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Extreme mass-ratio inspirals (EMRIs) are the most potential sources detectable by the Laser
Interferometer Space Antenna (LISA). To analyze the influence of higher harmonics on parameter
estimation for EMRIs efficiently, we use the waveform model that the phase trajectories are relativistic
flux-based adiabatic trajectories and the waveforms are constructed by the augmented analytic kludge
method. We perform a Fisher-matrix error analysis of the EMRI parameters using signals taking into
account the motion of the LISA constellation and higher harmonics of gravitational waves. Our results
demonstrate that including higher harmonics greatly reduces the errors on the exterior parameters such as
inclination angle ι, the luminosity distance dL, the polarization angle ψ , and the initial phaseΦ0, except for
source localization ΔΩ when EMRIs face us. However, the influence of higher harmonics on parameters
ðι; dL;ψ ;Φ0Þ can be negligible when the inclination angle is above 1.0. For intrinsic parameters such as
the spin of central black and the masses of binaries, the influence of higher harmonics can be negligible for
any inclination angle. Our findings are independent of the mass or spin of the EMRI system.
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I. INTRODUCTION

Gravitational waves (GWs) from compact binary coales-
cence can be decomposed as spherical harmonic multipoles l
and jmj. In general relativity, the lowest polar moment of
GW is the quadrupole, i.e., ðl; jmjÞ ¼ ð2; 2Þ. The beyond-
quadrupolar multipole moments are generally referred to as
higher-order modes, or higher harmonics. For stellar-mass
binary in the inspiral stage, the quadrupole mode dominates,
while the higher harmonics become important when the
mass ratio is extreme or the inclination angle is large. Many
waveformmodels have been developed to include the higher
harmonics, such as Phenom family [1,2], effective-one-body
numerical relativity family [3–8], and numerical relativity
surrogate family [9]. Using these waveform models, sig-
nificant evidence of the existence of the higher harmonics
has been found in two GW events with asymmetric masses,
GW190412 [10] and GW190814 [11]. For the event
GW190521 from a heavy stellar-mass binary, the higher
harmonics enable better constraints on the luminosity
distance and inclination angle [12]. Apart from breaking
the distance-inclination degeneracy, higher harmonics can
also break the degeneracy between mass ratio and spin, as is
shown in the study of another event from massive binary,

GW170729 [13]. The degeneracy between polarization and
coalescence phase is alleviated after incorporating higher
harmonics [14,15]. Furthermore, it has been investigated in
many studies that systematic error is incurred from neglect-
ing higher harmonics [16–21].
For supermassive black hole binaries (SMBHBs), the

higher harmonics can be even more important. SMBHBs
are important sources for future space-based detectors, like
the Laser Interferometer Space Antenna (LISA) [22,23],
TianQin [24], and Taiji [25,26]. In the inspiral stage, the
harmonic mode (3, 3) and (4, 4) can dominate the signals
observed by LISA for SMBHBs with masses around
108M⊙ [27]. The angular resolution and distance estima-
tion of the SMBHBs can be improved by 1 to 2 orders of
magnitude after including higher harmonics [28–31]. In
addition, the higher harmonics play an important role in the
ringdown stage [32,33]. Although the ringdown signal is
very short lived, we can still measure the parameters to
great precision by combining multiple harmonics [34,35].
In most of the aforementioned studies on higher har-

monics, the mass ratios of the binaries are comparable,
which are 1≳ q ≳ 0.1. It is important and complementary
to extend the study to the binary with a more extreme mass
ratio q≲ 10−4. Such a binary system is called an extreme
mass ratio inspiral (EMRI) system that consists of a stellar-
mass compact object inspiraling into a supermassive black
hole with the mass of 106–109M⊙. EMRI emits GWs in the
millihertz band, which is one of the most potential sources
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for space-based detectors. GW signals from EMRI carry
highly accurate information about the sources, which enable
us to test theories of gravity in strong field [36–44] and
probe the astrophysical environment around the black hole
(BH) [45–47]. Thus, it is necessary to quantify the influence
of higher harmonics on the parameter estimation for EMRIs.
In this paper, we consider the EMRI system that a stellar-

mass BH inspirals into a Kerr SMBH. We obtain the
evolution of the orbit by implementing the BH perturbation
method and then construct the waveforms with and without
higher harmonics, respectively. The errors of parameter
estimation are calculated by the Fisher information matrix
method. We take LISA as a representative of the space-
based detectors in our discussion, and the analysis can be
easily extended to other space-based detectors. The paper is
organized as follows. In Sec. II, we introduce the basic
formalism of the BH perturbation method and calculated
numerically the energy flux carried by GWs. Then, we
show the analytic post-Newtionian waveform for the
quadrupole mode and higher harmonics in Sec. III. We
discuss the results of parameter estimation with the Fisher
matrix in Sec. IV. Last, we summarize in Sec. V.

