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A novel generalization of photon surfaces to the case of massive charged particles is given for spacetimes
with at least one isometry, including stationary ones. A related notion of glued massive particle surfaces is
also defined. These surfaces join worldlines parametrized by a family of independent conserved quantities
and naturally arise in integrable spacetimes. We describe the basic geometric properties of such surfaces
and their relationship to slice-reducible Killing tensors, illustrating all concepts with a number of examples.
Massive particle surfaces have potential applications in the context of uniqueness theorems, Penrose
inequalities, integrability, and the description of black-hole shadows in streams of massive charged
particles or photons in a medium with an effective mass and charge.
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I. INTRODUCTION

A new observation window for studying extremely
strong gravity near black holes, opened by the Event
Horizon Telescope collaboration [1,2], has stimulated
the development of new theoretical tools in the field of
gravity based on the study of compact two-dimensional
surfaces in space and the corresponding three-dimensional
hypersurfaces in spacetime, in which photons can travel
forever [3–7]. Well-known examples are the photon sphere
in the Schwarzschild metric [8,9] or spherical surfaces in
Kerr spacetime, on which nonequatorial spherical photon
orbits wind [10]. The corresponding hypersurfaces in
spacetime can be identified in terms of the geometric
theory of submanifolds as three-dimensional umbilical or
partially umbilical hypersurfaces [11,12].
The umbilical surface has the proportionality property of

the induced metric tensor and the extrinsic curvature tensor,
while the partially umbilical condition limits the equality of
the first and second fundamental forms not for all tangent
vectors but only for some subspace of the tangent space. In
both cases, one can describe such surfaces without resort-
ing directly to the geodesic equations. These timelike
surfaces capturing photons have been called fundamental
photon surfaces [11]. Their general properties are interest-
ing not only for understanding the shadows of black
holes [13–21] but also as theoretical tools for studying
the stability of spacetimes, hidden symmetries [22–24]
expressed by exact and conformal Killing tensors of the
second rank [25,26], Penrose-type inequalities for regions
of strong gravity [27–31], uniqueness theorems [32–41],

the impact of dark energy [42], etc. They can exist not only
around black holes but also around wormholes or naked
singularities, and they often open a way to distinguish these
different ultracompact objects. The spatial sections of
such surfaces are expected to possess restrictions on their
area [43] due to the Penrose-type inequalities that can
provide an analytical approach to exploring the compact-
ness of gravitating objects.
A natural generalization of such characteristic surfaces

is to consider timelike orbits of massive particles, as
suggested in our previous paper [44] and in parallel in
Ref. [45] with slightly different perspectives. Note that
this also describes the properties of photons in a medium,
such as plasma, which may have variable effective
mass [46] and charge [47,48]. Surfaces that capture massive
particles [10,49] share some common features with photon
surfaces, but there are also important differences. The main
differencewith photons is that massive particles canmove at
an arbitrary speed,while photons have a fixed speed. For this
reason, photon surfaces are more rigid and form a one-
parameter family described by their radius only, while in
Kerr metric the spherical orbits of massive particles form a
two-parameter family: they can be parametrized by their
radius and the value of the Carter constant [10]. Another
important difference is that all spherical orbits of photons in
Kerr are unstable, while timelike spherical Kerr geodesics in
different parameter ranges can be both unstable and stable.
As a result, a direct formal generalization of photon surfaces
on the massive particle surfaces is insufficient and requires
further ramifications. This is the purpose of this article, in
which we introduce a new concept of “glued” surfaces,
covering their internal splitting in the parameter space.
The article is organized as follows. In Sec. II, we briefly

discuss the equations of motion for charged massive
particles in spacetimes with several Killing vectors.
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We also cover the geometric aspects of particle velocity
space, conventions of hypersurface geometry, and motiva-
tion for further generalization of massive particle surfaces.
In Sec. III, we provide a more general and strict definition
of massive particle surfaces, present a key theorem, and
discuss the physical and geometric properties of these
surfaces. We analyze the resulting geometric constraints,
resolve them explicitly, determine the degree of arbitrari-
ness of these surfaces, and discuss surfaces with all Killing
vectors tangent to them. In Sec. IV, we define and
analyze the effect of gluing of massive particle surfaces,
a characteristic feature of integrable systems such as Kerr-
like geometries. We examine the phenomenon of maximum
gluing and its important geometric consequences. In Sec. V
we discuss the close connection between massive particle
surfaces and gluing phenomenon in relation to the
integrability of dynamical systems and the existence of
slice-reducible conformal Killing tensor fields of rank
two [25,26]. Finally, in Sec. VI, we apply the developed
formalism to various important examples, such as the Kerr
metric, Zipoy-Voorhees solution, and the dyonic Kerr-
Newman solution. The Appendix contains proofs of some
statements formulated in the main part of the paper. We use
symmetrization and antisymmetrization with weight 1,
e.g., A½αβ� ¼ Aαβ − Aβα.

II. SETUP

A. Killing vectors

Let M be a Lorentzian manifold of dimension n with
metric tensor gαβ and Levi-Civita connection∇α. We define
electromagnetic potential Aα and electromagnetic field
tensor Fαβ ¼ ∇½αAβ� in M. The worldline γα of a test
particle with charge q and mass m in this geometry obeys
the following equations of motion:

γ̇α∇αγ̇
β ¼ qFβ

λγ̇
λ; γ̇αγ̇α ¼ −m2; ð1Þ

where γ̇α ¼ dγα=ds is a four-velocity of the particle and s is
an affine parameter. One can also use these equations for
photons in a medium that can be described by an effective
mass m and charge q [46–48], which can be a function of
coordinates.
Consider ametric gαβ and an electromagnetic potentialAα

that share the same symmetry with respect to Killing vector
fields kaα, where the Latin index a enumerates the Killing
vectors [26]. Each Killing vector field satisfies Killing
equations ∇ðαkaβÞ ¼ 0. This implies the existence of con-
served quantities Qa defined as (see Ref. [44] for details)

Qa ≡ kaαðγ̇α þ qAαÞ: ð2Þ

It is also useful to consider two terms in the expression (2)
separately, introducing the “kinetic” and “potential” com-
ponents of the conserved quantity Qa ¼ qa þ qpa:

pa ≡ kaαAα; qa ≡Qa − qpa: ð3Þ

In the general case, qa and pa are not conserved separately.
The potential component is a predefined function for given
kaα andAα. The kinetic componentqa can be considered as a
secondary quantitywhich is a certain function of coordinates
for fixed conserved quantities Qa. On the other hand, it can
be represented as a scalar product of the Killing vector kaα

with some properly normalized timelike (form ≠ 0, null for
m ¼ 0) vector vα:

kaαvα ¼ qa ¼ Qa − qpa; vαvα ¼ −m2: ð4Þ

Any possible worldline of a particle with fixedQa, massm,
and charge q passing through a given point in spacetime has
a four-velocity coincidingwith some vector vα subject to the
constraint (4).
And vice versa, for any vector vα obeying constraint (4)

there is a worldline of a particle with fixed Qa, m, and q,
such that its four-velocity coincides with vα. In other
words, there is a bijective map between the set of all vα

constrained by (4) and the set of all charged particle
worldlines passing through the given point with fixed
Qa,m, and q (see details in Ref. [11] for the massless case).
In what follows, we will assume that the Gram matrix

Gab ¼ kaβkbβ of Killing vectors kaα is nondegenerate.1 In
particular, all Killing vectors are linearly independent and
the inverse matrix Gab is well defined by the condition
GacGcb ¼ δab. According to intermediate results (A24) and
(A27) of Theorem A.2 from the Appendix, the general
solution of system (4) has the form

vα ¼ kaαGabqb þ uα; kaαuα ¼ 0;

uαuα ¼ −m2 − Gabqaqb: ð5Þ

Vectors uα are arbitrary vectors with a fixed norm that are
orthogonal to all Killing vectors kaα. The tangent space
splits into a direct sum of the subspace generated by the
Killing vectors and their orthogonal complement. Since the
Gram matrix Gab is not degenerate, these subspaces can
have Lorentzian or Euclidean signatures (but none of them
are null). If the orthogonal complement has a Euclidean
signature, then it follows from (5) that the solution exists
only if

Gabqaqb ≤ −m2: ð6Þ

If the orthogonal complement has a Lorentzian signature
or consists of one timelike vector, then there are no
restrictions [44]. In the classical Hamiltonian approach,

1This condition can be relaxed by using pseudoinverse
matrices. However, this could make the present work unneces-
sarily technical, so we will not consider the Gram matrix to be
pseudoinverse.
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inequality (6) follows from the effective potential
descriptions [13].
If the orthogonal complement to all Killing vectors has a

Euclidean signature, the particle with the given conserved
quantities can move only in a certain domain of the
spacetime given by inequality (6). In order to describe
this domain, we introduce the following definition:
Definition 2.1: The Q domain of motion MQ ⊆ M is a

maximal subset of M where the system (4) has a solution.
From the physical point of view, the motion along the

worldlines with given values of the conserved quantities is
possible only in a Q domain of motion MQ. A boundary
∂MQ of the Q domain serves as a set of turning points for
the corresponding worldlines. The boundaries correspond
to saturation of the inequality (6) if the latter is applicable.
Thus, uα ¼ 0 and worldlines γ are tangent to the Killing
vectors at the boundaries. In the particular case m ¼ 0, it is
easy to check that if MQ is connected, then it is nothing
but the “causal ρ region” defined in Ref. [11] for null
geodesics.

