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I study the balance law equation of surface charges in the presence of background fields. The
construction allows a unified description of Noether’s theorem for both global and local symmetries. From
the balance law associated with some of these symmetries, I will discuss generalizations of Wald’s Noether
entropy formula and general entropy balance laws on null hypersurfaces based on the null energy
conditions, interpreted as an entropy creation term. The entropy is generally the so-called improved
Noether charge, a quantity that has recently been investigated by many authors, associated to null future-
pointing diffeomorphisms. These local and dynamical definitions of entropy on the black hole horizon
differ from the Bekenstein-Hawking entropy through terms proportional to the first derivative of the
area along the null geodesics. Two different definitions of the dynamical entropy are identified, deduced
from gravity symplectic potentials providing a suitable notion of gravitational flux which vanish on
nonexpanding horizons. The first one is proposed as a definition of the entropy for dynamical black holes
by Wald and Zhang, and it satisfies the physical process first law locally. The second one vanishes on any
cross section of Minkowski’s light cone. I study general properties of its balance law. In particular, I look at
first order perturbations around a nonexpanding horizon. Furthermore, I show that the dynamical entropy
increases on the event horizon formed by a spherical symmetric collapse between the two stationary states
of vanishing flux, i.e., the initial flat light cone and the final stationary black hole. I compare this process to
a phase transition, in which the symmetry group of the stationary black hole phase is enlarged by the
supertranslations.
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I. INTRODUCTION

The covariant phase space formalism developed by
Wald and collaborators [1–8] has been a powerful tool
to study gauge theories with boundaries [8–16], in par-
ticular black holes thermodynamics [4,17–21]. A key
insight from Wald was to understand black hole entropy
as a Noether charge of an arbitrary theory of gravity [4,17].
By integrating the symplectic form of the theory contracted
with the horizon Killing field on a Cauchy surface between
spacelike infinity and the bifurcation surface of the black
hole, he was able to relate the variations in phase space of
the asymptotic charges, as the ADM mass and angular
momentum, to the Noether charge on the bifurcation
surface, the entropy (times the Hawking temperature) [17],
and hence to recover the phase space first law of black hole
mechanics [22]. This derivation has been extended in [23]
if additional fields with internal (gauge) degrees of freedom
are present. However, while the first law can be understood
as an equality between the variation of the black hole
parametersM, J,Q evaluated at spatial infinity and the area
A at the horizon obtained from a general perturbation of
the background solution, there exists a second version of
this law, known as the physical process first law [24]. It has
been derived in [25] and extended to the case where the

black hole is charged in [19,26], and states how the black
hole entropy is modified when some matter falls into the
black hole. The relation between the two versions of the
first law is subtle [25,27,28]. Furthermore, it is worth
pointing out that other entropy laws have been worked up
for dynamical horizons [29,30], which are not null but
spacelike and foliated by marginally trapped surfaces, and
future holographic screens [31,32]. The validity of the
second law of thermodynamics has also been enlarged to
more general theories of gravity [33–35] and investigated
for scalar-tensor gravity in [36–38].
However, unlike the equilibrium state version of the

first law which involves asymptotic charges, the physical
process first law is local and derived only from the physics
on the event horizon. This local balance law has many
interesting features, and led to investigations for further
relations between thermodynamics and null hypersurfaces
geometry well beyond the range of black holes event
horizons. Hence, this work is part of the many attempts
of describing some geometric properties of arbitrary null
hypersurfaces through thermodynamic relations [39–42].
A more complete approach to these problems is made
possible by recent results on the geometry of null hyper-
surfaces, and the definition of suitable gravitational fluxes
and charges on them, particularly on perturbed stationary

PHYSICAL REVIEW D 108, 044069 (2023)

2470-0010=2023=108(4)=044069(28) 044069-1 © 2023 American Physical Society

https://orcid.org/0009-0004-1454-7776
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.108.044069&domain=pdf&date_stamp=2023-08-28
https://doi.org/10.1103/PhysRevD.108.044069
https://doi.org/10.1103/PhysRevD.108.044069
https://doi.org/10.1103/PhysRevD.108.044069
https://doi.org/10.1103/PhysRevD.108.044069


horizons [43–55]. These new developments are partially
motivated by well known results concerning the relation
between gravity and thermodynamics, starting from the
laws of black hole thermodynamics. One particularly
spectacular result indicating the deep connection between
general relativity and thermodynamics is the derivation
of the Einstein relation from the Clausius relation by
Jacobson [56]. Similarly to the physical process first law,
this derivation uses the specific form of the Raychaudhuri
equation in order to relate the entropy variation, given by
the geometry, to the energy variation obtained from the
stress energy tensor of the matter crossing the null hyper-
surface. More generally, it is also known that this equation
can be written as a specific instance of a Noether flux
balance law [50] on an arbitrary null hypersurface N

dqξ ¼N Fξ þ Tμνξ
μnνϵN ð1:1Þ

where Fξ is the gravitational flux along the diffeomorphism
ξ obtained from a well chosen presymplectic potential Θ,
and qξ is the improved Noether charge density [8,13,14,57]
associated to the presymplectic potential. These improved
Noether densities are integrated on a codimension two,
surface, the corner. Recently, these charges and their
algebra have been treated carefully in the literature, aiming
to understand better quantum gravity [10,11,58–60]. For a
nice review on the corner proposal, see [61].
The flux term Fξ should be written in the canonical form

P£ξQ, where P and Q are canonical pairs and depend only
on the intrinsic and extrinsic geometry of the null hyper-
surface N . However, while in most work Eq. (1.1) for null
future pointing vector ξ is regarded as a first law near
equilibrium, we would like to stress that it can also be
interpreted as a general balance equation of the entropy
written in the common form

dS ¼ Se þ Sc ¼
Q
Text

þ Sc ð1:2Þ

where Q is some infinitesimal heat flux flowing into the
system and Sc is the infinitesimal entropy creation term,
with Sc ≥ 0. The entropy S is the gravitational charge qξ,
and its variations are given by (1.1). It generalizes the idea
of identifying the entropy of stationary black holes to the
Noether charge associated to null future pointing Killing
field on the horizon [4,17,18]. If no matter were present, the
entropy variation would be entirely given by the pullback
on the boundary N of the Noether current constructed out
of the gravitational Lagrangian and some presymplectic
potential. It is analogous to a heat current because it
describes the propagation of the microscopical (gravita-
tional) degrees of freedom through the boundary. This flux
is deduced from a suitable choice of presymplectic poten-
tial Θ. Ideally, we would like to disentangle the gauge
degrees of freedom from the physical ones, and express Θ

only with the true physical data in order to get a physical
flux. Furthermore, we should impose that on any stationary
solution, our flux Fξ vanishes for any boundary generator ξ.
Hence, a good candidate may be a presymplectic potential
singled out by the Wald-Zoupas procedure [6]. Now, if
there is matter in play, we should take into account its
propagating degrees of freedom too. They do not appear
neither in the free gravity Noether charge nor in the
gravitational flux Fξ, but they also contribute to the charge
variation. In general, irreversibility comes from the pres-
ence of degrees of freedom not taken into account into the
description of the system (belonging to some environment
for instance) which interact with the degrees of freedom of
interest. Here, some matter interacts with the gravitational
degrees of freedom through the presence of the Tμνξ

μnνϵN
term, analogous to a dissipation term. Indeed, as the null
energy conditions are satisfied for generic matter, this term
is positive, making relevant to interpret it as an entropy
creation term. Hence, the positive energy conditions appear
as an essential ingredient to make sense of these entropy
balance laws. It is not surprising however, it is well known
that the null energy conditions play a key role in the
derivations of the area theorem in classical general rela-
tivity and for higher curvature theories [62–64]. It also has
been derived [65] that the null energy conditions, usually
associated to the properties of the matter fields, could be
derived from assumptions about the validity of the second
law for gravity.
In Sec. II, we will review the construction of general

balance equations for general tensor field theories from
the Noether current, focusing on the necessary conditions
which must be satisfied in order to write them, and on
physical motivations. We usually understand Noether
charges as global, with the exception of local gauge
symmetries, for which Noether charges are boundary terms.
For general theories, we will express the Noether charge
variation as a sum of a boundary flux given by the pullback
of the Noether current on the boundary and a nonequili-
brium term arising if the equations of motion are not
satisfied. The Noether charge is conserved if the system
is closed and the equations of motion are satisfied. We
will give examples for theories described by Lagrangians
with a background metric and for theories with covariant
Lagrangian. In the latter case, we will explain how this
balance law reduces to an entropy law (1.2) if the null
energy conditions are satisfied.
Next, in section III, we will work out different presym-

plectic potentials obtained from the Einstein-Hilbert
Lagrangian, leading to different balance laws. However,
these presymplectic potentials must have the physical
meaning of gravitational fluxes, written in the form P£ξQ,
where both Q and P must be covariant with respect to the
set of diffeomorphisms which preserves some background
structure on the null hypersurface N . For complete null
hypersurfaces at finite distance with topology B ×R where
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B is some compact space, these diffeomorphisms are
spanned by the superrotations and the supertranslations,
the latter being divided into the affine supertranslations and
the Weyl supertranslations. Together, they form the Weyl
BMS (BMSW) symmetry group [45,66]. Furthermore, we
expect that these fluxes vanish in a stationary spacetime,
where no flux is expected. In [45], the authors applied the
Wald-Zoupas procedure to generic null hypersurfaces at
finite distance and find an expression for the charge and the
flux satisfying the previous requirement, the latter vanish-
ing on nonexpanding horizons. we call this flux the
Dirichlet flux because it vanishes when the Dirichlet
boundary conditions are satisfied. In a D-dimensional
spacetime, the Dirichlet flux can be written as

