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In this paper, we present a detailed analysis of first-order perturbations of the Kerr metric in the slow-
rotation limit. We perform the calculation by perturbing the Schwarzschild metric plus up to second-order
corrections in the spin in the Regge-Wheeler gauge. The apparent coupling between different angular
momentum axial-led and polar-led modes can be removed by suitably combining the perturbation equations
and projecting them onto spin-weighted spherical harmonics. In this way, we derive the corrections to the
Regge-Wheeler and the Zerilli equations up to second order in the spin. We show that the two potentials
remain isospectral as in the nonrotating limit. However, it is easy to demonstrate it only for a precise choice
of the tortoise coordinate. The isospectrality with a slowly rotating Teukolsky equation is also verified. We
discuss the main implication of this result for the problem of vacuum metric reconstruction, providing the
transformation rule between slow-spinning Teukolsky variables and metric perturbations. The existence of
this relation leaves us with the conjecture that a resummation of the expansion in the spin is possible, leading
to two decoupled differential equations for perturbations of the Kerr metric.
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I. INTRODUCTION

Black hole perturbation theory (BHPT) is the branch of
gravitational physics that studies the response of black holes
(BHs) to small generic fluctuations of the spacetime. It was
initially developed in the 1957 breakthrough work by Regge
and Wheeler [1], who for the first time obtained the first-
order equations for a perturbation with axial parity on top of
a Schwarzschild BH. In 1970, Zerilli then obtained a similar
equation for even parity perturbations [2]. A few years later,
Teukolsky managed to derive an equation that governs
linear perturbations on top of a Kerr BH, by implementing a
different formalism based on the perturbations of the
curvature [3]. These three milestones are still the basic
equations for the analysis of small perturbations of rotating
and nonrotating BHs in general relativity (GR). Notable
examples of its applications are the study of the quasinormal
modes of BHs [4,5] and the waveform generation of black
hole binaries with very large mass ratios [6-9].

The Regge-Wheeler and the Zerilli equations both
have the form of a Schrodinger equation, but their
effective potentials have different analytical expressions.
Nevertheless, Chandrasekhar found that one can transform
the Regge-Wheeler equation into the Zerilli equation and
back [10,11]. The existence of this transformation con-
firms the isospectrality of the two potentials, which means
that their spectrum of quasinormal modes is completely
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equivalent [12]. In addition, Chandrasekhar found that the
Regge-Wheeler and the Zerilli equations can be related,
with a slightly more complex transformation, to the
nonrotating limit of the Teukolsky equation [11], also
known as the Bardeen-Press equation [13]. This latter
result by Chandrasekhar confirms a somewhat expected
property: the spectrum of oscillations of a BH does not
depend on the perturbation scheme used to calculate it. A
direct perturbation of the spacetime metric must lead to an
equivalent result as if one performs a different perturba-
tion scheme, like for the derivation of the Teukolsky
equation.

The transformations derived by Chandrasekhar not only
prove the isospectrality between the three different equa-
tions but also provide the transformation rules to move
from one to another. While this result in the nonrotating case
is rather immediate, having an exact formula that links
the solution of the Teukolsky equation to the small
perturbations of the Kerr metric is a much more involved
problem commonly known as “metric reconstruction.” Such
reconstruction appears to be necessary in all those problems
of BHPT which involve “perturbations of perturbations’:
second-order perturbations of Kerr BHs in self-force com-
putations [14] or in the case of modified Teukolsky
equations in alternative theories of gravity [15-17].

The main issue in the rotating cases is that an equivalent
of the Regge-Wheeler and the Zerilli equations cannot be
found, and the perturbations of a rotating BH can only be
understood via the Teukolsky equation. The procedure to
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obtain it uses a decomposition of the spacetime for which it
is not straightforward to trace it back to the actual
perturbations of the metric. Nevertheless, there are tech-
niques that aim precisely to obtain the metric perturbations
starting from the Teukolsky variables, and they differ among
themselves upon the gauge choice [14]. In the radiation
gauge, one possibility is to integrate over the Hertz
potentials [18] (see also [19] for an overview of the
technique and possible implementations). It is worth noting
that recent progress showed an alternative formulation
based on the calculations of Chandrasekhar [11] which
avoids the use of Hertz potentials [20]. Another alternative
is to perform the reconstruction in the Lorentz gauge [21].

In this paper, we analyze the problem of metric
reconstruction in the Regge-Wheeler gauge, extending
the results of [22] for a vacuum spacetime up to second
order in the spin. Indeed, it has been known since the early
works of Kojima on the perturbation of slowly rotating
neutron stars [23,24] that first-order corrections in the spin
maintain the same structure of the perturbation equations
as in the nonrotating case. The effect of the spin on BH
linear perturbations is just to modify the Regge-Wheeler
and Zerilli potential [25-27]. The slow-spin expansion is
particularly relevant in those cases where the perturbative
approach to the full rotating problem is not possible, like in
alternative theories of gravity where fully rotating sol-
utions are not known analytically [28—32] or when exotic
matter fields coupled to gravity do not lead to an evident
separation of the variables in the perturbation equa-
tions [33,34].

The outline of the paper is the following. In Sec. II we
present the slow-spinning Kerr metric and the perturbation
scheme, followed by a revision of the method of Kojima to
perform the separation of the equations. The method is
extended up to second order in the spin, as it was done
in [32], and we show how to manipulate the equations in
order to find a correction in the spin for the Regge-Wheeler
and the Zerilli potentials. In Sec. III we discuss how the
property of isospectrality remains satisfied at second order
in the spin, as well as with respect to the slow-spinning
Teukolsky equation as shown in Sec. IV. We discuss the
main results of the paper in Sec. V, where we summarize
the steps necessary to perform the metric reconstruction,
provide a formula that generates the corrections due to the
spin to the effective potential of the Regge-Wheeler and
the Zerilli equations, and conjecture the existence of two
fully rotating versions of those equations. Finally, in
Sec. VI, we argue how the results of this paper could
address some currently open problems and which future
directions can be investigated.

Throughout the paper we use a mostly minus signature
(4+,—,—,—). This choice was made in order to conform
to the notation of [11]. Moreover, we use units such
that ¢ = Gy = 1.

II. SLOWLY ROTATING REGGE-WHEELER
AND ZERILLI EQUATIONS

A. Perturbation scheme

With ¢¥,, we denote the Kerr metric in Boyer-Lindquist
coordinates x* = (t,r,0,¢), whose line element dsz =
g, dxedx? is

2arsin® 6 )X
2 (12D £ 2750 T
dsg ( > dr” + S drde Adr

de?, (1)

2 Qi 26
— zde? — sin2e<r2 +a 4T )

where A =72 —r+a? and T = r? + a? cos? . Without
loss of generality we choose units such as M = 1/2, with
M the mass parameter of the Kerr metric.

Since we are interested in the slow-rotation BHPT, we
need to perform a double perturbation scheme: the usual
linear perturbation for which we introduce a formal book-
keeping parameter ¢, as well as an expansion in the spin
parameter a, which for the purposes of this paper we
truncate at second order. In this way, we formally consider
the following ansatz for the metric:

Gab = Gap: + €hap, (2)

with g°%K being the expansion of the metric in Eq. (1) up to

second order in a,

cos? 6 2asin? 0
gt =fota——. gy =—7— ()
1 1 — fycos?0
gSRK:_—‘i_aZi, (4)
" fo rzf%
gl = —r* — a*cos? 0, (5)
. 29
ginX = —sin’¢ {rz +a? rtsne im ] , (6)

with fo =1 —1/r. If we treat g>%¥ as a correction to the
Schwarzschild metric, we can express the perturbation

metric 4, in the Regge-Wheeler gauge, which decomposes

in a sum of axial h(a_) and polar hﬁ? contributions. Their

explicit expressions, respectively, read as

hG,)dxedx? = 2[nG" (r)de + h{™ (r)dr]
X [S5™(6, 9)d6 + S5 (0, @)dgle”,  (7)
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hHdxadxt = | foHE™ (r)d? + 2H{™(r)dedr

If’m
+ (r )d 2+ KOm(r)dQ2 | YO (0, )e’,
fo
(8)
where we performed a Fourier decomposition in modes of

frequency @ = —ip, the functions Y™ (0,¢) are scalar
spherical harmonics, and

‘m
(Sfm,Sfm) — [ = Y-‘P
0" sin@

, sin 9Y§}”>, (9)
where the comma followed by a coordinate stands for the
partial derivative with respect to that variable. Note how the
functions hS™, h{™, HS™, H{™, HS™, K™ are free radial
functions, and we will see how to relate them to their
nonrotating counterpart. We can plug the linearized ansatz
(2) into the Einstein equations and solve them with a
double-perturbation scheme in ¢ and a. In total there are ten
equations which we schematically dub

58, =R =0, (10)

where we defined the linear perturbation of the Ricci

tensor as R, = ng,) + sRilh). In principle, the presence of

the spin introduces an angular dependency in €, which
makes the equations nonmanifestly separable. In the next
section, we show a scheme, which is valid up to second
order in a, but it is, in principle, extendable to arbitrary
order, allowing us to separate the equations and obtain two
master radial equations.