B. Hypersurface geometry

Let S be a timelike hypersurface without boundaries with
normal unit vector nα. The main geometric properties of S
are specified by the induced metric hαβ and the second
fundamental form χαβ:

hαβ ¼ gαβ − nαnβ; χαβ ≡ hλαh
ρ
β∇λnρ: ð7Þ

The Gauss decomposition for two vector fields vα, uα

tangent to S (i.e., vαnα ¼ uαnα ¼ 0) reads

vα∇αuβ ¼ vαDαuβ − χαγvαuγnβ; ð8Þ

where Dα is Levi-Civita connection on S, defined
as [26,44]

DαT
β…
γ… ¼ hλαh

β
ρ…hτγ…∇λT

ρ…
τ… ; T β…

γ… ¼ hβρ…hτγ…Tρ…
τ… :

ð9Þ

An important observation is that the Gauss decomposi-
tion (8) allows us to reduce the problem of analyzing the
behavior of worldlines (1) to the analysis of hypersurface
fundamental forms (7). To illustrate this idea, consider a
photon surface as an example [3]. A photon surface is a
hypersurface S in M such that any null geodesic initially
tangent to S will remain tangent to it. In other words, any
null geodesics tangent to S are entirely in S. Applying the
Gauss decomposition from Eq. (8) to the geodesic equation
γ̇α∇αγ̇

β ¼ 0 for an arbitrary null geodesic γ, we find

0 ¼ γ̇α∇αγ̇
β ¼ γ̇αDαγ̇

β − χαγγ̇
αγ̇γnβ ⇒ γ̇αDαγ̇

β ¼ 0;

χαβγ̇
αγ̇β ¼ 0: ð10Þ

Keeping in mind the correspondence between geodesic and
tangent vectors from the previous analysis, we find out that
for all null vα ∈ TS, vαhαβvβ ¼ 0 the second fundamental
form of the photon surface satisfies

χαβvαvβ ¼ 0: ð11Þ

From Theorem A.1 in the Appendix follows that Eq. (11)
holds for any null vα if and only if the photon surface S is
totally umbilical [3], i.e., its second fundamental form is
proportional to the induced metric:

χαβ ¼
χ

n − 1
hαβ; ð12Þ

where χ ¼ χα
α is an arbitrary scalar function. Condition

(12) is formulated in terms of the geometric properties of
the surface only and does not refer to geodesic equations
explicitly. This formulation is an effective way to analyze
nonintegrable dynamical systems [11,12,23] and to
study general theoretical problems such as Penrose inequal-
ities [27–29], uniqueness theorems [32–41], and hidden
symmetries [22–26].
In our previous paper [44] we generalized this geometric

result to the case of worldlines of massive electrically
charged particles. To do this, we used explicit spacetime
symmetries described by a single Killing vector field. This
allows us to give a new definition of massive particle
surfaces at fixed energy and prove the key theorem about
their geometric description. However, as in the case of
photon surfaces, the surfaces defined in Ref. [44] for
massive charged particles exist in static or spherically
symmetrical spacetimes but not in stationary spacetimes
with rotation. Nevertheless, in Ref. [10] different spherical
orbits are shown to fill the whole spheres in Kerr metric.
The novel feature is that different worldlines lying in the
same sphere have different values of conserved energy. In
fact, the energy integral on spherical orbits in Kerr depends
on two quantities: their radius and the Carter constant
associated with the second-rank Killing tensor. In order to
describe this situation in more general terms, here we
introduce a generalization of static massive particle surfa-
ces of [44] in the same fashion as photon surfaces in static
spacetimes were generalized to fundamental photon sur-
faces in the stationary ones in [11].
Recall that fundamental photon surfaces satisfy Eq. (11)

only for a subset of null vα constrained by a linear
condition. For Kerr-like metrics, this constraint extracts
such vectors vα that correspond to the fixed impact
parameter ρ ¼ −vαkαðφÞ=vβk

β
ðtÞ, where k

α
ðtÞ, k

α
ðφÞ are timelike

and azimuthal Killing vectors. First, we will introduce a
more general definition of massive particle surfaces that
satisfy condition (11) only for vα corresponding to world-
lines with fixed conserved quantities corresponding to a set
of Killing vectors. And then we will show that the same
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hypersurface can correspond not just to one value of
conserved quantities but to some family of conserved
quantities with a nonlinear constraint.

III. MASSIVE PARTICLES SURFACES

A. Definition and theorem

The first step toward our goal is to give a more general
definition for massive particle surfaces [44] suitable for
spacetimes with a larger number of isometries. Let S be a
timelike hypersurface without boundaries. Define projec-
tions of Killing vectors kaβ as follows

κa
α ≡ hαβka

β; ð13Þ

with a Gram matrix

Gab ¼ κa
ακbα ¼ Gab − ðkaαnαÞðkbβnβÞ: ð14Þ

As before, we will assume that the matrix Gab is non-
degenerate and the matrix Gab is its inverse. If some Killing
vectors or their projections become linearly dependent or
have a singular point, then we exclude them from the set.
We denote the subspace spanned by projections of

Killing vectors as K ⊆ TS and its orthogonal complement
as K⊥, i.e., K ⊕ K⊥ ¼ TS. Their dimensions are abbre-
viated as2

nK≡dimK; n⊥≡dimK⊥; nKþn⊥þ1¼ n: ð15Þ

Using the inverse Gram matrix Gab, one can define
projectors to the subspaces K and K⊥ as

Kβ
α ¼ κaαGabκb

β; Uβ
α ¼ hβα − Kβ

α: ð16Þ

Note that worldlines with a fixed set of conserved
quantities Qa cannot touch an arbitrary point on the
timelike surface S. Indeed, for the worldline to touch S,
the tangent vectors vα must satisfy the conditions of Eq. (4).
According to the intermediate results (A24) and (A27) of
Theorem A.2 from the Appendix, the general solution of
system (4) with the additional condition vαnα ¼ 0 has the
form

vα ¼ κa
αGabqb þ uα; nαuα ¼ 0; kaαuα ¼ 0;

uαuα ¼ −m2 − Gabqaqb: ð17Þ

Thus, as before, if the subspace K⊥ has a Euclidean
signature, then the worldlines can only touch points of
the surface S such that

Gabqaqb ≤ −m2: ð18Þ

If K⊥ has a Lorentzian signature or consists of a single
timelike vector, then there are no restrictions. Since it is
pointless to look for massive particle surfaces among
surfaces that worldlines cannot even touch, we suggest
the following:
Definition 3.1: The Q-touched hypersurface SQ ⊂ S is

a maximal subset of S where the system (4) with the
additional condition vαnα ¼ 0 has a solution.
As in the case of the Q domain of motion, the definition

of Q-touched hypersurface ensures that worldlines
can touch the surface SQ but cannot touch SnSQ. In
particular, the worldline cannot exit SQ tangentially
through its boundary ∂SQ (consisting of points, where
Gabqaqb ¼ −m2). Instead, the worldline can only leave SQ
by moving in the normal direction from the surface. It is
clear that any Q-touched hypersurface is inside a Q
domain, i.e., SQ ⊆ MQ. Indeed, by definition, the domain
MnMQ does not contain vectors satisfying the constraints
(4). Using Eq. (14), we can see that if all Killing vectors are
tangent to the surface, then qaGabqb ¼ qaGabqb. This
implies that ∂SQ is a subset of ∂MQ. Now we are ready
to select the massive particle surface among the Q-touched
hypersurfaces.
Definition 3.2: A massive particle surface is a

Q-touched hypersurface SQ such that, for every point p ∈
SQ and every vector vαjp ∈ TpSQ such that vακaαjp ¼ qa
and vαvαjp ¼ −m2, there exists a worldline γ of M for a
particle with mass m, electric charge q, and the integrals of
motionQa associated with the Killing vectors kaα such that
γ̇αð0Þ ¼ vαjp and γ ⊂ SQ.
Simply put, any worldline with a given set of conserved

quantitiesQa that touches SQ (at least at one point) belongs
to SQ entirely. Note that this definition and its implications
remain valid for photons in a medium, such as plasma, with
the only difference being that the effective photon mass
may vary as a function of coordinates [46,47]. The key
geometric properties of the massive particle surfaces are
given in the following theorem:
Theorem 3.1: Let SQ be a smooth q-touched hyper-

surface. The following statements are equivalent:
(i) SQ is a massive particle surface for given q, m,

and Qa;
(ii) the second fundamental form satisfies

χαβvαvβ ¼ −qnβFβλvλ; ð19Þ

for all p ∈ SQ and ∀ vα ∈ TSQ such that
vαvα ¼ −m2 and vακaα ¼ qa;

(iii) the second fundamental form satisfies

χαβ ¼ χτðhαβ þHabκaακbβÞ þ βaðακaβÞ; ð20aÞ
2In general, the dimensions can change from point to point.

But we assume that n⊥ ≥ 1 and nK ≥ 1.
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where χτ, Hab, and βaα (κaαβbα ¼ 0) are some
functions restricted by the following constraints

χτðHabqaqb −m2Þ þ qF aqa ¼ 0;

2qaβaα ¼ −qfα; ð20bÞ

and F a, fα represent the following components of
the field tensor Fαβ

F a ¼ Gabκb
βnαFαβ; fα ¼ Uβ

αnγFγβ;

i:e:; nβFβα ¼ F aκaα þ fα; κa
αfα ¼ 0; ð20cÞ

(iv) every worldline in SQ with γ̇ακaαjp ¼ qa and
γ̇αγ̇αjp ¼ −m2 at some point p ∈ SQ is a worldline
in M.

