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In the realm of astrophysics, black holes exist within nonvacuum cosmological backgrounds, making it
crucial to investigate how these backgrounds influence the properties of black holes. In this work, we first
introduce a novel static spherically-symmetric exact solution of Einstein field equations representing a
surrounded hairy black hole. This solution represents a generalization of the hairy Schwarzschild solution
recently derived using the extended gravitational decoupling method. Then, we discuss how the new
induced modification terms attributed to the primary hairs and various background fields affect the
geodesic motion in comparison to the conventional Schwarzschild case. Although these modifications may
appear insignificant in most cases, we identify specific conditions where they can be comparable to the
Schwarzschild case for some particular background fields.
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I. INTRODUCTION

In 2019 the Event Horizon Telescope Collaboration
unveiled the very first image of a black hole located at
the center of the massive elliptical galaxy M87 [1–3]. More
recently, scientists have successfully observed the shadow
of the supermassive black hole located in the center of our
own galaxy [4]. These direct observations provide compel-
ling evidence that black holes are not merely abstract
mathematical solutions of the Einstein field equations but
real astrophysical objects. Black holes possess a range of
miraculous properties. For instance, they allow for the
extraction of energy from their rotation and electric fields
[5–8]. In the vicinity of the black hole’s event horizon,
particles can possess negative energy [5,7,9–12], and black
holes can even function as particle accelerators [13–19].
In the realm of astrophysics, black holes are not isolated

objects, and they inhabit nonvacuum backgrounds. Some
research has focused on investigating the direct local effects
of cosmic backgrounds on the known black hole solutions.
For instance, Babichev et al. [20] have shown that in an
expanding universe by a phantom scalar field, the mass of a
black hole decreases as a result of the accretion of particles
of the phantom field into the central black hole. However,
one notes that this is a global impact. To explore the local

changes in the spacetime geometry near the central black
hole, one should consider a modified metric that incorpo-
rates the surrounding spacetime. In this context, an ana-
lytical static spherically symmetric solution to Einstein
field equations has been presented by Kiselev [21]. This
solution generalizes the usual Schwarzschild black hole to a
nonvacuum background and is characterized by an effective
equation of state parameter of the surrounding field of
the black hole. Hence it can encompass a wide range of
possibilities including quintessence, cosmological con-
stant, radiation, and dustlike fields. Several properties of
the Kiselev black hole have been extensively investigated in
the literature [85–90]. Later, this solution has been gener-
alized to the dynamical Vaidya type solutions [22–24].
Such generalizations are well justified due to the non-
isolated nature of real-world black holes and their exitance
in nonvacuum backgrounds. Black hole solutions coupled
to matter fields, such as the Kiselev solution, are particu-
larly relevant for the study of astrophysical black holes with
distortions [25–28]. They also play a significant role in
investigating the no-hair theorem [29–32]. This theorem
states that a black hole can be described only with three
charges (i.e., mass M, electric charge Q, and angular
momentum a), and it relies on a crucial assumption that
the black hole is isolated, meaning that the spacetime is
asymptotically flat and free from other sources. However,
real-world astrophysical situations do not meet this
assumption. For instance, one may refer to black holes
in binary systems, black holes surrounded by plasma, or
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those accompanied by accretion disks or jets in their
vicinity. Such situations imply that a black hole may put
on different types of wigs, and hence the applicability of the
standard no-hair theorem for isolated black holes to these
cases becomes questionable [30–34].
Recently, the minimal geometrical deformations [35–37]

and the extended gravitational decoupling methods [38–40]
have been utilized to derive new solutions from the known
seed solutions of Einstein field equations. These techniques
have been particularly effective in investigating the viola-
tion of the no-hair theorem, the emergence of novel types of
hairy black holes, and the exploration of alternative theories
of gravity [41–48]. Using the extended gravitational
decoupling method, Ovalle et al. [49] have introduced a
generalization of a Schwarzschild black hole surrounded by
an anisotropic fluid and possesses primary hairs. This new
solution has motivated a substantial further research in
generalizing this solution to hairy Kerr [50], Vaidya and
generalized Vaidya [51], regular hairy black holes [52,53],
and many others. Indeed, the gravitational decoupling
method represents a novel and powerful tool for obtaining
new solutions to the Einstein equations.
In the present work, we introduce a novel class of exact

solutions to the Einstein field equations, which describe a
surrounded hairy Schwarzschild black hole. This solution
serves as a generalization of the previously obtained hairy
Schwarzschild solution using the extended gravitational
decoupling method. Then, in order to analyze the properties
of the solution, we investigate the effect of the new
modification terms, attributed to the primary hairs and
various surrounding fields, on the timelike geodesic
motion. Specifically, we compare the effects of modifica-
tion terms to the conventional Schwarzschild case. While
these modifications may seem negligible in most scenarios,
we identify specific situations where they can be compa-
rable to the Schwarzschild case, particularly when specific
surrounding fields are present. This analysis sheds light on
the significance of these modifications in certain situations,
providing insights into the behavior of geodesic motion
around real astrophysical black holes.
The structure of the present paper is as follows. In Sec. II,

we briefly discuss the hairy Schwarzschild solution by the
minimal geometrical deformations and the extended gravi-
tational decoupling method. In Sec. III, we solve the
Einstein field equations in order to obtain the surrounded
hairy Schwarzschild black hole. In Sec. IV, we do analysis
of the timelike geodesic motion. In Sec. V, we summarize
the new findings and implications of the study. The system
of units c ¼ G ¼ 1 will be used throughout the paper.