FD
ξ ¼ 1

16π

�
σμν −

D − 3

D − 2
θγμν

�
£ξγμνϵN ð1:3Þ

It can be interpreted as the heat flux flowing through the
null hypersurface in (1.1), while the improved Noether
charge that we get from this presymplectic potential and
associated to the null future pointing diffeomorphism is the
entropy. On the event horizon of a black hole perturbed
by some incoming matter, the heat flux turns out to be of
second order in the stress energy perturbation and so the
charge variation only comes from the entropy creation term
at first order. In this setup, if the horizon is affinely
parametrized by the coordinate v, the diffeomorphism ξμ ¼
κvð ∂

∂vÞ is null and is a Killing field at first order. The
improved Noether charge is the entropy on sections of
constant v, and turns out to be

SD ¼ 1

4

�
A − v

dA
dv

�
ð1:4Þ

This entropy formula for dynamical black holes has been
prior proposed by Wald and Zhang from an independent
and more general approach [67]. This is a local and
dynamical definition of entropy, relevant for a perturbed
Killing horizon, i.e., if we are close but not exactly at
equilibrium. When studying the physical process version
of the first law, the term v dA

dv in (1.4) is often disregarded
because the charge is integrated up to v ¼ 0, close to the
bifurcation surface [25]. However, if we decide to keep it in
the definition of the entropy, the master equation (1.1) can
be written everywhere on the perturbed Killing horizon at
first order as

THΔSD ¼ ΔM − ΩHΔJ −ΦHΔQ ð1:5Þ

where M, J, Q, A are respectively the mass, angular
momentum, charge and area of the black hole, and
TH;ΩH;ϕH are its Hawking temperature, horizon’s angular
velocity and horizon’s electric potential. However, one
inconvenient of the flux formula (1.3) is that it does not

vanish anywhere on an spacetime which does not have any
nonexpanding horizon. In particular, it does not vanish on
the simplest null hypersurface embedded in Minkowski
spacetime with compact cross sections, which is the light
cone. Worse still, this entropy is negative and decreases
over successive cross sections of the Minkowski light cone.
Hence, we are physically motivated to find a charge which
vanishes on such a solution, increases on a general class of
future complete null hypersurfaces (if the null energy
conditions are satisfied) and gives nonvanishing flux only
when spacetime is bent and twisted due to incoming fluxes
of matter, until to eventually settle down to a black hole.
As in thermodynamics, it is sometimes useful to proceed to
a Legendre transformation of the symplectic potential in
order to get a vanishing flux on a desired dynamical
process. In [55], the York boundary condition fixes the
conformal codimension two metric γ̂μν and the expansion θ
as configuration variables Q, in opposition to the Dirichlet
boundary conditions treating the whole codimension two
metric components as configuration variables. If we pro-
ceed this way (and choose the normal to be in the form
nμ ¼ v∂μv) we get the following York flux

FY
ξ ¼ 1

16π

�
ϵN σμνn £ξγμν þ 2

D − 3

D − 2
ϵN £ξθn

�
ð1:6Þ

for nonanomalous diffeomorphisms ξ, which form a subset
of diffeomorphisms belonging to the BMSW group and
preserves the location of the boundary of the null hyper-
surface. This subset is spanned by the superrotations and
the Weyl supertranslations. The charge generated by the
anomalous free Weyl supertranslation null vector ξμ ¼
κvð ∂

∂vÞμ on cross sections of constant v is the entropy

SY ¼ 1

4

�
A −

1

D − 2
v
dA
dv

�
ð1:7Þ

The flux (1.6) is similar to the one introduced in [50], but
here we restricted ourselves to the covariant phase space
of [45], which simplifies and specializes the expressions for
the charges and fluxes. The York’s flux (1.6) and the York’s
charges, including the entropy, vanish on Minkowski’s
outgoing light cone, while Dirichlet’s flux (1.3) and
Dirichlet’s charge (1.4) do not. This is a desired property,
as we do not expect any gravitational flux or gravitational
charge in Minkowski’s spacetime. Of course, the York’s
flux (1.6) also vanishes on nonexpanding horizons.
Furthermore, we will study in detail this flux and identify
the cases for which it is positive or null. In particular, on a
null hypersurface N with topology B ×R that is future
complete, we prove that the variation of the York charges
associated to future pointing Weyl supertranslations on the
cross sections of N are always positive if the null energy
conditions hold. In addition, we prove that the York
dynamical entropy always increases during a spherically
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symmetric collapse up to the formation of a black hole
(1.7), in which case the value of the charge on the stationary
horizon is A

4
. In particular, the York entropy (1.7) of the

black hole horizon does not increase and remains null as
long as matter has not crossed the event horizon. The
dynamical geometric parameter θn evolves from D − 2 on
the initial Minkowski light cone to θn ¼ 0 on the late
stationary horizon. Hence, we argue that the formation of a
spherically symmetric black hole might be understood as a
phase transition between two stationary states, with order
parameter given by the expansion. The stationary black
hole is the phase of high symmetry, and the symmetry
group preserving the pullback of the metric on the event
horizon is SOðD − 1Þ ⋉ RS

W ⋉ RS
T [45,66], while the flat

light cone is the low symmetry phase for which symmetry
group SOðD − 1Þ ⋉ RS

W ⋉ RS
T is broken and all the super-

translations are eliminated.
We also analyze master equation (1.1) for the York

boundary conditions at first order in perturbation around
a nonexpanding horizon. Unlike the Dirichlet case, the
charge variation between two cross sections of constant v is
not entirely given by the matter term at first order. Indeed,
there is an additional term taking into account the York flux
(1.6) at first order. On a portion of the horizon without
matter, near equilibrium, we can write at first order

THΔSY ¼ Fξ ¼ QY ¼ ΔUY
grav ð1:8Þ

whereUY
grav ¼ 1

4
kBTH

D−3
D−2A andQY is theheat flux.This law

is analogous to a first law of thermodynamics (in vacuum),
where the nonvanishinggravitational flux (1.6) contributes to
increase a local quantity UY

grav that can be interpreted of an
internal energy associated to the gravitational degrees of
freedom on the dynamical event horizon.
Except in some rare occasions where we will restore the

fundamental constants, we will assume in the rest of the
manuscript that G ¼ c ¼ ℏ ¼ kB ¼ 1.

II. SECOND LAW FROM NOETHER
CHARGE ANALYSIS

A. The Noether current

In this section, we derive local balance laws of surface
charges for general field theories in the presence of back-
ground fields. We obtain general conservation equations
and relations analogous to Bianchi identities in gauge
theories. Most of these results and methods are well known,
but the emphasis is put on the presence of general back-
ground fields. The main point of this section is the
interpretation of these balance equations focusing on the
role played by the surface charge and the different pieces
contributing to its variation. We first need to study the
different symmetries of a theory with Lagrangian L and the
structure of the resulting Noether current. Let us assume
that our theory describes some dynamical fields ϕ that

are part of our configuration space propagating next to
fixed background fields χ on a manifold M1 with local
volume form ϵM. The Lagrangian Lðϕ; χÞ describing our
theory is written only in terms of these fields, and is an
analytic function of them and their derivatives. By varying
the action we obtain the well-known identity

δL ¼ δL
δϕ

δϕþ dΘ ð2:1Þ

where Θ is some presymplectic potential. From now, to
simplify the writing, we will refer to Θ as a symplectic
potential rather than a presymplectic potential. Further-
more, if we contract (2.1) with some diffeomorphism ξ
we get

Z
M

dðiξL − IξΘÞ ¼
Z
M

δL
δϕ

· £ξϕþ ∂L
∂χ

· £ξχ ð2:2Þ

where Iξ is the field space interior product associated to the
configuration space vector Xξ, defined by

Xξ ¼
Z
M

dDx£ξϕ
δ

δϕ
ð2:3Þ

If all the fields in (2.2) are dynamical fields, such that there
is no field χ, all the diffeomorphisms are symmetries of our
theory, as δξL ¼ £ξL ¼ diξL is a boundary term. However,
it can happen that the total Lagrangian L of all the physical
fields involved is unknown, or that the equations of motion
of some fields are too complicated to solve, such that we
prefer not to use their equations of motions and fixing χ
a priori. The example on which we will mainly focus in the
following is the case where the background field χ is the
metric g. In any case, we have to add the contribution of
the diffeomorphism acting on these background fields to
the field space Lie derivative δξ in order to get the usual
spacetime Lie derivative. Therefore, we get: δξL ¼ £ξL −
∂L
∂χ £ξχ that is not a boundary term anymore in general,2 so
not all the diffeomorphisms are symmetries of our theory.3

The term ∂L
∂χ · £ξχ is called an anomaly, and it can prevent

1We can consider several fields ϕi and χj, and from now on,
the sum over all the different fields in the following equations will
be implicit, we will not mention the indices i and j anymore.

2In fact, if the anomaly is a boundary term, i.e., if ΔξL ¼ daξ
for all ξ, then δξL is a boundary term and aξ should be included in
the definition of the Noether current if we want it to be conserved
[66,68]. It appears if the source of anomaly is the background
structure that we introduce to define the boundary.