II. METHOD

For an EMRI system composed of a small compact object
with mass mp orbiting around a Kerr BH with mass M and
spin a (mp ≪ M), the perturbed Einstein equations are

Gμν ¼ 8πTμν
p ; ð1Þ

where

Tμν
p ðxÞ ¼ mp

Z
dτ uμuν

δð4Þ½x − zðτÞ�ffiffiffiffiffiffi−gp ; ð2Þ

and uμ is the four-velocity of the compact object. We study
perturbations around the Kerr BH induced by the small
compact object in the Newman-Penrose formalism [48]. In
Boyer-Lindquist coordinate, the metric of Kerr BHs is

ds2 ¼ ð1 − 2r=ΣÞdt2 þ ð4arsin2θ=ΣÞdtdφ − ðΣ=ΔÞdr2
− Σdθ2 − sin2θðr2 þ a2 þ 2a2rsin2θ=ΣÞdφ2; ð3Þ

where Σ ¼ r2 þ a2cos2θ and Δ ¼ r2 − 2rþ a2. Based on
the metric (3), we construct the null tetrad,

lμ ¼ ½ðr2 þ a2Þ=Δ; 1; 0; a=Δ�;
nμ ¼ ½r2 þ a2;−Δ; 0; a�=ð2ΣÞ;
mμ ¼ ½ia sin θ; 0; 1; i= sin θ�=ð21=2ðrþ ia cos θÞÞ;
m̄μ ¼ ½−ia sin θ; 0; 1;−i= sin θ�=ð21=2ðr − ia cos θÞÞ: ð4Þ

The propagating gravitational field is described by the
complex Newman-Penrose variables

ψ4 ¼ −Cαβγδnαm̄βnγm̄δ; ð5Þ

where Cαβγδ is the Weyl tensor. A single master equation for
tensor (s ¼ −2) perturbations was derived as [49]

�ðr2 þ a2Þ2
Δ

− a2sin2θ

�
∂
2ψ

∂t2
þ 4ar

Δ
∂
2ψ

∂t∂φ
þ
�
a2

Δ
−

1

sin2θ

�
∂
2ψ

∂φ2
− Δ−s ∂

∂r

�
Δsþ1

∂ψ

∂r

�
−

1

sin θ
∂

∂θ

�
sin θ

∂ψ

∂θ

�

− 2s

�
aðr − 1Þ

Δ
þ i cos θ

sin2θ

�
∂ψ

∂φ
− 2s

�ðr2 − a2Þ
Δ

− r − ia cos θ

�
∂ψ

∂t
þ ðs2cot2θ − sÞψ ¼ 4πΣT; ð6Þ

where the explicit field ψ ¼ ðr − ia cos θÞ4ψ4 and the
corresponding source T are given in [49]. In terms of
the eigenfunctions sSlmðθÞ [49,50], the field ψ can be
written as

ψ ¼
Z

dω
X
l;m

RωlmðrÞsSlmðθÞe−iωtþimφ; ð7Þ

where the radial function RωlmðrÞ satisfies the inhomo-
geneous Teukolsky equation

Δ−s d
dr

�
Δsþ1

dRωlm

dr

�
− VTðrÞRωlm ¼ Tωlm; ð8Þ

and

VT ¼ −
K2 − 2isðr − 1ÞK

Δ
− 4isωrþ λlmω; ð9Þ

where K ¼ ðr2 þ a2Þω − am, λlmω is the corresponding
eigenvalue which can be computed by using the BH
Perturbation Toolkit [51], and the source TωlmðrÞ is

TωlmðrÞ ¼
1

2π

Z
dtdΩ 4πΣTsSlmðθÞeiωt−imφ: ð10Þ

The homogeneous Teukolsky equation (8) admits two
linearly independent solutions Rin

ωlm and Rup
ωlm, with the

following asymptotic values at the horizon rþ and at infinity,
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Rin
ωlm ¼

