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In this work we study the gravitational radiation produced by a Keplerian binary system within the
context of very special linear gravity (VSLG), a novel theory of linearized gravity in the framework of very
special relativity allowing for a gauge-invariant mass m,, of the graviton. For this task, we exploit effective

field theory’s techniques, which require, among others, the calculation of the squared amplitude of the
emission process and therefore the polarization sum for VSLG gravitons. Working in the radiation zone and
using the standard energy-momentum tensor’s expression for Keplerian binaries, we derive and study the
properties of the VSLG energy-loss and period-decrease rates, also verifying they reduce to the correct
General Relativity limit when sending m, — 0. Finally, using astronomical data from the Hulse-Taylor

binary and the double pulsar J0737-3039, we obtain an upper bound on the VSLG graviton mass of

mg ~ 10721 eV that, while being comparable to bounds obtained in this same way for other massive gravity

models, is still weaker than the kinematical bound ~10722 eV obtained from the combined observation of
the astronomical events GW170817 and GRB170817A, which should still hold in VSLG.

DOI: 10.1103/PhysRevD.108.044072

I. INTRODUCTION

The observation of gravitational waves (GW) is one
of the most notable successes of General Relativity (GR).
Binary stars played an important role in such progress;
indirect measurements from binary pulsars in the seventies
[1,2] served as initial evidence for this prediction. The
definitive confirmation was the first direct detection of
gravitational waves from a black hole merger by the LIGO/
VIRGO Collaboration [3] in 2015. The unique precision of
this measure opens interesting possibilities to test mod-
ifications of GR, imposing strong constraints on such
models. Nevertheless, binary stars still offers a fantastic
playground to test for many predictions of GR and, in
general, fundamental physics [4,5].

Extensions or alternatives to GR have been widely studied
for years. Despite the success of GR, open problems such
as dark energy, the cosmological constant or tensions in
cosmology have suggested the possibility of modifications
to the Einstein’s picture to give an explanation to such
questions, while still containing GR as some suitable limit.
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Different studies on these alternative models have been
carried out considering binary systems. For example, the
rate of energy loss and orbital-period decay was recently
analyzed in f(R) models [6]. Similarly, gravitational radi-
ation was studied for certain massive gravity models [7].

Massive gravity theories have a long story. The pioneer-
ing work of Fierz and Pauli presented for the first time a
lagrangian for a massive spin-2 particle [8]. However, it was
discovered later that a discontinuity with GR appears in the
massless limit of the theory, the so-called vDVZ disconti-
nuity [9,10]. Also, massive gravitons possess five degrees
of freedom (d.o.f) instead of two as in the massless case.
This fact has consequences in the manifestation of ghost
modes [11]. Solutions to those problems, like the Vainshtein
mechanism [12] for example, have been already studied
and implemented in models such as Dvali-Gabadadze-
Porrati [13,14] and de Rham-Gabadadze-Tolley [15] or
new massive gravity (NMG) in three dimensions [16].
For the interested reader, we refer to the review [17] and
references therein for more details on these theories.

The introduction of a graviton mass in the models above
breaks GR gauge symmetry. However, an interesting
possibility to add masses without breaking gauge invari-
ance can be found in the very special relativity (VSR)
framework. VSR appeared as a novel way to explain
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neutrino masses without the addition of new particles [18],
just by considering as the symmetry group of nature some
special Lorentz’s subgroup, like SIM(2), rather than the
Lorentz group [19], introducing in this way a preferred
lightlike spacetime direction labelled by the four-vector n*.

Interestingly, the VSR symmetry group can always be
enlarged to the full Lorentz group by the addition of
discrete transformations like P, 7, or CP, recovering in
such manner the special relativity (SR) picture. Thus, VSR
effects should be absent in contexts where these discrete
symmetries are present. This feature becomes attractive
in the gravitational sector and cosmology in light of the
Sakharov conditions for baryogenesis [20], as a result of
which CP violation is needed to account for the observed
baryon-asymmetry of the Universe.

Apart from neutrino masses, it has been shown that, in
VSR, gauge boson masses can be added in a gauge-
invariant way. This issue has been explored in general
for any non-Abelian field in [21], and in particular within
the electroweak model [22] and for the photon [23,24].
Recently, it has been presented in [25] a way to describe a
VSR massive graviton model, while preserving gauge
invariance and the usual number of d.o.f, as it happens
in the other VSR extensions.

Therefore, this model, that we call very special linear
gravity (VSLG), does not present problems with ghosts as
it happens in other massive graviton realizations.

Other forms of gravity having as starting point VSR have
been studied using algebra deformations, analyzing line
elements invariants under DISIM,(2) [26,27], and show-
ing an interesting connection with Finsler geometries.
These approaches are different from the one in [25] since,
in the latter, gravity is studied as a linear perturbation of the
Minkowski metric # = diag{+, —, —, —} with the addition
of new Lagrangian terms invariant under the SIM(2)
group. Note that VSLG also fundamentally differs from
any spurion effective field theory extension of linearized
gravity, like [28], since the SIM(2) algebra does not allow
for new invariant background vectors or tensors, leading to
the nonlocality of the VSLG additional Lagrangian terms.

Thus, the aim of this work is to study binary systems and
their gravitational emission in the context of VSR, focusing
on the VSLG formulation developed in [25].

The outline of the present paper is as follows: in Sec. II
we present the VSLG Lagrangian. We show the non-
relativistic gravitational potential for the model and we
present the derivation of the rate of gravitational energy loss
in an emission process under an effective field theory
perspective. In Sec. III, we discuss the energy momentum
tensor used for the binary system in the emission process,
considering the regime of validity of our approximations.
Section IV is devoted to show the way to compute the
angular integrals appearing in the expression for the
energy-loss rate. In Sec. V, we put together all the previous
computations to obtain the VSR rate of orbital period

decrease, discussing some of its novel features. In Sec. VI,
we present indicative bounds for the VSR graviton mass
considering the previous results combined with experimen-
tal data from binaries and, finally, we summarise and
conclude our work in Sec. VIIL.