Proof: The proofs that ðiÞ ⇒ ðiiÞ, ðiiiÞ ⇒ ðivÞ, and
ðivÞ ⇒ ðiÞ are the same as the corresponding proofs from
the theorem in Ref. [44]. Accordingly, we will generalize
explicitly only the proof of ðiiÞ ⇒ ðiiiÞ. We start from the
following conditions on vectors vα tangent to the hyper-
surface SQ:

hαβvαvβ ¼ −m2; vακaα ¼ qa: ð21Þ

The aim is to answer the question of when are the solutions
of this system in the set of solutions of the following system

χαβvαvβ ¼ −qnβFβλvλ; ð22Þ

without any additional linear constraints. In order to apply
Theorem A.3 from the Appendix, we define the following
matrices and vectors:

A ¼ hαβ; B ¼ κaα; f ¼ qa; w ¼ 0;

d ¼ −m2; x ¼ vα; ð23aÞ

A0 ¼ χαβ; B0 ¼ 0; f 0 ¼ 0;

w0 ¼ 1

2
qnβFβλ; d0 ¼ 0: ð23bÞ

All vectors and tensors with greek indices defined in (23)
are tangent to SQ by construction. Therefore, we can work
with the matrix A as with the operator TSQ → T�SQ, but
not as one acting on the entire spacetimeM. In this case, the
operator A is nondegenerate, since it is a nonsingular metric
in SQ. The nondegeneracy of A is one of the requirements
of TheoremA.3 from the Appendix. The identity operator 1
in TSQ corresponds to hβα. In addition, we must define the
matrices G, Π, and Apr as follows [see Eqs. (A19), (A20),
and (A28) for details]:

G ¼ Gab;

Π ¼ hβα − κaαGabκbγhγβ ¼ Uβ
α;

Apr ¼ ΠTAΠ ¼ hαβ − κaαGabκbβ ¼ Uαβ: ð24Þ

Application of the theorem is possible if the kernel of the
matrix B is spanned by solutions x for system (24). Recall
that ker κaα ¼ fxα∶ κaαxα ¼ 0g, i.e., the kernel of B in this
case is the entire subspace of K⊥. This is equivalent to the
requirement that projections of the solutions onto the
orthogonal complement uα ¼ Uα

βv
β span the entire kernel

of the matrix κaα. This requirement is valid at interior points
of the hypersurface SQ=∂SQ, since uα are all vectors from
K⊥ with fixed norm uαuα ¼ −m2 − Gabqaqb. The norm
sign fits the K⊥ signature because SQ is Q touched. Only
on the boundaries ∂SQ the norm becomes equal to zero, and
this condition is violated. We will consider only interior
points of SQn∂SQ, but the result can be extrapolated to the
entire hypersurface SQ due to its smoothness.
Applying the theorem, we get the form of χαβ

χαβ ¼ χτðhαβ þ κaαHabκbβÞ þ βaðακβÞa; ð25Þ

where we use χτ, βaα, and χτHab instead of an arbitrary
function λ, matrices S1 and S2 from the theorem formu-
lation, respectively. The theorem states that the following
three conditions must hold

0 ¼ κaαβ
bα;

0 ¼ q
2
Uβ

αnγFγβ þ βaαqa ¼
q
2
fα þ βaαqa;

0 ¼ χτðqaHabqb −m2Þ þ qqaGabκbαhαβnγFγβ

¼ χτðqaHabqb −m2Þ þ qqaF a; ð26Þ

where the projections F a, fα are defined in (20c). This
completes the proof of the theorem.
This theorem is a direct generalization of an analogous

result from Ref. [44] to the case of an arbitrary number of
isometries. The basic geometric description of the massive
particle surface is given by statement (iii) of the theorem.
Let us try to clarify the geometric meaning of this
definition. First of all, Eq. (20a) projected onto K and
K⊥ gives the identities

κa
αχαβκb

β ¼ χτðHab þ GabÞ; ð27aÞ

κa
αχαβU

β
λ ¼ Gabβ

b
λ; ð27bÞ

Uα
γ χαβU

β
λ ¼ χτUα

γhαβU
β
λ ; ð27cÞ

where Hab ¼ GacHcdGdb. From Eq. (27c) follows that the
massive particle surface is partially umbilical [11] inK⊥. A
partially umbilical surface is defined by the condition that
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the extrinsic curvature is the same along certain directions,
such as the subspace K⊥ in our case. When there is only
one such direction (n⊥ ¼ 1), the condition for partially
umbilical surface degenerates, fixing the function χτ. One
can extract Hab and βaα from Eqs. (27a) and (27b)

Hab ¼
1

χτ
κa

ακb
βχαβ − Gab; ð28aÞ

βaλ ¼ Gabκb
αUβ

λχαβ; ð28bÞ

where we assume that χτ is not zero.

B. Extended massive particle surface

It is convenient to ignore condition (18) and consider
the hypersurface at first sight without it. To do that, we
introduce an extended massive particle surface Se. Namely,
the massive particle surfaces SQ are defined as a part of
some surface S. The geometry of the complement part
of the surface SnSQ is not fixed in any way, since none
of the worldlines with the corresponding Qa can touch
these points. The most natural extension of SQ seems
to be an entirely smooth one without boundaries. We
require S ¼ Se to possess the second fundamental form
satisfying Eq. (20a) with conditions (20b) in all its points.
Of course, in the general case, such an extension may not
exist. Altogether, the definition of the extended massive
particle surface is the following definition.
Definition 3.3: An extended massive particle surface is

a hypersurface Se with no boundaries, such that for every
point p ∈ Se, the second fundamental form takes the
form (20a) subject to the imposed conditions (20b).
Obviously, any Q-touched part of the extended massive

particle surface is an ordinary massive particle surface.
However, Se has a stiffer geometry in the complement part
SnSQ. In our opinion, this restriction will be extremely
useful for the analysis of both ordinary surfaces of massive
particles and general issues such as integrability and
Penrose inequalities. In particular, boundary-less Se sur-
faces require less technical detail and suggest more
topological applications, making them a particularly useful
object of study.

C. Constraints

Conditions (20b) are invariant under the set of trans-
formations

qa → λqa; q → λq; m2 → λm2: ð29Þ

In particular, for the null geodesics, there is an invariance
qa → λqa associated with the conformal invariance of
photon worldlines. Note that any set Qa can have its
own unique hypersurface. However, as we will see later, the
hidden symmetries of space can lead to gluing different

surfaces together and forming complete hypersurface S
without boundaries.
Conditions (20b) impose some restrictions on the com-

ponents of the second fundamental form χαβ. However, not
all components are generally rigidly fixed, and some of
them can be completely arbitrary. To explicitly reveal the
role of constraints (20b), we define the vector τα (similarly
to the covector τα, the dual vector of the impact parameter
ρα in Ref. [11]) in the subspace K as

τα ¼ hαβκaβGabqb; τ2 ≡ τατα ¼ qaGabqb: ð30Þ

If K is Euclidean, then τ2 is strictly positive for any
nonzero qa. Otherwise, it is nonzero due to the inequality
(6) for m ≠ 0. Then we define the projection Tα

β along the
direction τα and the projector Pα

β onto the orthogonal
complement τα in K:

Tα
β ¼ τ−2τατβ; Pα

β ¼ Kα
β − Tα

β: ð31Þ

The second and third terms in Eq. (20a) can be further
projected using (31) as follows:

χαβ ¼ χτhαβ þ zτατβ þ σαβ þ τðαzβÞ; ð32Þ

where zα and σαβ ¼ σβα have the following projection
properties

Kα
α0zα ¼ 0; Tα

α0σαβT
β
β0 ¼ 0; Tα

α0σαβU
β
β0 ¼ 0;

Uα
α0σαβU

β
β0 ¼ 0: ð33Þ

Plugging Eqs. (28) and (32) and the identity qa ¼ κaατ
α in

the constraints (20b), we get the following independent of
σαβ results:

z ¼ τ−4ðχτm2 − qF aκaατ
αÞ; zα ¼ −

1

2
τ−2qfα: ð34Þ

Finally, we can reformulate statement (iii) in
Theorem 3.1 without additional restrictions as follows:
(iii) the second fundamental form can be represented as

χαβ ¼ χτhαβ þ τ−4ðχτm2 − qF aκaγτ
γÞτατβ

þ σαβ −
1

2
τ−2qτðαfβÞ; ð35Þ

where χτ is some function, the vector τα is defined in
Eq. (30), an arbitrary symmetric matrix σαβ is constrained
by the conditions Eq. (33), while F a, fα represent the
components of the Fαβ field tensor defined in (20c).
The number of unrestricted components in χαβ is placed

in σαβ. In total σαβ has nðn − 1Þ=2 components restricted by
projectors. There are 1, n⊥, and n⊥ðn⊥ þ 1Þ=2 independent
constraints in each condition on σαβ from (33), respectively.
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By subtracting the number of constraints from the total
number of components in σαβ, we get ðnK − 1Þð2n − nKÞ=2
unrestricted components. In the case of nK ¼ 1 there are
no unrestricted components at all, and the outer geometry
of the hypersurface is uniquely determined by the inner
geometry, as expected [44]. For null geodesics, we simply
get

χαβ ¼ χτhαβ þ σαβ: ð36Þ

Thus, the hypersurface is umbilical for subspace fTα
β; U

α
βg

as expected for fundamental photon surfaces [11].

