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Among all the different techniques to derive the Hawking effect, the approach based on gravitational
anomaly by Robinson and Wilczek provides a simple and satisfactory origin of the black hole radiation.
In this picture, the effective near horizon physics becomes chiral and contains gravitational anomaly.
Nevertheless, the underlying description must be generally covariant, and therefore we require a
compensating energy-momentum flux whose divergence cancels the anomaly at the horizon. Remarkably,
the energy flux associated with the Hawking emission from the horizon exactly cancels the gravitational
anomaly and restores the general covariance at the quantum level. In this work, we present a generalization
of the original derivation for a stationary axisymmetric black hole solution of any gravity theory which
differs perturbatively from general relativity. The crucial input of the calculation is a remarkable
simplification of the near horizon geometry and the validity of the zeroth law of black hole mechanics.
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I. INTRODUCTION

The physics of black holes has provided remarkable
insights into the nature of quantum theory in curved
spacetime. The most intriguing prediction of the quantum
theory in the presence of a black hole is the existence of
Hawking radiation. In the original work by Hawking [1],
the origin of the black body radiation lies in the time
dependence of the background collapsing geometry, which
populates the late time vacuum by Hawking quanta. The
black hole temperature is calculated by evaluating the
Bogolyubov coefficients between the asymptotic “in”
and “out” vacuum states. The result is a Planckian spectrum
at temperature T ¼ ℏκ=2π, where κ is the surface gravity
associated with the final stationary black hole.
Since the original derivation by Hawking, the same

result has been derived from various approaches. Apart
from the canonical derivation, a path-integral approach
can be used to obtain the same result [2]. Also, the
radiation can be ascribed to the tunneling of virtual
particles from an eternal black hole [3]. Since all these
approaches yield identical results, the Hawking effect is
considered a solid prediction of quantum field theory in
curved spacetime. In fact, the derivation of Hawking
radiation is also regarded as a low energy consistency
check of any proposal for quantum gravity.
Among all the different techniques to derive the Hawking

effect, the approach based on gravitational anomaly [4]
provides a simple and satisfactory origin of the black hole
radiation. In this picture, the effective near horizon physics

becomes chiral and contains gravitational anomaly.
Nevertheless, the underlying description must be generally
covariant, and therefore we require a compensating energy-
momentum flux whose divergence cancels the anomaly at
the horizon. Remarkably, the energy flux associated with the
Hawking emission from the horizon exactly cancels the
gravitational anomaly and thereby restores the general
covariance of the theory at the quantum level. Therefore,
the Hawking flux originated from the covariance of quantum
field theory near the horizon of a black hole.
The original derivation of the Hawking radiation

from anomaly was done for a spherically symmetric
black hole spacetime. The derivation is later generalized
to stationary Kerr and time-dependent Vaidya black
holes [5,6]. In all cases, the derivation depends on the
crucial fact that the effective physics near the horizon is
essentially (1þ 1) dimensional; the only relevant part is
the r − t sector of the metric.
In this work, we generalize the derivation of the

Hawking radiation from gravitational anomaly beyond
spherical symmetry and for general static as well as
stationary black holes. We show that the derivation is
possible because of a remarkable simplification of the near-
horizon geometry, which is demonstrated by [7,8]. As in
the spherically symmetric case, close to the black hole
horizon, the field theory can be described using an infinite
collection of (1þ 1)-dimensional fields, each propagating
in a spacetime with a two-dimensional metric. This allows
us to repeat the calculation of the anomaly canceling flux as
the Hawking radiation from the horizon. Our calculation
also indicates an interesting relationship between the
derivation of the Hawking flux and the applicability of
the zeroth law of black hole mechanics.
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II. STATIC BLACK HOLE: GEOMETRIC SET UP