B. Decoupling the equations

Here, we apply the scheme for the decoupling of the
equations in the slow-spin expansion as in [23], and we
extend it up to the second order in the spin, as it was done
in [32]. The ten equations (10) can be divided into three
different groups, according to their functional form. From
now on, to avoid cluttering of indices we omit the super-
script index m since different values are always decoupled
in the equations. The first group schematically reads as

NG
)
Il
—

A(()i)f + (lllp cos 6 + Ag ) cos 02)Y?
Bgl)fcose) sinfY’ =0, (11)
where the index i runs from O to 3 and corresponds to

08y =0, 68,=0, 68,=0, and 068y +68,,/
sin® @ = 0, respectively. The second group reads

n=0

2
88 jo) = (Za< ), cos” 9—|—a( /) sin 9) Y’

2 Yzf’
- Zﬂn];cos 9+ﬁ2fsm 0

— sin @

’7(1] né{; cos 6) sin Y +)((lj;zp sin OW*
g(lj ()

0
&l cos9)X? =0, (12a)

+
+
2 o~
Ejp) = (Z B cos™ 6 — ﬁg’gp sin? 6) Y’

n=0

+ Za cos" 6 — ag)fsm «9) s1n6'

(&) + V) cos 0) sin Y7 + 5V x7

_I_

(§] 5’ cos @) sin W’ = 0, (12b)
where j = 0, 1 corresponds to 6&’,9 = 0 and 6&,y = 0 for
the first equation and &, =0 and 6&,, =0 for the
second equation. The symbols X? and W’ are related to
the spin-2 spherical harmonics and are defined as

X’ =2Y%,, —2cot0Y’,, (13)

4 3 3 Yt;ﬂlﬂ
W’ = Y%, —cotfy’y — —4=. 14
o0 Oty T 70 (14)

Finally, the third group reads

8 (9p) = (f10 + f2,,c0s0) sin Y
+ (g1 + GarcosO)Y7,
Xf
+ hy sin? OY? + (jop + jopcOs? 0) ——
' ’ ’ sin 4
+ (koo + ko p cOs> )W’ = 0, (15a)
88y = (914 + g2, c0s ) sin OY"
— (f1.e + farc080)Y,
~ Xf
=+ h2 ¢ Sin2 QYK - (k()f =+ k2 7 COS2 9) e
' ' ' sinf
+ (oo + Joecos” O)W* =0, (15b)
with 68y = 6899 — 08 5,/ sin?@ = 0. With this sche-

matic representation of the equations, the functions Ail},

szl,)f’ agz]}’ ﬂqu,)f’ dflj,)f’ )Bglj;» ’7;(1])& 5;(1])& )(5,]3”’ fn,f’ 9n,e> hn,f’
iz,,f, k,¢, jn.e are purely radial functions, which contain
combinations of the metric perturbation functions and their
radial derivative. We label each function with the index n
such that it contains at least O(a)" terms. Their explicit
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expression can be found in Appendix F. To separate radial
and angular components from the equations, we make use
of the completeness relation of spherical harmonics,

/ dQy‘y* = &7, (16)
where * denotes complex conjugation, by the fact that
spherical harmonics satisfy the equation

¢

Y
Y%, + cot@Y?, + —22 —
.00 0 sm29

=+ 0y, (17)

as well as the following relations among combinations of
spherical harmonics and trigonometric functions:

2

cos Y = Q, Yt + Qv 1, (18)

Sineré =£Q, Y —(£+1)Q, Y7, (19)

where we defined Q, = +/(¢* —m?)/(4¢> —1). One
can repeatedly apply the formulas (18) and (19) to find
similar expressions for cos” Y’ and cos” 6 sin Y f’;. The
useful ones that we used for our calculation are shown
in Appendix A. The equations of the three groups can
be separated by taking suitable linear combinations of
the equations and integrating them over the 2-sphere.
The decoupled equations are obtained in the following
schematic form:

&y = / dQos Y =) [CnAfl"}JrSﬂBM, (20)
n=0
L BEYEN & . ) w
e, = / dQ (5g<j9)yfg el ) > [l + B + Lol + B
n=0
2
+ 3 (S} imCoifl) + X8+ X, 1)

n=1

88 g X
£n, = / do (55<_>W*f +—o0

sin @ —
gm — / dQ 5(56 W*f/ _ 55(_)}(*// _ 1
) (09) sin @ —

We label the equations with a Roman number that shows
from which group they have been obtained, and with a
(+)/(-), we indicate the equations whose limit a — 0
contains only polar and axial quantities. We refer to the first
and second groups of equations as polar and axial-led,
respectively. The operators C,,, S, Ay, By, Az, Ba, S, X,
Xy Fs Gus Tans Kops H, and H are integrals which mix
modes with different angular momenta ¢, and they are
explicitly provided in Appendix A.

The general structure of all the radial equations obtained
with this procedure is

gf — fPf + af]_)fj:l + aprfiZ’ (25)

58 o) Y 2
M) :Z[ Aﬂﬁ f+B anfj| +A2ﬂ2f 2 gzﬂ

- lmcn—lngjiﬂ + Xn—l)(i,]} - ‘i/n—léi{)f} ’ (22)
l - -
> => [ann+1,f + GuIni1.0 + Tondone + ,C2nk2n.f:| +Hhop +Hhyp,  (23)

|:gnfn+l,f - fngn+1,f + \72nk2n.f - ’C2nj2n.f:| - IFHTIZ,L” + HhZ,f' (24)

|
where P refers to a combination of the functions and their
derivatives for a given parity, whereas P are combinations
of functions and their derivatives of opposite parity. The ¢
label signals that functions of a chosen parity of angular
momentum ¢ couple at least at first order in the spin with
functions of opposite parity and angular momentum ¢ + 1
and at least at second order in the spin with functions of the
same parity and angular momentum £ + 2. The spin factor
outside each component signals the minimum order at
which the modification enters.

Note that thanks to the linearity of the equations one can
combine different equations and their radial derivatives in
such a way that the structure denoted in Eq. (25) does not
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change. If we have any two equations £ = 0 and &5 =
with the same parity in the nonspinning hmlt as well as an
equation E’f = 0 with different parity in the nonspinning
limit, the structure (25) up to second order with the spin is
preserved if
(i) one takes a linear combination of £, £5 as well as
their radial derivatives;
(i1) one takes a linear combination of 5{ , d
as their radial derivatives; and
(iii) one takes a linear combination of 5{ ,da
as their radial derivatives.
We will use these three transformations extensively to
drastically simplify the ten equations.
Finally, let us notice that the terms P, Py, and P,y
appearing in Eq. (25) have the following structure:

E5*! as well

2E5%2 as well

P’ = (AL + amA{ + a*(AY + m?Af + A5 Q2 |

+ Ay Q) f g (26)

Pl = Qf+1(B1 + amBZ)ff—H
+ Q/(By" " +amBy ") sy, (27)
PA2 = Qs 1QpaCof pia+ Qr1QrC3 fra, (28)

where with the symbol f, we refer to any of the
perturbation functions h§, h{, Hj, HY, HS, K’ (and their
derivatives) of a given parity, whereas f stands for the
same functions but opposite parity, and Aj, A7, AS, Af, A3,
BY, BS, and CY are functions of r and # only. In this way,
we completely determined how the index m enters in the
equations, and it is clear that different values of m never
couple to each other. In the next section we show how to
redefine the perturbation variables such that they satisfy
differential equations where the coupling between different
¢ is also removed.

C. Spin corrections to the Regge-Wheeler
and Zerilli equations

Let us start by denoting the polar-led equations
as Z| = S‘<0+), Z, = 5[(1+)’ Z; = 8‘(2+>, Zy = 5‘(3+),
Zs = 81(1()+), Zs = 8‘<‘1+), Z; = 5‘(1) and the axial-led equa-
tions as Q; = 51(10_)’ 0,=¢&
that these ten equations are not independent, and we explain
how they can be recast into two independent equations
which generalize the Regge-Wheeler and the Zerilli equa-
tions up to second order in the spin.

Let us revise the derivation of the two equations in the
limit @ = 0. From Q, = 0, we can find an expression for

-y 05 = EI(H_). We now show

a,h§, while from Q3 = 0 we obtain an expression for d,47.
It is straightforward to check that Q; = 0 is automatically
satisfied, by taking combinations of Q,, Q3 and their
derivatives. At this point, one can define

fo

i (r) = @ (r),

14
A ho(r) =

o,r0f (M), (29)

By inserting these expressions into, e.g., the equation
0, = 0, one finds that the function <I>(f_) satisfies the so-

called Regge-Wheeler equation [1]

d2q>{ )
FEp (P + V()@ =0, (30)
*,0

where dr, oy = dr/f, is the Schwarzschild tortoise coor-
dinate, and the Regge-Wheeler potential reads

7+ 3
fo[ ) —3} (31)
r
On the polar side, we can solve Z; =0 to find an

algebraic expression for HS; then the combined solution to
Zs = 7, = Z¢ = 0 leads to an expression for d,H?, d,K?,
ang , respectively. The combination of the former results
inserted into Z, = 0 leads to an algebraic expression for
Hg . Again, with some algebraic manipulation one can show
that Z; = Z3 = 0 is automatically satisfied. The definition
of the Zerilli function is made through

. =2 35
K_[Zr FEEST

]cbf +£00,90,,.  (32)

2r—13 3
2rf T3 4ar

Hf = [ }pfbf + pro, (Df (33)

(+)

where A = £(¢ + 1) — 2. By inserting these expressions
into, e.g., Zs =0, one obtains the so-called Zerilli
equation [2]

d*of,
+
an, ¥ V(0P =0, (34)

with the Zerilli potential being
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(f+1) 3r°A(A+4)+6r-3

=/o 22 (3+7r1)?