3Here we should underline that we used the partial derivative
and not the functional derivative. In other words, each back-
ground field χ and its covariant derivatives are treated as
independent field and so the implicit sum on the tensor fields
takes into account the successive covariant derivatives of each
background χ.
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some diffeomorphisms ξ from being a symmetry. We
can define the anomaly operator acting on tensors as Δξ ¼
δξ − £ξ [50]. However, we can still have ∂L

∂χ · £ξχ ¼ 0 if
£ξχ ¼ 0, i.e., if a subclass of diffeomorphisms leaves the
environment χ invariant. In the case where χ is the back-
ground metric, the diffeomorphisms satisfying such a
condition are the Killing fields. These diffeomorphisms
preserving the background structure are symmetries of our
theory, and then the Noether current

jξ ¼ IξΘ − iξL ð2:4Þ

is conserved on-shell (2.2). From this Noether current, we
now review the general analysis leading to Bianchi iden-
tities and balance laws, but we take great care of the terms
containing the information about the background structure.
In general, the Lie derivative of any tensor field can be
expressed as a sum of terms proportional to ξ and to first
derivatives of ξ. Hence, for general tensor fields ϕ and χ
we have4

£ξϕ ¼ ½ϕ� ·∇ξþ∇ϕ · ξ

£ξχ ¼ ½χ� ·∇ξþ∇χ · ξ ð2:5Þ

where ½ϕ� and ½χ� are coefficients in front of the ∇ξ terms
(basically, they are sums of ϕ and χ where each term is
contracted with ∇ξ through different indices, as explained
in the footnote 4). Then, we can integrate by part the terms
½ϕ� ·∇ξ and ½χ� ·∇ξ and get a sum of a boundary term and a
term linear in ξ. Thus we can write (2.2) as

Z
M

dðiξL − IξΘ − iKξ
ϵMÞ

¼
Z
M

ϵM

�
−∇ ·

�
δL
δϕ

· ½ϕ� þ ∂L
∂χ

· ½χ�
�

þ δL
δϕ

·∇ϕþ ∂L
∂χ

·∇χ

�
· ξ ð2:6Þ

where the Lagrangian density L is defined through L ¼
LϵM and the vector Kξ is given by

Kξ ¼
δL
δϕ

· ½ϕ� · ξþ ∂L
∂χ

· ½χ� · ξ ð2:7Þ

The left-hand side of (2.6) is a boundary term while the
right hand side is a bulk term. We can vary arbitrarily ξ in
the bulk while keeping it constant on the boundary ∂M.
Therefore, the only way for the equality to hold is to make
both integrands of (2.6) vanish. Hence we obtain the two
following relations

0 ¼ −∇ ·
�
δL
δϕ

· ½ϕ� þ ∂L
∂χ

· ½χ�
�
þ δL

δϕ
·∇ϕþ ∂L

∂χ
·∇χ

jξ ¼ IξΘ − iξL ¼ −
�
δL
δϕ

· ½ϕ� · ξþ ∂L
∂χ

· ½χ� · ξ
�
· ϵM þ dqξ

¼ −Kξ · ϵM þ dqξ: ð2:8Þ

The first equality is similar to the relation between the
equations of motions that we get in Noether’s second
theorem, so we will refer to it as a Bianchi identity. One
illustrative example of this Bianchi identity (2.8) in the
presence of background fields is to take the metric for χ, as
we should do for any Lagrangian describing the dynamic of
some matter field ϕ without taking into account the back
reaction of the metric. In this case, the first equation of (2.8)
simply tells us that the stress energy tensor is conserved
on shell. From a theorem due to Wald [69], the relation
dðiξL− IξΘ− iKξ

ϵMÞ ¼ 0 implies that iξL− IξΘ− iKξ
ϵM ¼

dqξ with qξ being constructed from the fields ϕ and χ and
their derivatives, and justifies the second relation of (2.8).
This second identity is similar to some expressions for
currents obtained in [4,5], where here the dynamical and
background fields are supposed to be very general. From
(2.8), we read that the current is not a boundary term either
if the equations of motion are not satisfied or if there are
some background fields in the description of our theory.
In both cases, it means that there exist some degrees of
freedom which were not taken into account in the descrip-
tion of our system, either because we missed a piece in the
Lagrangian or because some fields in the Lagrangian we
used were not dynamical.
We can now use this Noether current jξ to write balance

laws for Noether charges associated with ξ with or without
the presence of background fields χ. First, we look at
theories where some fields χ are present, but then ξmust be
a symmetry of the background, i.e., £ξχ ¼ 0. Thus, we get
from (2.2)

djξ ¼ −
δL
δϕ

£ξϕ ð2:9Þ

Then, we integrate (2.9) over a manifold M whose
boundary is composed of the initial and final spacelike
slices Σ1 and Σ2 and a timelike or null boundaryN joining
the spacelike slices. Thus, we have

ΔQξ ¼ QΣ2

ξ −QΣ1

ξ ¼
Z
N
jξ þ

Z
M

δL
δϕ

£ξϕ ð2:10Þ

4These notations are informal, but keeping all the indices at the
right place would make it harder to follow. More precisely,
if ϕ ¼ ϕμ1μ2���μn is a n-covariant tensor, its Lie derivative
£ξϕμ1μ2���μn ¼ξα∇αϕμ1μ2���μnþϕαμ2���μn∇μ1ξ

αþϕμ1α���μn∇μ2ξ
αþ���¼

ξα∇αϕμ1μ2���μnþ
Pα¼μn

α¼μ1ϕμ1���ν���μn∇αξ
ν, and so the Lie derivative is

a finite sum of terms proportional to ξμ and ∇νξ
μ. It is

straightforward to verify it is also true for a generic p-covariant
and q-contravariant tensor, and can be written as £ξϕ ¼ ½ϕ� ·
∇ξþ ∇ϕ · ξwhere the fields ½ϕ� are the set of coefficients in front
of the ∇μξ

ν terms.
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where we defined

QΣi
ξ ¼ −

Z
Σi

jξ ð2:11Þ

as the Noether charge evaluated on the spacelike surface Σi,
i ¼ 1; 2. If the system is closed, which means that the
pullback of the Noether current jξ on N vanishes, then the
charge QΣ is conserved on-shell. Furthermore, if ξ is
tangent to N , (2.10) can be written as

ΔQξ ¼ QΣ2

ξ −QΣ1

ξ ¼
Z
N
IξΘþ

Z
M

δL
δϕ

£ξϕ ð2:12Þ

In any case, we see that (2.10) and (2.12) have both the
same structure as the standard balance formula

ΔA ¼ Aex þ Ac ð2:13Þ

with A being the charge QΣi
ξ , the integral on N of the

Noether current jξ is the flux of the charge Qξ through
the boundaries of the system, that we denote Aex, and the
integral on M of δL

δϕ £ξϕ is the creation term Ac. The last
term arises because the equation of motion are not satisfied
everywhere in M, i.e., the fields ϕ are coupled to other
fields that were not present in the initial Lagrangian. The
fact that the equations of motion are not satisfied implies
that the action from which we started is not stationary, and
we can therefore consider the term δL

δϕ £ξϕ as an out-of-
equilibrium term. On-shell, this out-of-equilibrium term
vanishes and the charge variation

ΔQξ ¼
Z
Σ2

∂L
∂χ

· ½χ� · ξ − dqξ −
Z
Σ1

∂L
∂χ

· ½χ� · ξ − dqξ

¼
Z
N
IξΘ ð2:14Þ

is simply given by the flux of the Noether current on the
boundary N . Furthermore, if there were no background
structure χ, as in a diffeomorphism invariant theory like
general relativity, the charge would be given only by a
boundary term, as expected. A simple example for a theory
in the presence of a background structure is given by the
balance law of electromagnetic energy. The dynamical field
is the potential Aμ while the background field is the metric
gμν. In this case, the charge is the electromagnetic energy e,
whose variation is given by the flux of the Pointing vector
across the boundary N of normal n and a creation term
indicating the energy transfer from the charge current Ji to
the electric field Ei, appearing because we did not take into
account the charged matter degrees of freedom when we
worked out the Noether current from the Lagrangian of the
free electromagnetic field. A detailed calculation is pre-
sented in Appendix A. The result is the well-known balance
equation for electromagnetic energy

Δe ¼ −
Z
N
πiniϵN þ

Z
M

JiEiϵM ð2:15Þ

Here the variation of electromagnetic energy A is the sum
of a boundary flux Aex given by the integral of the Poynting
vector on the boundary N and a creation term indicating
the energy transfer from the charges to the field, necessary
in order to take into account the matter degrees of freedom
interacting with the electromagnetic field through the
electric charge current J⃗.
For a diffeomorphism invariant theory like general

relativity, (2.9) holds for any diffeomorphism ξ because
there is no background structure in the bulk Lagrangian.
The only contribution of the background fields comes
from the nonequilibrium condition δL

δϕ ≠ 0, reflecting that
we missed the description of some fields in our initial
Lagrangian. In that case, (2.12) reduces to a balance law on
the boundary N , because the Noether charge is now a
boundary term and so the integrals on the spacelike
surfaces Σi reduce to an integral on the corners. We can
call Si the intersection between the spacelike slice Σi and
the null or timelike boundary N . For a diffeomorphism
invariant theory, the metric is part of the dynamical fields ϕ.
The nonequilibrium term δL

δϕ £ξϕ can be expressed as a
boundary term on N thanks to the general Bianchi
identities (2.8), giving

δL
δϕ

£ξϕ ¼ d

��
δL
δϕ

· ½ϕ� · ξ
�
· ϵM

�
ð2:16Þ

Here and in the remaining of the paper, we will restrict
ourselves to ϕ ¼ g, and so the only dynamical field is the
metric. Therefore, the nonequilibrium term δL

δϕ £ξϕ is
expressed as a flux of stress energy across the boundary.
Then the balance equation (2.12) reduces to the pullback of
(2.8) on an hypersurface N of normal n, on which ξ is
tangent.5 The charge variation is then given by

Z
S2

qξ −
Z
S1

qξ ¼
Z
N
dqξ ¼

Z
N
IξΘ − ϵNKξ · n

¼
Z
N
IξΘþ

Z
N
Tμνξ

μnνϵN ð2:17Þ

where ϵN is a volume form on the hypersurface of normal
n, defined through the relation ϵM ¼ −n ∧ ϵN . One of the
most interesting case is to take a null boundary N . If ξ is a
future pointing infinitesimal diffeomorphism tangent toN 6

5Here we chose to define ϵN as ϵM ¼ −n ∧ ϵN because we
will work with null hypersurfaces in the following, and we will
associate to the normal n an auxiliary null vector l such that
n · l ¼ −1. If the hypersurface were timelike or spacelike, we
would have chosen instead ϵM ¼ n ∧ ϵN .