(
BtranΔ−se−iκr

�
; ðr → rþÞ

Bout eiωr
�

r2sþ1 þ Bin e−iωr
�

r ; ðr → þ∞Þ ; ð11Þ

Rup
ωlm ¼

(
Douteiκr

� þ Din

Δs e−iκr
�
; ðr → rþÞ

Dtran eiωr
�

r2sþ1 ; ðr → þ∞Þ
; ð12Þ

where κ ¼ ω −ma=ð2rþÞ, r� ¼ 1�
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − a2

p
, and the

tortoise radius of the Kerr metric

r� ¼ rþ 2rþ
rþ − r−

ln
r − rþ

2
−

2r−
rþ − r−

ln
r − r−

2
: ð13Þ

With the help of these homogeneous solutions, the solution
to Eq. (8) is

RωlmðrÞ ¼
1

W

�
Rin
ωlm

Z þ∞

r
ΔsRup

ωlmTωlmdr

þ Rup
ωlm

Z
r

rþ
ΔsRin

ωlmTωlmdr

�
; ð14Þ

and the constant Wronskian is given by

W ¼ Δsþ1

�
Rin
ωlm

dRup
ωlm

dr
− Rup

ωlm
dRin

ωlm

dr

�
¼ 2iωBinDtran:

ð15Þ

The solution in Eq. (14) is purely outgoing at infinity and
purely ingoing at the horizon,

Rωlmðr → rþÞ ¼ Z∞
ωlmΔ−se−iκr

�
;

Rωlmðr → ∞Þ ¼ ZH
ωlmr

−2s−1eiωr
�
; ð16Þ

with

Z∞
ωlm ¼ Btran

W

Z þ∞

rþ
ΔsRup

ωlmTωlmdr;

ZH
ωlm ¼ Dtran

W

Z þ∞

rþ
ΔsRin

ωlmTωlmdr: ð17Þ

For a circular equatorial orbit with orbital angular frequency
ω̂, we get

ZH;∞
ωlm ¼ δðω −mω̂ÞAH;∞

ωlm : ð18Þ

The gravitational energy fluxes at infinity and at the horizon
are respectively given by

Ė∞
grav ¼

�
dE
dt

�
∞

grav
¼

X∞
l¼2

Xl

m¼1

jAH
ωlmj2

2πω2
;

ĖH
grav ¼

�
dE
dt

�
H

grav
¼

X∞
l¼2

Xl

m¼1

αGlm
jA∞

ωlmj2
2πω2

; ð19Þ

where the coefficient αGlm is [52]

αGlm ¼ 256ð2rþÞ5κðκ2 þ 4ϵ2Þðκ2 þ 16ϵ2Þω3

jBGj2
; ð20Þ

and

jBGj2 ¼ ½ðλlmω þ 2Þ2 þ 4aω − 4a2ω2�
× ½λ2lmω þ 36maω − 36a2ω2�
þ ð2λlmω þ 3Þ½96a2ω2 − 48maω�
þ 144ω2ð1 − a2Þ: ð21Þ

Therefore, the total energy fluxes emitted from the EMRIs
read

Ėgrav ¼ Ė∞
grav þ ĖH

grav: ð22Þ

The energy flux emitted by tensor fields can also be
computed with the BH Perturbation Toolkit [51]. Consid-
ering the circular equatorial trajectory at r0, the sources are

Tμν
p ðxÞ ¼ mp

r20

uμuν

ut
δðr − r0Þδðcos θÞδðφ − ω̂tÞ; ð23Þ

where ω̂ is the orbital angular frequency. There are three
constants for the geodesic motion in Kerr spacetime, which
are the specific energy Ê, the angular momentum L̂, and the
Carter constant Q̂. The geodesic equations are

mpΣ
dt
dτ

¼ Ê
ϖ4

Δ
þ aL̂

�
1 −

ϖ2

Δ

�
− a2Êsin2θ; ð24Þ

mpΣ
dr
dτ

¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffi
Vrðr0Þ

p
; ð25Þ

mpΣ
dθ
dτ

¼ �
ffiffiffiffiffiffiffiffiffiffiffiffi
VθðθÞ

p
; ð26Þ

mpΣ
dφ
dτ

¼ aÊ

�
ϖ2

Δ
− 1

�
−
a2L̂
Δ

þ L̂csc2θ; ð27Þ

where ϖ ≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ a2

p
, the radial and polar potentials are

VrðrÞ ¼
�
Êϖ2 − aL̂

�
2
−Δ

�
r2 þ

�
L̂− aÊ

�
2 þ Q̂

�
; ð28Þ
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VθðθÞ ¼ Q̂ − L̂2cot2θ − a2
�
1 − Ê2