(35)

Let us now turn back to the full problem. One can
formally perform the same calculations to obtain second
order in a expressions for 9,4 and 9,h{ in the axial-led
sector and for 0,H¢, 0,K?, 0,H};, H;, and H} in the polar-
led sector. The structure of these expressions is the same as
Eq. (25) because it is obtained by repeated use of the three
combination rules enumerated in the previous section.
Thus, for each given equation of a given parity, one can
use the expressions found for the functions of opposite
parity and £ £ 1 up to first order in the spin, and for the
functions of the same parity and £ & 2 up to zeroth order in
the spin. The overall outcome is very similar to the spinless
case, as here Q; =Z; = Z3 =0 are also automatically
satisfied up to O(a?).

In order to obtain a generalization of the RW and the
Zerilli equations, we propose a modified redefinition of
Egs. (29), (32), and (33) that takes into account couplings
with functions of different angular momenta, which are
introduced at each order in the spin. Given that all the
equations can be written just in terms of i, h%, K”, and H?,
we guess the following ansatz for the redefinition of
variables, based on the transformation rules that maintain
the structure of Eq. (25) unchanged,]

co_ [A=2_ 3
2r  r(3+4r)

+ Qe (SEh{H + )] +

+ 1 ot

7 7
] Py + /00,2y )

2r—3 3
H{ =
[2rf0 3+ Ar

+ Qrpr(SHhTH + i) +

p@{, | + pro, @, | lam @7
T, +)

for the polar-led ones. The coefficients s¢ and 7/ can be
further split as

S 14 C _ /L 4
;i = 8o, tasy; ti =ty +aty;. (40)

'In principle, one should be able to express the functions /4,
ho, K, and H; only in terms of the functions @) with angular
momenta £ £+ 0, 1, 2. However, since the transformations are
invertible at each order in a, and they all have the form of
Eq. (25), we find that the explicit expression of the coefficients is
more compact if expressed in terms of the original metric
functions (see Appendix B for linear coefficients and Appendix G
for quadratic ones).

+ ady, <1>f

¢ _ 1 &s @fﬁ
hl—fodD + @

+a[Qf( - 1Hf e )

2 et
+adi @,
+ Qi (sTHT + tlfK"ﬂH)}

|:Qf VO (U T )

+ Qppi QHZ(”{th + U'iﬂhgﬂ)} ) (36)

fo iam
—a,(r CI)( ))+7066D{

hG = + ady !
+a[Qf( -1t l+t6f—le—1)
+ Qz,’-&-l (nglf-‘rl + thrf’+1)i|

|:Qf VO (Ut 2 + gt )

+ Qi Qg+2(u§hf+2 + Ughg”)} (37)

for the axial-led variables, and

+ azdﬁtbfﬂ +a [Qf(s,‘f‘lhf'l + 77

[Qf 1Q(ug ' K2 + 0 T H ™) 4 Q1 Qo (uf K2 + ”foH)}v (38)

‘) —i—a[Qf( el e el

|:Qf VO (Ui KO 4w TV HEY) Qf+1Qf+2(uHKf+2+UZH{+2)i|, (39)

[

One has to choose the coefficients ¢/, d?, s¢, t/, u?, and v¢
(with i = 0, 1, K, H) such that if one 1nverts Eqs (36)-(39)
to find a consistent expression for <I>{ ) and 0,':1){ ) We can

equate the second expression to the radial derivative of the
first one, and, provided that the functions h, h;, K, and H,
are linearly independent, we can set to zero all the
coefficients that multiply them. This requirement uniquely
fixes the coefficients ¢/ and d/ and relates the coefficients
s? to the #/ and the u! to the v¢. This freedom of
reparametrization will be exploited in the next steps to
fully diagonalize the equations for the functions <I)(f )

By inserting the definitions (36)—(39) into the equations
0, =0 and Z5 =0, one finds the following generalized
Regge-Wheeler and Zerilli equations:
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dq)f ¢ £ @l ~1pt—1
dr* = (P + VL)@, = a(Al @(5) + AL IO)
2pt B2 =1 gyl -2
+a By @y + By ),
(41)
where the tortoise coordinate is dr, = dr/fy, with
iamf
fT:fo<1+Tl+a2f2>- (42)

The functions f; and f, are left unspecified for now, as
this can always be done by simultaneously rescaling the
equation and ®,). We aim to set A'{i) =0 and B’{i) =0.
This result can be achieved by completely fixing the yet
unspecified functions #£ and v¢. The full list of coefficients
up to first order in the spin is shown in Appendix B. The
steps taken up until now finally lead to the two completely
decoupled equations

=V +w7mV{i>yl+a2vf L (44)

44 (£).0

) (+)2

If we do not specify the tortoise coordinate defined in
Eq. (42), the first- and second-order potentials have the
following form:

1d%f,

Viow = Vi =5gz 207 + Vil (49)
_ 1d%f,
V{i),z = V(fi),z 2d io +2(p* + V{i),o)fz
m dfl —
,0—2 |:Z <d *AO> + 2V(£j:),1fl:|’ (46)

where the corrections at first order in the spin are

do? - 6fo(7—06r) 2p?
& _ 2 ¢ £ _ 7N A AS S A 47
ar (" + v(i))(b(i) =0. (43) QLT+ ) T A (47)
The potentials are corrected as
|
. fo
Ve = 64 (A +4)r® + 23(=72% =44+ 96)r° — 642(5)> + 81— 8)r*
(.1 (/1+2)r7(3+r/1)4[ (A 4)r =+ 24 +96)r 54+ )
2 2
—34(2922 — 844 +90)r® — 18(214% — 641 + 18)r* — 162(64 — 7)r — 864] + L3
-
(A=2)2% + 922 +154r + 9
4 2, 48
B TR P T e R (48)

while second-order corrections are given in Appendix C.
We check that if f; = 0 the first-order corrections to the
two potentials are consistent with those already calculated
in [27]. With this calculation, we show that even though
rotation introduces coupling between different parities, it is
nevertheless possible to diagonalize the system into two
separate, axial-led and polar-led, modes. One can conjec-
ture whether these modes are related to each other as in the
nonrotating limit and whether this behavior persists at any
order in the spin. While an answer to the second question is
beyond the scope of this work, in the next section we show
how the modes @, and ®_, are actually connected.

III. ISOSPECTRALITY OF POLAR-LED
AND AXIAL-LED EQUATIONS

The Regge-Wheeler and the Zerilli potentials are known
to be isospectral. This means that, even though the func-
tional form of the potentials in the two equations is
drastically different, their spectra of QNMs identically

[
coincide. The motivation for this result was shown for
the first time by Chandrasekhar [10], who realized that the
two potentials can be generated by a superpotential W¢,

14
Vel o = BWE + fo b 4w (49)
(#).0 0o 04, 0%o>

*,0

with f; = £3, and the choice of the sign is either the
Regge-Wheeler or the Zerilli potential, k, = A(4 + 2) and

£ fO

W= 5 (50)

This simple-looking relation can be explained in the
context of Darboux transformation, whose applications
to BHPT have been extensively discussed in [35]. For
the nonspinning case, the Darboux transformation is of the
form [11]
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do’
= (*>+<ﬂ+ﬂowg>q>{¢), (51)

ol =
dr*,o 2p

(+)

where a positive (negative) sign of S, determines whether
the transformation is from polar (axial) to axial (polar)
functions.

We now analyze whether this structure still exists for the
slow-spinning potentials found in the previous section. We
seek a superpotential W* that can generate the potentials
Vf 1) through a generalized version of Eq. (49),

dw?

Vi =BW? +Pog—+ kW’ +xox,  (52)

*

where « is a constant, the sign of f§, determines whether to
retrieve the axial-led or polar-led potentials, and we
truncate the calculation at second order in the spin,

W’ = Wi+ WE + a2 WS, (53)
p
K= m_mKl + a*,. (54)
p

From Ref. [35], we know that the function W¢, if it exists,
must satisfy the following constraints:

dw’ 1, . .
o =2V VE), (55)
1 d
(Vio) = Vi) ar

We solve Eq. (55) at first order in the spin separately for
each power of p. Hence, we find it convenient to perform
the further splitting

Wi = Wi+ Wip? (57)
K1 :l?l +IZ‘1P2. (58)
For the terms proportional to p, we obtain

_3—|—6rl+r2/1(/1—2)
3r2(A+2)(3 +ra)?’

Wi =k, (59)

where k; is an integration constant. By checking the self-
consistency of the result with Eq. (56), we find that it is
satisfied only for a specific choice of the tortoise coordinate
(42), which until now was left unspecified. Explicitly, one
has that the first-order function of the tortoise coordinate
must assume the form

3dW¢
2 dr*,o '

K, _
-5+ (20+ﬁ%;wg> Wy - (60)

In order to have consistency with Egs. (55) and (56) also for
the terms proportional to p~!, we find

Wi r*(3r—4)A(A+10) + 12r — 36

1 2f1, 61
A I T B AL
B _ - 2

K| = O, K| = _kl :§ (62)

The calculation at second order in the spin proceeds
analogously. Since it is longer, but essentially similar to
that at first order, we show it in Appendix D. Indeed, we
find that in order to find a generator of the potentials, we
need to fully specify the tortoise function f,. Differently
from the first-order case though, the consistency of the
Darboux transformation does not fully specify all the
integration constants.