D. One Killing vector

In the case of only one Killing vector field kα, all
components of the second fundamental form turn out to be
strictly fixed (in this subsection, we omit the indices a, b,
since there is only one direction). Indeed, Eq. (20b) implies
(Ek ¼ −qk)

H ¼ m2

E2
k

þ q
χτEk

F ; βα ¼
q
2Ek

fα; ð37Þ

Substituting this back to Eq. (20a), the second fundamental
form is read

χαβ ¼ χτ

�
hαβ þ

m2

E2
k

κακβ

�
þ q
2Ek

nρFρðακβÞ: ð38Þ

This is exactly the same property (iii) from the theorem in
Ref. [44]. Thus, the new massive particle surfaces are in
fact a direct generalization of similar surfaces from
Ref. [44] for spacetimes admitting a larger number of
isometries.

E. Orthogonal Killing vector

If there exists a Killing vector kα⊥ that is everywhere
orthogonal to the hypersurface SQ, then SQ is a totally
geodesic hypersurface, i.e., χαβ ¼ 0. This follows from
the Killing equation ∇ðαk⊥βÞ ¼ 0 and the symmetry of the
product hλαh

ρ
β:

χαβ ≡ hλαh
ρ
β∇λnρ ¼ hλαh

ρ
β∇λðKk⊥ρÞ

¼ hλαh
ρ
β½K∇λk⊥ρ þ k⊥ρ∇λK� ¼ 0; ð39Þ

where the normal vector is expressed through the Killing
vector nα ¼ Kkα⊥. The worldline γ can touch the hyper-
surface SQ if and only if q⊥ ¼ 0. Since the condition
χαβ ¼ 0 results in χτ ¼ 0, βaα ¼ 0, constraints (20b) can be
simplified to the conditions for the Lorentz force acting on
particles lying on the surface

qF aqa ¼ 0; qfα ¼ 0; ð40Þ

i.e., either particles are neutral q ¼ 0, orF aqa ¼ 0, fα ¼ 0.

F. Tangent Killing vectors

Of great interest is the class of massive particle surfaces
that have the same set of symmetries as the original
spacetime. It is well known that surfaces are invariant
under the action of some isometry group if the correspond-
ing Killing vector field is tangent to S. Thus, we assume
that the Killing vectors touch the massive particle surface
(not necessarily all the spacetime Killing vectors, but at
least those that span the K subspace), and they are all
linearly independent. If they are not linearly independent,
then remove the redundant vectors from the considered set
of Killing vectors. The mixed components of the second
fundamental form can be rewritten as

Uα
γ κ

β
aχαβ ¼ Uα

γ κ
β
a∇αnβ ¼ −Uα

γnλ∇ακaλ: ð41Þ

Combining with Eq. (28b), we get

βaα ¼ −GabnλUβ
α∇βκbλ: ð42Þ

Substituting this expression into the linear constraint in
Eq. (20b), we get a constraint on some components of Fαβ

Uβ
γnαðqFαβ − 2qaGab∇βκbαÞ ¼ 0: ð43Þ

Before proceeding to the analysis of the components of the
second fundamental form tangent to the Killing vectors, we
derive several identities. From the Killing equations, it
follows

nβðκaα∇ακbβ þ κb
α∇ακaβÞ ¼ −nβðκaα∇βκbα þ κb

α∇βκaαÞ
¼ −nβ∇βðκaακbαÞ ¼ −nβ∇βGab:

ð44Þ

Using the symmetry of the second fundamental form
(χαβ ¼ χβα), we get the expression for the components of
the second fundamental form tangent to the Killing vectors

κa
ακb

βχαβ ¼ κa
ακb

β∇αnβ ¼ −nβκaα∇ακbβ

¼ −
1

2
nβðκaα∇ακbβ þ κb

α∇ακaβÞ

¼ 1

2
nβ∇βGab: ð45Þ

Comparing Eq. (28a) and (45), we get the expression for
the tensor Hab
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Hab ¼
1

2χτ
nβ∇βGab − Gab or

Hab ¼ −
1

2χτ
nβ∇βGab − Gab; ð46Þ

Quadratic constraint (20b) becomes the master equation
[12,25] for massive particle surface

1

2
nβ∇βGabqaqb þ χτðGabqaqb þm2Þ − qF aqa ¼ 0: ð47Þ

Thus the second fundamental form of such a massive
particle surface has no arbitrary components, i.e., tensor σαβ
in expression (35) turns out to be completely fixed.

IV. GLUED PARTICLE SURFACES

The surfaces defined in the previous section usually
capture worldlines only for certain values of the integrals of
motion. However, in a Kerr-type spacetime that allows
spherical orbits of constant radius, each sphere captures
worldlines defined by a one-parameter family of integrals
of motion [10]. Therefore we find it useful to introduce the
“glued” massive particle surfaces as follows:
Definition 4.1: A glued particle surface Sg of the order

g is a hypersurface, which is an extended massive particle
surface for a family of Qa of dimension g ≥ 1 for fixed
mass m and electric charge q.
Less formally, a glued particles surface Sg is a continu-

ous stack of extended massive particle surfaces, represent-
ing the same hypersurface. Obviously, Sg contains all the
corresponding massive particle surfaces (not extended),
and the order of its gluing is the same for all points
of p ∈ Sg.
To find out whether the extended massive particle

surface is glued, we calculate the variation of constraints
(20b) with respect to Qa

ð2χτHabqb þ qF aÞδQa ¼ 0; βaαδQa ¼ 0: ð48Þ

The massive particle surface is glued if there exists a
nontrivial solution for the constant δQa on the surface. The
dimension of the space of constant solutions δQa deter-
mines the order of the glued surface.
We can also approach the problem from a different angle.

Namely, consider some timelike surface S without bounda-
ries, partially umbilical everywhere, i.e., the second funda-
mental form takes form (20). At each point of such a surface,
one can calculate the matricesHab and βaα and consider the
conditions from the Eq. (20b) as a system of quadratic and
linear equations in unknown real variables Qa. Clearly, the
dimension of this family determines the possible maximal
gluing order gmax. If the hyperplane in space of Qa
determined by the linear constraint intersects the quadric
hypersurface determined by the quadratic equation, then the

maximal gluing order is gmax ¼ nK − 1 − rankB. If the
hyperplane is only tangent to the hypersurface along some
directions, then gmax < nK − 1 − rankB.
The solution Qa corresponds to the extended massive

particle surface Se if and only if it satisfies condition (20b)
at all points p ∈ Se. Thus, we can apply any Lie derivative
to condition (20b) while keeping Qa unchanged. The
dimension of the subset of such solutions Qa, satisfying
the conditions on the entire extended massive particle
surface, determines the actual order of gluing g ≤ gmax.
If the number of such solutions is countable, then the
surface is not glued.
We rewrite system (20b) in the form given in Eq. (A40)

from Theorem A.3 as follows:

QaHabQb þ 2J aQa ¼ M2; βaαQa ¼ jα; ð49Þ

where we introduce the following notations

J a ¼ q

�
1

2χτ
F a −Habpb

�
; jα ¼ qðpaβ

a
α − fα=2Þ;

ð50aÞ

M2 ¼ m2 þ q2pa

�
1

χτ
F a −Habpb

�
: ð50bÞ

The transition to matrix notation in Theorem A.3 is
achieved by the following identification

x ¼ Qa; A ¼ Hab; B ¼ βaα; w ¼ J a;

d ¼ M2; f ¼ jα; ð51Þ

The primed system (A41) can be represented as the Lie
derivative of condition (49):

A0 ¼ DγHab; B0 ¼ Dγβ
a
α; w0 ¼ DγJ a;

d0 ¼ DγM2; f 0 ¼ Dγjα: ð52Þ

For maximum gluing g ¼ gmax, any solution of system
(49) must also satisfy the primed system, and we can apply
Theorem A.3, which will impose additional conditions on
the surface geometry. A complete general analysis of an
arbitrary glued particle surface using Theorem A.3 is
voluminous, since it depends on various factors, such as
the kernels of the A and B matrices, their intersection, the
relation between the vectors J a and these kernels, the M2

sign, etc. Therefore, in this paper we will consider only the
simple case βaα ¼ 0 to demonstrate the applicability
of the formalism, deferring a more complete analysis to
future work.
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A. Example: Case βaα = 0

The case of maximum gluing g ¼ gmax ¼ nK − 1
without the linear constraint βaα ¼ 0 offers a simpler
analysis but yields fruitful results. First of all, we obtain
that fα ¼ 0, B ¼ B0 ¼ 0, f ¼ f 0 ¼ 0, and the pseudoin-
verse matrix G can be set to zero. This follows from
Theorem A.3 that

A0 ¼ λA; w0 ¼ λw; d0 ¼ λd ð53Þ

without any additional constraints. Note that an arbitrary
function λ has a vector index because the primed quantities
contain the derivative Dτ along any direction tangent to the
hypersurface. Hence, by expressing these equations in
terms of the derivative, we obtain