To avoid clutter with the long expressions of VSLG, we
have left in the appendixes the complete expressions of
some relevant quantities, which are referenced in the main
text when necessary, together with a few more details on
their computation.

II. VERY SPECIAL LINEAR GRAVITY

In [25], it was shown that the most general quadratic
SIM (2)-invariant Lagrangian for a graviton /,,, containing
up to two derivatives, is

1
'Ch - Ehllbo/waﬂhaﬁv (1)

where the operator O is fully written in Appendix A.

This operator contains terms involving N# = ;:l_:a’ with
n* = (n°, n) being the usual lightlike vector characterizing
SIM(2) models [18,19]. Despite these extra terms, it was
also shown in [25] that the physical degrees of freedom of
this model are still only two as in GR.

Now, we are interested in seeing the novel effects
generated by VSLG when interacting weakly with matter.
For this purpose, we will couple the graviton to matter in

the usual gauge-invariant and linear way [29]
K
‘Cint - _Eh/wTﬂyy K=YV 327[G, (2)

with 7" representing energy-momentum tensor (EMT) of
matter. In principle, 7#* could reflect any kind of matter
that we could be interested in.

In the next sections, we will use a Keplerian binary
system as a source. However, to get familiar with calcu-
lations in VSLG, we decide to start with the computation of
its gravitational potential. For this purpose, we consider the
case of a massive scalar field ¢ and its scattering through
the exchange of a graviton, as shown below in Fig. 1.

FIG. 1. Tree-level diagram for the scattering of two scalar fields
through the exchange of a graviton of momentum g¢.
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A. Nonrelativistic gravitational potential

For a scalar field we have

w — y¢a ¢ npw( /,qb()”qb - m2¢2)' (3)
To calculate the amplitude M for a scattering of two scalar
particles mediated by a graviton at tree level, we will need
the graviton propagator. In order to obtain it, we have to add
the following gauge-fixing term to the VSLG Lagrangian

1 1
Lgr = &0, (h”” ~5 ””h) o <h/1y - Eﬂ,wh> )

The relevant expressions of the Feynman rules for the
graviton propagator and the vertex h¢¢ are left in
Appendix A. The gravitational potential in the nonrelativ-
istic limit can be obtained easily from the scattering
amplitude M, and it is given by

47Gm?> (1+ mg >2 5)
lg|* + m; (h-q)*) "

being 71 the unitary VSR spatial vector. We can see that,
as expected, the 7-independent term coincides with the
expression for a Yukawa potential. However, the terms
containing 7 - ¢ in the denominator are infrared divergent,
therefore, they must be regularized. In fact, these diver-
gences would imply the existence of infinite forces for
certain angles, leading to an ill-defined physical situation.
The existence of such divergences is a quite common
feature of VSR models. In relativistic cases, the
Mandelstam-Leibbrandt prescription has been used to
regulate them [30]. Nevertheless, this trick is not helpful
in the nonrelativistic case. Recently, a new prescription to
manage VSR divergences also in the nonrelativistic case
was presented in [31]. The crucial point is that, with this
recipe, the STM(2) limit of integrals like

= ©
GrRPETA

vanishes. Hence, following this technique, the position-
space expression for the nonrelativistic gravitational poten-
tial in VSLG would be a standard Yukawa potential

Vig) =

V(r)=- e M’ (7)

Notice that the gravitational potential for this case is
independent of the direction of 7, as typical in many other
massive graviton’s models. However, the main difference is
that here the physical degrees of freedom are still two, as in
the standard GR case.

h‘u'y

Ty

FIG. 2. Diagrammatic representation of the emission of a
graviton derived from the gauge-invariant linear coupling
8T, (x)* (x) of the field &, with the classical source 7.

B. Gravitational energy-loss rate

Now, we turn our attention to the main goal of the paper;
the calculation of the rate of energy lost by gravitational
radiation for a binary system. For this purpose, we will stick
to the effective field theoretical approach [32-35]. In
particular, inspired by [7], we are thinking of a tree-level
emission process like the one shown in Fig. 2, where T
represents the binary system and 4, the emitted gravita-
tional wave.

The tree-level amplitude of such a process would be

Ay = =5 T (e (). ®)

1722
with T/w being the EMT expression in momentum space,
¢}’ being the graviton’s polarization and 4 = 1, 2 labeling
the different physical polarizations of VSLG. Note that,
since T, (x) is real for our case of interest, then we have the
relation 7, (=k) = T3, (k).

From the unpolarized squared amplitude we can easily
find the infinitesimal emission probability dX [32]

dx = Zl /1|2 3260

o K
MJEan K wELE )

Defining the polarization sum S** as

Ilbaﬁ Zeﬂu * aﬂ ’ ( 1 0)

we can rewrite Eq. (9) as

K> - &’k
Z*WTW(IC)T 5 (k)SH ﬁ(k)?, (11)
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and, being w* = |k|*> + mJ for on shell physical graviton
modes in VSLG, we can replace

2
Pk = [k[2d[k|dy = P [ 1~ %dwdﬂk, (12)

in Eq. (11), obtaining

2

45 = T3, (0T 4 ()" (K)plw)wdwd®y.  (13)
8(2x)
mZ
where we defined p(w) = -4

To derive the differential rate of radiated energy is
sufficient to multiply dX by the energy @ of the emitted
GW and divide it by the observation time 7. Thus,
integrating over all emission angles and frequencies, we

i — d
get the total energy-loss rate £ = d—f
E_/fﬂ
T
IS oy 7
= m/p(m)w T;yTaﬂS”Daﬁda)ko. (14)

The explicit expression for S#*?_ that we figured out for
this paper, is included in Appendix B. In particular,
the relevant formula for the calculations in this work is
given in Eq. (B4).