With this calculation, we show how one can transform
the Regge-Wheeler equation to the Zerilli equation and vice
versa up to second order in the spin, upon a suitable choice
of the tortoise coordinate. We conclude by explicitly
showing the Darboux transformation between polar-led
and axial-led quantities,

or, =20 (50 g ey (63)
&~ dr, 26, ° (F)

The existence of this transformation implies that the
spectrum of the two potentials is exactly equivalent since
it does not modify the boundary conditions, as it happens in
the nonrotating case [35]. The only difference is that the
Darboux relation is manifest only for one specific choice of
the tortoise coordinate. We check that this functional form
of the tortoise coordinate cannot be related with any
previous choices already existing in the literature. We
assume that one can find a more general transformation
that links the two equations if the tortoise coordinate is left
unspecified. In any case, we want to stress that there is
nothing special about truncating the expansion at second
order in the spin, and we expect this trend to continue even
at higher orders. We now turn our focus to the relation
between the Regge-Wheeler and the Zerilli equations and
the Teukolsky equation in the slow rotation limit.

IV. ISOSPECTRALITY WITH SLOW-SPINNING
TEUKOLSKY EQUATION

A. Teukolsky equation

BHPT for Kerr BHs is most commonly studied within the
Teukolsky formalism [3]. This approach works by projec-
ting the spacetime onto the null Newman-Penrose tetrad and
by analyzing the geometrical relations between some
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components of the projected Weyl tensor, which is the trace-
free Riemann tensor. All the information of the projected
Weyl tensor is contained in five complex scalars. By
considering the perturbation of these Weyl scalars, only
two of them cannot be set to zero with an infinitesimal
gauge transformation. We commonly refer to them as ¥(©)
and W®, which can be treated as linear perturbation
quantities since their background vanishes for the Kerr
solution. The Teukolsky equations are linear second-order
differential equations for W(*4) which can be considered as
perturbations of internal spin s = %2, but they are also valid
for s = 0 (scalar perturbations), s = 41/2 (spinor pertur-
bations), and s = +1 (electromagnetic perturbations). Their
entire derivation can be found in detail in [11]. Here, we
report the general form of the Teukolsky master equation,

2
s

A

2 2\2
{(f +a) )

A - azsinzé} 2y +

a’ 1
+ {K - m] ) = A0, (A o,y

1
— ———0y(sin Q9gy®)) + (s cot @* — s)y'¥)

sin @
a(2r—1) .cosf :
_2 ’
s[ 2A +1sinzé] ad
2_ 2
—2s [% — r—1iacos 9] oyl = 0. (64)

For the analysis pursued in this paper, we are only interested
in tensor perturbations (s = £2), for which the perturbation
function y(*) can be linked to first-order perturbations of the
Weyl scalars as
w?® =y, w™? = (r—iacos 0)*P® . (65)
In the Teukolsky equation one can decouple the radial and

the angular part by choosing the following mode decom-
position:

Wb = RS (0) . (66)

For the angular part one gets

1 P )
—— 9y (sin 00,5") ) + {Zmap cos 0 — a*p?cos?0
sin@

(m + s cos 6)? a1 (s
~ e Tt A8 =0, (67)

(s

where the functions szl are known as spin-weighted

spheroidal harmonics; i(;rl is the separation constant, and

it depends on the frequency p. We find it more convenient to

work with the reduced constant 7\% = /1(;,,{ + (s +|s|). The

constants ?\% are only known numerically, but we report

here their value up to second order in the spin
7‘2;)1 ~A+ iampfl(ls) + a2p2/1§s), where [36]

. 242 g 14+PY Py
where we define
) (2 — 52)?
PY) = 208 (69)

Finally, the radial part of the Teukolsky equation must
satisfy the following equation:

A=9,(A+19,)RY) + 207

—da

K? —is(2r- 1)K
A
+ 2maw + 4iswr — ﬂ%] EZ)

m

=0, (70)

with K = (r? + a*)w — am.

B. Isospectrality relation

In order to show the isospectrality between metric and
Weyl scalar perturbations up to second order in the spin, we
borrow the notation to write the equations introduced by
Chandrasekhar in [11]. First of all, we introduce the
operators

d

A =
* dr,

+p. (71)

Then, after redefining the radial functions as

RO)(r), (72)

one can compactly write the Teukolsky equation for the
perturbation variable U 2

A A_U+PA_U-QU =0, (73)

where

P =

d 2
dr, (%) 7

Note that f is the tortoise function defined in Eq. (42), and
fp and Q are functions that must be specified such that they

The two +s polarizations defined in this way satisfy complex

conjugate equations [11]. Moreover, the separation constants /158)
are identical for both choices of the spin. From now on, we focus
on s = 2 only and drop the index s everywhere.
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match the Teukolsky equation. We find that a convenient
definition is

fr (M fi ]

With this choice, the effective potential schematically takes
the form

0= 0 +i“7'”Q1 20, (76)

where we labeled with Q, the effective potential of the
Bardeen-Press equation, which, as we know from the
relations obtained by Chandrasekhar [11], it can be related
with the superpotential W, defined in Eq. (50) as

f3
I"4W0 '

Qo = (77)

We furthermore split first- and second-order corrections by
powers of m and p as

2

0 = Z 01", (78)
i=0
2 MG~ .

0, = Z Qrip" + ya Z Q2" (79)
i=0 pa

with Q; ; and Qi’ ; functions of r and ¢. The choice of fp
given in Eq. (75) is such that the first-order expressions for
0, take the rather simple forms

Q10 =200f1, (80)
df,  3-2r 1 —2r
= -2 2 , 81
011 dr.o p fi+ ! (81)
2 A
Q1,2:F+2f1+f0r—§7 (82)

whereas the expressions of Q, are

3—r(A+6
Oy = ﬁ +200f>2, (83)
df, 3-2r (11 —=6r)r—
0y = dar.g fa+ For ) (84)
241 A
0r0 = =y 2f2+ fo ri , (85)

022 = =2(Q12 = 2f1)f1- (87)

In the limit @ — 0, the Teukolsky equation reduces to the
Bardeen-Press equation. In [11], Chandrasekhar found an
elegant way, which he labeled transformation theory, to
transform it to the Regge-Wheeler or the Zerilli equation,

which, in the notation used in this section, appears as

A+A_q)<i) - V(i)q)(i) - 0, (88)

and back. The transformation found by Chandrasekhar is
more general than the Darboux transformation used in
Sec. III, and it falls within the class of generalized
Darboux transformations [35]. It is remarkable that the
transformation theory naturally embeds the isospectrality
relation between the Regge-Wheeler and the Zerilli equa-
tion, as we made manifest by explicitly showing the relation
between the Bardeen-Press potential Q, and the super-
potential W, in Eq. (77). We now want to see if the slowly
rotating Regge-Wheeler and Zerilli equations can be linked
to the slowly rotating expansion of the Teukolsky equation
in a similar manner.

Let us revise how we obtain the transformation proposed
by Chandrasekhar, slightly generalizing it. The first step is
to assume that field U transforms as’

U=fN®+ (T -2pf)A,®. (89)

where ¢/ and T are the functions that we want to find.
Alternatively, by using the fact that @ satisfies Eq. (88), one
can rewrite the transformation as

U= fV®+TA,®. (90)

The application of the operator A_ to both sides of the

equation yields

f2
AU =-— 7 “Tpo +RA, @, (91)

P

where we introduced the functions f and R defined from
the two relations

f2
</v> (T=2/)V=0. (92)
%ER—/V—SFTZO. (93)

From now on, we drop the label £ from the Regge-Wheeler
and Zerilli functions, as each transformation must be intended for
the two fields separately but with the same functional form.
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Now, we require that the function Y satisfies Eq. (73), which
leads to two additional relations for the free functions that we
defined as

Zdﬂ

Ky =
2dr,

(94)

IR RP - (OT - 2R) - fﬁ—o. (95)

P

%45

Finally, it is worth noticing that one can combine
Egs. (92)-(95) into one single integral relation

[
Hs = f2 RV + pT = K = const. (96)
This last relation assures that, if a transformation is found,
the inverse transformation also exists,

3

KO =22

(RU = TA_U), (97)

KA, ® = pU + ji—% V/A_U. (98)
T

Now, we assume that the unknown functions /£, R, T, and
p as well as the constant K can be expanded in powers of
a, m, and p in the same form of Q given in Egs. (76), (78),
and (79). In the limit @ — 0, they must reproduce the same
value found by Chandrasekhar for the generalized
Darboux transformation between the Bardeen-Press and
the Regge-Wheeler and Zerilli equations,

fho=1,  Po=43,  Ry=0 (99

KO = Ko, (100)

and Ty = T, + 2p. For the next orders in the spin we solve
the equations Z|, #,, #Z4, and Zs, assuming that they
vanish independently for each power in p and m. We were
able to find a solution to the problem, as schematically
shown below.