DτHab ¼ λτHab; ð54aÞ

DτJ a ¼ λτJ a; ð54bÞ

DτM2 ¼ λτM2: ð54cÞ

In the chargeless massive case, Eq. (54b) holds automati-
cally, from Eq. (54c) follows λτ ¼ 0, and the only condition
is DτHab ¼ 0. In the null case q ¼ m ¼ 0, Eqs. (54b)
and (54c) holds automatically, and the only condition is
(54a). It is worth mentioning with no detail that one can
similarly apply Theorem A.3 to the neutral case q ¼ 0
with arbitrary βaα, getting the same result that either
λτ ¼ 0 or m ¼ 0. One can find from Eq. (50a) that
M2 ¼ m2 þ qpaðJ a þ qF a=2χτÞ, which can be used to
combine Eq. (54) into new ones (we assume that the mass
m is constant)

qHabDτpb ¼ qDτ

�
1

2χτ
F a

�
− qλτ

�
1

2χτ
F a

�
; ð55aÞ

q2F aDτpa ¼ λτχτm2; ð55bÞ

which can replace Eqs. (54b) and (54c).
Generally, Eq. (54) can be represented as DτX ¼ λτX,

where X ∈ fHab;J a;M2g is a scalar with respect to
connection Dτ. Let us calculate the commutator ½Dτ;Dσ�
acting on any of these Xs. Since it is a scalar, the
commutator must be zero ½Dτ;Dσ�X ¼ 0. On the other
hand, from Eq. (54) it follows that

0 ¼ ½Dτ;Dσ�X ¼ ðDτλσ −DσλτÞX ⇒ Dτλσ −Dσλτ ¼ 0;

ð56Þ

which ensures that λτ can be expressed locally as

λτ ¼ −Dτ lnΛ; ð57Þ

whereΛ is some positive function. In this case, Eq. (54) can
be represented as

DτðΛHabÞ ¼ 0; ð58aÞ

DτðΛJ aÞ ¼ 0; ð58bÞ

DτðΛM2Þ ¼ 0: ð58cÞ

From Eq. (58c) follows that one can set Λ ¼ M−2 up to
some multiplicative function that is constant on Sg. This
leaves us with only two first equations

Hab ¼ M2Cab; J a ¼ M2Ca; ð59Þ

where Cab; Ca are constant in Sg. Equation (59) means that
the original quadratic equation (49) is constant on the
surface up to some arbitrary multiplicative function. In the
final section of the article, we show by a number of
examples that in Kerr-like geometries all the discussed
gluing conditions are indeed satisfied. But first, let us try to
understand the deeper cause of the gluing phenomenon and
its consequences.

V. RELATION TO KILLING TENSORS

The existence of glued surfaces of massive particles in
the Kerr metric is closely related to the existence of hidden
spacetime symmetries described by the Killing tensor of the
second rank. For many physically relevant spacetimes, the
Killing tensor of the second rank is slice-reducible with
respect to some foliation, so that the Killing vectors are
slice tangent, kαa ¼ καa (see [26] for details). According to
Ref. [26], the slice-reducible Killing tensor of the second
rank (with not totally geodesic slices) has the form

Kαβ ¼ αgαβ þ γabκaακbβ þ eΨnαnβ; ð60Þ

where α, γab, Ψ are functions obeying some differential
equations presented in Ref. [26]. In particular, the functions
α and γab are constant along hypersurfaces, i.e., Dτα ¼ 0

and Dτγ
ab ¼ 0.

A number of restrictions are also automatically applied
to slices. In particular, they must be partially umbilical, i.e.,
the second fundamental form provides conditions (20a)
and the mixed components are zero βaα ¼ 0 [see Eq. (21)
in [26]3]. Upon comparing Eq. (46) presented in this work
and Eq. (34b) in Ref. [26], it is evident that in slices
DτHab ¼ λτHab where λγ ¼ −Dγ ln ðχτφ3Þ (or Λ ¼ χτφ

3

up to a multiplicative constant). Here φ is the lapse function
of the foliation defined as4

3The symbol βaα corresponds to Xβ
i in the reference.

4In original equations from Ref. [26] there is an additional ϵ
which is equal to 1 for timelike hypersurfaces.
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nα∇αnβ ¼ −Dβ lnφ: ð61Þ

Thus, we can establish a connection between slice-
reducible conformal Killing tensor and massive particle
surfaces [26]. In order to find out whether the slice is a
massive particle surface, one can differentiate Eq. (49) with
respect to any direction tangent to the hypersurface and
combine it with condition (54a), which holds automatically
for the slice. As a result, we obtain only the following
remaining condition

2ðDτJ a − λτJ aÞQa ¼ DτM2 − λτM2; ð62Þ

for some Qa satisfying (49). In particular, the maximum
gluing order is achieved under conditions (54b) and (54c)
or equivalently (55) which resolve the condition (62).
Theorem 5.1: Let a timelike foliation of the manifoldM

generates slice-reducible conformal Killing tensor, i.e.,
satisfies all conditions of the Theorem 3.5 in Ref. [26].
If a slice S has no boundary and satisfies (55), it is an
extended glued particle surface Sg of maximal order.
If the Killing tensor is exact rather than conformal, then

we can use Eq. (46b) of Ref. [26] resulting in λτ ¼ 0, which
implies that Hab, J a, and M2 are constant along the
hypersurface, or equivalently

qHabDτpb ¼ qDτ

�
1

2χτ
F a

�
; q2F aDτpa ¼ 0: ð63Þ

In particular, for q ¼ 0 the slices are always glued particle
surfaces. This generalizes theorems from Refs. [25,26] that
slices associated with a slice-reducible exact Killing tensor
are fundamental photon surfaces to the case of massive
particle surfaces with neutral particles.
Now, we can analyze the situation in an opposite

direction, i.e., whether the existence of foliation with slices
representing glued massive particle surfaces results in the
existence of an exact Killing tensor of rank 2. If there is a
foliation of glued massive particle surface of maximum
order with βaα ¼ 0, Eq. (54a) corresponds to one of the
necessary conditions for the existence of slice-reducible
Killing tensor from Ref. [26] if the lapse function φ of the
foliation satisfies the condition λγ ¼ −Dγ ln ðχτφ3Þ [com-
pare with conditions (34) in Ref. [26]]. If it additionally
meets another condition

Dγðφχτ − φnα∇α lnφÞ ¼ 0; ð64Þ

we immediately get the evidence of the existence of the
slice-reducible conformal Killing tensor of rank two.
If the spacetime possesses slice-reducible conformal (or

exact) Killing tensor, following Eqs. (24a) and (29) from
Ref. [26], then there are two differential equations

nα∇αΨ ¼ 2χτ; nα∇αðeΨGabÞ ¼ nα∇αγ
ab: ð65Þ

These equations are useful to express Hab in form (46)
through the components of the Killing tensor

Hab ¼ −
e−Ψ

2χτ
nα∇αγ

ab: ð66Þ

The presence of glued particle surfaces can serve as an
indication of the existence of an exact Killing tensor. We
will illustrate the potential of this representation for metrics
such as Kerr and others in the following examples.

VI. EXAMPLES

A. Kerr metric

The metric for Kerr solution in the Boyer-Lindquist
coordinates reads

ds2 ¼ −fðdt − ωdϕÞ2 þ Σ
Δ
dr2 þ Σdθ2 þ Δf−1 sin2 θdϕ2;

ð67Þ

where

f ¼ Δ − a2 sin2θ
Σ

; Σ ¼ r2 þ a2cos2θ;

ω ¼ −2Mar sin2θ
Δ − a2 sin2θ

; Δ ¼ rðr − 2MÞ þ a2: ð68Þ

The Kerr spacetime possesses two Killing vectors
kαðtÞ∂α ¼ ∂t, kαðϕÞ∂α ¼ ∂ϕ, and an exact Killing tensor in

the form (60) with

α ¼ −r2; γabκαaκ
β
b ¼ −Δ−1SαSβ;

Sα ¼ ðr2 þ a2Þδαt þ aδαϕ; eΨ ¼ Σ; ð69Þ

which is slice reducible with respect to slices r ¼ const
with the normal unit vector nα ¼ ffiffiffiffiffiffiffiffiffi

Δ=Σ
p

δαr. The slices are
tangent to the Killing vectors ∂t, ∂ϕ. According to the result
obtained in Ref. [26], Sec. VA, four-dimensional solutions
with two commuting Killing vectors nK ¼ n − 2 have two
different foliations orthogonal to each other that generate
the same Killing tensor. The tensor (69) is indeed slice-
reducible with respect to θ ¼ const as well, possessing
another representation of the form (60)

α ¼ −a2cos2θ; γabκαaκ
β
b ¼ SαSβ;

Sα ¼ a sin θδαt þ δαϕ= sin θ; eΨ ¼ Σ ð70Þ

with nα ¼ ffiffiffiffiffiffiffiffi
1=Σ

p
δαθ . As we have shown, slices associated

with a slice-reducibleKilling tensor aregluedmassive particle
surfaces for neutral particles. Since theMaxwell form is trivial
Aα ¼ 0 in theKerr solution, the electric chargeq plays no role
in the particles’motion. It motivates us to consider these two
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cases. In the first case, r ¼ const, spacetime sections of the
hypersurfaces are compact and the corresponding particles
are bounded. In the second case θ ¼ const, spacetime
sections are not compact, and, as we will see, particles fly
by the black hole in the scattering regime.