In this section, we will present a generalization of the
derivation of Hawking radiation using gravitational anomaly
for a static black hole. Before proceeding with the main
derivation, we recall that an anomaly in a quantum field
theory is a conflict between a symmetry of the classical
action and the procedure of quantization. While the anomaly
associated with global symmetries indicates interesting
physics, the gauge anomaly, i.e., the violation of a local
gauge invariance by quantum effects, signals theoretical
pathology. All gauge anomalies must cancel out; otherwise,
it will lead to an inconsistency in the quantum theory,
particularly unphysical negative norm states.
In classical gravity, the conservation of a matter energy-

momentum tensor Tμν is due to the diffeomorphism
invariance of the theory. This can easily be verified by
calculating the variation of the action functional of gravity
under boundary preserving diffeomorphism. Nevertheless,
quantum effects may lead to the nonconservation of Tμν

leading to the violation of the general covariance. This
gravitational anomaly occurs when Weyl fermions or self-
dual antisymmetric tensor fields are coupled to gravity [9].
Also, as a simple model, gravitational anomaly arises when
we consider a chiral scalar field in 1þ 1 dimensions. The
expression of the anomaly is then given by [10,11]

∇μT
μ
ν ¼ 1

96π
ffiffiffiffiffiffi−gp ϵβδ∂δ∂αΓα

νβ: ð1Þ

In [4], the notion of gravitational anomaly is used to
model the near horizon physics and to derive the Hawking
radiation. The key idea is to consider the near horizon
effective theory by tracing over modes which leads to a
singular contribution of the energy-momentum tensor. The
proposal was to remove these modes from the theory near
the black hole horizon at the expense of making the theory
chiral. This is exactly similar to the setup used in [12] to
derive the gravitational anomaly for a chiral scalar field.
This gravitational anomaly presents a serious inconsistency
in this prescription, leading to a violation of general
covariance. Then, it turns out that the gravitational anomaly
in the form of a current can be exactly canceled by the flux
of Hawking radiation. Therefore, in this picture, Hawking
radiation arises as a compensating current canceling the
troublesome gravitational anomaly and restoring the gen-
eral covariance of the near horizon physics.
The crucial mathematical step which allows us to

complete the derivation is the fact that the action of a
scalar field in a D-dimensional spacetime in the near
horizon region can be described using an infinite collection
of (1þ 1) -dimensional fields, such that the effective near
horizon physics is only 1þ 1 dimensional and we can use
the result of [4]. This step requires explicit use of the
spherical symmetry of the problem. Later, it was general-
ized to Kerr black holes also [5]. Nevertheless, we do not

have a demonstration of this simplification for general
static and stationary black holes. In this work, we aim to
achieve such a generalization.
We start with a static, asymptotically flat black hole

spacetime described by the metric [7],

ds2 ¼ −N2ðn; xaÞdt2 þ dn2 þ γabðn; xaÞdxadxb; ð2Þ

where a ¼ 2; 3 � � �. The existence of a Killing vector field,
ð∂tÞμ, for the metric in Eq. (2) indicates that spacetime has
time-translational symmetry. We are using the Gaussian
coordinate system ðt; n; xaÞ with n denoting the normal
distance to the horizon, and xa are arbitrary coordinates
on the (D − 2) spacelike surface. Then the norm of the
timelike Killing vector vanishes at N ¼ 0, and that is the
location of the Killing horizon of the spacetime. We chose
the coordinates such that n ¼ 0 implies Nðn; xaÞ ¼ 0.
Then, the surface gravity associated with this Killing
horizon is defined as

κ ≡ lim
n→0

∂nN: ð3Þ

Though it is not obvious, the surface gravity κ is actually
a constant on the horizon of a static black hole, independent
of the transverse coordinates xa. We will extensively use
this property in the derivation.
In this geometry, consider a minimally coupled real

massless scalar field φðxμÞ, described by the action

S½φ� ¼ 1

2

Z
dDx

ffiffiffiffiffiffi
−g

p
φ□φ: ð4Þ

For the static background, described by the metric in
Eq. (2), the action for the scalar field becomes