�
cos2θ: ð29Þ

For a quasicircular orbit on the equatorial plane, the
conserved constants are [53]

Ê ¼ mp
r3=20 − 2r1=20 � a

r3=40

�
r3=20 − 3r1=20 � 2a

�
1=2 ; ð30Þ

L̂ ¼ mp
�ðr20 ∓ 2ar1=20 þ a2Þ

r3=40

�
r3=20 − 3r1=20 � 2a

�
1=2 ; ð31Þ

Q̂ ¼ 0: ð32Þ

The orbital angular frequency is

ω̂≡ dφ
dt

¼ �1

r3=20 � a
; ð33Þ

where � corresponds to corotating (þ) or counterrotating
(−). In the following discussions, we only consider the
corotating cases.

III. WAVEFORM INCLUDING
HIGHER HARMONICS

For EMRIs, the gravitational radiation reaction acting
on the massive particle can be split into two parts: the
dissipative one and the conservative one. When the
evolution time of the geodesic motion is much longer
than the timescale of the orbital period, we can consider

the dissipative part under the adiabatic approximation
only. The dissipative part can be calculated from the
energy flux at the horizon of the central BH and at infinity.
Assuming the motion is strictly geodesic over several
orbital periods, we calculate the energy flux from the
system and then give the time-averaged rates of change of
the orbital parameters. Combining Eq. (22) and Eq. (30),
the energy balance equation is

Ėgrav ¼
	
dEgrav

dt



¼ −mp

dÊ
dt

: ð34Þ

As pointed out in Ref. [54], as long as the extreme mass
ratio is suitably satisfied, the results are compatible with
the initial assumption, and the calculation is self-consis-
tent. The orbital evolution is determined by

dr
dt

¼ −
Ėgrav

mp

�
dÊ
dr

�−1
;

dφorb

dt
¼ πf; ð35Þ

and f ¼ ω̂=π is the GW frequency. We can obtain the
inspiral trajectory from adiabatic evolution in Eq. (35),
then compute GWs in the post-Newtonian expansion [55–
58]. The waveforms in the quadrupole formula can be
obtained from ðl ¼ 2; m ¼ 2Þ,

hð2;2Þþ ¼ A
�
cos2ιþ 1

�
cos½2φorbðtÞ þ 2Φ0�;

hð2;2Þ× ¼ −2A cos ι sin½2φorbðtÞ þ 2Φ0�; ð36Þ

while higher harmonics including ðl ¼ 2; m ¼ 1Þ and
ðl ¼ 3; m ¼ 3Þ are

hð2;1Þþ þ hð3;3Þþ ¼ A½Mω̂ðtÞ�1=3 sin ι
8

��
cos2ιþ 5

�
sin½φorbðtÞ þΦ0�þ9

�
cos2ιþ 1

�
sin½3φorbðtÞ þ 3Φ0�

�
;

hð2;1Þ× þ hð3;3Þ× ¼ A½Mω̂ðtÞ�1=3 3 sinð2ιÞ
8

ðcos½φorbðtÞ þΦ0� þ 3 cos½3φorbðtÞ þΦ0�Þ; ð37Þ

and higher harmonics including ðl ¼ 3; m ¼ 2Þ and ðl ¼ 4; m ¼ 4Þ are

hð3;2Þþ þ hð4;4Þþ ¼ −A½Mω̂ðtÞ�2=3 1
6

��
19þ 9cos2ι − 2cos4ι

�
cos½2φorbðtÞ þ 2Φ0�þ8sin2ιð1þ cos2ιÞ cos½4φorbðtÞ þ 4Φ0�

�
;

hð3;2Þ× þ hð4;4Þ× ¼ A½Mω̂ðtÞ�2=3 1
3

��
17 − 4cos2ι

�
sin½2φorbðtÞ þ 2Φ0�þ8sin2ι sin½4φorbðtÞ þ 4Φ0�

�
; ð38Þ

where ι is the inclination angle between the binary orbital
angular momentum and the line of sight, Φ0 is the initial
phase, A ¼ 2mp½Mω̂ðtÞ�2=3=dL is the GW amplitude, and
dL is the luminosity distance of the source. Introducing the
polarization angle ψ , the polarizations hþ and h× transform
according to

hþ → cosð2ψÞhþ þ sinð2ψÞh×;
h× → − sinð2ψÞhþ þ cosð2ψÞh×: ð39Þ

The GW strain measured by the detector is

hðtÞ ¼ hþðtÞFþðtÞ þ h×ðtÞF×ðtÞ; ð40Þ
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where the interferometer pattern functions Fþ;×ðtÞ can be
expressed in terms of the source orientation ðθs;ϕsÞ.
Finally, the GW signals are modulated due to the LISA
orbital motion [59]. We account for this effect by modi-
fying the phase as