II. GRAVITATIONAL DECOUPLING AND HAIRY
SCHWARZSCHILD BLACK HOLE

Gravitational decoupling method states that one can
solve the Einstein field equations with the matter source

T̃ik ¼ Tik þ Θik; ð1Þ

where Tik represents the energy-momentum tensor of a
system for which the Einstein field equations are

Gik ¼ 8πTik: ð2Þ

The solution of Eq. (2) is supposed to be known and
represents the seed solution. Then Θik represents an
extra matter source which causes additional geometrical
deformations. The Einstein equations for this new matter
source are

Ḡik ¼ αΘik; ð3Þ

where α is a coupling constant, and Ḡik is the Einstein
tensor of deformed metric only. The gravitational decou-
pling method states that despite of nonlinear nature of the
Einstein equations, a straightforward superposition of
these two solutions (2) and (3)

G̃ik ≡Gik þ Ḡik ¼ 8πTik þ αΘik ≡ T̃ik; ð4Þ

is also the solution of the Einstein field equations.
Now, we briefly describe this method. Let us consider

the Einstein field equations,

Gik ¼ Rik −
1

2
gikR ¼ 8πTik: ð5Þ

Let the solution of (5) be a static spherically-symmetric
spacetime of the form

ds2 ¼ −eνðrÞdt2 þ eλðrÞdr2 þ r2dΩ2: ð6Þ

Here dΩ2 ¼ dθ2 þ sin2 θdφ2 is the metric on unit two-
sphere, νðrÞ and λðrÞ are functions of r coordinate only, and
they are supposed to be known. The metric (6) is termed as
the seed metric.
Now, we seek the geometrical deformation of (6) by

introducing two new functions ξ ¼ ξðrÞ and η ¼ ηðrÞ by

eνðrÞ → eνðrÞþαξðrÞ;

eλðrÞ → eλðrÞ þ αηðrÞ: ð7Þ

Here α is a coupling constant. Functions ξ and η are
associated with the geometrical deformations of g00 and
g11 of the metric (6), respectively. These deformations
are caused by new matter source Θik. If one puts ξðrÞ≡ 0,
then the only g11 component is deformed, leaving g00
unperturbed—this is known as the minimal geometrical
deformation. It has some drawbacks, for example, if one
considers the existence of a stable black hole possessing a
well-defined event horizon [37]. Deforming both g00 and
g11 components is an arena of the extended gravitational
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decoupling. One should note that gravitational decoupling
can lead to an energy exchange between two matter sources
[54]. For example, if one opts for gravitational decoupling
of Vaidya spacetime, then one can decouple the usual
Vaidya spacetime without energy exchange. However, in
the generalized Vaidya spacetime, there is an energy
exchange for arbitrary mass function Mðv; rÞ [51].
Substituting (7) into (6), one obtains

ds2 ¼ −eνþαξdt2 þ ðeλ þ αηÞdr2 þ r2dΩ2: ð8Þ

The Einstein equations for (8) as

G̃ik ¼ 8πT̃ik ¼ 8πðTik þ ΘikÞ; ð9Þ

give

8πðT0
0 þ Θ0

0Þ ¼ −
1

r2
þ e−β

�
1

r2
−
β0

r

�
;

8πðT1
1 þ Θ1

1Þ ¼ −
1

r2
þ e−β

�
1

r2
þ ν0 þ αξ0

r

�
;

8πðT2
2 þ Θ2

2Þ ¼
1

4
e−β

�
2ðν00 þ αξ00Þ þ ðν0 þ αξ0Þ2

− β0ðν0 þ αξ0Þ þ 2
ν0 þ αξ0 − β0

r

�
;

eβ ≡ eλ þ αη: ð10Þ

Here the prime sign denotes the partial derivativewith respect
to the radial coordinate r, and we have 8πðT2

2þΘ2
2Þ¼

8πðT3
3þΘ3

3Þ due to the spherical symmetry.
From (10) one can define the effective energy density ρ̃,

effective radial and tangential P̃r, P̃t pressures as

ρ̃ ¼ −ðT0
0 þ Θ0

0Þ;
P̃r ¼ T1

1 þ Θ1
1;

P̃t ¼ T2
2 þ Θ2

2: ð11Þ

From (11) one can introduce the anisotropy parameter Π as

Π ¼ P̃t − P̃r; ð12Þ

where if Π ≠ 0, then it indicates the anisotropic behavior of
fluid T̃ik.
The equations of (10) can be decoupled into two parts1:

the Einstein equations corresponding to the seed
solution (6) and the one corresponding to the geometrical

deformations. If we consider the vacuum solution,
i.e., Tik ≡ 0–Schwarzschild solution, then by solving
the Einstein field equations which correspond the
geometrical deformations, one obtains the hairy
Schwarzschild solution [49]

ds2 ¼ −
�
1 −

2M
r

þ αe
− r
M−αl

2

�
dt2

þ
�
1 −

2M
r

þ αe
− r
M−αl

2

�
−1
dr2 þ r2dΩ2; ð13Þ

where α is the coupling constant, l is a new parameter with
length dimension and associated with a primary hair of a
black hole. HereM is the mass of the black hole in relation
with the Schwarzschild mass M as

M ¼ Mþ αl
2
: ð14Þ

The impact of α and l on the geodesic motion, gravitational
lensing, energy extraction and the thermodynamics has
been studied in Refs. [55–59], and the influence of primary
hair on quasinormal frequencies for scalar, vector, and
tensor perturbation fields has been investigated in [60].