At first order in the spin the functions to be specified
are /15 Pris Ty Ri;=Ry;— Q1 and Ky, with
i=1[0,1,2]. We also find it convenient to rewrite
Vi = Vio+ Vi,p?. We find terms proportional to p* only
in #Z,, %4, and #s. By making them vanish, we find that

Fli2=Pa=R2=0. (101)
We can manipulate the terms proportional to p? into three
algebraic relations and one first-order differential equation.
Their solution reads

2 =T T — =, 102
fha=Tir+ 0V0+V0dr*,0 (102)
1 (012V
2 K, —— \% — BT 5, 103
fii =Ko W0< 0o +Vio PoT 2 (103)
- 3- do
2Ry = QT + ( )le q L2 (104)
s 0
I o
T1,2:—7—(3 +Bo) (Wi — ki) + 1, (105)

where 1, is an integration constant. Analogously, the terms
proportional to p can be written as three algebraic relations
and one first-order differential equation, whose solution is

Wo Qo

20 f10=Tia=Toffr1+ (Bri=BoFFr1)
R
’ 106
dr*o ( )
R Ko
2br0= Kll""%(ﬁ—//ll Q101> —poT11— Oﬂol’l,
(107)
2
2R 9= Qy(T1 1 + P11 Wy)
“ar 108
dr.o (108)
F A 4(r+1
2T 11 =TT —=Vip— 010 —2f1 + 2f0r_§+ ( 73 )
+K07_<1 +l1, (109)

where ¢, is another integration constant. Finally, from the
last group of equations we obtain

df] 1 deO 3—2}’R10
Tio=—+——=-p1Wy—-2 =8
1.0 dr*’o QO dr()’* ﬂl,O 0 I"2 QO
+ (To +2BsWo)f1. (110)
Ky =2pot, — 44, K1 =2ppt) + Kota, (111)
KIA,O = Kot]. (112)

We check that these relations can be found only for the
same choice of the tortoise coordinate f; as given in
Eq. (60). This shows that the deep intimacy between metric
perturbations and the Teukolsky formalism is maintained at
first order in the spin. We argue that a different choice for
the tortoise coordinate can still admit a generalized
Darboux transformation between the Regge-Wheeler, the
Zerilli, and the Teukolsky equations at first order in the spin
but not with a compact form polynomial in p. It is worth
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noting that the integration constants #; and ¢, are left
completely unspecified from the calculation.

The calculation at second order is complicated because it
has more free functions, but it can be performed in the same
fashion: treating each term with a different power in p and
in m as independent and setting it to zero. In this way, we
are able to find a consistent solution, provided that the
tortoise coordinate is the same as that selected by the
isospectrality analysis of the Regge-Wheeler and Zerilli
potentials described in Sec. III. The whole, generalized,
Darboux transformation is presented in Appendix E.

V. DISCUSSION

A. Metric reconstruction

Throughout the calculations performed in this paper, we
managed to find a set of analytic transformations that bring
slowly rotating Regge-Wheeler and Zerilli equations to the
spin-2, slow spin limit of the Teukolsky equations and vice
versa. The second direction is of particular interest for
various fields of gravitational physics because it allows one
to obtain the perturbations of the metric /,;, once the gauge
invariant Weyl scalars $° and W* are known. We summa-
rize the main steps of this transformation, with direct links
to the necessary equations provided in the paper.

(i) The Weyl scalars ¥° and ¥* must be decomposed

according to Egs. (65) and (66). The radial functions
R(ff) (r) can then be transformed into the variables
U(;fnz)(r) as specified in Eq. (72).

(i) The relation that tells us how to transform the
Teukolsky variable to either the Regge-Wheeler or
the Zerilli variables is given in Eq. (97). This relation
depends on the quantities R, 7, and K, which have
been provided up to second order in the spin. It is
worth noting that these quantities depend on the
parameter f, = +£3, for which the sign choice tells
us how (I)’f 1 (r) are given in terms of U (;,Bl(r) and its
radial derivative (up to an integration constant). The
transformations for U ;;12) can be found analogously
by following the calculations provided in this paper.

(iii) Once one knows @™ (r), the functions h{"(r),
h{™(r), H{™(r), and K’"(r) can be constructed
from Egs. (36)—(39). Indeed, by repeated use of
these equations, and by keeping terms up to second
order in a, one can write

By = @l + i 4
(5 0% 1)+Qf+l( %
‘Hffrl)a d)’{“)]—f—a [Qr- 1Qf( i 1@{—)2
+ U_(f )1() q)f 2) + Qf+1Qt’+2( )q)l(/ﬂ+)2

+ o] 10,9017, (113)

000, +alQcls {2 of]

= K’, and
df

where hg’(_) = h{, hf(_) = h{, hi,(ﬂ

h{,(ﬂ = H{, and the coefficients cf(i), e
sf(i), tf(i), [ (+) can be related to the
coefficients ¢?, d?, s¢, t/, u?, and v¢ introduced in
Sec. II C. Finally, the remaining functions H{ (r) and
HY(r) are determined by the constraints set by the
polar-led equations discussed in Sec. II C.
All of these steps completely determine how to construct, in
vacuum, the first-order perturbation metric h,, in the
Regge-Wheeler gauge, up to second order in the spin
starting from our knowledge of the Weyl scalars.

¢
uf(i), and vl

B. Generator of the slowly rotating Regge-Wheeler
and Zerilli effective potentials

Another very remarkable result of this paper is that we
could find the generalization of the Chandrasekhar super-
potential up to second order in the spin. This allows one to
have a handy and compact formula to generate the first order
to the Regge-Wheeler and Zerilli equations (47) and (48),

V{i),l = (K() + 2ﬁ%Wg)Wf + Kok

de]

+ﬂof0[ Wi+ 1 (114)

and second-order corrections (see Appendix C)

d dw
V()2 = (Ko +285W5) W5 + Kok + Bofo [ Wi+ fa 0}
dwf]

—ﬂo P |:ﬂ0Wf2+flfO (115)

The explicit expressions of W5, W¢, ko, k|, and f are given
in Sec. III, whereas expressions for Wg , kK, and f, can be
found in Appendix D.

We stress that the function W and the selection of the
tortoise coordinate f; are naturally consistent with the
procedure that links the slowly rotating Teukolsky potential
with the Regge-Wheeler and the Zerilli potentials. This
procedure also leaves some integration constants unspeci-
fied. We argue that this result can be interpreted as the

freedom of scaling the functions Uz(;;lz)(r) through the
Teukolsky-Starobinsky identities [37,38].

C. Kerr metric perturbation conjecture

The deep link between metric perturbations and curvature
perturbations revealed by Chandrasekhar’s transformation
theory solidly holds up to second order in the spin. For this
reason we conjecture the existence of a couple of yet to be
discovered equations that generalize the Regge-Wheeler
and the Zerilli equations for any value in the spin. These
equations would describe the perturbations of a Kerr metric,
rather than the perturbations of its curvature as in the
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Teukolsky equations. Past investigations failed in finding
these equations, but we hope that the results of this paper
can fuel new research in this direction. The possible
discovery of such equations would give insight into the
isospectrality of modes of definite parity for fully spinning
metric (see, e.g., the Appendix of [39] for a discussion on
reconstructing parity definite metric perturbations on a Kerr
background).

We remark that we compared the slowly rotating Regge-
Wheeler and Zerilli potentials with those obtained by
Chandrasekhar and Detweiler in [40]. The Chandrasekhar-
Detweiler potentials are obtained by performing a gener-
alized Darboux transformation to the Teukolsky equation
that brings it into a Schrodinger-like form. Among these
four potentials, two reduce to the Regge-Wheeler potential
in the nonrotating limit, while the other two reduce to the
Zerilli potential. These potentials have been useful to
compute Kerr quasinormal modes with a Wentzel-Kramers-
Brillouin method [41]. Moreover, it was shown numerically
that the lowest-order quasinormal modes of one of the
Chandrasekhar-Detweiler potentials, which reduces to the
Regge-Wheeler equation, agree with those computed from
the Teukolsky equation until second order in the spin [42].
Unfortunately, the shape of the first-order correction in the
spin to the Chandrasekhar-Detweiler potentials is always
different from the corrections found in this paper in
Eqgs. (47) and (48). We also studied whether transforming
the equations into a different gauge or using a different
tortoise coordinate could bring the potentials into the same
form, but it was not possible. We argued that the two classes
of potentials must then be linked by a generalized Darboux
transformation, even if we were not able to prove it.

VI. CONCLUSIONS

In this paper we provided a complete formalism to study
vacuum BHPT in the regime of slow rotation up to second
order in the spin. We described how to perturb a slowly
spinning Kerr metric in the Regge-Wheeler gauge in the
frequency domain, and the prescription to decouple the
radial and the angular contribution to the equations. In this
way we obtained seven polar-led equations and three axial-
led equations, where each mode of angular momentum ¢
couples, starting from the first order in the spin, to modes of
different parity and angular momentum # &+ 1 and, starting
from second order in the spin, to modes of the same parity
and # +2. We showed that a suitable redefinition of the
variables allows one to completely decouple modes of
different angular momentum and parity, leading to two
diagonalized second-order differential equations that gen-
eralize the Regge-Wheeler and the Zerilli equations up to
second order in the spin.

We then proved that these two potentials are not inde-
pendent from each other, as a transformation that brings
one to the other and vice versa was found. The existence of
this transformation ensures the isospectrality of the two

potentials, as well as the existence of a function that
generates them. This generating function, also known as a
superpotential, can be understood by comparing the metric
perturbation equations to the Teukolsky equations. Indeed,
we found that a third transformation that links Teukolsky,
Regge-Wheeler, and Zerilli equations still exists at second
order in the spin. We discussed how the existence of this
transformation naturally embeds a procedure of metric
reconstruction.