φorbðtÞ→ φorbðtÞ þφ0
orbðtÞRAU sinθs cos

�
2πt
T

−ϕs −ϕα

�
;

ð41Þ

where ϕα is the ecliptic longitude of the detector α at t ¼ 0,
the rotational period T is 1 year, and the radius of the orbit
RAU is 1 AU. The signals (40) measured by the detector are
determined by the following ten parameters:

ξ ¼ ðlnM; lnmp; a; r0;Φ0; θs;ϕs; ι;ψ ; dLÞ; ð42Þ

where r0 is the initial orbital separation. The signal-to-noise
ratio (SNR) of the GW signals is

ρ ¼
ffiffiffiffiffiffiffiffiffiffiffi
hhjhi

p
; ð43Þ

the noise-weighted inner product between two templates h1
and h2 is

hh1jh2i ¼ 4ℜ
Z

fmax

fmin

h̃1ðfÞh̃�2ðfÞ
SnðfÞ

df; ð44Þ

where

fmax ¼minðfISCO; fupÞ; fmin ¼maxðflow; fstartÞ; ð45Þ

fISCO is the GW frequency at the innermost stable circular
orbit (ISCO) [60], fstart is the initial frequency at t ¼ 0, the
cutoff frequencies are flow ¼ 10−4 Hz and fup ¼ 1 Hz,
h̃ðfÞ is the Fourier transform of the time-domain signal
hðtÞ, its complex conjugate is h̃�ðfÞ, and SnðfÞ is the noise
spectral density of the space-based GW detectors.
In the large SNR limit, the posterior probability distri-

bution of the source parameters ξ can be approximated by a
multivariate Gaussian distribution centered around the true
values ξ̂. Assuming flat or Gaussian priors on the source
parameters ξ, their covariances are given by the inverse of
the Fisher information matrix (FIM)

Γij ¼
	
∂h
∂ξi

���� ∂h
∂ξj



ξ¼ξ̂

: ð46Þ

The statistical error σξi on ξi and the correlation coefficients
cξiξj between the parameters are provided by the diagonal

and nondiagonal parts of Σ ¼ Γ−1, i.e.

σξi ¼ Σ1=2
ii ; cξiξj ¼ Σij=ðσξiσξjÞ; ð47Þ

and the angular uncertainty of the sky localization is
evaluated as [61]

ΔΩ≡ 2π sin θs
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σθsθsσϕsϕs

− σ2θsϕs

q
: ð48Þ

Because of the triangle configuration of the space-based
GW detector that can be considered as two L-shape
detectors, so the total SNR is defined by ρ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ21 þ ρ22

p
and the total covariance matrix of the binary parameters
is obtained by inverting the sum of the Fisher matrices
Σ ¼ ðΓ1 þ Γ2Þ−1 [61].

IV. PARAMETER ESTIMATION ERRORS

In this section, we analyze the influence of higher
harmonics on the errors of source parameters discussed
in the previous section. For small inclination ι, the GW
polarizations hþ and h× in Eq. (36) can be expanded:

hð2;2Þþ ¼ 2mp½Mω̂ðtÞ�2=3 2 − ι2

dL
cos½2φorbðtÞ þ 2Φ0 þ 2ψ �;

hð2;2Þ× ¼ −2mp½Mω̂ðtÞ�2=3 2 − ι2

dL
sin½2φorbðtÞ þ 2Φ0 þ 2ψ �:

ð49Þ

We notice that ι and dL are highly correlated with each
other in a small inclination angle. Similarly, the strong
degeneracy of parameters ψ and Φ0 for the small inclina-
tion angle exists. The above degeneracies will deteriorate
the ability to measure source parameters for space-based
detectors. The higher harmonics in Eq. (37) in small
inclination approximation are

hð2;1Þþ þ hð3;3Þþ ¼ mp½Mω̂ðtÞ� 3ι

2dL
ðsin½φorbðtÞ þΦ0 − 2ψ �

þ 3 sin½3φorbðtÞ þ 3Φ0 − 2ψ �Þ;