III. SURROUNDED HAIRY SCHWARZSCHILD
BLACK HOLE

Recently, the hairy Schwarzschild black hole has been
introduced in [49] by using the gravitational decoupling
method. This solution in the Eddington-Finkelstein coor-
dinates takes the form

ds2¼−
�
1−

2M
r

þα
− r
M−αl

2

�
dv2þ2εdvdrþ r2dΩ2: ð15Þ

Here v is the advanced ðε ¼ þ1Þ or retarded ðε ¼ −1Þ
Eddington time. In this section, using the approach in
[21,22,61], we obtain the generalization of this solution
representing a hairy Schwarzschild solution surrounded by
some particular fields motivated by cosmology as in the
following theorem.
Theorem.—Considering the extended gravitational

decoupling [39] and the principle of additivity and linearity
in the energy-momentum tensor [21], which allows one to
get correct limits to the known solutions, the Einstein field
equations admit the following solution in the Eddington-
Finkelstein coordinates:

ds2¼−
�
1−

2M
r

−
N

r3ωþ1
þαe−

2r
2M−αl

�
dv2þ2εdvdrþr2dΩ2;

ð16Þ

where M ¼ Mþ αl
2
in which M and M are integration

constants. The metric represents a surrounded hairy

1One should remember that it always works for Tik ≡ 0, i.e.,
the vacuum solution and for special cases of Tik if one opts
for Bianchi identities ∇iTik ¼ ∇iΘik ¼ 0 with respect to the
metric (8), otherwise, there is an energy exchange, i.e., ∇iT̃ik ¼
0 ⇒ ∇iTik ¼ −∇iΘik ≠ 0.
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Schwarzschild solution or equivalently hairy Kiselev sol-
ution. We summarize our proof as follows.
Let us consider the general spherical-symmetric space-

time in the form

ds2 ¼ −fðrÞdv2 þ 2εdvdrþ r2dΩ2: ð17Þ

The Einstein tensor components for the metric (17) are
given by

G0
0 ¼ G1

1 ¼
1

r2
ðf0r − 1þ fÞ;

G2
2 ¼ G3

3 ¼
1

r2

�
rf0 þ 1

2
r2f00

�
; ð18Þ

where the prime sign represents the derivative with respect
to the radial coordinate r. The total energy-momentum
tensor should be a combination of Θik associated to the
minimal geometrical deformations, and Tik associated to
the surrounding fluid as

T̃ik ¼ αΘik þ Tik: ð19Þ

One should note that here we do not demand the fulfilment
of the condition Θik

;k ¼ Tik
;k ¼ 0. Instead, we demand that

T̃ik
;k ¼ 0, which follows the Bianchi identity. The total

energy-momentum tensor T̃ik follows the same symmetries
of the Einstein tensor (18) for (17), i.e., T̃0

0 ¼ T̃1
1

and T̃2
2 ¼ T̃3

3.
An appropriate general expression for the energy-

momentum tensor Tik of the surrounding fluid can be [21]

T0
0 ¼ −ρðrÞ;

Ti
k ¼ −ρðrÞ

�
−ξð1þ 3ζÞ r

irk
rnrn

þ ζδik

�
: ð20Þ

From the form of the energy-momentum tensor (20), one
can see that the spatial profile is proportional to the time
component, describing the energy density ρ with arbitrary
constants ξ and ζ depending on the internal structure of the
surrounding fields. The isotropic averaging over the angles
results in

hTi
ki ¼

ξ

3
ρδik ¼ Pδik; ð21Þ

since we considered hrirki ¼ 1
3
δikrnrn. Then, we have a

barotropic equation of state for the surrounding fluid as

PðrÞ ¼ ωρðrÞ; ω ¼ ξ

3
; ð22Þ

where PðrÞ and ω are the pressure and the constant
equation of state parameter of the surrounding field,

respectively. Here, one notes that the source Tik associated
to the surrounding fluid should possess the same sym-
metries in T̃ik because Θij associated to the geometrical
deformations has the same symmetries as2

Θ0
0 ¼ Θ1

1 ¼ −ρ̄;

Θ2
2 ¼ Θ3

3 ¼ P̄t: ð24Þ

It means that T0
0 ¼ T1

1 and T2
2 ¼ T3

3. These exactly
provide the so-called principle of additivity and linearity
considered in [21] in order to determine the free param-
eter ζ of the energy-momentum tensor Tik of surrounding
fluid as

ζ ¼ −
1þ 3ω

6ω
: ð25Þ

Now, substituting (22) and (25) into (20), the nonvanish-
ing components of the surrounding energy-momentum
tensor Tik become

T0
0 ¼ T1

1 ¼ −ρ;

T2
2 ¼ T3

3 ¼
1

2
ð1þ 3ωÞρ: ð26Þ

Now, we know the Einstein tensor components (18) and
the total energy-momentum tensor (19). Putting all these
equations together, the G0

0 ¼ T̃0
0 and G1

1 ¼ T̃1
1 give us the

following equation:

1

r2
ðf0r − 1þ fÞ ¼ −ρ − αρ̄: ð27Þ

Similarly, the G2
2 ¼ T̃2

2 and G3
3 ¼ T̃3

3 components yield

1

r2

�
rf0 þ 1

2
f00r2

�
¼ 1

2
ð1þ 3ωÞρþ P̄: ð28Þ

Thus, there are four unknown functions fðrÞ; ρðrÞ; ρ̄ðrÞ,
and P̄ that can be determined analytically by the differ-
ential equations (27) and (28) with the following ansatz:

fðrÞ ¼ gðrÞ − αl
r
þ αe−

2r
2M−αl: ð29Þ

2One should note that hairy Schwarzschild solution is sup-
ported with an anisotropic fluid Θi

k,

Θ0
0 ¼ −ρ̄; Θ1

1 ¼ P̄r; Θ2
2 ¼ Θ3

3 ¼ P̄t; ð23Þ

where the nonvanishing parameter Π ¼ P̄t − P̄r indicates on the
anisotropic nature of the energy momentum tensor. So, in order to
satisfy the condition Θ0

0 ¼ Θ1
1 the anisotropic fluid should be

satisfied with the equation of state Pr ¼ −ρ̄.
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Then, by substituting (29) into (27) and (28) and using
(24) one obtains the following system of linear differ-
ential equations3 for unknowns ρðrÞ and gðrÞ:

1

r2
ðg0r − 1þ gÞ ¼ −ρ;

1

r2

�
rg0 þ 1

2
g00r2

�
¼ 1

2
ð1þ 3ωÞρ: ð30Þ

This second-order linear system can be integrated to give
the metric function gðrÞ as

gðrÞ ¼ 1 −
2M
r

−
N

r3ωþ1
; ð31Þ

and the energy density ρðrÞ of the surrounding field as

ρðrÞ ¼ −
3ωN

r3ðωþ1Þ : ð32Þ

Here M and N are constants of integration representing
the Schwarzschild mass and the surrounding field struc-
ture parameter, respectively. By putting all these solutions
together, we arrive at the surrounded hairy Schwarzschild
solution or equivalently hairy Kiselev solution as

ds2¼−
�
1−

2M
r

−
N

r3ωþ1
þαe−

2r
2M−αl

�
dv2þ2εdvdrþr2dΩ2;

ð33Þ

whereM ¼ Mþ αl
2
. From (32), one can see that the weak

energy condition demands that parameters ω and N have
different signs.

IV. TIMELIKE GEODESICS

Considering the geodesic motion in spherically-
symmetric spacetime, without loss of generality, one can
consider the equatorial plane θ ¼ π

2
. The geodesic equations

for the metric (17) can be obtained by varying the following
action:

S ¼
Z

Ldτ ¼ 1

2

Z
ð−fv̇2 þ 2εv̇ ṙþr2φ̇2Þdτ; ð34Þ

where the dot sign means the derivative with respect to the
proper time τ. The spacetime (33) is spherically symmetric
and hence, in addition to the time-translation Killing vector
∂

∂t, there exists another Killing vector φi ¼ ∂

∂φ and the

corresponding conserved quantity, the angular momentum
per mass, is given by

φiui ¼
∂L
∂φ̇

¼ r2φ̇ ¼ L: ð35Þ

Taking into account (34) and (35), one obtains the follow-
ing three geodesic equations:

φ̇ ¼ L
r2

; ð36Þ

−
1

2
f0v̇2 þ rφ̇2 − εv̈ ¼ 0; ð37Þ

ε̈r ¼ fv̈þ f0v̇ ṙ; ð38Þ

where the prime sign denotes the derivative with respect to
the radial coordinate r. Substituting (36) into (37), one
obtains

fv̈ ¼ εfL2

r3
−
1

2
εff0v̇2: ð39Þ

Now, by applying the timelike geodesic condition
gikuiuk ¼ −1 into the equation above, we find

f0v̇ ṙ ¼ −
1

2
εf0 þ 1

2
εff0 −

1

2
εf0

L2

r2
v̇2: ð40Þ

Substituting Eq. (40) into (38) we arrive at the following
general equation of motion in terms of the metric function f
for the radial coordinate:

̈r ¼ −
1

2

�
1þ L2

r2

�
f0 þ f

L2

r3
: ð41Þ

Hence, using the obtained metric function (33), one obtains
the geodesic equation in the form

r̈¼
�
−
M
r2
þL2

r3
−
3ML2

r4

�
sch

þ
�
−γ

N
2rγþ1

− ðγþ2Þ NL2

2rγþ3

�
s

þ
�

α

2M−αl
e−

2r
2M−αlþ αL2

ð2M−αlÞr2 e
− 2r
2M−αl−

αL2

r3
e−

2r
2M−αl

�
h
;

ð42Þ

where γ ¼ 3ωþ 1. From (42), one can observe the follow-
ing interesting points.
(1) The three terms in the first line are the same as that of

the standard Schwarzschild black hole in which the
first term represents the Newtonian gravitational
force, the second term represents the repulsive
centrifugal force, and the third term is the relativistic
correction of Einstein’s general relativity, which
accounts for the perihelion precession.