1. Spheres r = const

From the θθ component we get χτ, and comparing the
rest of χαβ with hαβ, we get the representation (20) of the
second fundamental form with5

χτ ¼ χθθ=hθθ ¼ r

ffiffiffiffiffi
Δ
Σ3

r
; ð71aÞ

Hab¼ 1

rΔ2

 
ða2þr2Þða2ðMþrÞþr2ðr−3MÞÞ aMða2−r2Þ

aMða2−r2Þ a2ðM−rÞ

!
: ð71bÞ

One can check that Eq. (66) does hold. Matrix Hab is
explicitly independent on θ, thus it provides the maximal
gluing. Since the determinant of Hab is negative

detHab ¼ −
�

a
rðr − 2MÞ þ a2

�
2

; ð72Þ

the constraint (20b) describes a hyperbola. Constraint (20b)
and the constraint on the vector norm γ̇2 ¼ −m2 explicitly
reads

ðEða2 þ r2Þ − aLzÞðEa2ðM þ rÞ þ Er2ðr − 3MÞ
þ aLzðr −MÞÞ − rΔ2m2 ¼ 0; ð73aÞ

ðr2 þ a2ÞðQ − ðLz − aEÞ2 − r2E2Þ
− 2MQrþ r2ðL2

z þ Δm2Þ ¼ 0; ð73bÞ

where

E ¼ −γ̇αkðtÞα; Lz ¼ γ̇αkðϕÞα;

Q ¼ −γ̇αγ̇βKαβ; qa ¼ f−E; Lzg: ð74Þ

There are two families of solutions ðEþ; Lþ
z Þ and ðE−; L−

z Þ
to Eq. (73a), where

E� ¼ �m2ðrða2 þ 2r2Þ − 3Mr2Þ þQðr −MÞ
2r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δðm2r2 þQÞ

p ; ð75aÞ

L�
z ¼ �m2rða2rðr − 3MÞ þ a4 þMr3Þ −Qðr2ðr − 3MÞ þ a2ðrþMÞÞ

2ar
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δðm2r2 þQÞ

p : ð75bÞ

Here, the Carter constant plays the role of the parameter of
the one-dimensional family of the solutions. Thus, the
order of the glued particle surface is 1. The region
accessible for particles is determined by inequality (18),
which takes the following form for Kerr solution:

fðLz − EωÞ2
Δ sin2 θ

−
E2

f
≤ −m2: ð76Þ

The left-hand side diverges toþ∞ at the poles of the sphere
θ ¼ 0 or π if Lz ≠ 0. In this case, the massive particle
surfaces represent belts cut out from the sphere.
The resulting extended surfaces of maximal order

for massive particles are constructed to include sets of

spherical massive particle worldlines. In the case of charge-
less particles, these surfaces contain spherical timelike
geodesics discussed in Teo’s paper [10]. Therefore, we have
obtained the geometric definition of Teo’s spheres. Our
expressions coincide with Teo’s results after shifting the
Carter’s constant Q ¼ QTeo þ ðLz − aEÞ2. Teo has shown
the existence of both stable and unstable orbits on the same
sphere depending on the value of Q. The marginally stable
orbit is determined by Carter’s constant

Q ¼ QMS ≡m2
r3ða2 −M2Þ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MΔ3r3

p

rðr −MÞ2 − ΔM
: ð77Þ

Thus, glued massive particle surfaces can contain particles
with both stable and unstable worldlines. However, the
stability of each individual surface in the family is well5We use the following index ordering: t;φ.
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defined.One can approach the problemofworldline stability
onmassive particle surfaces in a general manner by utilizing
calculations similar to those described in Ref. [44].
A different point of view on glued massive particle

surfaces is also useful. For each value of the momentum Lz
at fixed energy E, there exists a unique massive particle
surface, and the entire set of surfaces for all Lz forms a
region similar to the photon region [50–53]. The structure
of this region is the key for describing the shadow of a
given black hole in a stream of massive charged particles on
a given energy scale in future works.

2. Cones θ= const

Similarly, for cones with constant θ we get

χτ ¼ χrr=hrr ¼−
a2 sinð2θÞ
2Σ3=2 ; Hab ¼

�
1 0

0 −1=a2sin4θ

�
:

ð78Þ

One can check that Eq. (66) does hold. Conditions on the
integrals of motion

L2
z

a2 sin4 θ
− E2 þm2 ¼ 0; ð79aÞ

Q0

a2 cos2 θ
þ L2

z

a2 sin2 θ
− E2 þm2 ¼ 0 ð79bÞ

have the following solution:

L2
z ¼ Q0tan4θ; E2 ¼ m2 þ Q0

a2cos4θ
; ð80Þ

whereQ0 ¼ Qþ ðLz − aEÞ2 is a modified Carter constant.
As a result, we find that E2 ≥ m2. The condition for the
accessible region has the same form (76). It is noteworthy
that Hab is nonexistent for a ¼ 0 due to the fact that, as a
approaches 0, all worldlines on the cone degenerate into
radial geodesics without any gluing. By construction, all
resulting θ ¼ const massive particles cones contain conical
orbits which are generally noncompact, corresponding to
the minimum of the effective potential in the equations for θ
from the geodesic equations [10]. One can expect the
existence of compact conical orbits in the charged case in
Kerr-Newman dyons (see Ref. [49] for an example of
compact orbits between two closely spaced cones). While
these noncompact orbits may not hold the same level of
significance as compact spherical orbits in the formation of
gravitational shadows or in the context of Penrose inequal-
ities, they offer possibilities for investigating particle
scattering problems.
From the expression of the second derivative of the

effective potential for u ¼ cos θ (see Ref. [10])

V 00ðuÞ ¼ −8a2ðE2 −m2Þu2 ≤ 0 ð81Þ

follows that all massive particle surfaces θ ¼ const ≠ π=2
are stable. In contrast to spherical surfaces, this property
remains unaffected by Carter’s constant Q.

B. Zipoy-Voorhees solution

Zipoy-Voorhees solution is a vacuum nonspherical
spacetime with the following metric:

ds2 ¼ −fδdt2 þ k2f−δ
��

x2 − 1

x2 − y2

�
δ2

ðx2 − y2Þ
�

dx2

x2 − 1
þ dy2

1 − y2

�
þ ðx2 − 1Þðy2 − 1Þdϕ2

�
; f ¼ x − 1

xþ 1
; ð82Þ

with x > 1 and y2 ≤ 1. The Zipoy-Voorhees solution is
known to lack photon surfaces, but it has fundamental
photon surfaces. Thus, we expect that there are massive
particle surfaces, which are not glued. We take surfaces
x ¼ const as an ansatz to investigate whether this spacetime
allows for spherical massive particle surfaces. Following a
similar approach to previous examples, we obtain

Hab ¼ 1

F1

 
f−δðF1 − δðx2 − y2ÞÞ 0

0
ð1−δ2Þxfδ
k2ðx2−1Þ

!
; ð83Þ

where

F1 ¼ x3 − δx2 þ xðδ2ð1 − y2Þ − 1Þ þ δy2: ð84Þ

Substituting (83) and integrals of motion Qa ¼ qa ¼
f−E;Lzg into Eq. (20b), we find that the expression
(which is quite voluminous) does not depend on y if

L2
z ¼

E2k2ðx2 − 1Þ2f−2δ
1 − δx

: ð85Þ

The final solution is

E2 ¼ m2fδ
1 − δx
2 − δx

; L2
z ¼ k2m2f−δ

ðx2 − 1Þ2
2 − δx

: ð86Þ

Condition (18) reads

m2ðx2 − y2Þ
ð1 − y2Þð2 − δxÞ ≤ 0: ð87Þ
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Along with this condition, we require non-negativeness
of E2 and L2

z . However, this is not possible for timelike
geodesics, but it is possible for tachyons m2 < 0 only.

C. Kerr-Newman dyon

The dyonic Kerr-Newman solution is an electrovacuum
solution with electric q and magnetic p charges. Its metric
has the form (67) with redefined functions

Δ¼ rðr−2MÞþa2þ e2; ω¼ −2asin2θ
Δ−a2sin2θ

ðMr− e2=2Þ
ð88Þ

and electromagnetic vector potential

Aαdxα ¼
qrþ ap cosθ

Σ
dt−

pða2 þ r2Þ cosθþ aqrsin2θ
Σ

dϕ;

ð89Þ

where e2 ¼ q2 þ p2. We can easily generalize our formal-
ism to particles both with electric q and magnetic p charges
as follows. First, we notice if the particle possesses a
magnetic charge, then the equation of motion has the form
of Eq. (1) with the following substitution:

Fβ
λ → F̃β

λ ¼ Fβ
λ þ

p
q
ð⋆FÞβλ; ð⋆FÞμν ¼

1

2
ϵμναβFαβ;

ð90Þ

where ϵμναβ is the Levi-Civita tensor. Since tensor Fαβ

fulfills both Maxwell and Bianchi equations, its dual tensor
ð⋆FÞαβ can be represented with a vector potential
ð⋆FÞαβ ¼ ∂αA⋆

β − ∂βA⋆
α as well. Thus, we can make the

following substitution of the vector potential in our analysis

Aα → Ãα ¼ Aα þ
p
q
A⋆
α : ð91Þ

A detailed analysis of the motion of dyonic particles in the
dyonic Kerr-Newman solution is presented in Ref. [49].
Due to the dual nature of dyons, the transformed potential
Ãα is the same as Aα up to substitution

q → qþ pp=q; p → p − qp=q: ð92Þ

Performing the same steps as for previous examples, and
making use of Eq. (50a), we have the following quantities
for spheres r ¼ const

Hab ¼ 1

rΔ2

 
ða2 þ r2Þ½2rΔþ ða2 þ r2ÞðM − rÞ� a½a2M − rðMr − e2Þ�

a½a2M − rðMr − e2Þ� a2ðM − rÞ

!
; ð93aÞ

J a ¼ −
ðppþ qqÞ

2rΔ2

 
r4 − 4Mr3 þ ð2a2 þ 3e2Þr2 þ a2ða2 þ e2Þ

aða2 þ e2 − r2Þ

!
; ð93bÞ

M2 ¼ m2 þ ðppþ qqÞ2ðr2 −Mr − ΔÞ
Δ2

; ð93cÞ

and for cones θ ¼ const

Hab ¼
�
1 0

0 −1=a2 sin4 θ

�
; ð94aÞ

J a ¼ qp − pq
2a2 cos θ sin4 θ

�
a sin4 θ

1þ cos2 θ

�
; ð94bÞ

M2 ¼ m2 þ
�
qp − pq
a sin2 θ

�
2

: ð94cÞ

All quantities are constant along the surface, so spheres and
cones achieve maximal gluing. It is notable that particle
charges come only in the combination ppþ qq for spheres,
and qp − pq for cones. Making the first or the second
combination equal to zero (i.e., p ¼ −qq=p or p ¼ qp=q),

particles on the corresponding surfaces will not be affected
by the electromagnetic field, since the electric and magnetic
forces balance each other out. Particularly, if p ¼ p ¼ 0,
then conical surfaces are not affected, because the electro-
magnetic field exerts only the radial electric force, which
has no influence on the motion normal to the cones.
Similarly, if p ¼ q ¼ 0, spheres are not affected, because
the electric force is absent, and the magnetic force is
tangent to the surface.