At this point, it is convenient to reexpress the TTS
spacetime contraction just as a spatial contraction

o TopSel = THITHAIK, (15)
ijkl

therefore transforming Eq. (14) into (repeated spatial
indices are summed on)

. K2 ~ s ..
E=—r 2do | TITHAMAQ,. (16
a7 | plerido [ . (16)

To do that we exploit the energy-momentum conservation
k" =0 - oT% = k'T", (17)

as well as the relations

=0 K i
™ ="7TY,
T00 _ K 70i k"lgf’ T
[0} @’

(18)

Let us also introduce the unitary vector k'

N ki ki
k= = , (19)
/1 = ”Lg a)p(w)
so that
nt nt n*/n®
N+ = = = (20)

n-k  nlw(l -pk k)  oR(w kn*)’

with R(w.k,n*) =1 —p%-l% and n# labeling the VSR
preferred spacetime direction. From hereon, thanks to
the n-rescaling symmetry of VSR, we will fix n® =1,
implying n — 7.

Note that A% must be symmetric under the interchange
of ij & kI, due to the symmetry properties of S*** and
since it is contracted with 7T*UT* as also stressed in
Appendix C, where we additionally include some other
useful details for its computation.

Going carefully through all the calculations, we finally
obtain the expression (C2) for AV¥ (e, k, 7).

III. ENERGY-MOMENTUM TENSOR

In this section we will discuss the expression of the
EMT appearing in our calculation. Due to the linear
nature of VSLG and the huge distance from which we
observe astrophysical phenomena, the only relevant
component that enters in 7# is the one from the classical
source [7], which in our case describes an inspiraling
two-body system.

Working in the nonrelativistic or low-velocity limit, we
can make use of the known EMT’s formula for a Keplerian
binary of total mass M = m| + m,

T (1,x) = pUM U8 (x — r(1)), (21)

where r(¢) and U* = (1,7, #,,0) are the trajectory and
nonrelativistic four-velocity in the x — y orbital plane of the
reduced mass u = m;m,/M. Defining b and e respectively
as the semimajor axis and the eccentricity of the Keplerian
orbit, we can parametrize the motion in function of the
eccentric anomaly ¢ = ¢(z) [36] as follows:

r(t) = b(cos¢—e, V1 —ezsin(p,O),

GM

Qt=¢ —esingg with Q= xR

(22)

with Q representing the fundamental frequency defined by
the revolution period P, — Q = 27/ P,,. At this point let us
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observe that, since the EMTs in Eq. (16) are the momentum
space version, we can write them as

Ti(w, k) = /dt/d3xei(“’"k'x)Tij(t,x)
:/d3xeik'x]~"ij(a),x). (23)

Defining by d the distance between us and the source, we
will work as usual in the so-called “far zone” or “radiation
zone”, which implies the following hierarchy of lengths
b <« A< d, with 4 being the wavelength of the emitted
radiation. Thus, being k - x ~ % b < 1, we can approximate

e®* ~ 1 and write
Mok~ [ Ot =10, (Y

Note that this approximation would also imply an upper
limit in the w-integral. In fact, being » <« 1 the typical
velocity of the system (where we are working with the
velocity of light ¢ = 1), we have

1 1 1
k<<ZN;Q_)w<<‘/m§+FQ2’ (25)

Then, considering systems for which m, <€, as in
the cases considered in the rest of the paper, we would
have the upper limit

1
0 <K —-Q. (26)
v

However, we will not worry about this constraint, because
at the end it is already taken care of by the fast convergence
of the integrand, as pointed out later in Sec. VL.

Furthermore, let us observe the following. From the
conservation equation d,7"*(z,x) = 0, contracting it with
another 9d,, we can find that 0,0,7%(t,x) = o§T%(¢,x) or
equivalently

0,0;T"(w,x) = —*T"(w,x). (27)

that multiplied by x*x’ and integrated over d°x becomes,
using integration by parts

2
T (w) = —%/dlei‘”’/d3xT00(t,x)xkxl
a)2 . (1)2 ~
=% [dremoin = -5 0. (8)

from which we see, as expected, that the first contribution
in our expansion comes from the quadrupole moment Q"
of the source ~ [ d3xT%x*x!.

Using definition (21) in the expression for Q%, we get

OM(t) =u / x5 (x — r(t))xkx!

= urk(0)r'(z). (29)
Replacing the expression (28) for T (w) back into the
energy-loss rate and using the definition of «, we finally end
up with

. G o .
E = 8ﬂzT/a'a)p(a))co6Q*”Q“ [/ A”klko} (30)

A. System periodicity and Fourier

At this point, we can further simplify our calculations by
considering the (almost) periodic nature of binaries, that is
justified by the smallness of the rate of period change due
to gravitational emission in the initial phase of the binary
inspiral (see for example Table I). In fact, due to the
periodicity, we can express the quadrupolar moment as a
Fourier series

Qij(l) — ZQZ@imNt, (31)
N
with wy = NQ. Then, its Fourier transform will be

0(w) =21y _5(w— wy)Qy. (32)

where we remember the standard definition of the Fourier
coefficients

. 1 Py . -
y —
v _P—/ dte™" N QU (1). (33)
b Jo
Replacing this expression in the energy loss rate, we can
integrate over the frequency w to remove the deltas and set
® = wy, since

oo 1
/ dwd(w — wy)é(w —wy) = S(oy —wy) = §5NM.

g

(34)

TABLE I. Descriptive data for the two pulsar binaries selected
for this work. Parenthesized numbers represent the 16 uncertainty
in the last digit quoted. The sources of the data for each pulsar are
cited alongside their names.