hð2;1Þ× þ hð3;3Þ× ¼ mp½Mω̂ðtÞ� 3ι

2dL
ðcos½φorbðtÞ þΦ0 − 2ψ �

þ 3 cos½3φorbðtÞ þ 3Φ0 − 2ψ �Þ: ð50Þ

As we can see, higher harmonics have different dependence
on inclination and initial phase compared with Eqs. (49), so
including higher harmonics can break some of the degen-
eracies that currently haunt the parameter estimation in
small inclinations. For example, the distance-inclination
degeneracy, the degeneracy between the initial phase and
polarization angle can be broken by adding the higher
harmonics GW signal. Thus including higher harmonics
may greatly reduce the errors of parameters ðι; dL;ψ ;Φ0Þ in
small inclinations, but the impact on intrinsic parameters
ðM;mp; aÞ and the source localization still needs to be
studied. Another question is whether higher harmonics still
play an important role in parameter estimation when the
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small-inclination condition breaks? In order to estimate the
influence of higher harmonics on the errors of the source
parameters, the FIM method is applied for LISA to
numerically calculate the estimation errors on kinds of
simulated EMRI signals including higher harmonics.
We choose EMRI systems with mass M ¼ 106M⊙ and

dimensionless spin a ¼ 0.9 for the central BH, and mp ¼
10M⊙ for the small BH. The initial phase is set as Φ0 ¼ 0
and the initial orbital separation r0 is adjusted to experi-
ence one-year adiabatic evolution before the plunge
rend ¼ rISCO þ 0.1M. The luminosity distance dL is set
to be 1 Gpc. To prove our results general and independent
of the particular choice of the source location, we simulate
1000 sources with parameters (cos θs, ϕs, ψ s) uniformly
distributed for each inclination ι value. The inclination
angle is chosen uniformly in ½0; 2π�. Figure 1 shows the
medians of the correlation coefficient cιdL between the
inclination angle ι and the luminosity distance dL when we
use GW waveform only from the mode ðl; mÞ ¼ ð2; 2Þ. In
general, for two parameters that are very highly correlated
with each other, the magnitude of the correlation coef-
ficient is large jcj≳ 0.9 [62]. As the inclination angle ι
increases from 0 to π, the correlation coefficient cιdL
increases from −1 to 1. The inclination angle ι and the
luminosity distance dL are very highly anticorrelated with
each other when the inclination angle ι ≲ 1 while they are
very highly correlated with each other when the inclination
angle ι≳ π − 1. The opposite correlation between ι and dL
at ι≲ 1 and ι≳ π − 1 is due to the fact that the GW
waveform is invariant under the transformation from ι to
π − ι in Eq. (36). Furthermore, the magnitude of correla-
tion coefficient cιdL increases as the inclination angle
decreases from π=2 to 0. Especially, the magnitude of

correlation coefficient cιdL reaches 1 when the inclination
angle is near 0. As we have discussed before, the GW
waveform for the plus mode hþ and the cross mode h× in
small inclination expansion can be expressed as Eq. (49).
We can see that hþ ∝ ð2 − ι2Þ=dL and h× ∝ ð2 − ι2Þ=dL,
then the total strain is also hðtÞ ∝ ð2 − ι2Þ=dL, thus, the
inclination angle and luminosity distance are highly
correlated with each other for small inclination.
Figures 2 and 3, respectively, give the medians and

the distribution of SNR and the parameter estimation
errors for each inclination value when we use GW
waveform only from mode ðl; mÞ ¼ ð2; 2Þ without higher
harmonics, as well as the GWs including higher harmon-
ics modes ðl; mÞ ¼ ð2; 2Þ; ð2; 1Þ; ð3; 3Þ.
For GW waveform only from mode ðl; mÞ ¼ ð2; 2Þ

without higher harmonics, we notice strong dependence
of σι, σdL , σψ , and σΦ0

on the inclination angle and the
higher uncertainty in the measurement of the astrophysical
parameters for the smaller inclination angle. For intrinsic
parameters ðM;mp; aÞ and the source localization ΔΩ,
the behaviors of errors are contraste with parameters
ðι; dL;ψ ;Φ0Þ and decrease as the inclination angle
becomes smaller. We have higher SNR for the systems
with smaller inclination angles, as is shown in Fig. 2, thus
smaller errors for parameters ðM;mp; a;ΔΩÞ. For param-
eters ðι; dL;ψ ;Φ0Þ, because of the degeneracy in the small
inclination, we get worse parameter estimation in spite of
larger SNR. Comparing the errors with and without higher
harmonics, we find that including higher harmonics
can reduce the errors of parameters ðι; dL;ψ ;Φ0Þ, and
the improvement induced by higher harmonics depends
on the inclination angle. The smaller the inclination
angle is, the bigger improvement we have in parameters
ðι; dL;ψ ;Φ0Þ. Especially, the improvement in parameters