S½φ� ¼ 1

2

Z
dDx

ffiffiffi
γ

p
φ

�
−
1

N
∂
2
tφþ 1ffiffiffi

γ
p ∂n

�
N

ffiffiffi
γ

p
∂nφ

�

þ 1ffiffiffi
γ

p
�
N∂a

� ffiffiffi
γ

p
γab∂bφ

�

þ ∂aN
�
γab

ffiffiffi
γ

p �
∂bφ

��
: ð5Þ

where γ is the determinant of the metric γab. We like to
know the form of this action in the near horizon limit. It is
worth noting that in the horizon limit, the second term in
the Eq. (5) becomes ∂nðN∂nφÞ, and the third term vanishes
due to Nðn; xaÞ ¼ 0 at the horizon. In order to make the
theory effectively two-dimensional near the horizon, we
must eliminate the transverse coordinate dependence in
Eq. (5). As a result, it is necessary for us to express the lapse
function as Nðn; xaÞ ¼ fðnÞGðxaÞ only in the vicinity of
the horizon with the property at n → 0 limit fðnÞ ¼ 0. Due
to this expression of the lapse function, the fourth term in
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Eq. (5) becomes zero in the horizon limit, and the action,
S½φ� takes the following simple form,

S½φ� ¼ 1

2

Z
dDx

ffiffiffi
γ

p
φ

�
−

1

fðnÞGðxaÞ ∂
2
tφ

þ GðxaÞ∂n
�
fðnÞ∂nφ

��
: ð6Þ

From Eq. (6), it is evident that there exists a term
GðxaÞ, which is a function of the transverse coordinates
in the action, and this term makes it impossible to reduce
the theory effectively two-dimensional in the near hori-
zon limit.
To describe the physics near the Killing horizon in terms

of the “t − n” section of the full spacetime metric in Eq. (2),
we need a constraint onGðxaÞ such that the term becomes a
constant. To motivate this constraint, we note that from
Eq. (3), the surface gravity associated with the horizon is
given by,

κ ¼ lim
n→0

∂nNðn; xaÞ ¼ GðxaÞlim
n→0

∂nfðnÞ ð7Þ

Therefore, the constancy of GðxaÞ on the horizon implies
that κ is constant at the horizon. Thus, the transverse
coordinates independence in the lapse function Nðn; xaÞ in
the near horizon limit implies the zeroth law of black hole
thermodynamics. The condition GðxaÞ to be constant
on the horizon can be mapped into the validity of the
zeroth law of black hole mechanics, asserting the con-
stancy of the surface gravity everywhere on the Killing
horizon. We also note that the zeroth law is an identity for
a static black hole spacetime, independent of the dynamics
of gravity [13] i.e., the surface gravity of a static black
hole is a constant on the horizon, irrespective of the field
equation and the matter content.
Therefore, the near horizon effective theory is two

dimensional and we can apply the method of gravitational
anomaly, as in the case of spherical symmetric black hole.
Proceeding further, we note that it is always possible to

expand any arbitrary function on a compact space in terms of
spherical harmonics Ylmðθ;ϕ � � �Þ, which are functions of
spherical coordinates ðθ;ϕ � � �Þ. We can also use the same
coordinates in our case. But, to keep the things general, we
consider xa to be a general set of transverse coordinates and
use a transformation between ðθ;ϕ � � �Þ and xa, which allows
us to replace Ylmðθ;ϕ � � �Þ by ỸlmðxaÞ. Furthermore,
ỸlmðxaÞ must satisfy a certain normalization condition

Z
dx

ffiffiffi
γ

p
ỸlmðxaÞỸl0m0 ðxaÞ ¼ δll0δmm0 : ð8Þ

Now we can express φðxμÞ as,

φðxμÞ ¼
X
l;m

Φlmðt; nÞỸlmðxaÞ:

If we substitute the above expression of φ in Eq. (6), the
action will have the following form