3Here we apply the Einstein equation Ĝi
k ¼ αΘi

k to eliminate ρ̃
and P̃. Ĝi

k is the Einstein tensor for the spacetime

ds2 ¼ −
�
1 −

αl
r
þ αe−

2r
2M−αl

�
dv2 þ 2εdvdrþ r2dΩ2:
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(2) The terms in the second line are new correction
terms due to the presence of the background field,
which surrounds the hairy Schwarzschild black hole,
in which its first term is similar to the term of the
gravitational potential in the first brackets, while its
second term is similar to the relativistic correction of
general relativity. Then, regarding (42) one realizes
that for the more realistic nonempty backgrounds,
the geodesic equation of any object depends strictly
not only on the mass of the central object of the
system and the conserved angular momentum of the
orbiting body, but also on the background field
nature. The new correction terms may be small, in
general, in comparison to their Schwarzschild coun-
terparts (the first and the third term in the first
brackets). However, one can show that there are
possibilities that these terms are comparable to them.
One also can observe, by using Eq. (32), that for
ω∈ ð− 1

3
; 0Þ the Newtonian gravitational force is

strengthened by corrections caused by the surround-
ing field, on the other hand, for other values of ω the
force is weakened. If we consider the same question
regarding the second term, which corresponds to the
relativistic correction of Einstein’s general relativity,
then for values ω∈ ð−1; 0Þ the force is strengthened,
and this is while this force is weakened for other
values ω. The surrounding fluid does not have any
contributions to the repulsive centrifugal force.

(3) The terms in the third line represent modifications
by the primary hairs α and l. The second term
here corresponds to the relativistic correction of
Einstein’s general relativity. The third term here
represents a new correction by the primary hairs to
the repulsive centrifugal force. One can define the
effective distance D to find out where this force
disappears by relation A1

Ar
≈ 1, where Ar is the

Schwarzschild black hole repulsive centrifugal
force, and A1 is the correction to this force caused
by primary hairs. So the distance is given by

D ¼
�
M −

αl
2

�
ln α: ð43Þ

Considering minimal geometrical deformations, α
must be negligible, i.e., α ≪ 1. So according to (43),
the correction caused by primary hairs can weaken
the repulsive centrifugal force but it cannot cancel it,
and hence this correction is negligible, in general.
The first term in (42) contributes a correction to the
Newtonian potential. This can be seen using the
effective potential VeffðrÞ. One can write the geo-
desic equations in the form

VeffðrÞ ¼ ΦðrÞ þ L2

2r2
þΦðrÞL

2

r2
; ð44Þ

where ΦðrÞ is related to g00 metric component via
relation

g00 ¼ −ð1þ 2ΦÞ: ð45Þ
By comparing this with (33), we come to the
conclusion that

ΦðrÞ ¼ −
M
r
þ N
2r3ωþ1

− αe−
r

2M−αl: ð46Þ

Now, taking the derivative of Veff in (44) with
respect to r

d2r
dτ2

¼ −
dVeff

dr
; ð47Þ

we arrive at the equation of motion (42).
In order to better understand the nature of the solution

obtained in (33), one can consider the following two groups
of forces and investigate their behavior for various sets of
surrounding fields and primary hair parameters:

G≡M
r2

þ γ
N

2rγþ1
−

α

2M − αl
e−

2r
2M−αl; ð48Þ

H ≡ 3ML2

r4
þ ðγ þ 2Þ NL2

2rγþ3
−

αL2

ð2M − αlÞr2 e
− 2r
2M−αl; ð49Þ

whereG group represents the Newtonian gravitational force
with its modifications, and H group corresponds to the
relativistic corrections of the general relativity. One can ask
for the possibilities if the new modifications caused by
surrounding fields and primary hairs can cancel the original
forces or change their effect, i.e., change their sign. Hence,
we are interested in possible cases in which for set of
parameters ω, α, and l, the G and H functions are getting
negligible values or they change their signs. In the following
subsections, we consider some specific fields possessing
particular equations of state motivated by cosmology.
However, we can note the following facts which we can

derive from (49). Let us consider the first two terms: for
−1 < ω < 0 these two terms are always positive. However,
the second term is negative for positiveω, andwe can expect
the sign change of H. Let us consider two particular cases:

(i) The radiation ω ¼ 1
3
. In this case, jNj ≤ M2 and the

first two terms become negative in the region
0 ≤ r ≤ 2M=3, which is inside the event horizon.
Because the third term in (49) is negligible we can
conclude that H is always positive outside the event
horizon region.

(ii) The stiff fluid ω ¼ 1. In this case we can put
N ¼ −M4 then fðr ¼ MÞ > 0. Thus, in this case
the event horizon location at the radius is less than
M. However, the first two terms in (49) become
negative at r ¼ M and H < 0 outside the event
horizon region.
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A. Stiff fluid

We begin our analysis of timelike geodesics with the
surrounding fluid having the average equation of state of a
stiff fluid as

P ¼ ρ ⇔ ω ¼ 1: ð50Þ

As mentioned previously, the presence of the surrounding
field has a weakening effect on the forces given by (48) and
(49). From (32), one observes that N must be negative to
maintain a positive energy density for the surrounding
fluid. Our objective is to determine whether the corrections
by the surrounding field and primary hairs can cancel out
the initial Schwarzschild forces or potentially can change
their sign, and thereby, altering the direction of the forces.
In Fig. 1(a), we plotted three curves corresponding the

usual Schwarzschild, Kiselev and hairy Kiselev black
holes. We observe that the function G for the hairy
Kiselev black hole is negligible but positive near the event
horizon r ¼ 2M for the given specific set of parameters.
However, in the case of purely Kiselev black holes (i.e.,
α ¼ 0), the function G is negative in the interval
2 ≤ r ≤ 2.15. One notes that in the purely Kiselev case,
we have a naked singularity (NS) (i.e., g00 ≠ 0).4