The approach taken in the paper does not seem to single
out a reason why these results should not hold at any higher
order in the spin expansion. The only impediment is the
increasing difficulty in the calculations, especially for the
computation of the integrals that appear in the process of
decoupling the equations of motion, such as those listed in
Appendix A. For this reason it would be revolutionary to
find a prescription to study gravitational perturbations of a
Kerr metric for any spin. Moreover, we expect that the
covariant and gauge-independent formalism developed
in [43,44] should also hold at any order in the spin.

The results of this paper are very relevant for different
fields of application. The difficulty of studying quasinormal
modes of rotating solutions in alternative theories of gravity
requires some sort of simplification of the problem. One
possibility often encountered is to evaluate them perturba-
tively in the spin, as it was done in [28-32]. It would be
interesting to see if, at least in the small coupling limit, one
would still get a slowly rotating Regge-Wheeler equation
and a Zerilli equation plus a correction due to the mod-
ifications of GR. By writing the problem in this form, one
can use more accurate methods for the computation of the
quasinormal modes, rather than the direct integration
usually employed in these cases, e.g., the continued fraction
method [45].

In the context of quasinormal modes computation beyond
GR, there was recent progress in developing a generalized
Teukolsky equation for any metric that is modified from the
Kerr metric by a small parameter [15-17]. Such a derivation
requires the knowledge of metric perturbations, which
appear as a “source” term for the perturbations of the
Weyl scalars. Even though the procedure outlined in
this paper is only perturbative in the spin, we stress that
all the terms that require the metric reconstruction are
multiplied by the small perturbative parameter of the theory.
In an analogous case for scalar field perturbations on top of a
non-Kerr BH, it was shown that treating this term in a small-
spin expansion does not strongly affect the computation of
the quasinormal modes [46].

Finally, it would be interesting to generalize the metric
reconstruction procedure to the case where a point particle
source is present in the spacetime, along the lines of [22].
This prescription would be useful in the context of self-force
calculations, as it was noted that second-order contributions
are necessary to compute accurate waveforms of extreme
mass ratio inspirals [9].
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APPENDIX A: USEFUL INTEGRALS

According to the author’s knowledge, the integrals
appearing in the decoupling of the equations in Sec. I[I B
|

Cofe=fr [ 400080V Y = 120, Q0 + FAQ+ Q) + Fe12 Qi Qi

Sife=fo / dQsin 9Y§9Y*ﬂ = =1)fra1Qr = (€+2)fr1Qp41-

Sef =1 [ dQsin00s0YGYY = (6 = 2f¢20010s + S (¢ @y = (€ + D) = (€ +3)f 112911 Qs
Sife=fr / dQ SiﬂerY}ﬂ ==+ O)fro1Qr +€fr1Qp 41,

Sofs Eff’/dQ sin@cos OY Y = —(€ 4+ 1)fr2Qp1Qp + fr(£Q2., = (€ 4+ 1)Q2) + €f1:2Qr11Qs 12,

are not explicitly computed in the existing literature. For this
reason we report them here for the interested reader. All the
expressions are obtained using simplifications due to the
completeness relation of spherical harmonics (16), as well
as the spherical harmonics relation (17). By recursively
applying the mixing of the spherical harmonics and their
derivatives with the trigonometric functions (18) and (19),
we obtain the following expression:

lefEfLﬁI/dQCOSQYfY*f/ =fra1Qr+ o419 41

(A1)

(A2)

SSf, Eff’/dQ i OY5YY = (€ = 2)(€ 4+ 1)fr2Qr1Qp + fo(£2Q2,, + (£ +1)°Q2)

— (€4 3)fr4297+19¢12-

(A7)

With the knowledge of these integrals we can compute the following operators, where we defined Sy f, = 0 and Cyf , = f.
For the class of equations belonging to the second group, one would need to use

A fr=fr / dQcosna(Yf;Yff +

sin? 0

dQ , N
B.fe=fe / g O(Y,, Yy =Y ) =imnC,_f .

Xofe=do [ dQ0o 00X TS = WOYL) = imiC, (4= 20) + 208,

fy*/’

- . X S
X, fr=fr / dQcos"0 (sm oWy + S—"’) =2 [nm%zn_l - (n+1)8,.1 - (% - c,lH) %} £

in @

Asfr=fr / dQ(sin? QY{;YTHL”’ - Y@,Yj;f’) = (85 —m?)f,,

Byf,=fp / dQ sin e(Yiprgf’ + Yf;Yf;g’) =im(S; = S))f,.

while for the third group one has

Yf £
" ) - [Cn(/1 + 2) + nSn]ffv

(A8)

(A9)

(A10)

(Al1)

(Al12)

(A13)
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Fofr=Ffp / dQcos™ O(Y, X = YO, W) = im[(A+ 2n +4)C, — 2C,(A + 2) — 2nS, ] f+.

) Yf *f!
Gofr=Ffr / dQcos" 6 <Sin oY, W + L) =2m*nC,_; — (A +2n+4)S,,1 —2C,1 (A +2)]fss

sin @

Hf, Eff//dQsin2 OY W' = [(A+2)(C, — 1) =28, + 2m?|f,.

Hfr=fo / dQsin? OY X = =2im(S, — Cy)f .

, Xzf’x*f’
Tofs = s / a0 (W,,ﬂW*f + ) — xof s

sin% @

fx*zf”

;X
jszzfﬂ/dgcoszH(W,gW*f +

sin?

) =[8m?> + ((A=2)C, =28, = 2)(A +2) = 2(A + 6)S,]f

dQ

Kofe=fe /m (WX —=X‘W*') =0,

dQ ) , .
’szf = fg/ /Singcosz G(fo*f - XfW*f ) = —21m[(51 + 3C1)(ﬂ. + 2) + (/1 + 6)(81 - Cl)]ff’

where we note that 1 = ¢2 + ¢ — 2 and xy = A(4 + 2).

APPENDIX B: DECOUPLING COEFFICIENTS

(Al14)

(A15)

(A16)

(A17)

(A18)

(A19)

(A20)

(A21)

Let us present the explicit form of the coefficients that appear in Egs. (36)—(39) and that allow a complete decoupling of
the slow-spinning Regge-Wheeler and Zerilli equations. We report here only the coefficients proportional to a, while those

2

proportional to a~ are reported in Appendix G,

o —__ 5fo oo L oo _Joue p* 24+ 3r(A=6) + 87+ (A +6)
O e+ 1) LRy K pr 7 121 +2) 4r°(2+2)(3 + Ar) ’
,  21+18rA+72(34-2) , 12r—11
Cn = 7 P 4 P
rfo(/1+2>(3 + rﬁ) 4r fo
N 843P — 222(194 + 20)r* + A(294% — 761 — 312)r3 + 12(94% + 224 — 36)r> + 27(A + 22)r — 180
20+ 2)P fo(3 + Ar)? ’
p 1 i’ 2pr , fo 2(¢+3)r°p* (£+2)2rf* +6rf —¢ +3)
Ky ==, = RY = - 5
O+ O foe 12 T (Pr43er+3) | (£+1)? 2r(¢ +1)
‘ p —4r20( + 56 +6) +2r(87 + 567 +26-6) +3(£ +1)  2(£+3)rp’
007 (L2 + 3¢r + 3) 2r(€ 4 1)? (£+1?2 |
;2 43)fo[eler+2r—1)  2p? ,  200+3)(¢+2)
Shx = 3 + ek =2
’ ¢+ 1)pr r £+1 : ¢+ Dr

o LA+ Yr-3(f+3)] -4 4+ NP, _2AC+3)20r+4r-3)
O.H (€ + 1) (¢ +1)? O.H = (€ + 1)2for?
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APPENDIX C: EFFECTIVE POTENTIAL

In Sec. II we found that the perturbations of a slowly rotating Kerr BH can be recast into the same form of the Regge-
Wheeler and Zerilli equations and that the potentials receive a correction in the spin of the form given in Eq. (44). Here, we
report the explicit form of V{ )2 defined in Eq. (46). For the axial sector we have

m2
oam s

24(7—6r) 12(47—40r) 2(6r2 —250r—315) 420(6 —5r)
(A+2)3° (A+2)%r8 (A4 2)r8 (5 +42)r°
20-10) L6742 19) = 26r(4 - 13) =231
(A+2)(5+42)r? (A+2)%r10p? '