VII. DISCUSSION AND CONCLUSIONS

We have generalized the concept of photon surfaces and
fundamental photon surfaces to the case of massive charged
particles or photons in the medium [46,47] in general
spacetimes with at least one isometry, among which are
stationary ones. We introduced the notion of massive
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particle surfaces as timelike hypersurfaces such that any
worldline of a particle with mass m, electric charge q, and
a set of conserved quantities Qa, remains tangent to the
surface forever, provided that the worldline initially was
tangent to it. This concept encompasses the generalizations
for both ordinary photon spheres and all their standard
generalizations [30,31]. In general, such surfaces have
boundaries, but the notion can be naturally extended to
surfaces without boundaries, which can be useful for
analyzing their topological properties and integrability
problems. In particular, for the analysis of areal constraints,
Riemannian Penrose inequalities, one can try to apply the
standard approach of inverse mean curvature flow [30].
The new concepts introduced here represent a natural

extension of our prior research, as presented in
Refs. [11,44]. In particular, we have proved the key
Theorem 3.1, which is a direct analog of Theorem 2.2
obtained in Ref. [3] for photon surfaces, and establishes a
purely geometric definition of such surfaces. We have
found that in the general case the second fundamental form
χαβ is partially umbilical. The condition of the partially
umbilical surface becomes degenerate when at least n − 2
Killing vectors are involved, resulting in the fixation of the
function χτ without any additional conditions. Also, we
have obtained restrictions on the electromagnetic field
tensor and a compact master equation.
We have also found that in spacetimes with hidden

symmetries (Kerr-like spacetimes) described by slice-
reducible conformal Killing fields of rank 2, massive
particle surfaces can be found among the slices of the
corresponding foliation. Moreover, such surfaces are glued
together in a nontrivial way. We have defined the general
concept of glued massive particle surfaces of arbitrary
order. Glued surfaces capture worldlines from some con-
tinuous family of conserved quantities of dimension larger
than or equal to one. We have reinforced these concepts
with a number of examples demonstrating that the
previously known features of the particle movement along
worldlines are indeed successfully explained by the
geometric properties of the glued surfaces. We have
investigated the relationship between the gluing phenome-
non and the formation of a slice-reducible conformal
Killing tensor. Particularly, we have found that the exist-
ence of a foliation of glued massive particle surfaces of
maximum order can serve as a good indication of the
existence of the Killing tensor, and vice versa. However, a
rigorous substantiation of this correspondence remains a
part of further research. Despite this, we can already
retrieve one of the necessary and sufficient integrability
conditions for the existence of conformal Killing tensors.
If an exact Killing tensor of rank 2 is present in

spacetime, then there is a quantity Hab extracted from
the second fundamental form, which is constant along the
surface. If massive particle surfaces allow for charged
particles, then there are two more constant quantities,

J a, andM2. Together they can be understood as invariants
of the massive particle surface.
A number of examples are called to demonstrate the

usefulness of the concept. We have considered the problem
of the existence of massive particle surfaces in Kerr, Zipoy-
Voorhees, and Kerr-Newman metrics. The obtained results
can be generalized to particles coupled to background fields
in various theories by replacing of m2 and Aα with the
corresponding expressions. The obtained results have
potential applications in various areas, including Penrose
inequalities, uniqueness theorems, integrability theory, and
the description of massive particle dynamics in the presence
of real supermassive objects, as well as for further photons
in plasma.
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APPENDIX: QUADRATIC FORMS
WITH LINEAR CONSTRAINTS

Here we prove several useful theorems about quadratic
forms with linear constraints.
Theorem A.1: Let Y ¼ fyg be a nonempty set of all

solutions for the following quadratic equation

yTQy ¼ d; ðA1Þ

and similarly Y0 ¼ fy0g is a set of all solutions for

yTQ0y ¼ d0; ðA2Þ

where Q, Q0 are symmetric nondegenerate nQ × nQ matri-
ces. Then the set of all solutions for the first quadratic
equation (A1) is contained in the set of solutions for the
second quadratic equation (A2), Y ⊆ Y0, if and only if
the primed quantities for the second system can be
represented as

Q0 ¼ λQ; d0 ¼ λd; ðA3Þ

where λ is an arbitrary scalar.6

Proof: Sufficient (⇐): Let y be an arbitrary solution of
the first quadratic equation (A1). Then, conditions (A3) give

yTQ0y ¼ λyTQy ¼ λd ¼ d0; ðA4Þ

i.e., exactly the second quadratic equation (A2).
Necessary (⇒): Let all solutions y for the first quadratic

equation (A1) be contained in the set of solutions for the
second quadratic equation (A2). Let us introduce an
orthonormal basis for Q in the following way:

6Including λ ¼ 0. In case λ ≠ 0 we find that Y ¼ Y0.
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eTi Qej ¼ −δij; eTi0Qej0 ¼ δi0j0 ; eTi Qei0 ¼ 0: ðA5Þ

Consider a subset of the solutions of the system (A1)
defined as follows:

y¼ aðei cosψþ ej sinψÞþbðei0 cosψ 0 þ ej0 sinψ 0Þ;
−a2þb2 ¼ d: ðA6Þ

Writing quadratic form Q0 in this orthonormal basis
Q0

ij ≡ eTi Q
0ej, Eq. (A2) for chosen y gives

a2
�
Q0

iiþQ0
jj

2
þQ0

ij sinð2ψÞþ
Q0

ii−Q0
jj

2
cosð2ψÞ

�

þb2
�Q0

i0i0 þQ0
j0j0

2
þQ0

i0j0 sinð2ψ 0ÞþQ0
i0i0 −Q0

j0j0

2
cosð2ψ 0Þ

�
þ2abðQ0

ii0 cosψ cosψ 0 þQ0
ij0 cosψ sinψ 0

þQ0
ji0 sinψ cosψ 0 þQ0

jj0 sinψ sinψ 0Þ¼d0:

So from the arbitrariness of ψ and ψ 0

a2Q0
ii þ b2Q0

i0i0 ¼ d0; Q0
ii ¼ Q0

jj; Q0
i0i0 ¼ Q0

j0j0 ;

Q0
ij ¼ Q0

i0j0 ¼ Q0
ii0 ¼ 0: ðA7Þ

Eliminating a from the first equation, we get

b2ðQ0
i0i0 þQ0

iiÞ ¼ d0 þ dQ0
ii: ðA8Þ

From the arbitrariness of b follows

−Q0
ii ¼ Q0

i0i0 ¼ d0=d≡ λ ðA9Þ

in orthonormal basis forQ. SoQ0 must be proportional toQ
with the same proportionality factor as d0 and d:

Q0 ¼ λQ; d0 ¼ λd: ðA10Þ

Theorem A.2: Let X ¼ fxg be a nonempty set of all
solutions for the following quadratic equation with a
system of linear constraints

xTAx ¼ d; Bx ¼ f ; ðA11Þ

and similarly X0 ¼ fx0g is a set of all solutions for

xTA0xþ 2w0Tx ¼ d0; B0x ¼ f 0; ðA12Þ

where A, A0 are symmetric nA × nA matrices, B, B0 are
nB × nA matrices and nB vector f is in the image of B, and
A is nondegenerate. If all solutions X projected onto kerB
with respect to the pseudoinner product A span the entire
kerB, then the following statement is fair. The entire set of
solutions for the first system (A11) is contained in the set
of solutions for the second system (A12), X ⊆ X0, if and
only if the primed quantities for the second system can be
represented as

A0 ¼ λAþ S1Bþ ðS1BÞT þ BTS2B; ðA13aÞ

B0 ¼ S3B; ðA13bÞ

f 0 ¼ S3 f ; ðA13cÞ

where λ is an arbitrary scalar, matrices S1, S2, S3 are
arbitrary matrices constrained by the following conditions

f TS2 f ¼ d0 − λd − 2 f TGBA−1w0;

ð1 − BTGBA−1Þw0 þ S1 f ¼ 0; BA−1S1 ¼ 0;

ðA14Þ

where G is a pseudoinverse matrix of G defined from the
following operator equation ðBA−1BTÞGB ¼ B.
Proof: Sufficient (⇐): For an arbitrary solution x of

system (A11), conditions (A13) and (A14) from the
theorem give

xTA0xþ 2w0Tx ¼ λxTAxþ xTS1Bxþ xTðS1BÞTxþ xTBTS2Bxþ 2w0Tx

¼ λdþ 2xTS1f þ f TS2f þ 2w0Tx

¼ d0 þ 2xTS1f − 2f TGBA−1w0 − 2f TST1xþ 2w0TA−1BTGBx

¼ d0 − 2f TGBA−1w0 þ 2w0TA−1BTGf ¼ d0; ðA15Þ

and

B0x ¼ S3Bx ¼ S3f ¼ f 0: ðA16Þ

Thus, every solution of the first system (A11) is a solution
for the second system (A12).