Figure 1(b) shows that the function G becomes negative
in the vicinity of the event horizon (i.e., in the region
2 ≤ r ≤ 2.02) for the hairy Kiselev black hole for the set of
parameters N ¼ −5.186, l ¼ 1.567. To have a bigger

distance from the event horizon, where the function G
can become negative, one should increase jNj and l,
however, in this case, M ∼ αl=2, and it will not anymore
be a minimal geometrical deformation in (15). So we can
conclude that G might be negative outside the event
horizon but only in its vicinity.
Figure 1(c) compares the function H for the

Schwarzschild, Kiselev, and hairy Kiselev cases for the
values considered in Fig. 1(b).
In order to understand better the influence of a primary

hair on a geodesic motion we put α ¼ 0.1 in order to
consider bigger values of l. Figures 2(a) and 2(b) show how
G changes with different values of l andN. One can see that
there are regions where it becomes negative. However,
from these pictures one cannot realize if they deal with a
black hole or a naked singularity. For this purpose one
should impose the condition of existence of an event
horizon. Figure 2(c) shows how G changes in this case.

B. Radiation

Here we consider the surrounding field having the
average equation of state of radiation field as

P ¼ ρ

3
⇔ ω ¼ 1

3
: ð51Þ

In this case, the N parameter must be negative, and akin to
the previous case, the surrounding radiation field and
primary hairs weaken the forces in (48) and (49).
Figure 3(a) shows three curves in the pure

Schwarzschild, Kiselev, and hairy Kiselev black holes
for the parameter values N ¼ −3.729 and l ¼ 4. For the
case of surrounding radiationlike field, one observes that
the spacetime is akin to the hairy Reissner-Nordstrom black
hole such that the parameterN plays the role of black hole’s
electric charge, i.e., N ¼ −Q2. So, in the purely Reissner-
Nordstrom case, the curve corresponds to the naked

FIG. 1. Plot(a) shows the function G versus the distance r for N ¼ −4.972, l ¼ 1.514, α ¼ 0.5, and M ¼ 1. Plot(b) shows the
function G versus the distance r for N ¼ −5.186, l ¼ 1.567, α ¼ 0.5, and M ¼ 1, the small picture shows the function G of hairy
Kiselev black holes in the horizon vicinity. Plot(c) shows the function H versus the distance r for N ¼ −5.186, l ¼ 1.567, α ¼ 0.5, and
M ¼ 1. The red, blue, and green curves represent the Schwarzschild, Kiselev, and hairy Kiselev cases, respectively.

4For this set of parameters g00 is always negative, i.e., there are
not positive roots of the equation g00 ¼ 0 for r∈ ð0;þ∞Þ. On this
reason, we have concluded that r ¼ 0 represents a NS because
the Kretschmann scalar diverges at r ¼ 0. By NS we mean that
r ¼ 0 singularity is not covered with the event horizon. The
question about future-directed non-space-like geodesics, which
terminated at this singularity in the past, has not been considered
within this paper.
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singularity because M2 < Q2. In comparison to the stiff
fluid case, one notes that the parameters l and N have taken
greater values to ensure that the function G is negligible.
In Fig. 3(b), we plotted curves in order to show that hairs

can affect the geodesic motion, and hence G can become
negative in the event horizon vicinity (in the region
2 ≤ r ≤ 2.042). In this case, we set N ¼ −3.889 and
l ¼ 4.16. One can see that the smaller values of ω we take,
the bigger values of l are required to ensure the negative
values of G. For example, if we take this value of l (i.e.,
l ¼ 4.16), then in the case of stiff fluid, we have N ¼
−15.557 (we obtain this value by demanding that the event
horizon is located at r ¼ M), then theG function is negative
in the region 2 ≤ r ≤ 2.534. Thus, one can see that the
region, where negative values of G are possible, shrinks
when ω tends to zero. Figure 3(c) denotes the function H
with the values of N and l as in the previous figure.

Similar to the stiff fluid case, we have several plots for
α ¼ 0.1. Figures 4(a) and 4(b) show that G becomes
negative at the larger distances in comparison to the stiff
fluid case. This apparently contradicts our previous
statement that the smaller ω we consider, the region
where G becomes negative becomes smaller. However,
one notes that this is a case of the naked singularity
because if one imposes an extra condition of the event
horizon existence, then for this case (α ¼ 0.1) the G
function is always positive outside the horizon as can be
seen from Fig. 4(c).

C. Dust

For a dustlike field we have

P ¼ 0 ⇔ ω ¼ 0; ð52Þ

FIG. 3. Plot(a) shows the function G versus the distance r for N ¼ −3.729, l ¼ 4, α ¼ 0.5, and M ¼ 1. Plot(b) shows G versus r for
N ¼ −3.889, l ¼ 4.16, α ¼ 0.5, andM ¼ 1, the small picture shows the functionG of hairy Kiselev black holes in the horizon vicinity.
Plot(c) shows H versus r for N ¼ −3.889, l ¼ 4.16, α ¼ 0.5, and M ¼ 1. The red, blue, and green curves correspond to the
Schwarzschild, Kiselev, and hairy Kiselev cases, respectively.