—mzfo{ (C1)

while for the polar sector we find

_ m>  mfy [2(44— 1A%  2(342° 4 1354* = 51313 — 175322 — 3121 + 60) 43
<+>-2__7+(3+M)5{ A+2 (A +2)3(5+ 44)
(704 + 8102* + 559913 — 39842 — 266764 + 1704)43
(A+2)3(5+40)r
(9292° + 53104* + 4012123 + 335164 — 1289804 + 16272)4>
(A+2)3(5+42)r?
3(29932° + 87604* + 930124 + 1468241 — 2439121 + 19728)4  1944(81> — 271 — 134)
2(A+2)3(5+44)  (A+2)3(5+ 47
9(64031% — 206424% — 54548 4+ 135720)  9(53751* — 115124° 4 223284% 4 229320/ — 65664)
B 2(A42)3(5 +44)r° - 200+ 2)3(5+4)r
3(85034% + 13744* + 1600204% + 45521647 — 3494161 + 11664)
204 +2)3(5 + 4t
2m%fop? 3(32% 4+ 2643 + 21447 + 5281 — 24))
(A+2)(5+42)3+ri)* { (A+2)?
18(174% — 641 —304)  6(7123 — 1364> — 7544 +468)  12(194% + 164> + 44 + 312)4
G+ G+2727 G+ 27r
4224 =723 = 5722 =764 + 12)2%r
- (A+2)? }
mf, 3(1322 + 614 +36)4 (9243 + 19747 — 942) — 1032)4*
A+27(3 + rd)'p? [_ P * i
(=1074* 4 66513 + 4582)% 4 7264 — 7272)2°  3(1182* 4 13823 — 113342 — 31804 + 1872)4?
* 27 B P
18(8423 — 13722 + 3174+ 90)4  3(2914* + 4552 + 221122 — 51064 + 1080)4

! 70

54(1 1542 — 11381 + 918) 9(443/13 + 231912 — 86704 + 2808) 648(424—97) 25920
+ B - 2,8 + 10 A

+

— (12— 64+ 2)13P

1

APPENDIX D: SUPERPOTENTIAL AT SECOND ORDER IN THE SPIN

In Sec. 111, we showed how to the derive the superpotential that generates the first-order correction to the Regge-Wheeler
and Zerilli equations. Here, we proceed to show the analogous calculation at second order in the spin. First of all, it is
convenient to split Wg and x, into five parts, such as

044079-16
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A

- - Wi 7
W5 = W5 + W5p? +m? (p—j + W5+ W2p2>, (D1)

12. m
Ky = Ry + Kop? + m? Q—; + &+ K2/72>v (D2)

as well as splitting the tortoise coordinate function at
second order as

2 o
f2:f2+m2<f2:2fl+]z>-

(D3)

Let us insert this expansion in Egs. (55) and (56) and take
quadratic terms in the spin, assuming that W4, W¢, f,, and
Kk are specified as in Sec. III. By setting to zero the term
proportional to p>m° in Eq. (55), we obtain

(A=6)(21+1) 2
3(A+2)(44+5)r(Ar+3)  3rfo(A+3)
9(A2 + 1 —6) + (=423 + 342+ 36)r?

3(A+2)(A+3)(4A+5)r?(Ar + 3)

Wi =k, +

(D4)

Analogously to the case linear in a, we find that the p?m°
term of Eq. (56) vanishes for this choice of the tortoise
coordinate.

}, - K'()IZ'Z + 1 fo(/l + 5)
T2 T 2fy (4 +5)
Ko | movwe \vie édW;
+ <2 +/30W0>W2 2dr,’ (D5)

We now move to the term proportional to pm®, and
Egs. (55) and (56) are satisfied simultaneously when

L 2yy¢ | (823 + 5202 4952+ 54)22  54(1—2)
WE =T |1+ +— + 5 - .
ko | 6rfo(A13)  (5+44)(3+ 1) 6(A+3) A+2)r
B 9(3142 = 1114+ 326) 3 3(474% —3684% + 8431 — 1074) n —1002* + 156713 — 30451 + 78364 — 1116
4 +2)r° A0 +2)r" 1201+ 2)7
3 425 — 14825 — 1592* — 3932° — 4095)? — 2524 — 324 n (1225 +342* 4 2812 +10294% + 6181 +216)1 (D6)
6(A+2)(A+3)r? 6(1+2)(A+3)r '
(=10 o6\
kz = k] W, Ky = —k2 + k2 (KO> s Ky = —kz. (D7)

We can see from the previous equation that the constant k, that comes from the integration of Wg is not fully specified by
the equation. We now solve the terms proportional to m? in the Darboux relations. Let us start by checking the relation (55)

for the term proportional to p>m?, for which we infer

o 1 =234 + 1164% 4+ 5904 + 3524+ 72 224+ 1)22r%  —174% + 641+ 304
T B4 3(A+2)3(44+5) 3(A4+2)(44+5)  (A+2)3(44+5)r
2(=2* 4+ 1723 +782% + 804 +24)Ar  —2823 + 382% + 3201 + 48 (D8)
3(A+2)3(44+5) (A+2)341+35)r ’
and again 22 is an integration constant. From requiring consistency with Eq. (56) we must fix
KoR foA=10)  p2 x ¢ 3dW,
v 0K2 oA — 0 v/t 0 2l \1q 2
= -—W — Wi | Wy — = . D9
J2=73 (2 +2)(5 + 42) 1+(2 +hs 0> 2 2dr, (D9)
Then, repeating the procedure for the terms proportional to m?p°, we obtain
o (R Rk W RWE? 1 3(802% — 2172 — 1186)
Wl =k (k2 + K2 0 0 _“£95.2
2 =Rt 2r Tl et (3+ra) 2(A42)3 (444 5)r°
L (2841 4 10512° + 3324* — 58222% — 118604> — 21204 + 720)A>  8114% — 64164% — 96861 + 32652

36(4+2)3(44 +5)

4(A+2)3(4A+5)r
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3972 — 352723 — 78212 4 218281 — 14568 n

52723

—33222% 4 32964% + 2259212 — 362961 + 4176

2(A+2)3(44+5)r*
776/16 — 11232° + 104642* 4 259024° —

3972422 + 186004 + 432

4(A+2)%41+5)r
(8% — 4613 —2022% — 1561 + 9)*r

12(A+2)3(44+5)r?
N (1642° + 51825 + 23792* 4 338413

9(A+2)(44+5)

6(1+2)*(41+5)r

as well as

d2
4dr:

KoKy

fa= 2+—

¢
W (ko +ﬁ0W’f))+3dW ]f

2dr,

s T(A=10) + 12
- Wiwe +

—29742% + 34324 + 216)1}

3(614 + 744 — 180) + 2(2543 + 452% + 961 + 320)

(D10)

3dwy Ko oo\ e 3AWS
2dr, ]+<—+/}0W0 HERE YT

ﬁ[z

rP(A+2) 0

Finally, from the terms proportional to m?p~2 we obtain

< (ky + &3)Ko

(A+2)3(5+41)r8 (11)

(2% + 604% + 3021 + 624)1*

(- 28500) + L [ LT

Wi =
2 36 (3+7rA)° [ 36(A+2)r
(72% +3222% + 1584 + 1202)13

(2123 + 161822 — 11844 + 1532)22

12(2+2)272
3(922 + 57774 — 3426).

6(1+2)%r
3(81% 4229972 — 19104 + 400)A _ 27(82 — 259)

4(4+2)*rt

4(A+2)r8

9(13374 — 360) 162

40+ 2727 200+ 2%

60 + 344 + 512
YA +2)2(5+44)

With this, we completely specify the function W5, upon
choosing the integration constants. Indeed, we see again
how the constants k, and &, are not specified by the validity
of the Darboux transformation.

APPENDIX E: TRANSFORMATION THEORY
AT SECOND ORDER IN THE SPIN

We now sketch the form of the calculations carried out to
obtain the second-order spin correction functions £ /5, T»,
p,,and R, = R, — Q, and constant K,, which appear in the
transformations defined in Egs. (89), (91), and (96). We
find it convenient to perform the following decomposition
in powers of p and m,

ZFZ:O +mZZF2hD,

i==2

(ED)

where F, stands for any of the functions ££,, T5, },, and
R, (as well as R,) and constant K,. Moreover, in order to
express the following formulas in a compact form, it is

(D12)

20+227  (2+2)%°

~ 62,
= (o)

[

useful to split the Regge-Wheeler and the Zerilli equations
potentials, the Teukolsky potential, and the reduced sepa-
ration constant as’

i) (@

(E3)

- 80 + 601 + 1342

"A+2)2(5+44) (D13)

‘72 -2
= Vz’o + V272p2 + m2< p2

ZQZ!/O +mZZQ2u01

i=—

ﬂg) = 12 + m2/_12. (E4)
Finally, we make extensive use of the superpotential W, and
the tortoise coordinate f, as defined in Egs. (D1) and (D3),
respectively. We proceed to solve the relations %, = 0,
Hy =0, %y =0, and %5 = 0 at each order in p and m.
From the term proportional to p*m® we find

*Note that the slightly different definition of Q, compared with
that given in Eq. (79) comes from making the m? dependency in

A5 explicit.