S½φ� ¼ 1

2

Z
dtdn

X
l;m;l0;m0

Φl0m0

��
−
1

N
∂
2
tΦlm þ ∂nðN∂nΦlmÞ

�

×

�Z
dx

ffiffiffi
γ

p
ỸlmðxaÞỸl0m0 ðxaÞ

��
:

Using the orthogonality relationship, we then arrive at an
expression for the action of the scalar field as,

S½φ� ¼ 1

2

Z
Ndtdn

X
l;m

Φlm

�
−
∂
2
tΦlm

N2
þ 1

N
∂nðN∂nΦlmÞ

�
;

ð9Þ

where the lapse function is a function of coordinate n
only. Thus, even without the spherical symmetry, our
D- dimensional action in the near horizon limit reduces to
an action of an infinite set of the scalar fields on the
2-dimensional metric,

ds2 ¼ −N2dt2 þ dn2: ð10Þ

Now, note that the consistent anomaly expression provided
in Eq. (1) does not transform covariantly under a general
coordinate transformation. Therefore, to use this anomaly
expression, it is necessary for us to adopt a Schwarschild-
like coordinate system only for the t − n section of the full
metric (2). Consider a coordinate transformation such as
z − zH ¼ R

n
0 NðnÞdn, where zH is the position of the

Killing horizon in this newly adopted coordinate system.
Thus Eq. (10) becomes,

ds2 ¼ −NðnðzÞÞ2dt2 þ dz2

NðnðzÞÞ2 :

By defining NðnðzÞÞ2 as some function hðzÞ in the above
expression, we get

ds2 ¼ −hðzÞdt2 þ dz2

hðzÞ : ð11Þ

In this newly adopted Schwarzschild-like coordinate
system ðt; zÞ, hðzHÞ ¼ 0 at the Killing horizon and the
Eq. (3) becomes κ ¼ 1

2
∂zhjzH .

Given this setting, we can now use the expression of
gravitational anomaly as in the case of a spherically
symmetric black hole. We discard the ingoing modes that
are close to the horizon, as they have no impact on the
behavior of the scalar fields beyond the horizon. As a result,
our two-dimensional theory becomes chiral, and the
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energy-momentum tensor will display an anomaly of the
form (1) and can be written as,

∇μT
μ
ðχÞν ¼ Aν ¼

1ffiffiffiffiffiffi−gp ∂μN
μ
ν ; ð12Þ

with nonzero components of Nμ
ν are

Nz
t ¼

1

192π
ðh02 þ hh00Þ;

Nt
z ¼ −

1

192πh2
ðh02 − h00hÞ;

where 0 denotes a derivative with respect to z. The anomaly
described by Eq. (12) is timelike in nature as At ≠ 0 and
Az ¼ 0 with the background metric of the form (11).
Following the same procedure as in [4], an effective action
due to the interaction between metric gμν and matter can be
written as

W½gμν� ¼ −i ln
	Z

D½matter�eiS½matter;gμν�


;

where S½matter; gμν� is the classical action functional.
Under infinitesimal general coordinate transformation
xμ → xμ − λμ, effective action W changes by

−δλW ¼
Z

d2x
ffiffiffiffiffiffi
−g

p
λν∇μ

h
Tμ
ðχÞνH þ Tμ

ðoÞνΘþ
i

¼
Z

d2xλt
h
∂z

�
Nz

tH
�
þ
�
Tz
ðoÞt − Tz

ðχÞt þ Nz
t

�
∂Θþ

i

þ
Z

d2xλz
h�

Tz
ðoÞz − Tz

ðχÞz
�
∂Θþ

i
: ð13Þ

The function Θþ ¼ Θþðz − zH − ϵÞ is a scalar step func-
tion, and H ¼ 1 − Θþ is a scalar “top hat” function which
is 1 in the region zH ≤ z ≤ zH þ ϵ and zero elsewhere. Note
the integration measure d2x is the infinitesimal area
element of the (t − z) spacetime. Energy-momentum tensor
Tμ
ðoÞν is covariantly conserved in the region z > zH þ ϵ.