Pulsar B1913 + 16 [37] J0737-3039 [38]
my(mg) 1.438(1) 1.33819(1)
ms(mg) 1.390(1) 1.24887(1)
Py(d) 0.322997448918(3)  0.102251559297(1)
e 0.6171340(4) 0.08777702(6)
Pep(ss™1) x 1012 —2.398 —1.247782
op(ss™1) x 1012 0.004 0.000079
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Then, using the dy;, to remove one of the sums that derives
from the two Q and taking T = P,, we obtain

.G » y
E= ENZP@)N)G’?VQNJ N [/ A]kldgk], (35)

min

with N, = [%ﬂ, where the brackets [] represents here
the ceiling function. This limitation on the sum’s range is
due to the fact that, because of the deltas in the w-integral,
the relevant values of N are the ones for which wy lays
in the interior of the w-integration interval, meaning
oy > mg.

B. Nonzero Q-components

In this paragraph, we discuss the expressions of the
nonzero components of the quadrupolar Fourier coeffi-

cients QZ [39]. Using Egs. (33) and (29), we have

T LN
N dte "N () (1). (36)
b Jo

Let us observe that since we chose our frame so that
the motion is in the x—y plane, the only nonzero compo-
nents will be Q%, O, and Q) = Q). For example, the
Xx-component is

P
=B 7 eV (cos p — e)?. (37)
Py Jo

The main idea to solve those kind of integrals is to first
change the integration variable to ¢ and then express
everything in terms of Bessel functions Jy(Ne).

At the end, all the nonzero components will have the
same structure

oy = ’;—Z;LZ- (38)
The explicit expressions of the nonzero Lj\’} in functions of
the Jy(Ne) are

LY =Jyp—2ey_y +2e)yp — Iy,

Ly =Jnpo—2e]y. - %JN +2eJy-1 — In-2s

Ly = —imuN_g —2Jy +JIn42)s (39)

where, to find them, we made use of the Bessel-function
identity Jy (1) = L [37 /V¢=15in9) 4, and we denoted with

y/3
aprime over Jy its derivative respect to its argument, that in

this case is always the product Ne.

IV. ANGULAR INTEGRAL [ d;

At this point, we are ready to perform the angular
integral in (35), which at the end will only involve the
AUk structure, since, after the consideration we have made

on the EMT, it is the only object depending on k
T4 (@, ) = / AN (wy, k, 7). (40)

‘We can break down this calculation as the calculation of the
integrals of the type

- k...
i’ = [ dQ , 41
[ a5 (41)

that we encounter when integrating the expression (C2).
This task can be simplified by exploiting the SIM(2)
symmetry of our expressions.

Let us consider a simple example; we want to calculate
the integral I',. After the k-integration there is only one
possible tensorial structure to which the result can be
proportional, which is clearly #'. Therefore, we will have

I, = B, (42)

Contracting with ‘Y, we get the coefficient expression

il — / "t —p —p (43)

where we defined another type of integrals

Al 1 P
Iﬁ,:/kouzzn/ dx—" . (44)
R™ -1 (T=px)™

In the last expression we used the fact that, since we are
integrating over all directions of k, the result will not
depend on the frame in which we are doing the integral.
Thus, we choose the frame such that 7 - k = cos@ = x.

We include the final explicit expression for the angular
integral in Eq. (C3). Note that, one can easily verify it to
have the correct GR limit when sending m, — 0.

V. RADIATED POWER AND PERIOD
DECREASE RATE

At this point, the “updated” formula for the gravitational-
radiated power in VSR is

G4ﬂ2M3

T b5 Zp(a)N)N4L*iijlHijkl|
T

Nmin

VSR — W=y

B 32G4m%m%MZ 5p
N 5b° 512n

Nmin
32G*mim}

M
5 > f(N.e.s.7). (45)
N,

min

N4L*iijlHijkl
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where we defined 6 = m,/Q and the function

_ S5p NA L Kk

fN.e.6.1) =<

(40)
From this formula, we can easily derive the orbital-period
derivative P, since we know that in a Keplerian system we
must have

WG
mimoy+/my + my

Therefore, after a little manipulation, the rate of period
decrease in VSR can be rewritten in the following (exper-
imentally) convenient form

P=—6n E. (47)

1 927rT ml m2
VSR = 5

( > ZfNeén (48)

mm

with T =GMy/c® = 4.925490947 ps [37] and the
“tilde”-masses defined as /i =m/Mg, with M, being
the solar mass.

A. Zero-mass limit

It is easy to see that, when taking the limit my, — 0,
Eq. (48) reduces to the usual GR formula for the period
decrease rate of a Keplerian two-body system [39] |

Thus, we are only left with

1927TT® m1m2
5 M3

—oap @

Pgr = —

&)

In fact, it can be shown that in this limit the contraction
LLITI takes exactly the GR standard form, implying

limf(N. e.8./1) = g(N.e). (50)

where the expression for g(N,e) is given in Eq. (D3).
Therefore, since the following sum result holds [39]

+oo 1 41362 4 31 4
3 g(N.e) = —2E % (51)
N=1 (I-e )

we end up with the correct GR limit for m, — 0.