FIG. 2. Plot(a) shows the function G versus the parameters N ∈ ½−7;−6.245�; l∈ ½4; 8� for r ¼ 2.1, α ¼ 0.1, and M ¼ 1. Plot(b)
shows the function G versus the parameters N ∈ ½−7;−4.367�; l∈ ½4; 8� for r ¼ 2.5, α ¼ 0.1, andM ¼ 1. Plot(c) shows the function G
versus l∈ ½4; 8�; r∈ ½2; 3� for N ∈ ½−6.183;−2.983�; α ¼ 0.1, andM ¼ 1. The event horizon, located at r ¼ 2M, follows the condition
N ¼ −0.8lþ 1.6e−2.
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and we can show analytically that the functionG is positive
near the event horizon as follows. We have

2M þ N
r

¼ 1þ αe−
r
M: ð53Þ

Substituting this into (48) and considering the event
horizon at r ¼ 2M, one obtains

1

4M
−

α

4Me2
> 0: ð54Þ

So, for physically relevant values of α, l, and N, the
function G is positive outside the event horizon.
Figure 5(a) compares three curves of a hairy Kiselev

black hole, purely Kiselev when α ¼ 0, and the

Schwarzschild case when α ¼ 0 and N ¼ 0. These curves
are plotted for l ¼ 0.5; N ¼ −0.115. Figure 5(b) is plotted
for the same values of black hole parameters and shows the
behavior of the function H. For ω ≥ 0 the function H is
positive, and its behavior is shown in the Fig. 5(c). For
other values of ω we could not find the condition (at small
values of α) where H becomes negative.

D. Quintessence

For a quintessencelike field, the equation of state is

P ¼ −
2

3
ρ ⇔ ω ¼ −

2

3
: ð55Þ

FIG. 4. Plot(a) shows the functionG versus the parameters N ∈ ½−7;−4�; l∈ ½4; 8� for r ¼ 2.1, α ¼ 0.1, andM ¼ 1. Plot(b) shows the
function G versus the parameters N ∈ ½−7;−4�; l∈ ½4; 8� for r ¼ 2.5, α ¼ 0.1, and M ¼ 1. Plot(c) shows the function G versus r, l for
N ∈ ½−1.546;−0.746�; α ¼ 0.1, and M ¼ 1. The event horizon, located at r ¼ 2M, must satisfy the condition N ¼ −0.2lþ 0.4e−2.

FIG. 5. Plot(a) shows the function G versus the distance r for N ¼ −0.115, l ¼ 0.5, α ¼ 0.5, and M ¼ 1. Plot(b) shows the function
H versus the distance r for N ¼ −0.115, l ¼ 0.5, α ¼ 0.5, and M ¼ 1. The red, blue, and green curves correspond to the
Schwarzschild, Kiselev, and hairy Kiselev cases, respectively. Plot(c) shows the function H versus r, l for the values
N ∈ ½−0.773;−0.373�; l∈ ½4; 8�; r∈ ½2; 5�; α ¼ 0.1, and M ¼ 1. The event horizon, located at r ¼ 2M, must satisfy the condition
N ¼ −0.1lþ 0.2e−2.
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In this case, the parameterN must be positive as one can see
from (32). The function G can be negligible in the vicinity
of the horizon only if either N or L are negative. However,
G can take negative values but at large distances from the
event horizon. As can be shown from Fig. 6(a) at values
l ¼ 0.05, N ¼ 0.028, the function G for a Kiselev black
hole becomes negative at r > 8.553. The effect of N and α

on the function H for these values are negligible, and they
become considerable only at large distances, as one can see
from Fig. 6(b).

E. De Sitter background

In this case, the surrounded fluid has the effective
equation of state

FIG. 7. Plot(a) shows the functionG versus the distance r forN ¼ 0.016, l ¼ 0.01, α ¼ 0.5, andM ¼ 1. Plot(b) shows the functionH
versus the distance r for the same values of parameters. The red, blue, and green curves correspond to the Schwarzschild, Kiselev, and
hairy Kiselev cases, respectively.

FIG. 6. Plot(a) shows the functionG versus the distance r forN ¼ 0.028, l ¼ 0.05, α ¼ 0.5, andM ¼ 1. Plot(b) shows the functionH
versus the distance r for N ¼ 0.028, l ¼ 0.05, α ¼ 0.5, and M ¼ 1. The red, blue, and green curves correspond to the Schwarzschild,
Kiselev, and hairy Kiselev cases, respectively.
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P ¼ −ρ ⇔ ω ¼ −1: ð56Þ

Like in the previous case, the parameter N must be
negative, and the function G must be positive near the
event horizon.
Figure 7(a) shows that the function G for N ¼ 0.016,

l ¼ 0.01 becomes negative for r > 3.841. The function H

behaves very similar in all three cases as can be seen in
Fig. 7(b).
Figure 8 shows the behavior of G at α ¼ 0.1 and

with an extra condition of the event horizon
existence. Here 8(a) is plotted for positive cosmological
constant as 8(b) for negative cosmological constant-anti-
de Sitter case.

FIG. 9. Plot(a) shows the functionG versus the distance r forN ¼ 0.007, l ¼ 0.05, α ¼ 0.5, andM ¼ 1. Plot(b) shows the functionH
versus the distance r for N ¼ 0.007, l ¼ 0.05, α ¼ 0.5, and M ¼ 1. The red, blue, and green curves correspond to the Schwarzschild,
Kiselev, and hairy Kiselev cases, respectively.