However, the energy-momentum tensor Tμ
ðχÞν describes the

chiral anomaly through Eq. (12). Time independence and
Eq. (12) limit the possible form of the energy-momentum
tensor Tμ

ν up to an arbitrary function of z. An integration
over Eq. (12) yields the explicit expression for the energy-
momentum tensor

Tt
t ¼ −

K þQ
h

−
BðzÞ
h

−
IðzÞ
h

þ Tα
αðzÞ;

Tz
z ¼

K þQ
h

þ BðzÞ
h

þ IðzÞ
h

;

Tz
t ¼ −K þ CðzÞ ¼ −h2Tt

z:

where CðzÞ¼R
z
zH
AtðzÞdz, BðzÞ ¼

R
z
zH
hðzÞAzðzÞdz, IðzÞ ¼

1
2

R
z
zH
Tα
αðzÞh0ðzÞdz, and K and Q are constants of integra-

tion. We have taken an assumption that Ih jzH ¼ 1
2
Tα
αjzH to be

finite. Note that all terms in the above expression associated
with Aν vanish in the limit z → zH. Thus, the variation (13)
becomes

−δλW¼
Z

d2xλt
�
∂zðNz

tHÞþ
n
−KoþKχ þNz

t

o
δðz− zHÞ

�

þ
Z

d2xλz
�
KoþQo−Kχ −Qχ

h

�
δðz− zHÞ: ð14Þ

The general covariance of the full quantum theory
demands this variation of the effective action under the
diffeomorphism must be zero. But, the above equation also
suggests the potential loss of general covariance, in theory,
arises from the on-horizon values of the energy-momentum
tensor. Nevertheless, our arbitrary variational parameters
(λt and λz) are independent; diffeomorphism invariance
implies that each curly brackets term must equal zero, but
only on the Killing horizon. This leads to,

Ko ¼ Kχ þ Nz
t jzH ;

Qo ¼ Qχ − Nz
t jzH ; ð15Þ

where Nz
t jzH ¼ ðκ2=48πÞ. We can neglect the finite trace

terms as it makes no contribution compared to the divergent
K þQ terms in the Killing horizon limit. Thus, the total
energy-momentum tensor Tμ

ν ¼ Tμ
ðχÞνH þ Tμ

ðoÞνθþ trans-

forms into, in the limit ϵ → 0,

Tμ
ν ¼ Tμ

ϕν þ Tμ
cν;

where Tμ
cν is our conserved energy-momentum tensor with

no quantum effects, and Tμ
cν is a conserved tensor with

K ¼ −Q ¼ Nz
t jzH , a pure flux. The flux of a massless

blackbody radiation beam, which travels in the positive x
direction and has a temperature of T, has the expression
ϕs ¼ ðπ=12ÞT2. We require this flux to cancel the gravi-
tational anomaly at the horizon. Thus comparing ϕs
with Nz

t jzH , we get the Hawking temperature of a static
black hole T ¼ κ=2π, where κ is the surface gravity of this
static spacetime.
Note that the calculation of this section is almost similar

to the spherical symmetry case. But this is only possible
because, in the near horizon limit, the action of the scalar
field becomes effectively two-dimensional. This requires
that the lapse function is of a form N ¼ fðnÞGðxaÞ, and the
dependence of the transverse coordinates drops off in the
near horizon limit. Intriguingly, this can also be motivated
from the zeroth law of black hole mechanics, i.e., the
constancy of the surface gravity on the horizon.
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III. STATIONARY BLACK HOLE:
GEOMETRIC SETUP

In this section, we will do a similar analysis, but for
stationary, axisymmetric black holes, and understand
Hawking radiation as the gravitational anomaly.
In the coordinate system used in [8], the line element

of a stationary, axially symmetric black hole spacetime is
given by,

ds2 ¼ −Ñðn; zÞ2dt2 þ gϕϕðn; zÞfdϕ − ωðn; zÞdtg2 þ dn2

þ gzzðn; zÞdz2; ð16Þ
where ω ¼ −ðgϕt=gϕϕÞ is an angular-rotation parameter.
The existence of two Killing vector fields, ð∂ϕÞμ and ð∂tÞμ,
in the above line element makes it clear that spacetime has
both axial and time-translational symmetries. As discussed
in [8], there is a Killing horizon at Ñ ¼ 0 and the surface
gravity associated with this Killing horizon is defined as,