B. Case 11/ /%

Let’s start by analyzing analitically the simplest scenario,
that is when 7//Z. In this case, all the terms in the LLII

contraction proportional to 7 cancel, since the non-zero
L-components only involve x and y.

vijy ki 2T 5, 45 1+2p7=3p* N\ i
LI LK = 15{(16 pt 4207 =5 4 15— —Lotanh™lp | LifLY
155 , 135 _7—10p% + 3p* .
—|—2<16p4—7p2—|— 15 §p+ P tanh‘1p>LN”LA’,}, (52)

while for the contracted L L-combinations appearing above
we have

16

*iip JJ _
LN LN JN’

Ly'Ly =2 [(1 — ) (Ino2 = 2Jy + Inia)

JN+(JN 2—2€JN1+ JN

N2 N

+2ey i1 - mﬂ , (53)

where the argument of all the above Bessel functions J is
still Ne. Note that, being this contribution to LLII
independent of 7, it is also present in the more general

case where 7 is oriented differently. The full expression for
f1) = fliy: is given in Eq. (D2).

|

The discrepance respect to GR obtained by considering
f, is always negative, resulting in a reduction in the final
period decrease rate. This effect can also be appreciated in
Fig. 3, where we compare the behavior of f,, and g in
function of N, for 6 = 0.5 and for two different illustrative
eccentricities values.

le=03] [e=0.6]

- o g(N,e) 15 o g(N,e)
o
06 ° : s fy(N,e,d) g“gg a fy(N.e,6)
x 1.0 2 a
0.4 a
2 ol R a
0.2 a a
L]
a o
0oliwa 2o aiaiaaia YL .Y ¥ VPO
] 2 4 6 8 10 12 0 5 10 15 20
N N
FIG. 3. Comparison between f/, (N,e,8) and g(N,e) in

function of N, respectively for the values e = 0.3 and e = 0.6,
in the exemplificative case of § = 0.5.
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25¢ —— ZnvgW®N,e)
20k — = INfi N, e, 0) /]
—=_
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FIG. 4. Behavior of >y f,/(N,e,8) and > y_og(N,e) in
function of &, for the illustrative value of e = 0.3. The horizontal
axis is represented in logarithmic scale. It is possible to see that
already for 0 ~ 10 the high-intensity N-values have been ex-
cluded from the sum, implying a crucial drop in the total emitted
radiation.

From these graphs, we also recognize the fast-
convergency behavior of f,, when increasing N. This
feature allow us to cut off the N-summation (around ~100)
much before the upper limit given in (26), which for typical
binaries’ velocities would give N, ~ 1000. However,
since the N-value of the intensity peak of f,, increases
with e, one should be more careful when considering this
approximation with very high-eccentricity binaries.

There is also another interesting effect coming from the
essence of Ny, in the sum; if m, is not exactly zero in
nature, then, there should exist binary systems for which
0> 1, implying the modes with N < N_;, would be
excluded from the sum, leading to a drop in the emission
intensity, as shown in Fig. 4, where to each integer value of
o corresponds a dip in magnitude. Due to the horizontal
shift of the intensity peak of f,, when increasing e, this
effect is more easily noticeable for small eccentricities. This
fact may lead to the possibility of placing better constraints
on the mass m, from measurements of the period decrease
rate for binaries with longer period and smaller eccentricity.
See for example Fig. 5 where, by taking larger values of the
period P, and therefore increasing N,;,, the effect of
progressively excluding the first N-values from the sum
becomes more and more evident.

Note that, even if we have not seen any mention about it
in literature, this is a phenomena that should affect not only
the VSR realization of linearized massive gravity but other
formulations (like [7]) too, since it is simply derived from
considerations on the w-integration range.

C. Generic 7i case

For the generic case is much more difficult to obtain a
compact formula. Nevertheless, observe that we have at
least a factorization of the VSR effects generated by the
generic 7. In fact, we will have

le-16-6.7e-12 le-15

05{ — @ | 700 | — &R 1
=== VSR (P=2 hrs) i === VSR (P=5 days) i
i 7.05 !
00- | i
i
|! 7.10 i
. -05 ' i
& i€ s !
i i
10 { l' i
! -1.20 !
i !
i !
15 j 125 i
7 7/
-1.30
le-18 le-22
07— & - 0 — & o -
—-= VSR (P=365 days) I —.- VSR (P=10° days) i
i !
ol ! i
1 i a !
! i
Yy i |
H -2
o ' a !
3 ! < ‘
1 3 i
N ! i
! i N
/ N
-4 J
Y / !
/ /
s a
-5
-6
-0 28 -6 -8 -2 20 30 28 26 28 -2 20
1093(my) logio(me)
. . PPN
FIG. 5. Period decrease rate in GR and VSR (for #i//2) in

function of m, and for different values of the orbital period Py,.
The eccentricity here is set to e = 0.3.

f(N.b6,e.n) =f,/(N.6,e)+ f (N.6.e.nn), (54)
where f/, is the contribution previously found and f is

the new part. The 7i-dependence can be parametrized in
function of the two angles {0, ¢} by choosing

it = (sin @ cos ¢, sin O sin ¢, cos 6), (55)
with 6 € (0,7), ¢ € (0,2x). Naturally the case i1//Z is
recovered by taking 6 = 0.

We include the expression for f, in Appendix D. By
plotting f, versus N for some indicative values of
{8,e,0,¢}, we notice that it is mostly close to zero or
positive as long as ¢ is small, while for the first few
available N-values it undergoes a progressive shift to
negative values when increasing 6. This feature is shown,
for example, in Fig. 6. Thus, in contrast to the VSR
contribution f,, — g, which was always negative, f | does
not have in general a definite sign.

Another interesting fact that can be graphically appre-
ciated is that, starting from small values of §, the
f-contribution in the case 71//Z is always below its more
generic counterpart with 7 oriented differently. This sit-
uation changes when increasing 9§, in which case the
hierarchy gets turned over, as we can see in Fig. 7.

VI. GRAVITON MASS BOUNDS FROM DATA

In this section, we want to use the previous results to
show how they allow to bound experimentally the graviton
mass parameter in VSR.