FIG. 1. Correlation coefficient cιdL between the inclination
angle ι and the luminosity distance dL as functions of inclination
angle. The blue dashed line represents the medians of the
correlation coefficient cιdL of the samples in which the GW
waveform only contains mode ðl; mÞ ¼ ð2; 2Þ. The horizontal
red dashed line represents the correlation coefficient whose
magnitude is 0.9.

FIG. 2. SNR as functions of inclination angle. The blue dashed
line represents the medians of SNR of the samples in which the
GW waveform only contains mode ðl; mÞ ¼ ð2; 2Þ, while the
orange dashed line for those including higher harmonics modes
ðl; mÞ ¼ ð2; 2Þ; ð2; 1Þ; ð3; 3Þ. The distribution of SNR of the
samples is denoted with the violin plots.
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ðι; dL;ψ ;Φ0Þ can reach about five to six orders of
magnitude for the small inclination angle around zero.
When the inclination angle ι≳ 1.0, the influence of
including higher harmonics on parameters ðι; dL;ψ ;Φ0Þ

can be neglectable. For the intrinsic parameters ðM;mp; aÞ
and the source localization ΔΩ, including higher harmon-
ics, nearly do not influence the errors of parameters
whatever the inclination angle is. The reason is that the

FIG. 3. Medians of parameter estimation errors as functions of inclination angle. The blue dashed line represents the medians of errors
of the samples in which the GW waveform only contains mode ðl; mÞ ¼ ð2; 2Þ, while the orange dashed line for those including higher
harmonics modes ðl; mÞ ¼ ð2; 2Þ; ð2; 1Þ; ð3; 3Þ. The distribution of errors in the samples is denoted with the violin plots.
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source localization ΔΩ for long-inspiral waveform is
mainly dependent on the Doppler effect caused by the
motion of the LISA constellation from Eq. (41), which is
independent of inclination [63,64]. For the intrinsic
parameters ðM;mp; aÞ, these intrinsic parameters are
mainly determined by the GW phase as well as the
SNR of the signal, and degeneracy caused by the incli-
nation angle has no influence on errors of the intrinsic
parameters. The slight improvement mainly comes from
the increasing SNR by including higher harmonics as seen
in Fig. 2.
For each inclination angle, we define the ratio R to show

the improvement induced by including higher harmonic
signals in that orientation,

R ¼ σð2;2Þξi

σð2;2Þþð2;1Þþð3;3Þþ���
ξi

; ð51Þ

where σð2;2Þξi
represents the parameter ξi error calculated by

using the GW waveform mode (2, 2) without higher

harmonics, while σð2;2Þþð2;1Þþð3;3Þþ���
ξi

denotes the parameter
ξi error estimated including higher harmonics and the
number of higher harmonics depends on the situation. If
R > 1, there is an improvement in the relevant parameter. A
larger R indicates a tighter constraint, and hence a larger
improvement. We also analyze the effect of the number of
higher-order modes on parameter estimation. Figures 4 and
5, respectively, give the medians of SNR and the parameter
estimation errors improvement for each inclination value
when we use GWs including higher harmonics modes
ðl; mÞ ¼ ð2; 2Þ; ð2; 1Þ; ð3; 3Þ, as well as the GWs including
higher harmonics modes ðl; mÞ ¼ ð2; 2Þ; ð2; 1Þ; ð3; 3Þ;

ð3; 2Þ; ð4; 4Þ. We can see that including more number of
higher harmonics cannot significantly improve the errors
of parameters ðι; dL;ψ ;Φ0Þ compared with the results
from including higher harmonics modes ðl; mÞ ¼ ð2; 2Þ;
ð2; 1Þ; ð3; 3Þ. In contrast, more higher harmonics can even
worsen the measurement of source parameters. The reason
is that once the degeneracy is broken, more number of
higher harmonics cannot break the degeneracy again, and
the influence of more higher harmonics on the estimation of
the parameters will not be significant but only depends on
the SNR as seen in Fig. 4. So adding just a few higher
harmonics is enough to break the degeneracy and reduce
the parameter errors for ðι; dL;ψ ;Φ0Þ in small inclination
for EMRIs. It is also advantageous for us because adding a
large number of higher harmonics can greatly increase our
computational cost.
Furthermore, we give the parameter errors for other