κ ≡ lim
n→0

∂nÑ:

The metric in Eq. (16) does not represent the most general
form of the stationary axisymmetric black hole spacetime.
Apart from being stationary and axisymmetric, we have
assumed circularity to write down the above metric. The
assumption of circularity has simplified the line element
further and allowed us to write the metric with only a
single off-diagonal term gtϕ. This seems to be a restrictive
assumption because there is no guarantee that all stationary,
axisymmetric spacetimes to be circular unless it is a vacuum
solution of general relativity [14]. But, recently, it has been
proven that even for modified gravity theories, which differ
from general relativity perturbatively, all stationary and
axisymmetric black hole solutions must be circular [15].
This result supports our choice of the line element. Also, for
a circular black hole, the zeroth law holds independent of the
field equations, and the surface gravity is a constant on the
horizon [16]. Moreover, it has also been established that if
the gravity theory is perturbatively related to general
relativity, the rigidity theorem holds [17]. All these results
provide enough justification to use the line element in
Eq. (16) for our analysis. This metric represents a stationary
and axisymmetric black hole solution of any theory which
differs from general relativity perturbatively.
The action of a minimally coupled real massless scalar

field in this stationary background can be written as,

S½φ� ¼ 1

2

Z
d4x

ffiffiffiffiffiffiffiffiffiffiffiffiffi
gzzgϕϕ

p
φ

�
−
1

Ñ
∂
2
tφ−

2ω

Ñ
∂t∂ϕφ

þ
	
−
ω2

Ñ
þ Ñ
gϕϕ



∂
2
ϕφþ Ñ∂

2
nφþ

Ñ
gzz

∂
2
zφ

þ 1ffiffiffiffiffiffiffiffiffiffiffiffiffigzzgϕϕ
p

�
∂n

�
gnn

ffiffiffiffiffiffi
−g

p �
∂nφþ∂z

�
gzz

ffiffiffiffiffiffi
−g

p �
∂zφ

��
;

ð17Þ

where g ¼ −Ñ2gϕϕgzz is the metric determinant. As in the
case of a static spacetime, we assume the lapse function,
near the Killing horizon, to be of the form Nðn; zÞ ¼
fðnÞGðzÞ with the property at n → 0, fðnÞ ¼ 0. However,
the explicit expression of Ñðn; zÞ, far away from the
horizon, is still unknown. An assumption on GðzÞ to be
constant in the Killing horizon limit makes the effective
theory 2-dimensional. This arises from the requirement of
the validity of the zeroth law of black hole mechanics such
that the surface gravity becomes independent of the z
coordinate [8]. We also want our analysis to be consistent
with the rigidity theorem. Thus, the angular-rotation
parameter ω must be independent of z on the Killing
horizon and denoted by ωH. In the limit, n → 0, metric
elements gzz and gϕϕ become a function of z only, and the
action takes the form

S½φ� ¼ 1

2

Z
d4x

ffiffiffiffiffiffiffiffiffiffiffiffiffi
gzzgϕϕ

p
φ

�
−
1

Ñ
∂
2
tφ −

2ωH

Ñ
∂t∂ϕφ

−
ω2
H

Ñ
∂
2
ϕφþ ∂n

�
Ñ∂nφ

��
; ð18Þ

Consider a transformation [5],

ψ ¼ ϕ − ωHt;

ξ ¼ t; ð19Þ

to eliminate t − ϕ and ϕ − ϕ derivative terms from the
Eq. (18), and rewrite the action as