For this purpose, we will use data from two of the most
well-studied pulsar binaries; the Hulse-Taylor binary PSR
B1913 + 16, the first binary pulsar ever discovered [40],
and the double pulsar PSR J0737-3039A/B. We include
information on these two systems in Table I. A more
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FIG. 6. Behavior of f| in function of N, for different values of
{e, 6,0, ¢}. Here, the qualitative behavior does not change much
by varying {6, ¢}, it just scales the magnitude of the VSR effects.
Interestingly, having a greater value of e delays the shift to
negative values for the lowest N-values when increasing 9.
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FIG. 7. Comparison of the curves produced by » y f in
function of &, for different values of {6,¢} and with fixed
eccentricity e = 0.3. The horizontal axis is represented in
logarithmic scale for convenience.

precise inspection of the problem would require a statistical
in depth analysis of the general VSR formula on a dataset
including a much wider collection of binaries, but that is
not the purpose of this paper.

The fundamental frequency € of both binaries taken
into consideration when translated in terms of energies is
approximately ~10~!° eV. We will, then, suppose to be in
the small 6 = m,/€Q regime. This assumption is reasonable
since the kinematical bound m, < 1072? eV [41] obtained
from the combined observation of the events GW170817
and GRB 170817A should hold also in VSR; in fact, the on
shell graviton’s dispersion relation in gauge-fixed VSLG
take the usual SR structure [25] independently of the
n-direction.

For the considered binaries, we have seen that, when & is
small, the period decrease rate in the 7i//Z-scenario is
always bigger (in absolute value) than the one for the other

fi-orientations. Thus, we restrict our analysis to 71//Z, since
it implies the greatest VSR discrepancy possible in our
context, and therefore leads to the stringent bound on
graviton mass obtainable taking VSR for granted.

That being the case, the procedure used for the estima-
tion of the m -upper limit is simple; for small 6, the 72//Z-
contribution gets bigger in absolute value with §, as shown
in Fig. 4. Then, it will be sufficient to increase the value of
m, to the point where we saturate the maximal discrepancy
allowed by a 95% confidence interval around the exper-
imental rate of period decrease Pexp due to GWs emission.
The value found through this process will represent our
constraint. See Fig. 8 for a graphical representation.

Let us start from the pulsar PSR B1913 + 16. In this
case, following the above procedure we obtain a S-upper
limit of § < 0.1102, which corresponds to the following
bound on the graviton mass

m, <52 %1072 eV, (56)

For the other binary under consideration, PSR J0737-
3039A, the upper bound that we get is

my < 2.3 % 10721, (57)
1e-12 . .
0020F B1913+16]
0.015} VSR discrepancy ./‘[
-
0.010F ’,/'
g P
°I~ 0.005F ‘/./
[+4 -
¢ 0.000F======= T — m o m = == = = = =
a = GR discrepancy
-0.005F ]
-0.010f
—0.01 1 1 i " L " 1
0015502 004 006 008 010 012 0.14
)
1e-12
0.0004f - ¥
[J0737-3039]
0.0003¢ VSR discrepancy "
0.0002} el
-
< -
o° 0.0001f =
1 "
% 0.0000F ____._____‘;_-—e'_’ ———————————————
>
o 0.0001k GR discrepancy }
-0.0002}
-0.0003f
0.001 0.002 0.003 0.004 0.005 0.006
)
FIG. 8. Discrepancy in the period decrease rate predicted by

GR and VSR calculations respect to the experimental values
measured for the Hulse-Taylor and the double pulsar. The light-
blue band here represent the experimentally allowed discrepancy
region at 95% confidence level.
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which, while being more stringent than the first one, is still
not small enough to be an improvement respect to the
kinematical bound obtained from the above mentioned
detection of GW170817.

Nevertheless, it would be straightforward to improve
these constraints by either further enhancing the precision
of the measurements of the period decrease rate or by
focusing the attention to binaries with a large orbital size
and therefore longer orbital periods. In fact, the longer
the period, the bigger the é-ratio at fixed m,, leading in
principle to larger VSLG effects. Furthermore, as already
mentioned in Sec. V B, small values of the eccentricity
could also be beneficial for these tests since the high-
intensity modes in the >, would be excluded for smaller
values of m, keeping P;, fixed. In this way, one could hope
to detect some novel VSR effect or, at least, place better
constraints on the VSR origin of a graviton mass.

VII. SUMMARY AND CONCLUSIONS

In this paper, using an effective field theory approach for
VSLG, we derived expressions for the rates of energy loss
and orbital-period decrease for a binary system. While in
the case of many other massive gravity models the massless
limit does not give the GR result, we have observed that in
VSLG we easily recover the standard GR formula in the
zero-mass limit. This result was expected since, in contrast
to what happens for example with the Fierz-Pauli formu-
lation, in VSR we do not introduce additional d.o.f and
therefore we have no new polarizations which can con-
tribute to the energy loss when sending m, — 0. In this
sense, VSLG would represent an “healthy” massive grav-
iton alternative.

Afterwards, we proceeded to study and analyze some
peculiar feature of the new VSR formula for the period
decrease rate, both in the simplest case of 71//Z and the
more generic case of an 71 oriented differently. Interestingly,
we also highlighted a “dumping” effect that we think
should be present also in other massive gravity formula-
tions, since it is generated simply by the relation among the
fundamental frequency Q and the graviton mass m,.
Finally, we applied our results on some real binary systems
to compare them with available experimental data and put
bounds on the VSR graviton mass: for the two binary

|

stars took into consideration, the Hulse-Taylor binary and
PSR J0737-3039, we found an upper bound of about
~1072! eV, which would be almost as strong as the
kinematical bound from GW170817 [41]. The values we
obtained are comparable to other graviton mass upper
limits from binary systems found in literature, like
[7,42,43], since usually the most relevant radiation con-
tribution is of quadrupolar nature. For some particular
models, like the one in [5], much stronger bounds are
obtained due to the additional presence of dipolar modes.
Furthermore, we note that the constraints obtained here for
a VSR origin of graviton mass could be improved in the
future not only by increasing experimental precision in the
period decrease rate measurements or studying binaries
with longer periods, but for example also by exploiting
direct GW detections, for which further study in the VSLG
framework should be carried on.
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APPENDIX A: VSLG LAGRANGIAN
AND FEYNMAN RULES