044079-18



SLOW ROTATION BLACK HOLE PERTURBATION THEORY

PHYS. REV. D 108, 044079 (2023)

FFr2="Pra=Ryn=0. (ES)
We can manipulate the terms proportional to p?m? into three
algebraic relations and one first-order differential equation,
whose solutions are

Vao 1 dV,,
2 =T T — E6
Lo =Ty + OV +V0dr*0 (E6)
I (022V
2 =Kyy———=——+V — BoT5 5, E7
P 22 "y < 0o + Voo | = PoTss (E7)
- ~ 3-2r do
2Ry = QoT2n + <T0 +2—5 )Qz_z ()
r dr,o
2,-5 1 -
2 (34 Bo)Ws + ta, (E9)

Top=—o— 2
22 (5 +44)

where 1, is an integration constant. The structure of the
equations is maintained at order p'm°, for which we obtain

W 1 dV
2//2.0:T2$1+Q0 0801 +— 0//2', (E10)
V() dr*’o
Vo (R
20 = Koy = PoT21 = oo _WZ (5 15, 1>
(E11)
3- 2
2Ry 0 = QoTa1 + To0s1 +2=—5—Ra1 + QoWoph.
dR,
T4 E12
dr, o (E12)
2 1 i
2Ty =5 <2r——> — Kok + fo 2+ Ty,T
r for r?
=V =0ssr+ 2}2 + 11, (E13)

where 1, | is another integration constant. We find that the

equations at order pm? are consistent only by selecting f,
as given in Eq. (D5). Explicitly, we obtain

2r - 1 ﬁOWO ~ 3 2r
Thop= " — ~2 T
20 o for 12 ( —+ 0>

1 3-2r
- [2 Ry + 0> oTo] = P20Wo
Qo r

1 df>05
Qo dr*O

4A(4 - 10)
5+44

1 dR,,
QO dr*,O '

(E14)

Ky =2potr5 — (E15)

36ﬁ0k2

Ko

K21 = Zﬁotz 1 + K0t22 + (E16)

Ks o = Koty + 2f%ks. (E17)
In the first-order case, the integration constants #, ; and f, ,
are not specified by the transformation. We now move to the
terms proportional to m?. The procedure follows the same
lines as the previous one. From the terms proportional to
p>m?* we obtain

72,2 = BZ,Z = RZ,Z =0. (Elg)

Then, from the terms proportional to p?m?> we obtain

Vs
2 V3

— _ d [V
221 =Ts, +dr 5 <VL02

_ QoW
s/ (V22Vo+V3,). (E19)
0
- _ 02Vo—021Var  Vas
2 =Ky, —=2 2 == o 2t BT, E20
B 22 0uW, + W, BoT>, (E20)
= _ N —2r\ -
2Ry = QoT1, + >— 025 —T1,101.1
d0»,
_49:, E21
ar.. (E21)
Tyr =1 2(2—10) %2 (34 fo)W,. (E22)
27204+ 2)(5+42) 072
From the terms proportional to p'm? we obtain
oW %
2£0=To + 0 2 (ﬂzl +£ﬂ1 1)
1 dVy/ d v
7o — a2 (E23)
Vo dryp dr.o Vo
2pro = kzl = BoT21 = ToPas + T1261.
Vi, 0\
[/’f«( 12 ) “) /2,]
Qo
R \Vis— R2,1V0’ (E24)
W0y
2Ry 0= Qo214+ 021To— Q12711 — 01.1T12
3 - 2 dR
+2 Ryy 4+ QoWopai — er'l , (E25)
*,0
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2

—_ - ~ T — - m
2T, =1y, - # = V2= 050 +2f5. (E26)

From the terms proportional to p’m? we obtain

7 7 2 5 4 ViaVie V
201 =Too+ (T12=2//10)f1 + faTo + Q {ﬁzo-i-—lzﬂu ﬂo< = 10—1——‘/200)]
v

d Vip, d VipVig  d Voo 1dVofa

B Vao E27
//l Odr*o V() dr*ﬁ V% dr*’() VO V() dr*.() ( )
_ _ _ o Qi12Vio+RioVio—0¢Vog—RygV
26y 1 = Koo = PoTr0—ToPro+ Ti2P1o+Ti1bi1+ 12-10 Lo Vll}z 020 200
0Qo
\%4 \% R 1% ~
+—0{/)/10<£+@>+A//11 /20+f1< - Qm)—fz}, (E28)
Qo Vo Qo
2Ry 1 = QoT20— 010T12— Q12T10— Q1.1T11 + 020T0 + (012Tg — QoT12 — 2Ry 1) f1 + Qofa
3- d f2 dfy dRz.o
+2 Rzo + QoWopro — QoWi—— dr. o W2 —Qi2+— dro dr.,’ (E29)

whereas the expression for T2 o is extremely long and uninformative and we do not display it. Then, by setting to zero the
terms proportional to p~!m? we obtain

_ i Q W, v d Vv 1 dVofs_
2fr 0 =To 1+ (T11=2Lf10)f1 + 20 (ﬂz 1+ loﬂl 1) LA dr., VIOO V—Oﬁ, (E30)
) % Riop Vi -
Br2=Ky_1 = PoTr_1 — ToPa_ 1+T11ﬂ10+T10ﬁ11+ //11 —+V—+f1 - f2i
Vo Vio =
R —Ry 41, E31
+W0Qo[ 1,1< +/£f0— f1> 2, 1} (E31)
= _ - . - 3 - 2
2Ry 5 = QoTr1 = Q10T 1 =01 1T g+ Qo 1T+ (Q11Tg — QoTy 1 — 2R 0)f1 +2 Ry
df, dR,_
+ QoWoBsoy — Rij 21, (E32)
dr *,0 dr*,O

as well as Tz,_1 whose expression is extremely long and uninformative and we do not display it. Finally, from the terms
proportional to p~>m? we find

_ _ 42(60 + 341+ 522)
K>y =28yt — , E33
2,2 ﬁ() 2,2 (l‘f’ 2)2(5 _’_4/1) ( )

t
Ky = 2fota + Koo + 3k, +41, ﬂ022 (E34)
Ko

_ - - B y

K> =2Potrg +Ko| 21 — 1 + 18k, + 4114 = Pyt 1y, (E35)
1t

Ky = 2poty - 1—%+K0[f20+ﬂ0<k2+’<2—%>]7 (E36)
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2

Ky 5 =ko|ta 1_Z+ (kz +K&) |, (E37)

and the expression for T, _, is extremely long and uninformative and we do not display it. As expected, the integration
constants 7; can be freely chosen. With this last calculation we completely specified the transformation theory at second order
in the spin.

APPENDIX F: COEFFICIENTS OF THE PERTURBED EINSTEIN EQUATIONS

In this section, we provide the coefficients that appear in Egs. (11), (12a), (12b), (15a), and (15b). We start by showing all
the coefficients of the first group:

2 U U
() _ Hyp®  Hip(3—4r) of(£+1) | foldr— 1)Hj fEHq K 2
Ayy = K
00 =T T p -n" 2w P +f42+ 7 ~PhoHi = fogptKp
iam(2r—-1)H,  ,[H, 1 _2r2—|—r—1 +H2(2/) —6r—|—5)_pH’1 foH p
27 2r4 2fort r 4f,rd r? 2r
(r* +4r - 1)H|, foH) K K(22p*r*=2r+1)
LA | 2 : FI
T 2r4+ 27 "4 4for® (Fla)
(1) 2hot (€ + 1) ima® [hop(r —2) , i (8=Tr)

A, =— h, +————= F1b
1,2 a P + i for +f0 1 + 2 ’ ( )
) _ o Ha(p*r* =Tr+5) pfoH)  Hip(4r’ —6r+1) c+¢ 3

Al — 22| = (T C 2
20 =4 [ 270 et 27 oo 2r +4r6

old4re—10r + 0 r— pr —4p rt 4 14r° — 33r +
4P —10r + DHY,  SfoH, f2HL  (9r—10)K'  K(2p2r — 4p*r* + 1477 = 337 + 20 (F1c)
4r 4r4 2r? 4r 4for’ ’

ny _ 4 ho(r—2) . hop Iy (1) a? 4
o Kp(Qr—=3) Hypfoy H fol(€+ ima (Hy+ H

Ay = (2;»2 - 2r N 02(r2 )+pf°K/ 27 Ozr == Hip+ foHy

a? m*  fo 3Hop  Hop(1-2r) pK’ Kp
9\, (28 _To) - P FI
+ r [ <2r2 r3> 4r3 + 4r? 2 2f0r2] (Fle)
) fo (€ +1)  ima® (hipfo 4h
AV) == am e e (TR foly ). (FIf)
2
) a*[3Hgp ré¢(¢+1)+6 3 . 3Kp
Ay, =— H Hyp|=—— I-=|K , F1
2.0 r3[4r2 + foH, 2,2 P\3777) TP 2 T (Flg)
2 11 i 2
2 _a p- fo\ [ hop phy| [ ima hyo @ _ H(r+1)
Bie= r {hl (2_1’2> L 2r i  for? o Brr=afo P (F1h)

044079-21



NICOLA FRANCHINI PHYS. REV. D 108, 044079 (2023)

3 Hyp (f + D\ 3foHy (4r=3)foHy f5Hg (4r =3)foK'
A(()”’L T2 ( L 47 o 4r? 02 S + 2r2 +f(2)K”
iam (H, a2 m?>  2(p*> +4)r> —10r + 3 pH|, Hip(=2r* +r*=1) foH
~H H Hy( 22 i -
= <2 3~ Hap+ o ) [ 2 <2r2 * 4for 2 2for 2r
23 =12 —8r+9)H, H!  Hy(22r* = 36r + 15 3—-4r)K’ K" K(87*—=10r+3
N B Oy | foHy Ho@2 =36r +15) (340K fok" K(SF-10r83))
4r 2r 4for 4r 2 4fqr
() _ ima? o
Ale =3 (hop + f51)). (F2b)
2 2 2 2 /
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APPENDIX G: DECOUPLING COEFFICIENTS, SECOND ORDER IN THE SPIN

In this appendix we provide the decoupling coefficients that enter at second order in the spin in Egs. (36)—(39). We find it
useful to define ' = (A —4)(A+2)r? +6(A+ 1)r+9 and A = 3 + Ar,
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