S½φ� ¼ 1

2

Z
d4x

ffiffiffiffiffiffiffiffiffiffiffiffiffi
gzzgϕϕ

p
φ

�
−
1

Ñ
∂
2
ξφþ ∂n

�
Ñ∂nφ

��
: ð20Þ

Note that coordinate z on the Killing horizon is arbitrary.
Therefore, we assume here also exists a coordinate trans-
formation (similar to the case of static spacetime discussed
in the previous section) under which Ylmðθ;ϕÞ transformed
into Ỹlmðϕ; zÞ and Ỹlmðϕ; zÞ satisfies a normalized con-
dition similar to the Eq. (8). Decomposing φðxμÞ into
Φlmðξ; nÞ and Ỹlmðz;ϕÞ, we can write down the action in
the following simple form,

S½φ� ¼ 1

2

Z
Ñdξdn

X
l;m

Φlm

�
−
∂
2
ξΦlm

Ñ2
þ 1

Ñ
∂n

�
Ñ∂nΦlm

��
;

ð21Þ

where the lapse function Ñ depends on n only. Thus, the
Eq. (21) is an action for an infinite set of scalar fields in the
2-dimensional spacetime with the metric,

ds2 ¼ −Ñ2dξ2 þ dn2: ð22Þ
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Now, by adopting a Schwarschild-like coordinate
system near the horizon and using a similar argument
explained in Sec. II, we can find the form of the Hawking
temperature for the stationary black holes as T ¼ κ=2π,
where κ is the surface gravity of the Killing horizon in
this stationary spacetime.

IV. DISCUSSIONS AND CONCLUSION

The derivation of the Hawking radiation using gravita-
tional anomaly depends on the near horizon geometry. Since
the gravitational anomaly appears only for (4kþ 2) dimen-
sions, the near horizon physics is anomalous, provided it is
effectively two-dimensional. In the case of spherically
symmetric spacetimes, this can be easily established by
integrating over the angular coordinates. Also, for specific
solutions beyond spherical symmetry, like a Kerr black hole,
this is shown to be true [5]. These suggest that there must be
a general derivation that can establish the effective two-
dimensional nature of the physics near a general stationary
black hole horizon. In our work, we have demonstrated such
property and derived of the Hawking radiation flux from
gravitational anomaly for a general stationary black hole.
Note, all the discussion in this paper is based on the

consistent anomaly as given in [4]. However, it is possible
to obtain the same Hawking flux using the covariant
anomaly with a vanishing boundary condition on the
covariant energy-momentum tensor at the horizon [18].

Our work suggests an intriguing feature that the derivation
works provided the surface gravity is a constant on the
horizon, i.e., the zeroth law of black hole mechanics holds.
The zeroth law has been first established for stationary black
hole solutions of general relativity using dominant energy
condition [14]. But, later, the derivation was generalized
for the Lovelock class of theories [19]. Recently, it was
shown that the zeroth law holds for any metric theory of
gravity provided it is perturbatively connected to general
relativity [20]. Therefore, we are justified to impose the
constancy of the surface gravity on the black hole horizon
in our geometric setup, and that leads to the derivation of
Hawking radiation as a gravitational anomaly. This is also
consistent with the idea that Hawking radiation is only
dependent on the geometric structure of the horizon,
independent of the dynamics of gravity [21].

ACKNOWLEDGMENTS

The research of S. S. is supported by the Department
of Science and Technology, Government of India, under
the SERB CRG Grant (No. CRG/2020/004562). S. K.
acknowledge Sabarmati Bridge Fellowship from IIT
Gandhinagar for Support. The authors thank Rajes
Ghosh for extensive discussion. We are also thankful to
the anonymous referee, whose useful comments has
improved the presentation of the paper.

[1] S. W. Hawking, Commun. Math. Phys. 43, 199 (1975); 46,
206(E) (1976).

[2] J. B. Hartle and S.W. Hawking, Phys. Rev. D 13, 2188
(1976).

[3] M. K. Parikh and F. Wilczek, Phys. Rev. Lett. 85, 5042
(2000).