In this appendix we include some useful details and
explicit expressions of VSLG [25]. The full Lagrangian £
considered in our approach

1 v Qj K v
;C — zhﬂ Oﬂl/aﬂh’ ﬁ - EhﬂDTﬂ
1 1
+ &0, (hﬂy - En’”’h) il <h,1,, - Emyh> , (A1)

is constructed with the quadratic operator O for the
graviton (1), the matter coupling (2) and the gauge-fixing
term (4). Up to a rescaling constant which can be absorbed
in the h-field, the full expression for the operator O
obtained in VSLG is given by

1 1 1 1
O/w(xﬁ = _aﬂaur]rxﬂ + Eaﬂaar]vﬁ + Eauaﬁrlua - a(xaﬁrluu + Eauaﬁn/m + zauaanﬂﬁ + 0271141/’70(/1 - zaznﬂar/uﬂ
2 2 2 2

e+ s = s — e — NN, a0 + NN 3,0 + N N0,
2 77/4/17]1/0: gn;wrlaﬁ 2 77/411’71//)’ D) ’7/4/17]1/0: gtV utVuvlap 2 wtVabv¥p D) utY pluvla
m2 m2 m2 m2

+ TQNDNaaﬂaﬁ + TgNyNﬂa,,aa — m2iN4N0,0, + m20*N, N5 — 79 O’ NN 1,5 — 79 0NN gt

2 2 2

T PN Nyt = =2 P11, N N + 12PN Nty — 120 Noy = 120, 0aN 5 + =2 1,aN, 0

D) v ﬁnﬂa B ny/i viVa g a ﬁrIﬂIJ g'l/u/ abp gn/w atVp B 77;404 vYp
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m2 2 2 2 2 2
+—= > nﬂad Nﬂ +—= > ﬂﬂﬂN a +—= 2 nﬂﬂd N +—= > i’]yaN aﬂ +—= 2 7']1/05 Nﬂ +—= > T]yﬂN 0
2
+ 29 0,N = m20sN 10, — m2,50,N (A2)
D) 771//3 Y a grlaﬂ u%v gnaﬂ utVus

which corresponds to the rescaled position-space version of the formula (4) for the momentum-space operator O in [25].
From the agrangian (A1) and the EMT given by (3), the momentum-space Feynman rules for the propagator and vertex h¢g¢

respectively are

4 L")

| lP/,,m/; imyg img
lOpgaﬁ = k + 2k4(k mz) Ap(rAa[)’ - m an(r/)’ +A /)”70-(1 + Amzr//)/} + A(r/)’”pa - A/mr/a/} - Aaﬂ’?/m—)
g g
imé 1
+ m ) (N ks + N,k,)(Ngky + Nykg) + N,N,koks + NoNgk,k, | . (A3)
g
|
and and the four-vector N¥ =n#/n-k as usual in VSR.
Symbolically, we obtain
K
= —i—(k’p° P — 1P (k- p— m2
Vigp = =5 (Kp7+ K2 =2k p=m)). (A4 ¢ 3 Gnkk 4+ +6qNN + 6KKNN + 120kN
4kkkN + 4kNNN + kkkk + NNNN, B1
Here, we defined * + + + (B1)
| where the numbers represent the different indices combi-
Poys = = (oallos - Noplloa — Noollas)s A5 nations for each possible tensorial structure.
poab =2 Clptop 1551 polap) (A3) At this point, from the gauge conditions already imposed
in VSLG [25]: k" =n,h*"” =0 and h = h, =0, we
A,y =k,N, + k,N, — NpN,,kZ. (A6) deduce the following constraints on §

We observe that we recover the standard propagator in the
limit m, — 0 [29].

APPENDIX B: POLARIZATIONS’ SUM IN VSLG

Here we include some details on the calculation of the
polarization sum $** in VSLG. For this calculation, we
exploit the covariance of S to determine the allowed
structures: the available tensorial “building blocks” from
which we start are the flat metric #, the four-momentum &

1 1
Suvap — = gua g o - b g _
29"9” +2g g

m; 1 1
— 7990!/31\//4]\]1/ + Egaﬂvaﬂ — Eg”ﬂN"k"

1
N %
29
m2 m2 I’I’l2
— 79 N“NYN°KP — 79 N*NYNPk* — 79 NMNONPEY —

1 m2 m?
S94g7 + PPN+ L gONNe

1 1 1

L AN 1 BN — ~ BN
S P NPR 4 S g INIR = g Nk
1 1 1 1

+ 5PN = S NI = 2 N 5 g NK o+ NUNKKP o KRN+

S NN,

k, S = 0,
n, Swab =,
’7/” S/w(z/i =0.