6And so ξ must also be null.
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and if the null energy conditions are satisfied, then the
creation term Ac ¼ Tμνξ

νnνϵN is positive.7 Therefore, the
Eqs. (2.12) or (2.17) look exactly like an entropy balance
equation

ΔS ¼ Se þ Sc ð2:18Þ

with Sc ≥ 0. The similarity between the balance law for a
Noether charge associated to a null future pointing diffeo-
morphism and the usual entropy balance law makes it a
natural candidate for entropy in classical gravitational
theories, provided that the null energy conditions are
satisfied. On the particular case of a Killing horizon, it
has been well known that the gravitational Noether charge
associated to the future pointing Killing field on the horizon
is the entropy of a stationary black hole [4,17].

B. Improved Noether charge and choice
of polarization

We remind in this short subsection some results about
the Noether charge [70] and its symplectic flux for a
diffeomorphism invariant theory. These Noether charges
are obtained from the Lagrangian L and symplectic
potential Θ of our theory. However, it is well known
[1,8,12,13,15,16,18,70] that the Noether charges are as
ambiguous as the Lagrangian L and the symplectic
potential Θ are. First, if we start from a Lagrangian L,
the symplectic potential defined through (2.1) is ambiguous
to the addition of an exact form Θ → Θ − dϑ. Second, it is
always possible to shift this Lagrangian by an exact form in
spacetime L → Lþ dl. This process does not change the
equations of motion either, but shifts the symplectic
potential by an exact form in field space Θ → Θþ δl. If
the Lagrangian L is covariant, i.e., ΔξL ¼ 0 for any
diffeomorphism ξ (and it will be the class of Lagrangian
we are considering in the following), we can choose a
symplectic potential Θ0 to get (2.8) evaluated on-shell

dq0ξ ¼ IξΘ0 − iξL ð2:19Þ

The charge density q0ξ
8 is also ambiguous up to the addition

of an exact form q0ξ → q0ξ þ dYξ but this ambiguity is
irrelevant for the charge obtained from the integral of q0ξ

on codimension two compact cross sections. Hence, in
general, these ambiguities allow us to shift the symplectic
potential Θ0 by

Θ ¼ Θ0 þ δl − dϑ ð2:20Þ

and the charge density obtained from (2.19) and (2.20) is

qξ ¼ q0ξ þ iξl − Iξϑ ð2:21Þ

This is the improved Noether charge formula. The exist-
ence of an ambiguity in the definition of the charge is
related to the ambiguity in the polarization of our phase
space. Indeed, different choices of boundary Lagrangians l
and corner terms ϑ select different configuration and
momentum fields in the phase space. We would like to
put the symplectic potential in the form Θ ¼ PδQ, where P
and Q can be expressed in terms of the dynamical fields ϕ
and the background structure. There is not symplectic flux
if the boundary conditions are imposed, i.e., if δQ ¼ 0 for
some chosen phase space polarization. In this case, the
system is closed, and if the symplectic potential Θ ¼ PδQ
is covariant,9 then the charge dqξ is a Hamiltonian as

−Iξω ¼ δdqξ ð2:22Þ

on-shell where ω ¼ δΘ is the symplectic two form obtained
from the potential Θ. In general, however, we have that

−Iξω ¼ dðδqξ − iξΘÞ ð2:23Þ

that can be obtained from (2.4) by taking the field space
variation of10 and the Noether charge qξ is not Hamiltonian.
If ξ is tangent to the boundary N , then we can take the

pullback of (2.4) on N and get dqξ¼NPδξQ. If Q is
covariant, then the flux of the charge is just given by

dqξ ¼ P£ξQ ð2:24Þ

and should vanish for some stationary solution. By sta-
tionary solution, we mean a spacetime solution that does
not carry any radiation, like a stationary black hole
spacetime or flat spacetime. This criterion can help us to
choose one polarization over another. The formula (2.24)
indicates that the flux vanishes on the boundary either if
P ¼ 0 or £ξQ ¼ 0 for any diffeormorphism ξ preserving

7It may be interesting to notice that we can also take the
pullback of the Noether current on N if background fields χ are
present, in order to get a balance law for the corner term qξ. The
integral of the corner term qξ on a codimension two surface is not
the Noether charge anymore. However, this balance law is similar
to the one we get for diffeomorphism invariant theories (2.17)
with an additional term in Kξ coming from the presence of this
background field χ.

8Sometimes, we refer to the quantities qξ as the charge rather
than the charge density. Properly speaking, the charge should be
given by the integral of the charge density on a manifold.

9It means that the difference between the phase space Lie
derivative and the spacetime Lie derivative vanishes, namely
ðδξ − £ξÞΘ ¼ 0. In the following, we will restrict ourselves to
symplectic potentials satisfying this property.

10In this paper, we always assume that δξ ¼ 0. For general-
izations that take into account field dependent diffeomorphisms
and anomalies, see [68].
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the background structure of the boundary N . In the
following, we are facing these two cases.

III. DYNAMICAL ENTROPIES

A. Geometry of null hypersurfaces

1. Definition of the geometric quantities

Before getting to the heart of the matter, we should review
some basics about the geometry of null hypersurfaces.11 Let
us consider some pseudo Riemannian manifoldM equipped
with a volume form ϵM. Consider also a null “boundary”N
of M, and choose a future directed null normal n of N .
Then we can define a volume form ϵN on N through the
relation

ϵM ¼ −n ∧ ϵN ð3:1Þ

We define an auxiliary null vector l such that

lμnμ ¼N −1 ð3:2Þ

and the minus sign comes from the fact that we want the
vector l, as the vector n, to be future directed.12 We can
complete the basis ðn; lÞ by spacelike vectors eA tangent to
N , and in addition, we can choose them so that they are
orthonormal. On N , we can define a codimension two form
from n and ϵN

ϵS ¼ inϵN ð3:3Þ
or equivalently

ϵN ¼ −l ∧ ϵS ð3:4Þ

and we define the expansion θn associated to the normal n on
N as

dϵS ¼ θnϵN ð3:5Þ

The projector on the tangent subspace SpanðeAÞA∈ð1;…;D−2Þ
orthogonal to n and l is

γμν ¼ gμν þ nμlν þ nνlμ ð3:6Þ

from which we define the physical quantities on N which
encapsulate the intrinsic and extrinsic geometry of N .
One of the most important object to achieve this is the
Weingarten map

Wν
μ ¼ ∇μ

←
nν ð3:7Þ

from which all the following relevant quantities can be
derived

γαμγ
β
ν∇μnν ¼ ðσnÞμν þ

1

D − 2
θnγμν

kn ¼ −lμnν∇νnμ

ημ ¼ γρμlσ∇ρnσ ð3:8Þ

where ðσnÞμν is the traceless shear13 associated to the normal
n, kn the unaffinity of n and ημ is the twist.

2. Topology

In the following, we will be interested in null hyper-
surfaces (or portion of null hypersurfaces) with topology
B ×R, where B is some compact base space14 (that in most
applications will be the D − 2 sphere SD−2) as in [45].
Basically, it means that the null hypersurface is foliated by a
geodesic congruence such that the geodesics do not cross.15

By making such a choice, we avoid caustics, and the null
geodesics cross any spacelike cross section ofN only once.
Hence, the mathematical objects presented in the section
above describing the intrinsic and extrinsic geometry are
well behaved. However, at some point in this paper we will
also study null hypersurfaces where the geodesics cross
at one point (but has topology B ×R otherwise). Each
geodesic can be equipped by an affine parameter v (there
are many choices of affine parameter), such that the null
vector n tangent to the geodesics is

n ¼ f
d
dv

ð3:9Þ

with f ≥ 0 in order to be future directed. If we can extend
the affine parameter v for each geodesic to infinity in both
directions, then the geodesic congruence of the null hyper-
surface is said to be complete. We notice that this condition
do not depend on our particular choice of affine parameter.
If we can extend the affine parameter only to future (past)

11See for instance [55] for more details about the geometry on
null hypersurfaces.

12More precisely, from (3.1) and (3.2), we can define
ϵN ¼ ilϵM

←
. Indeed, taking the pullback on N is necessary in

order to define in a unique way ϵN , and because of that the
definition of ϵN through (3.1) is ambiguous.

13From the first equation of (3.8), we can deduce that the
expansion θ is also given by θ ¼ γμν∇μnν. To see the relation with
the definition (3.5), compute on one hand £nϵM ¼ ∇μnμϵM and
on the other hand £νϵM ¼ −£nn ∧ ϵN − n ∧ £νϵN ¼ ωnϵMþ
θϵM − n ∧ indϵn, because £νϵN ¼ðdinþ indÞϵN ¼ θϵN þ indϵN
and ωn is defined as £νn ¼ ωnn. Furthermore, n ∧ indϵN ¼ 0
vanishes because inn ¼ 0. Hence we understand that θ ¼
∇μnμ − ωn. But ∇μnμ ¼ gμν∇μnν and we can compute that
ωn ¼ −2nðμlνÞ∇μnν, hence we conclude that we also have θ ¼
γμν∇μnν from (3.6).

