it has solutions
for 0 < x < −ðm5 þ 4Þ=5. As mentioned before, a naked
singularity will then be the final outcome of collapse for
those values m5 for which we can satisfy nx > ΓðxÞ with
0 < x < −ðm5 þ 4Þ=5.
In D ¼ 7, as expected from the previous section, we

have a case qualitatively equivalent to GR, and thus the
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condition in Eq. (53) is violated for n ¼ 1, 2 while for
n ¼ 3 we have a black hole as the final state if m3 ≥ −4
(withm0 ¼ 1), as we can see from the right panel of Fig. 4.
For the rest of the modes, i.e., n ≥ 4, the condition (53) is
always satisfied and collapse always results in a black hole.
The condition nx ¼ ΓðxÞ can be rewritten as

1

16
ð6xþ 5m3Þ3 − 27ð2xþm3Þx3 ¼ 0; ð66Þ

which is again an algebraic equation for which it is possible
to find values of m3 < −4 such that it has solutions
for 0 < x < −ðm3 þ 4Þ=6.
As explained in the previous section, D ¼ 6 pure Gauss-

Bonnet gravity is weaker compared to GR. In particular, the
gravitational potential falls as 1=rðD−5Þ=2. That is why, the
critical mode is m5 for D ¼ 6, while in D ¼ 7 and in GR it
ism3. As expected inD > 7 the gravitational force for pure
GB theory becomes stronger with respect to GR, and thus
the value of n for the critical mode will decrease. Indeed, in

D ¼ 8 pure GB gravity there is no critical mode because
ðD − 1Þ=ðD − 5Þ ¼ 7=3 > 2. Then form1 < 0 andm2 < 0
it is always possible to find null geodesics escaping from
the singularity while for n ≥ 3 the black hole is the only
possible outcome. Finally, as we show in the left panel of
Fig. 5, in D ¼ 9 we get that the critical mode is m2. The
condition nx ¼ ΓðxÞ can be rewritten as

�
2xþ 3

4
m2

�
2

− 2x2ð4xþm2Þ ¼ 0; ð67Þ

which is a cubic algebraic equation. Again form1 < 0 there
always exists null geodesic escaping the singularity, and
again it is possible to find values of m2 for which nx >
ΓðxÞ with 0 < x < −ðm2 þ 4Þ=8 therefore leading to the
formation of a naked singularity. For n ≥ 3 the black hole is
the only possible outcome.
Since in D ¼ 10 we have n ¼ 9=5 < 2 and since

ðD − 1Þ=ðD − 5Þ → 1 as D grows, we see that for all
D > 9 the only mode that may lead to the formation of a

FIG. 4. Left panel: The difference tah − tsð0Þ inD ¼ 6 is plotted for different values of the mass parameter m5. When this condition is
nonpositive, the formation of black hole occurs. Otherwise, we can have the formation of a naked singularity. Right panel: The
difference tah − tsð0Þ inD ¼ 7 for different values of the mass parameterm3. When this condition is nonpositive, the formation of black
hole always occurs. Otherwise, we can have the formation of a naked singularity. In both panels we have set m0 ¼ 1.

FIG. 5. The difference tah − tsð0Þ in D ¼ 9 pure Gauss-Bonnet (left panel) and D ¼ 4 GR (right panel) is plotted for different values
of the mass parameterm2 andm3, respectively. These are the critical modes for which we can get both outcomes. In both panels we have
set m0 ¼ 1.
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naked singularity is m1. However, one could argue that
m1 ≠ 0 gives rise to unphysical density profiles with a cusp
at r ¼ 0, and therefore m1 should be set to zero. Thus for
D > 9 the black hole is the only possible final outcome.
For comparison we may look at what happens in higher

dimensional collapse in GR [49,56,59,60]. Similar to what
happens in pure GB, gravity becomes stronger in higher
dimensions, and therefore the chance of black hole final
outcomes increases. In GR with D ¼ 4 for the first two
modes, i.e., for n ¼ 1, 2, the condition (53) is violated and
we may have a naked singularity for negative values of m1

and m2. Similar to what was discussed before in the pure
GB case with D ¼ 7 the mode m3 is the one separating the
two possible outcomes while for all higher modes the black
hole is the only possible final state, as illustrated in the right
panel of Fig. 5. In GR black holes are the only possible
outcome in D > 6, while in D ¼ 6 and D ¼ 5 the mass
mode separating the two possible outcomes is m1 and m2,
respectively. The comparison is summarized in Table I.

IV. CONCLUSIONS

Pure Lovelock universalizes the kinematic property of
gravity in the critical odd D ¼ 2N þ 1 dimensions. Note
that Einstein gravity is pure Lovelock N ¼ 1, and it is
kinematic in D ¼ 2 × 1þ 1 ¼ 3. Kinematicity means
Riemann curvature is entirely given in terms of Ricci,
and hence there can exist no nontrivial vacuum solution. It
has been shown that the Lovelock Riemann tensor which
has been defined in [35] is, in fact, given in terms of the
corresponding Ricci in all D ¼ 2N þ 1 dimensions, and so
whenever the latter vanishes the former vanishes. Another
distinguishing property of it is the existence of bound orbits
around a static object in dimensions 2N þ 1 < D < 4N þ
1 which implies that for N ¼ 1, GR bound orbits can exist
only inD ¼ 4. Thus bound orbits in higher dimensions can
exist only in pure Lovelock gravity which provides a case
for the study of such theories.
In pure Lovelock gravity, the gravitational potential

goes as 1=rα where α ¼ ðD − 2N − 1Þ=N which is ≤ 1

for 2N þ 1 < D ≤ 3N þ 1 while it is otherwise for
D > 3N þ 1. It is therefore expected that collapse would
proceed slower for 2N þ 2 ≤ D < 3N þ 1 with respect to
the case when the potential goes as 1=r. In the critical
dimension,D ¼ 2N þ 1, collapse proceeds uniformly with
ȧ ¼ const as gravity is kinematic there and hence no
acceleration. Note that potential goes as 1=r [10] for all
D ¼ 3N þ 1; i.e., for Einstein in 4D and pure GB in 7D,
gravitational dynamics should be indistinguishable.
Furthermore, we considered marginally bound inhomo-

geneous dust collapse in pure GB gravity and derived
the condition for the formation of naked singularities,
similar to what had been done in GR in D ¼ 4 [46] and
in higher dimensions [59]. We calculated the first non-
vanishing mass mode in the expansion of the energy
density which separates the case where naked singularities
can form from the case leading only to black holes as
final states of collapse. We showed that, consistently with
what was mentioned earlier, pure GB in D ¼ 7 and GR in
Dþ 4 exhibit the same behavior. Also we showed that in
D > 9 pure GB collapse leads only to the formation of
black holes.
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TABLE I. The critical mass modes for which both naked singularities and black holes can be formed in the
inhomogeneous dust collapse are summarized in pure Gauss-Bonnet gravity and GR. For the lower modes naked
singularities can occur, while for the higher ones only black holes are formed. The cases D ¼ 4, 5 in pure Gauss-
Bonnet are excluded, while in D > 6 in GR and D > 9 GB we have no naked singularities.

D ¼ 4 D ¼ 5 D ¼ 6 D ¼ 7 D ¼ 8 D ¼ 9

Pure Gauss-Bonnet � � � � � � n ¼ 5 n ¼ 3 n ¼ 7=3 n ¼ 2

General relativity n ¼ 3 n ¼ 2 n ¼ 1 � � � � � � � � �
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