[4] S. P. Robinson and F. Wilczek, Phys. Rev. Lett. 95, 011303
(2005).

[5] K. Murata and J. Soda, Phys. Rev. D 74, 044018 (2006).
[6] E. C. Vagenas and S. Das, J. High Energy Phys. 10 (2006)

025.
[7] A. J. M. Medved, D. Martin, and M. Visser, Classical

Quantum Gravity 21, 3111 (2004).
[8] A. J. M. Medved, D. Martin, and M. Visser, Phys. Rev. D

70, 024009 (2004).
[9] L. Alvarez-Gaume and E. Witten, Nucl. Phys. B234, 269

(1984).
[10] R. A. Bertlmann and E. Kohlprath, Ann. Phys. (N.Y.) 288,

137 (2001).

[11] R. A. Bertlmann, Anomalies in Quantum Field Theory
(Oxford Science Publications, Oxford, 2000).

[12] S. A. Fulling, Gen. Relativ. Gravit. 18, 609 (1986).
[13] I. Racz and R. M. Wald, Classical Quantum Gravity 13, 539

(1996).
[14] R. M. Wald, General Relativity (Chicago University Press,

Chicago, 1984).
[15] Y. Xie, J. Zhang, H. O. Silva, C. de Rham, H. Witek, and

N. Yunes, Phys. Rev. Lett. 126, 241104 (2021).
[16] M. Heusler, Black Hole Uniqueness Theorems, Cambridge

Lecture Notes in Physics (Cambridge University Press,
Cambridge, England, 1996).

[17] S. Hollands, A. Ishibashi, and H. S. Reall, Commun. Math.
Phys. 401, 2757 (2023).

[18] R. Banerjee and S. Kulkarni, Phys. Rev. D 77, 024018 (2008).
[19] R. Ghosh and S. Sarkar, Phys. Rev. D 102, 101503 (2020).
[20] S. Bhattacharyya, P. Biswas, A. Dinda, and N. Kundu,

J. High Energy Phys. 10 (2022) 013.
[21] M. Visser, Phys. Rev. Lett. 80, 3436 (1998).

SELIM SK and SUDIPTA SARKAR PHYS. REV. D 108, 044071 (2023)

044071-6

https://doi.org/10.1007/BF02345020
https://doi.org/10.1007/BF01608497
https://doi.org/10.1007/BF01608497
https://doi.org/10.1103/PhysRevD.13.2188
https://doi.org/10.1103/PhysRevD.13.2188
https://doi.org/10.1103/PhysRevLett.85.5042
https://doi.org/10.1103/PhysRevLett.85.5042
https://doi.org/10.1103/PhysRevLett.95.011303
https://doi.org/10.1103/PhysRevLett.95.011303
https://doi.org/10.1103/PhysRevD.74.044018
https://doi.org/10.1088/1126-6708/2006/10/025
https://doi.org/10.1088/1126-6708/2006/10/025
https://doi.org/10.1088/0264-9381/21/13/003
https://doi.org/10.1088/0264-9381/21/13/003
https://doi.org/10.1103/PhysRevD.70.024009
https://doi.org/10.1103/PhysRevD.70.024009
https://doi.org/10.1016/0550-3213(84)90066-X
https://doi.org/10.1016/0550-3213(84)90066-X
https://doi.org/10.1006/aphy.2000.6110
https://doi.org/10.1006/aphy.2000.6110
https://doi.org/10.1007/BF00769929
https://doi.org/10.1088/0264-9381/13/3/017
https://doi.org/10.1088/0264-9381/13/3/017
https://doi.org/10.1103/PhysRevLett.126.241104
https://doi.org/10.1007/s00220-023-04700-1
https://doi.org/10.1007/s00220-023-04700-1
https://doi.org/10.1103/PhysRevD.77.024018
https://doi.org/10.1103/PhysRevD.102.101503
https://doi.org/10.1007/JHEP10(2022)013
https://doi.org/10.1103/PhysRevLett.80.3436