14The compactness is needed in order to get finite charges on
the spacelike cross sections.

15This is why the supertranslations are general symmetries of
these hypersurfaces, as we will see in the following.
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infinity, then we say that it is future (past) complete.16 We
can study portion of hypersurfaces of topology B ×R, but
in this case the geodesic congruence will not be complete.

3. Coordinate choice

We can then describe any generic metric in the neigh-
borhood of our null hypersurfaceN located at u ¼ 0 using
a judicious coordinate system. Even if only covariant
quantities are meant to be physical, it is sometimes
insightful to work in a well adapted gauge to gain some
physical insight. There are many suitable gauge choices,
but we would like that the affine parameter v be part of the
coordinates. We can choose the Newman-Unti gauge as
in [54], because this gauge is conserved by the set of
diffeomorphisms preserving the background structure that
we will introduction in Sec. III B, see Appendix B for
further details. If the geodesic congruence of null hyper-
surfaceN is complete, we can extend the value of the affine
parameter in both directions to infinity, and so the neigh-
borhood of the whole hypersurface N can be described by
the chart ðu; v; xAÞ, and on the null hypersurfaceN located
at u ¼ 0 with the coordinates ðv; xAÞ, where the xA are
the coordinates describing the spacelike cross sections at
constant v. Therefore, a generic metric in some small
neighborhood of N can be written in the Newman-Unti
gauge as17

gμνdxμdxν ¼ −u2Fdv2 − 2dudvþ 2uPAdxAdv

þ gABdxAdxB ð3:10Þ

where F, PA and gAB are DðD−1Þ
2

functions of v and xA.18 So,
the normal vector tangent to the null geodesics is nμ ¼ f∂μv
and we can define an auxiliary vector lμ ¼ 1

f ∂
μ
u and a

coordinate basis ∂

∂xA tangent to the constant v cross sections
of N . On N , located at u ¼ 0, the D-dimensional metric
(3.10) becomes

gμνdxμdxνju¼0 ¼ −2dudvþ gABdxAdxB ð3:11Þ

Hence, on N , we have nμ ¼ −f∂μu and lμ ¼ − 1
f ∂μv. We

should notice that the fact that gvv ¼ Oðu2Þ in (3.10)
implies lμ∂μn2 ¼ 0 on N , and so we have the simpler
expression for the unaffinity kn (3.8)

kn ¼ nμ∂μ ln f ð3:12Þ

and so we can check that the coordinate v is affine as the
unaffinity of the normal nμ ¼ ∂

μ
v vanishes.

B. Local entropy balance law for Dirichlet flux

1. Boundary structure and Dirichlet flux and charges

From now on, and except at the end of this section where
we will come back to the more general D-dimensional
case, we will assume D ¼ 4. If we vary the Einstein-
Hilbert action on a manifold M with a null boundary
N [52,71,72], we get in addition to the equations of motion
the exterior derivative of the bare Einstein-Hilbert19 sym-
plectic potential integrated on the null boundary N 20

Z
N
Θ
←
EH ¼ 1

16π

Z
N

�
σμνn −

1

2
ð2kþ θnÞγμν

�
δγμνϵN

þ 2ðημ − θnlμÞδnμϵN þ 2δððkn þ θnÞϵN Þ

þ
Z
∂N

ϑEH ð3:13Þ

where

ϑEH ¼ −
1

16π
ðiδnμϵN þ ϵμN νρδnμÞ ð3:14Þ

The Noether charge associated to the Einstein-Hilbert
sympelctic potential (3.13) is the well-known Komar
charge

ðqEHξ Þμν ¼ −
1

16π
ϵMμνρσ∇ρξσ ð3:15Þ

The master equation (1.1) allows us to relate the variation of
the Komar charge for diffeomorphisms ξ tangent to N to
the Einstein-Hilbert flux (3.13) contracted with the field
space vector Xξ. In other words, we have

Tμ
νξνϵMμ þ dqEHξ ¼ IξθEH − iξLEH ð3:16Þ

However, there are many terms involved in (3.13), and not
all of them have an independent physical relevance. Ideally,
we want to equip the null hypersurface N with some
boundary structure that allows us to identify the physical
degrees of freedom. The boundary structure of a null
hypersurface [45] is given by the equivalence class of16For instance, we will study further the outgoing light cone,

which is only future complete, i.e., we can extend the null
geodesics to future infinity but not to past infinity because of the
light cone’s tip.

17We see in (3.10) that gvv ¼ Oðu2Þ. This is needed because v
is an affine parameter. Indeed, a short calculation shows that
∂

∂v
ν∇ν

∂

∂v
μ ¼ Γμ

vv ¼ 0 only if ∂ugvv ¼ 0 at N .
18As the constraints have not been imposed yet, these DðD−1Þ

2
functions are not independent of each other.

19It is the usual boundary term nαgμνð∇μgνα −∇αδgμνÞ that we
get from varying gμν.

20We can notice that the easiest way to get the symplectic
potential on a null hypersurface is to compute first the symplectic
potential for tetrad gravity rather than metric gravity, as it is done
in [52]. However, we should keep in mind that the two symplectic
potentials (metric and tetrad) differ by an exact 3-form [73,74].
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the triplet ðnμ; nμ; knÞ, such that ðnμ; nμ; kÞ and ðn0μ; n0μ; kn0 Þ
belong to the same equivalence class if and only if there
exists some function A such that

n0μ ¼ Anμ

n0μ ¼ Anμ

kn0 ¼ Akn þ nμ∂μA ð3:17Þ

Hence, as the equivalence class ½nμ; nμ; k� describes the
boundary structure of any null hypersurface of topology
B ×R, it is universal and should not give us any informa-
tion on the physics on the boundary. Hence, for consis-
tency, we have to restrict ourselves to the variations
in phase space such that this boundary structure is pre-
served, i.e., to

δnμ ¼ 0

δnμ ¼ 0

δkn ¼ 0: ð3:18Þ

However, the quantities defined in (3.18) are one forms in
field space, so they act on vectors in field space. Hence,
we have to restrict ourselves to vectors Xξ in field space
such that their contraction on the field space forms (3.18)
vanishes. The diffeomorphisms ξ tangent to the null
hypersurface N from which the field space vector Xξ is
built are the ones preserving the universal structure of the
null hypersurface, as explained in [45] and in Appendix B

ξ¼ðTðxBÞþvWðxBÞÞ∂v−uWðxBÞ∂uþYAðxBÞ∂A ð3:19Þ

where the components TðxBÞ, WðxBÞ and YAðxBÞ are
respectively the affine supertranslations, the Weyl super-
translations, and the superrotations. Furthermore, we kept
the term −uWðxBÞ∂u in the expression of the vector field,
even if it vanishes on the null hypersurface N , so it is
not relevant for the restriction of ξ on N . It is because
the conditions (3.18) also fix this extension through the
equations lμδξnμ ¼ 0 and lμδξnμ ¼ 0.
The vectors fields (3.19) are all tangent to the null

hypersurface N and so preserve its location. However, if
the null hypersurface N has a boundary ∂N , then we must
restrict the group of infinitesimal diffeomorphisms pre-
serving the boundary ∂N , i.e., schematically £ξ∂N ¼ 0.
For instance, if ∂N ¼ S is some corner with topology B
that crosses each null generator one, then we should restrict
ourselves to the vector ξ that preserve S. As S crosses every
generator once, we can locate it at v ¼ 0. So the group of
diffeomorphisms preserving ∂N and the boundary struc-
ture (3.18) is then

ξ ¼ WðxBÞðv∂v − u∂uÞ þ YAðxBÞ∂A ð3:20Þ

which is (3.19) without the affine supertranslations T∂v,
which move obviously the location of the corner.
The vector fields spanned by (3.19) form a closed algebra.

The group obtained from the algebra of vectors (B15) is

DiffðSÞ ⋉ RS
W ⋉ RS

T: ð3:21Þ

It is called the BMSWalgebra at null infinity [66], extending
the famous BMS group of symmetry [75]. This procedure
is not the original way of recovering this algebra. Instead,
here we emphasized on the infinitesimal diffeomorphisms
preserving the restrictions (3.18), which gives us a more
physical symplectic potential by killing some gauge redun-
dancy. Indeed, if we impose (3.18), we see that the Einstein-
Hilbert bare potential (3.13) becomes

ΘEH ¼ 1

16π

�
σμνn −

1

2
θnγ

μν

�
δγμνϵN þ 2δðθnϵN Þ: ð3:22Þ

The expression of (3.22) depends on the shear, the
expansion and the volume form. We got rid of the
unaffinity, the normal and the auxiliary vector. In addition,
from (3.5), we notice that the second term of (3.22) is not
only a boundary term in field space, but also in spacetime.
Hence, we can obtain another symplectic potential ΘD

thanks to (2.20), by taking l ¼ −2θnϵN
21

ΘD¼Θ
←
EH−dδ

ϵS
8π

¼ 1

16π

�
σμνn −

1

2
θnγ

μν

�
δγμνϵN : ð3:23Þ

The symplectic form obtained from (3.23) is the same as the
one obtained from (3.22), we have ω ¼ δΘEH ¼ δΘD. We
observe that the shear is conjugated to the conformal metric
while the expansion is conjugated to the null volume form.
Both shear and expansion characterize the intrinsic and
extrinsic geometry of N , and the conformal metric is the
data required by Sachs [76]22 on the whole hypersurfaceN
for the initial value problem from a pair of two intersecting
null hypersurfaces. Furthermore, this symplectic potential
is covariant and vanishes for arbitrary variation δγμν around
a shear free and expansion free null hypersurface, taken
as a class of stationary solutions [54]. Hence, as claimed
in [45], it is the unique symplectic potential obtained from
the Wald-Zoupas procedure [6].23 The charge associated to
ξ pullback on the cross section S of constant parameter v is
given by the formula (2.21) and is equal to

21The index “D” is a reference for Dirichlet, because the flux is
in a Dirichlet form [55].