FIG. 8. Plot(a): the dependence of the function G on the r, l for the values N ¼ 0.003..0.0008; l ¼ 0..0.2; r ¼ 2..25; α ¼ 0.1, and
M ¼ 1. The event horizon, when it is located at r ¼ 2M, must satisfy the following condition N ¼ −0.0125lþ 0.025e−2. Plot(b): the
dependence of the function G on the r, l for the values N ¼ −0.047.. − 0.097; l ¼ 4..8; r ¼ 2..16; α ¼ 0.1, and M ¼ 1. The event
horizon, when it is located at r ¼ 2M, must satisfy the following condition N ¼ −0.0125lþ 0.025e−2.
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F. Phantom field

In general, the equation of state of a phantomlike field
lies in the range ω < −1 [62–68]. In order to study the
effect of a phantom field, one can consider, as instance,

P ¼ −
4

3
ρ ⇔ ω ¼ −

4

3
: ð57Þ

The parameter N must be positive, and as can be seen in
Fig. 9(a), the function G takes negative values at the region
r > 3.056 at l ¼ 0.05, N ¼ 0.007. Figure 9(b) shows that
for the same values of l and N, the function H can be
negative in the region r > 5.433.

V. CONCLUSION

Inspired by the fact that black holes inhabit nonvacuum
cosmological backgrounds, we present a new solution to
the Einstein field equations representing a surrounded hairy
Schwarzschild black hole. This solution takes into account
both the primary hair and surrounding fields (represented
by an energy-momentum tensor following the linearity and
additivity condition [21]), which affect the properties of the
black hole. The effect of the corresponding contributions
on timelike geodesics are discussed. We find that the new
induced modifications can be considerable in certain cases.
In particular, we investigate how the specified surrounding
fields and primary hairs affect the Newtonian and peri-
helion precession terms. Our observations are as follows:

(i) The surrounding fields with − 1
3
< ω < 0 contribute

positively to the Newtonian term, i.e., strengthening
the gravitational attraction.

(ii) The new corrections to the Newtonian term might be
the same order or even greater for all other cases if
one considers a naked singularity.5

(iii) In the case that the solution represents a black hole,
new corrections can be of the same order or even
greater than the Newtonian term in the event horizon
vicinity for ω > 0.

(iv) For ω < − 1
3
, i.e., for effectively repulsive fluids akin

to dark energy models, the correction terms domi-
nate far from the event horizon and mainly near the
cosmological horizon.

The Schwarzschild black hole is an idealized vacuum
solution, and it is important to consider how it gets
deformed in the presence of matter fields. Another crucial

factor to consider is the impact of the surrounding envi-
ronment, particularly the shadow of a black hole in the
cosmological background, which serves as a potential
cosmological ruler [69]. The solution presented in this
work can be further investigated to study the shadow of a
hairy Schwarzschild black hole in various cosmological
backgrounds in order to find out how anisotropic fluid can
affect the observational properties [70], which is a plan of
our upcoming investigations. It is worthwhile to mention
that applying the Newman-Janis [71] and Azreg Ainou
[72,73] algorithms one can obtain the rotating version of
the solution presented here. Also, investigation of quasi-
normal modes, thermodynamic properties, accretion proc-
ess, and gravitational lensing of these solutions can help us
to understand better the nature of these objects.
The obtained hairy Kiselev solution has many potential

uses in various cosmological and astrophysical scenarios. It
can be an arena for high-energy phenomena. If one
considers the center of mass energy Ec:m: of two colliding
particles in usual Schwarzschild spacetime, then the value
is quite limited and small [13]. However, two extra terms
here might lead to the existence of the innermost stable
equilibrium point in the horizon vicinity [14], which can
lead to unbound center of mass energy Ec:m: of two
colliding particles. Another tool to distinguish the hairy
Kiselev black hole from the usual Schwarzschild one is to
study its shadow properties. The shape of the shadow is the
same as in the Schwarzschild case due to the spherical
symmetry. However, the existence of four extra parameters
ω, N, α, l have, surely, impact on its size and intensity [74].
The study of the planet’s motion is the way to define if a
primary hair can have an impact on its trajectory. As we
have shown, extra terms can drastically change particle
motion. However, in a realistic astrophysical situation, one
should consider this motion near the black hole where α, l,
N has a large impact on the particle motion. Based on the
parameters and variables considered in this model, it seems
that attempting to test it within the Solar System would be
futile. This is because any additional terms are essentially
insignificant beyond the surface of the Sun, resulting in a
prediction that would be indistinguishable from that which
is already predicted in Schwarzschild spacetime. Therefore,
it may be more beneficial to focus on the study of black
hole vicinity where more noticeable results can be
achieved. Although it has not yet been observed, the
Hawking temperature and radiation may get also influenced
by a primary hair [58,59]. The Schwarzschild black hole
possesses a negative heat capacity. Cosmological fields and
primary hair might lead to positive specific heat capacity
and phase transition [75]. All these are the topics of our
future investigations.
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5Considering the positive ω, the weak energy condition
demands negative N values. This restriction, for example, in
the dust case requires jNj < 2M, otherwise, the metric function
fðrÞ is always positive for all ranges of r since all the being four
terms are positive, and hence there is no event horizon. In the case
of the radiation, i.e., ω ¼ 1

3
, the NS occurs if M2 þ N < 0 which

requires large values of jNj. Hence one observes that for bigger
values of jNj, the function jGj becomes bigger, but this implies
the violation of the condition required for the existence of an
event horizon.
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