Necessary (⇒): For simplicity we define the spaces Ux
and Uf , so

w0; x ∈ Ux; f ∈ Uf ;

A; A0∶ Ux ↦ Ux; B; B0∶Ux ↦ Uf : ðA17Þ
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We can understand matrix A as a metric tensor in Ux. It
defines the pseudoinner products xT1Ax2. We will under-
stand orthogonality as xT1Ax2 ¼ 0. Further, the subspace
defined by the kernel of B will play an important role. We
will define the kernel of matrix B and the orthogonal
complement of the kernel ðkerBÞ⊥ as

kerB ¼ fy∶By ¼ 0g;
ðkerBÞ⊥ ¼ fx∶xTAy ¼ 0; ∀ y ∈ kerBg: ðA18Þ

We define a pseudoinverse matrix G from the following
operator equation

ðBA−1BTÞGB ¼ B: ðA19Þ

This matrix is useful to solve linear equations with matrix
B. For example, since f is in the image of B, we have the
following identity ðBA−1BTÞGf ¼ f. One can define G as
an inverse matrix ðBA−1BTÞ−1 if the latter exists. Also, we
can introduce a projector at the subspace kerB in the
following way

Π ¼ 1 − A−1BTGB: ðA20Þ

Indeed, it is a projector, since it preserves the vector from
the kernel Πy ¼ y, and any vector x ∈ ðkerBÞ⊥ orthogonal
to the kernel is zero

ΠðA−1BT tÞ ¼ A−1BT t − A−1ðBA−1BTGBÞT t
¼ A−1BT t − A−1BT t ¼ 0; ðA21Þ

where ðA−1BT tÞ can represent any vector from ðkerBÞ⊥. To
show this, we notice that A−1 is a full-rank matrix, therefore
the image of the operator A−1BT has the same dimension as
the orthogonal complement of the kernel of B

rankðA−1BTÞ ¼ rankB ¼ dimðkerBÞ⊥; ðA22Þ

and the result is orthogonal to any vector y ∈ kerB

yTAA−1BT t ¼ ðByÞT t ¼ 0: ðA23Þ

Thus, the image of ðA−1BTÞ is ðkerBÞ⊥.
First, vector x and matrices A0, B0 can be split into terms

that are spanned onto the kernel kerB ⊆ Ux and its
orthogonal complement ðkerBÞ⊥ ⊆ Ux:

x ¼ zþ y; A0 ¼ S0 þ S1Bþ ðS1BÞT þ BTSBB;

B0 ¼ S4 þ S3B; ðA24Þ

and we have imposed the following conditions

By ¼ 0; zTAy ¼ 0; S0A−1BT ¼ BA−1S0 ¼ 0;

BA−1S1 ¼ 0; S4A−1BT ¼ 0: ðA25Þ

Matrices S0 and SB are symmetric. Constraints (A25) are
orthogonality conditions with respect to the aforemen-
tioned pseudoinner product. The new linear operators act
as follows:

S0∶ Ux ↦ Ux; S1∶ Ux ↦ Uf ; S4∶ Ux ↦ Uf ;

SB; S3∶ Uf ↦ Uf : ðA26Þ

Substituting the definition of x into the linear system of
Eq. (A11), we get

Bx ¼ Bz ¼ f ⇒ z ¼ A−1BTGf : ðA27aÞ

The term A−1BTGf can be understood as a particular
solution to the linear system Bx ¼ f , and y is a solution
to the homogeneous part of the linear system Bx ¼ 0.
Substituting the definition of x and z into the quadratic
equation in (A11), we get

xTAx¼ f TGf þ yTAy¼ d⇒ yTAy¼ d− f TGf ; ðA27bÞ

The vector y is in kerB, thus we can use the projected
operator Apr in the quadratic condition

yTApry ¼ d − f TGf ; ðA28Þ

where Apr ¼ ΠTAΠ ¼ A − BTGB is a projected operator A
onto kerB. The operator Apr has the following properties:

(i) Apry ¼ Ay for all y ∈ kerB. Hence, Apr acts on y the
same way as A, and the quadratic form yTApry is
identical to yTAy in kerB.

(ii) AprA−1BT ¼ BA−1Apr ¼ 0, so Apr satisfies all con-
ditions on S0 in Eq. (A25).

The Eq. (A28) may have no solutions at all, which is not the
case for the theorem.
Substituting x into the system (A12) and taking into

account the solution for z, we get a pair of conditions

f TSB f þ 2yTS1 f þ yTS0 yþ 2f TGBA−1w0 þ 2w0Ty ¼ d0;

ðA29aÞ

S4 yþ S3 f − f 0 ¼ 0: ðA29bÞ

Our current aim is to find the form of the matrices S0, S1,
S3, S4, and SB that turns Eq. (A29) into an identity for all y
satisfying (A27b). Since (A27b) is an even equation with
respect to y, Eq. (A29) can be split by the parity with
respect to y:
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yTS0 y ¼ d0 − f TSB f − 2 f TGBA−1w0; ðA30aÞ

yTðS1 f þ w0Þ ¼ 0; ðA30bÞ

f 0 ¼ S3 f ; ðA30cÞ

S4 y ¼ 0: ðA30dÞ

The matrix S3 can be arbitrary. By the condition of the
theorem, the set of all y satisfying condition (A27b) spans
the entire kerB. Thus, Eqs. (A30b) and (A30d) can be
rewritten as

S4Π ¼ 0; ΠTðw0 þ S1 f Þ ¼ 0: ðA31Þ

Making use of conditions (A25), we get

S4 ¼ 0; ð1 − BTGBA−1Þw0 þ S1 f ¼ 0: ðA32Þ

The remaining condition is related with kerB only:

yTS0 y ¼ d0 − 2 f TGBA−1w0 − f TSB f ; ðA33Þ

for all y satisfying (A28). The problem (A33) is solved in
the simpler version of the theorem. According to
Theorem A.1, we have

S0 ¼ λApr; d0 − 2 f TGBA−1w0 − f TSB f ¼ λðd− f TGf Þ;
ðA34Þ

where λ is an arbitrary scalar. The first condition defines the
matrix S0, and the second condition can be represented as

SB ¼ S2 þ λG; ðA35Þ

where S2∶ Uf ↦ Uf is an arbitrary linear operator such
that f TS2 f ¼ d0 − λd − 2 f TGBA−1w0. Combining all
together, the second system must have the following form:

A0 ¼ λAþ S1Bþ ðS1BÞT þ BTS2B; ðA36Þ

B0 ¼ S3B; ðA37Þ

f 0 ¼ S3 f ; ðA38Þ

where λ is an arbitrary scalar, w0 and S1;2;3 are arbitrary
matrices satisfying the following conditions

f TS2 f ¼ d0 − λd − 2 f TGBA−1w0;

ð1 − BTGBA−1Þw0 þ S1 f ¼ 0; BA−1S1 ¼ 0:

ðA39Þ

Theorem A.3: Let X ¼ fxg be a nonempty set of all
solutions for the following quadratic equation with a
system of linear constraints

xTAxþ 2wTx ¼ d; Bx ¼ f ; ðA40Þ

and similarly X0 ¼ fx0g is a set of all solutions for

xTA0xþ 2w0Tx ¼ d0; B0x ¼ f 0; ðA41Þ

where A, A0 are symmetric nondegenerate nA × nA matri-
ces, B, B0 are nB × nA matrices, and nB vector f is in the
image of B. If all solutions X projected to the kerB with
respect to the pseudoinner product A span the entire kerB,
then the following statement is fair. The entire set of
solutions for the first system (A11) is contained in the set of
solutions for the second system (A12),X ⊆ X0, if and only
if the primed quantities for the second system can be
represented as

A0 ¼ λAþ S1Bþ ðS1BÞT þ BTS2B; ðA42aÞ

B0 ¼ S3B; ðA42bÞ

f 0 ¼ S3f ; ðA42cÞ

where λ is an arbitrary scalar, matrices S1, S2, S3 are
arbitrary matrices constrained by the following condition:

d0 þ ð2w0T −wTA−1A0ÞA−1w− λðdþwTA−1wÞ ¼ ð f þBA−1wÞTS2ð f þBA−1wÞ þ 2ð f þBA−1wÞTGBA−1ðw0 −A0A−1wÞ
ð1−BTGBA−1Þw0 ¼ ðλþBTðST1 þ S2BÞA−1Þw− S1 f ;

BA−1S1 ¼ 0: ðA43Þ

Proof: Since A is nondegenerate, it is always possible to make a transformation translating the system (A40) into (A11)
from Theorem 3.1. Such a transformation is

x → x − A−1w: ðA44Þ

After a careful substitution and identification of the translated quantities with original from Theorem 3.1, we immediately
obtain Eq. (A42) with conditions (A43).
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