22The expansion is also needed at the intersection of both
null hypersurfaces.

23See [68] for a modern review about the Wald-Zoupas
procedure.

ANTOINE RIGNON-BRET PHYS. REV. D 108, 044069 (2023)

044069-10



QD
ξ ðSÞ ¼

1

8π

Z
S

�
W −

1

2
PAYA − θ∂vðT þ vWÞ

�
ϵS ð3:24Þ

which is the improved Noether charge [57] associated
to the new symplectic potential (3.23). This is also the
Wald-Zoupas charge. On a nonexpanding horizon, σμνn ¼ 0

and θn ¼ 0 so ΘD ¼ 0 for arbitrary variations, and the
charges are conserved.

2. Local balance equation and entropy

Now we come back to the master equation (1.1). As γμν
is anomaly free, the symplectic potential (3.23) contracted
with a diffeomorphism of the symmetry group (3.19) is
of the form P£ξQ, where Q and P are canonical pairs.
Therefore it can be understood as a gravitational flux,
vanishing if the momenta P vanish or if the configuration
space dynamical fields Q remain unchanged when trans-
ported along ξ. Then we have, on a portion ΔN of N
between two cross sections S1 and S2 of N

ΔQD
ξ ¼

Z
ΔN

IξΘD þ
Z
ΔN

Tμνξ
μnνϵΔN

¼ 1

16π

Z
ΔN

�
σμνn −

1

2
θnγ

μν

�
£ξγμνϵN

þ
Z
N
Tμνξ

μnνϵN : ð3:25Þ

Now, we consider only the subgroup of diffeomorphisms ξ
tangent to the null geodesics, i.e., the supertranslations.
We can see (3.24) that the charge associated to the affine
supertranslations vanishes on a nonexpanding horizon.
Furthermore, we know that the horizon null Killing field
is a Weyl supertranslation and not an affine supertransla-
tion, so we focus on Weyl supertranslations for now. If the
null energy conditions are imposed, the creation term in the
master equation becomes positive and the QD

ξ variation is
similar to a balance law for entropy, because the contri-
bution of the matter degrees of freedom to the gravitational
charge variation is always positive. In thermodynamics,
entropy is defined at equilibrium and perturbatively near
equilibrium. In general, when we have noninfinitesimal
gravitational flux and entropy creation terms, the charge
QD

ξ gives us a dynamical and local notion of entropy. We
should recover the usual notion of entropy on the stationary
solutions, which are the nonexpanding horizons. On the
nonexpanding horizon, thermodynamic equilibrium is
achieved and the charges do not vary. However, the analysis
of the perturbative nonexpanding horizon gives dynamical
correction to the entropy at first order.
Let us assume that the unperturbed black hole is a

stationary Kerr-Newman black hole with mass M, angular
momentum J, electric charge Q, and area A. We can
slightly perturb this stationary solution by introducing

some (possibly charged) matter fields ϕ, with correspond-
ing stress energy tensor Tμν such that

ϕ ¼ OðϵÞ
Tμν ¼ Oðϵ2Þ ð3:26Þ

where ϵ is a small quantity, where the meaning of “small”
will be defined in the following. The background Killing

vector is ξ ¼N κv∂v ¼ κvn on the dynamical horizon N ,
where κ is chosen to be the black hole surface gravity.24 It is
a Weyl supertranslation being part of the symmetry group
(3.19) preserving the boundary structure with parameter
W ¼ κ. Therefore, ξ is null on the dynamical horizon and is
exactly Killing when the black hole settles down to a
stationary state, i.e., in the far future. Thus, (3.26) com-
bined with the Einstein equations tells us that

σμνn ¼ Oðϵ2Þ
θn ¼ Oðϵ2Þ

£ξγμν ¼ Oðϵ2Þ ð3:27Þ

implying

IξΘD ¼ Oðϵ4Þ ð3:28Þ

and so the parameter ϵmust be sufficiently small so that the
metric perturbations of second order are negligible with
respect to the first order metric perturbations of the Killing
background. Now, from (3.24), (3.25), and (3.28)

κ

8π
Δ
�
A − v

dA
dv

�
¼

Z
N
Tμνξ

μnνϵN þOðϵ4Þ ¼ Sc ≥ 0

ð3:29Þ

which is equivalent to (see [26] for details)

κ

8π
Δ
�
A − v

dA
dv

�
¼ ΔM − ΩHΔJ −ΦHΔQ ð3:30Þ

and so the dynamical entropy is given by

SD ¼ 1

4

�
A − v

dA
dv

�
ð3:31Þ

This is a particular case of the dynamical entropy intro-
duced in [67] for general theory of gravity. It reduces to the
usual Bekenstein Hawking entropy in the stationary case.
It might seem surprising at first to not recover the usual
physical process first law (PPFL)

24With this choice, it is well known that we can decompose the
Killing field ξ at infinity into a timelike Killing vector field
normalized to −1 and a spacelike Killing vector field which
generates closed orbits of length 2π.
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κ

8π
ΔA ¼ ΔM −ΩHΔJ −ΦHΔQ ð3:32Þ

but we should remember that we had to integrate between
the bifurcation surface located at v ¼ 0 and v ¼ þ∞ to
find (3.32) [19,25,26]. Here, we integrated between two
arbitrary slices of constant v, so these terms remain. Hence,
we can locally define an entropy variation in a physical
process without talking about the bifurcation surface or the
equilibrium state. In this process, the entropy creation term
is of order Oðϵ2Þ and the flux is of order Oðϵ4Þ, so the
thermodynamic transformation is meant to be adiabatic.
Furthermore, if there is no matter crossing the dynamical

event horizon on the portion ΔN , the Raychaudhuri
equation gives us that ∂vθ∂v ¼ −θ2

∂v
− σ∂v;μνσ

μν
∂v
, so θ∂v ¼

Oðϵ4Þ and in this case

THΔSD ¼ κ

8π

Z
ΔN

σn;μνσ
μν
n ϵN þ oðϵ4Þ ¼ QD ≥ 0 ð3:33Þ

is a local entropy variation. Thus the entropy variation
around a nonexpanding horizon is positive up to second
order. If there is no matter on ΔN , the only piece
contributing to the entropy variation is the heat current
which is a second order term. This term can be interpreted
as the energy flux of the weak gravitational waves crossing
a perturbed nonexpanding horizon [54]. Hence, the energy
carried by weak gravitational waves is the heat flux
contributing to the entropy variation.
The presence of a Killing field which has a timelike

Killing component normalized to −1 at infinity establishes
a well-defined notion of temperature seen by a fay away
observer, the Hawking temperature. However, if we are not
close to equilibrium, there is no well-defined intrinsic
notion of temperature on the null hypersurface N . Even
for a black hole at equilibrium, the Hawking temperature
makes sense for a far away observer, but an observer
accelerating near the black hole horizon observes a differ-
ent temperature. Indeed, in order to derive the physical
process first law (PPFL) from (3.25), we chose to take ξ as a
Weyl supertranslation with parameter WðxAÞ ¼ κ on the
null horizon, where κ is the surface gravity of the back-
ground black hole. Nevertheless, when the portion ΔN
of the null hypersurface N we are interested in is not a
(perturbed) stationary event horizon, there is no canonical
choice of κ. As it is well known, κ is chosen as the surface
gravity of the stationary black hole because ξ is meant
to be identified with is the Killing field generating the null
horizon with timelike part normalized to −1 at infinity.
However, any Weyl supertranslation ξ ¼ Wðv∂v − u∂uÞ
still preserves the boundary structure (3.19). Even if the
temperature on the null hypersurface is not defined because
of the absence of a global Killing vector in general, we can
however identify in sufficiently small regions observers of
local constant acceleration W moving along the lines of

tangent vector ξ, close to N . This result is true for large
enough local acceleration W, see Appendix C. These
observers measure a local Unruh temperature, and so there
exists an analogy between Weyl supertranslation diffeo-
morphisms and monothermal thermodynamic transforma-
tions.25 In this case, the temperature is a property of the
field ξ and the trajectory of (approximate) constant accel-
eration we choose, and not a property the gravitational
system. Indeed, the local balance law (3.25) is independent
of the parameter W, and we always can normalize ξ such
that W ¼ 1.

C. Charge variation on a perturbed Killing horizon

Hawking, Perry, and Strominger argued that information
can be stored in a holographic manner on the black hole
event horizon due to shifts of the null generators caused by
ingoing particles crossing the surface [77–79]. The super-
translations preserve the background structure of any null
hypersurface with topology B ×R because the null geo-
desics are independent of each other, they never cross.26

Hence, any local disturbance of a bunch of geodesics
cannot affect the other geodesics. If we use the general flux
balance law (3.25) between two cross sections on a
perturbed black hole horizon, we get at first order

ΔQD
ξ ¼

Z
ΔN

Tμνξ
μnνϵN þOðϵ4Þ ð3:34Þ

for any ξ belonging to the BMSWalgebra. As ξ is a general
Weyl supertranslation, we can use the arbitrariness of the
parameter WðxAÞ to write balance laws at fixed angular
direction xA. Hence, the variation of the charges QWv∂v
depend directly on the details of the stress energy falling
into the black hole, and so the charges store some
information about the collapsed matter which formed the
black hole. On the stationary event horizon, on any cross
section S, the charge is given by

QWv∂v ¼
Z
S
WðxAÞϵS ð3:35Þ

and so the local area element ϵS is the observable where the
information about the local density of stress energy which

25Reminder: Monothermal does not mean isothermal. It means
that the environment is at constant temperature during the
thermodynamic transformation, but the system is not. Indeed,
when the system is not in internal equilibrium, its temperature is
generally not well defined. Here we associate the Weyl super-
translation transformation to monothermal thermodynamic trans-
formations because the local observer sees locally a surrounding
thermal bath of temperature κ

2π but the system itself has not a well-
defined temperature in general.