kinds of EMRI configurations. In Fig. 6, we give the

FIG. 4. SNR as functions of inclination angle. The orange
dashed line represents the medians of SNR of the samples in
which the GW waveform includes higher harmonics modes
ðl; mÞ ¼ ð2; 2Þ; ð2; 1Þ; ð3; 3Þ, while the green dashed line repre-
sents the GWs including higher harmonics modes ðl; mÞ ¼
ð2; 2Þ; ð2; 1Þ; ð3; 3Þ; ð3; 2Þ; ð4; 4Þ.

FIG. 5. Ratios R of improvement induced by including higher
harmonic signals as functions of inclination angle. The top figure
represents the GW waveform including higher harmonics modes
ðl; mÞ ¼ ð2; 2Þ; ð2; 1Þ; ð3; 3Þ and the bottom figure represents the
GW waveform including higher harmonics modes ((2, 2),(2, 1),
(3, 3),(3, 2),(4, 4)).
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influence of higher harmonics for the system with different
spin a ¼ 0 (EMRI I), different mass M ¼ 2 × 105M⊙
(EMRI II), different mass M ¼ 6 × 105M⊙ (EMRI III),
and different mass M ¼ 2 × 106M⊙ (EMRI IV). The
higher harmonics can greatly improve the errors in param-
eters ðι; dL;ψ ;Φ0Þ for small inclination and nearly do not
influence the parameters ðM;mp; a;ΔΩÞ whatever the
inclination angle is. The results are consistent with our
previous analysis and independent of the mass or spin of
the EMRI system.

V. CONCLUSION

We analyze the influence of higher harmonics on the
errors of source parameters in EMRIs. For the face-on
EMRIs, i.e., the inclination angle is small, there are the
distance-inclination degeneracy and the initial phase-
polarization angle degeneracy and the contribution from
the higher order modes can help break some of the
degeneracies, thus can significantly reduce the error of
measuring the exterior parameters such as inclination angle
ι, the luminosity distance dL, the polarization angle ψ , and

the initial phase Φ0, except for source localization ΔΩ. As
the inclination angle increases above 1.0, the distance-
inclination degeneracy and the initial phase-polarization
angle degeneracy can be broken naturally even without
higher-order modes, so the contribution from higher
harmonics becomes insignificant and nearly does not
influence the errors of parameters. For the intrinsic param-
eters ðM;mp; aÞ and the source localization ΔΩ, including
higher harmonics nearly do not influence the errors of
parameters whatever the inclination angle is. The errors of
source localization ΔΩ determined by the Doppler effect,
the intrinsic parameters ðM;mp; aÞ determined by the GW
phase as well as the SNR of the signal, are independent of
the inclination angle and there are no degeneracies among
these parameters even in the small inclination. We also
analyze the effect of the number of higher-order modes on
parameter estimation. Including more higher-order modes
cannot significantly reduce the errors of parameters
ðι; dL;ψ ;Φ0Þ compared with the results from including
higher harmonics modes ðl; mÞ ¼ ð2; 2Þ; ð2; 1Þ; ð3; 3Þ.
Once the degeneracy is broken, more number of higher

FIG. 6. Ratios R of improvement induced by including higher harmonic signals ðl; mÞ ¼ ð2; 2Þ; ð2; 1Þ; ð3; 3Þ as functions of
inclination angle. Top left: EMRI system I with a ¼ 0, M ¼ 106M⊙, mp ¼ 10M⊙. Top right: EMRI system II with a ¼ 0.9,
M ¼ 2 × 105M⊙, mp ¼ 10M⊙. Bottom left: EMRI system III with a ¼ 0.9, M ¼ 6 × 105M⊙, mp ¼ 10M⊙. Bottom right: EMRI
system IV with a ¼ 0.9, M ¼ 2 × 106M⊙, mp ¼ 10M⊙.
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harmonics cannot break the degeneracy again and is
insignificant in the improvement of the parameter estima-
tion. Furthermore, we give the influence of higher har-
monics on parameter errors for the system with a different
spin and different masses. The higher harmonics can
greatly reduce the errors in parameters ðι; dL;ψ ;Φ0Þ for
small inclination and nearly do not influence the parameters
ðM;mp; a;ΔΩÞ whatever the inclination angle is. This

conclusion is independent of the mass or spin of the EMRI
system.
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