(B2)

Pairing this conditions with the one deriving from
normalization $*,, = >, €;"¢;,, = 2, which ensures the
correct limit for m, — 0, and the index symmetries y < v,
a < f, v < af (since S is related also to the h-propagator
[7]), we finally find the expression

2 m2 m2
+ 5 g ONIND + SR ONNE - S NN

1 1
_ L NP — = P NHRa
27 27
m4
%N”N”N“Nﬂ
2
(B3)

where we also had to consider the on shell condition k*> = mf] for the graviton polarizations’ tensors.
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Now, since all indices of $#**? are contracted with EMTs,
the terms proportional to k* gets canceled due to energy
momentum conservation k7, = 0. Thus, including only
relevant terms, the expression of S becomes

1 1 1
S/u/aﬂ — _g;mgyﬂ +§gﬂﬁgua _Eg/u/gaﬂ

2
ﬂ (gVﬂNﬂNa + gﬂﬂNl/Na + gU(XNﬂNﬂ)

2
mg

T(QWNDNﬁ g“NNP — g NNV

+ % N<NYNeN?, (B4)

APPENDIX C: EXPRESSION OF A% (¢ k it

The calculation of AV starting from S is quite
straightforward; as already stated in the main text, we just
|

~

. 1  aininpa nNng
Aljkl(a),k,ﬁ) — §p4klkjkkkl _kaJkkézl _

2
1 PPN fiL s PN
+2 {p“k’k’k"k’ — 202K RS — PR

DI R | non
—2hinksil + §p251./kkkl + §p26k1klkj

m4

1 1 .
+§ ”ﬁlékl zﬁkﬁléu]
1 I 1

+§fwmﬂy+5ﬁ

which is symmetric under ij < kI In principle, the result
could be not symmetric in ij < kl, since the indices of
S are contracted with two “different” objects. Anyway,
due to the symmetries of S, the contraction has the effect
of considering only the symmetrized 77T-product:
Tl — L(Tw TP + T*PTw), implying that A inherit
the same symmetrles of S, among which the pair-interchange
symmetry ij < ki

Note also that, even if not explicit in expression (C2), A

can be symmetrized also respect to i < jand k < [, since it|

2
=T (p* + 1002

Hifkl(a),ﬁ) s

—~ 15)8U5H

7_
—2(2p2—7+

4 33—
+3 <16p —39+

p2]’%l]}i5kj + %pZI'%ii{jékl + %pZI’%k]’%léij + 5ik5jl
— pilki 8" — pi

lklkj_pw'\ kk _pf\k IAzk

4 - 32+ 1
+ —’5[ (p* = 10p% + 15)6*8/" + n(1 = p?) [— <2,02 PR
P
p2 L 1
tanh™! p> Sk 4 3 (16p2 -3+

21p? |
TP fanh! p> ARk~ (80p2 — 117+
p

have to expand the contraction of S with the EMTs,
separate time and spatial parts, and finally transform time
indices into spatial ones through (18).

Let us give an example by realizing this calculation for
the term ~72, with 7 = T#,

T = (T*OO _ T*ii)(TOO _ Tjj)
— T*OOTOO _ T*OOT:’:’ _ TOOT*H + T*iiTjj
_ (p4]’%ifcj]’%k]’%l _pzl’%i]’%j(skl

_pQI%klAcléij _I_éijékl)T*ikal’ (Cl)

with 6/ = diag{1, 1, 1} being the identity tensor in three
spatial dimensions. The computation of the other terms
involved in AV is analogous. After all the calculations of
this kind, we find the following complete expression

1.
__5[]5](1

2
SAMETK 4 2pni kST + 2!k 8™ + 2p* i AR k!
kplsii _ L oamininkit L oapaning
k'6Y —5P 'k k —5ph n'k'k

1
2

+ i {2 TR + 202 K + S Al kR — PRl - P AR K
[

(€2)

is contracted with the spatial components 7% of the
symmetric EMTs.

1. Total angular integral IT% (w i)

In this section we include the explicit expression
of the angular integral I found after calculating,
with the help of Mathematica, all the needed integrals of

the type I,

tanh~! p) 5k

9—21p° o N
T2 fanh! p> (ATAIS + Akl s

111 —
111 -99° tanh™ p) Wnkn Z] (C3)
p
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which one can check to have the correct limit from
linearized GR when sending p — 1 or equivalently m, — 0.

8 .. 8

lim ITVkK = — s Sk 5tk 5il.

m,—0

(C4)

APPENDIX D: EXPRESSIONS OF f(N,b.e.i)

We use this appendix to collect some details on the final
expression assumed by the function f(N,&, e, ) and its
components. We remind, in fact, that we generally have that
S is given by two contributions: f,, and f |

f(N,e,6.i)=f,/(N.,6,e)+ f (N,b,e.it). (DI)

While f/,, is always present, being independent of 7, the
f 1 -part is relevant only when 7 is not parallel to the
z—direction. This fact directly implies that f,, should
reduce to the GR contribution in the limit of m, — 0,
while the one coming from f, should just vanish.

Due to what we said, the simplest expression for f is
clearly obtained in the case where 7 is orthogonal to the
orbital plane. In the following, we include the explicit
expression for both contributions:

1652 +3 52
tanh "W1==1]g9(N,e)
2,/

52

52 5 91
Noed)=]1——4 |1+ | =
Fi(N, e.9) MY el 2T
5 25+8052+5
e B 2
48 6 3N 21— 2
5N? 5 1652
N.oeb.i)=——— 021 = |23+
37 2082 12422
|+~ N’ tanh~!
4 N 4./1 - &
N2
2 1652 1222

N N2 5
Vi iTwN

with g(N, e) being the same function defined in [39]

o
N tanh~14/1 = =
N

tanh™! l—m J%(Ne) 3,
2+ 2152 ' .
\/__5_2tanh‘ 1- m ATARLY LY
52
1-— n/nknlL*”Lkl

sin®0(cos> L3k + sin’pLy )y ¢, (D2)

N* 2
g(N,e) = {(JN 2 —2ely +NJN +2ely i = Ing2)? + (1 =€) (I =20y + Iy a) + 3N2 /i } (D3)

being Ne the argument of the above J-functions, and

AATLIRLY = sin?0(cos2p(L3)? 4 sin?gp(L3))?) + sin20| LY |2,

R AR L LK = sin?0(cos2pLiF 4 sin2pLy) )2 + 4sin*@sin?peosp| LY 2.
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