26On a general black hole event horizon, the generators can
never leave the horizon and never cross too. However, they can
enter the horizon at points called caustics.
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fell into the black hole is stored. A similar analysis can be
held for the superrotations.

D. Local entropy balance law for York flux

1. Legendre transformation

Before getting to the heart of the matter, it is worth
spending some time on well-known notions in order to
understand better what we are doing in the following. In
thermodynamics, the second law, or the entropy balance
law, can generally be written as

dS ¼ Q
Text

þ Sc

¼ dEþ PextdV − � � �
Text

þ Sc ð3:36Þ

with Sc ≥ 0 and where we used the first law dE ¼ W þQ
to go from the first to the second line. In general we could
have added any kind of external work W. For instance, if
we are for instance in a system with total electric charge Q
and external electrostatic potential Φext, or with a number
Ni of particles of type i with external chemical potential
μext;i, we can write

W ¼ −PextdV þΦextdQþ
X
i

μext;idNi: ð3:37Þ

However, keeping only W ¼ −PextdV in the above for-
mulas is enough to illustrate our purpose. Under these
circumstances, the flux term vanishes if we set dE ¼
dV ¼ 0, and then we get dS ¼ Sc ≥ 0. Therefore, for
systems with constant energy and constant volume (micro-
canonical ensemble), S is identified as the thermodynamic
potential, because its variation is always positive and
vanishes only at equilibrium, so it gives an indication
about the spontaneous evolution of the system.
However, if we proceed to a Legendre transformation

and set now F ¼ E − TextS,
27 we obtain from (3.36)

−
dF
Text

¼ SdText þ PextdV
Text

þ Sc: ð3:38Þ

Here the flux term vanishes when dText ¼ dV ¼ 0, and
therefore −dF ≥ 0 when the external temperature and the
volume of the system are fixed during the physical process
(canonical ensemble). In that case, F is the appropriate
thermodynamic potential. The point here is that the good
thermodynamic potential depends on the physically moti-
vated form of the flux. Similarly to (3.36) and (3.38), the
master equation (1.1) relates the charge variation to some

flux and a positive term if the null energy conditions are
imposed. From a given bulk Lagrangian, Θ is defined up to
exact terms in spacetime and field space [18].
In the previous section, we used a symplectic potential

written in a Dirichlet form (3.25), as in [45], and worked
with the corresponding improved Noether charges. How-
ever, even if (3.31) allows us to recover the usual PPFL
locally, it cannot give a satisfactory global notion of
entropy far from equilibrium. Indeed, for a Schwarzschild
black hole formed after a spherical collapse for instance,
the event horizon is initially a light cone in Minkowski
spacetime bent by the gravitational effects of the collapsing
matter (see Fig. 1). However, initially, when spacetime is
still flat, the entropy (3.31) is negative and decreases as we
can check by using (3.25). Even if the entropy can decrease
for open physical systems, it seems unnatural for it to vary
on the Minkowski’s light cone. Indeed, it is embedded in
flat spacetime and we do not expect that the gravitational
charges evaluated on its cross sections vary because the
cancellation of the Weyl tensor means that the gravity
degrees of freedom are not excited. If we understand
entropy as a gravitational charge, we may expect that it
vanishes on any cross section of the light cone embedded
in flat spacetime. We will define such an entropy, with
vanishing flux on the Minkowsk’s light cone and on
nonexpanding horizon. In other words, we want these
two portions of N to be stationary, in the sense that all the
gravitational charges associated to the diffeomorphisms
preserving the boundary structure of a general null hyper-
surface do not vary. Furthermore, this new entropy vanishes
on Minkowski light cone and gives the usual Bekenstein-
Hawking entropy on a nonexpanding horizon.28 It increases
on a spherically symmetric cross sections of any spherically
symmetric outgoing null hypersurface, and so in particular
for the event horizon formed through a spherically sym-
metric collapse.

2. York flux and charges

In order to do so, we start from the analysis presented
in [55]. In this paper, alternative boundary condition on the
null hypersurfaces are presented. One possible symplectic
potential was the Dirichlet like symplectic potential (3.25)
that can also be written as

ΘD ¼ 1

16π
ðσμνn δγμνϵN − θnδϵN Þ ð3:39Þ

using the useful identity

δϵN ¼ 1

2
γμνδγμν þ lμδnμ ð3:40Þ

27Here, F is not exactly the free energy, as in general Text ≠ T.
In fact it is not a state function as Text is not the temperature of the
system which may not be well defined.

28Minkowski spacetime and stationary black hole spacetimes
both possess a Killing field that is timelike Killing field when it
approaches N . They are stationary in that sense.
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and imposing δnμ ¼ 0 in order to preserve the boundary
structure. Then we can integrate by part (3.39) −θnδϵN to
ϵN δθn. Hence we have now the symplectic potential

ΘY ¼ 1

16π
ðσμνn δγμνϵN þ ϵN δθnÞ ¼ Θ

←
EH − dδ

ϵS
16π

¼ ΘD þ dδ
ϵS
16π

ð3:41Þ

that we can name the York symplectic potential, as the
phase space variables are the conformal metric γ̂μν and
the expansion θn.

29 These are the Sach’s free data [76].30

The main point of Sach’s analysis is precisely that, on null
hypersurfaces, we know exactly what are the physical
degrees of freedom, and what is gauge. Hence expressing
symplectic potential with canonical variables ðγ̂μν; θnÞ is
quite natural. Furthermore, (3.41) contracted with one of
the general diffeomorphisms (3.19) preserving the boun-
dary structure gives

IξΘY ¼ 1

16π
ðσμνn £ξγμνϵN þ ϵN £ξθn þ ϵNΔξθnÞ ð3:42Þ

and the associated improved Noether charge (integrated
on S) can be deduced from (2.21) is

QY
ξ ðSÞ ¼

1

8π

Z
S

�
W −

1

2
PAYA −

1

2
θ∂vðT þ vWÞ

�
ϵS ð3:43Þ

If we look at (3.42), we notice that it is not in the form
P£ξQ unlike (3.39). Indeed, while γμν is anomaly free, it
is not the case for θn, and the term Δξθn does not vanish
in general. This is because θn is not class III invariant31

in the sense of Chandrasekhar [80], as θAn ¼ Aθn, see
Appendix D for more details. The anomaly depends on the
chosen representative n. Hence, to get rid of this anomaly
term in the computations32 we choose a preferred normal,
giving nonanomalous contributions to the flux

nμ ¼ v

�
∂

∂v

�
μ

ð3:44Þ

and which gives us kn ¼ 1. It is shown in Appendix D that
the subgroup of diffeomorphisms (3.19) which are non-
anomalous is given by the following vectors

ξ ¼ WðxBÞðv∂v − u∂uÞ þ YAðxBÞ∂A ð3:45Þ

which have a closed algebra. The Lie group associated to
this algebra is

DiffðSÞ ⋉ RS
W ð3:46Þ

The subalgebra spanned by the vectors (3.45) is exactly the
subalgebra (3.20) that preserves the location of some corner
S of N that cross any null generator once, and so it is the
symmetry group of diffeomorphsims preserving the loca-
tion of N , of its boundary N and the boundary structure
[45,81]. In particular, they preserve the boundary of the
ingoing and outgoing light cones. Therefore, with this
restricted choice of diffeomorphisms, the flux (3.42) and
the improved Noether charge (3.43) become respectively

IξΘY ¼ 1

16π
ðσμνn £ξγμνϵN þ ϵN £ξθnÞ ð3:47Þ

and

QY
ξ ðSÞ ¼

1

8π

Z
S

�
W

�
1 −

θv∂v
2

�
−
1

2
PAYA

�
ϵS: ð3:48Þ

Hence we get a new flux written in the form P£ξQ, and new
charges [55]. This flux and this charge are similar to the
one introduced in [50], but we restricted ourselves to the
covariant phase space introduced in [45] and get charges
linear in the parameters WðxBÞ and YAðxBÞ. The physical
motivations to introduce them are also quite different.
However, it is worth emphasizing that the symplectic
potential (3.41) does not satisfy the Wald-Zoupas require-
ments. If it is indeed covariant with respect to the diffeo-
morphisms (3.45), it does not satisfy the Wald-Zoupas
stationary solution requirement, i.e., there is no so-called
stationary solution ϕ ¼ ðγ̂μν; θnÞ such that ΘYðϕ; δϕÞ
vanishes for arbitrary variations δϕ [6,68]. However, in
order to build a vanishing Noether flux on Minkowski light
cone, we have to go beyond the Wald-Zoupas procedure
and accept as a suitable flux IξΘY which vanishes for any
allowed symmetry of the boundary structure ξ, the diffeo-
morphisms (3.45). Within this definition of a stationary
solution, the symplectic flux and the associated charges
both vanish on Minkowski’s light cone. Indeed, on
Minkowski’s light cone σμνn ¼ 0. Furthermore, the outgoing
null light cone is defined as a null hypersurface u ¼ 0, and
the affine parameter v goes from v ¼ 0 (the light cone tip)

29The shear is tracefree, so σμνδγμν ¼ σμνδγ̂μν.30For the initial value problem of two null hypersurfaces
intersecting at some corner, we need to know the conformal
metric on the null hypersurfaces and the expansions of both null
hypersurfaces at the corner, in addition to the bracket between the
normal n and the auxiliary vector l at the corner. As here we are
interested in only one of the two null hypersurfaces, the relevant
data are γ̂μν on N and θn at the corner. The Raychaudhuri
equation gives θn everywhere on N from the value of θn at the
corner and the shear σμν that can itself be obtained by taking the
tracefree Lie derivative of the conformal metric.

31Remember that a class III invariant quantity is a physical
quantity that is invariant through a rescaling of the normal l and
the auxiliary vector n preserving the relation nμlμ ¼ −1, i.e.,
invariant through ðn; lÞ → ðAn; A−1lÞ.

32The formula for the flux is class III invariant though.
However, in general we cannot write it with Lie derivatives only.
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at r ¼ 0 to v ¼ þ∞. Thus, for the Minkowski light cone,
we have r ¼ v for any value of the affine parameter v.
Hence, on sections of constant v (or constant r)

θn ¼ vθ∂v ¼
v
δA

dδA
dv

¼ r
δA

dδA
dr

¼ D − 2 ð3:49Þ

and so θn ¼ 2 in D ¼ 4 dimensions. Therefore, on the
outgoing Minkowiski light cone for which PA ¼ 0

33 and
θn ¼ 2, we get from (3.47) that IξΘY ¼ 0 and from (3.48)
QY

ξ ðSÞ ¼ 0 for any ξ that belongs to the symmetry group of
the boundary structure (3.45). Hence, we have a vanishing
flux and vanishing charges on Minkowski light cone,
as desired.34 We also notice that the flux (3.47) vanishes
on nonexpanding horizons, because σn ¼ 0 and θn ¼ 0
everywhere.
In addition, we can introduce the symplectic form ω ¼

δΘEH ¼ δΘD ¼ δΘY and get

−Iξω ¼N dðδQY
ξ − iξΘYÞ ð3:50Þ

on-shell. So the charge QY
ξ is Hamiltonian if ΘY ¼ 0 or if ξ

is tangent to some corner and we integrate and take the
pullback (the former can be achieved if the boundary
conditions δγ̂μν ¼ δθn ¼ 0 are satisfied). Let ΔN be a
portion of the null hypersurface N delimited by the
compact cross sections S1 and S2. Let choose a second
vector field χ belonging to the algebra (3.45). On a
nonexpanding horizon or on Minkowski light cone,
IχΘY ¼ 0 and so we have that

fQY
χ ; QY

ξ g ¼
Z
ΔN

−IχIξω ¼
Z
S2−S1

δχQY
ξ ¼ −

Z
S2−S1

δξQY
χ

ð3:51Þ

and so the charge Qχ generates the symmetry transforma-
tion Xχ in phase space.

3. General properties of the flux and positive
flux theorems

With the new flux (3.47) and the new charges (3.48), the
master equation (1.1) becomes

ΔQY
ξ ¼

Z
ΔN

IξΘY þ
Z
ΔN

Tμνξ
μnνϵN

¼ 1

16π

Z
ΔN

σμνn £ξγμνϵN þ ϵN £ξθn þ
Z
ΔN

Tμνξ
μnνϵN

ð3:52Þ

If ξ is a Weyl supertranslation, ξμ ¼ WðxAÞnμ and the
Raychaudhuri equation £ξθn ¼ WðxAÞv∂vθn ¼ WðxAÞ×
ðθn − 1

2
θ2n − σ2n − RμνnμnνÞ combined with the Einstein

equations transforms (3.52) into

ΔQY
Wn ¼

1

8π

Z
ΔN

WϵN

�
σ2n
2
þ θn
θn0

−
�
θn
θn0

�
2
�

þ 1

2

Z
ΔN

WTμνnμnνϵN ð3:53Þ

where θn0 ¼ 2 is the value of expansion on the outgoing
Minkowski’s light cone, considered as the reference (sta-
tionary) solution. The right-hand side (rhs) of (3.53) is
positive as long as the null energy conditions are satisfied,
WðxAÞ > 0 and θn0 ≥ θn ≥ 0. This last condition is a very
nontrivial one, in the sense that it is not a priori physically
relevant. Indeed, the value on θn depends on the extrinsic
geometric properties of the considered null hypersurface.
For a generic null hypersurface embedded in flat spacetime,
it can take any value. Furthermore, the condition θn ≤ 0
does not seem to be physically relevant either35 However,
there are still some cases where the latter condition is
relevant.
First, we can restrict ourselves to positive expansion null

hypersurfaces, satisfying θn ≥ 0 everywhere. By doing so,
we can avoid caustics, which necessarily form at some
parameter v > v0 if θn is negative at v0. Second, we should
notice that if θnðv0Þ ≤ 2, then for any v > v0 > 0,
θnðvÞ ≤ 2 if the null energy conditions are satisfied (for
fixed angular coordinates xA). Indeed, if it is not true, there
exists a parameter vP > v0 such that θnðvPÞ > 2. But the
Raychaudhuri equation is

v∂vθn ¼ θn −
θ2n
2
− σ2n − Tμνnμnν ð3:54Þ

33In fact, the angular momentum aspect is equal to the
normalized twist ηA ¼ −γνμ∂

ρ
u∇ν∂ρu on the null hypersurface,

in fact ηA ¼ − 1
2
PA. The word normalized is added here because

the twist is not a class III invariant quantity as we can easily
check, see [55] for more details.

34There are other notions of entropy that have been introduced
on the Minkowski light cone in order to simulate analogies with
black hole thermodynamics. In particular, in [82,83], the entropy
is given by the conformal area at first order, and a similar
procedure to the one occurring here is done in order to remove the
order 0 expansion of the Minkowski’s future light cone. However,
the entropy proposed in these paper is obtained using the
assumption that the first order expansion vanishes at infinite
affine parameter v on the hypersurface, so it does not equal our
(3.61). Furthermore, the associated temperature is not associated
to a boost Killing field but to the radial special conformal field.

35Except when the cross section is a marginally trapped
surface, in that case we also need no have θl ≤ 0. We know
however that in general such a condition implies, through the
Raychaudhuri equation, that the expansion diverges for a finite
affine parameter, and so we cannot extend the affine parameter
ton infinity. Hence the chosen geodesic congruence is not future
complete.
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and so if θn ≥ 2 and if the null energy conditions are
satisfied, ∂vθn is negative (as v > v0 > 0). It means that
θnðv ≤ vPÞ > 2, and so θnðv0Þ > θnðvPÞ > 2, and we get a
contradiction. Of course, if θnðv0Þ < 0, then θnðv>v0Þ<0

for the same reasons. Hence, if for any xA, θnðxA; v ¼ þ∞Þ
exists and if there exists v0 such that θðxA; v0Þ ≤ 2, then
0 ≤ θnðxA; ½v0;þ∞½Þ ≤ 2. Therefore, the charge QY

n is
positive and increases on ½v0;þ∞½. Of course, as we
already mentioned, we had to restrict ourselves to (portion)
of null hypersurfaces N which have topology B ×R. In
particular, these hypersurfaces should not allow some
generators to enter or leave N , as it is the case on general
event horizons where generators can enter N at caustics.
However, the boundary of the null hypersurfaces that
we consider may contain caustics, as the outgoing light
cone’s tip.
As a consequence, an arbitrary null hypersurfaceN with

topology B × R which is future complete has the following
property. Take any spacelike compact cross section S of N
which intersects all the null generators exactly once, look at
the vector fields belonging to the symmetry group of N
which preserves the location of the corner S. Among them,
there are the Weyl supertranslation vector fields which
vanishes on S, i.e.,

ξW jS ¼ 0 ð3:55Þ

For the following, we normalize W to W ¼ 1 and so the
Weyl supertranslation vector field ξW is the normal n ¼ v∂v
onN .36 As ξ ¼ n ¼ v∂v, the corner S is located at the value
v ¼ 0 of the affine parameter v. Then, for any compact
spacelike cross sections S1 and S2 of N in the future of S,
such that S2 is in the future of S1 (which can be noted
S2≽S1≽S), we have that

ΔQY
n ¼ QY

n;S2
−QY

n;S1
≥ 0 ð3:56Þ

Indeed, from (3.53), QY
n increases if the null energy

conditions are satisfied as long as θn0 ¼ 2 ≥ θn ≥ 0. But
as N is future complete, we necessarily have that θn ≥ 0,
because if it was not true, then from the Raychaudhuri
equation, θn would become infinite at a finite value of an
affine parameter v, and there would be a formation of a
caustic. If null generators cross, the topology of N is not
B ×R so this is a contradiction. Hence θn ≥ 0. Further-
more, we have that θnjS ¼ 0. Indeed, we chose to define the
coordinate system such that the corner S is located at v ¼ 0.
Hence, θ∂v does not diverge at v ¼ 0, because no caustics
form on S,37 and so θv∂vð0; xAÞ ¼ θnð0; xAÞ ¼ 0. It implies
that 0 ≤ θnðv > 0; xAÞ ≤ 2 by the theorem discussed

before. Thus θn ≤ 2 at any point on N in the future of
S. This proves (3.56). The charge associated to the normal n
on a cross section S0 of constant affine parameter v > 0 is
then given by (3.48)

QY
n jS0 ¼

1

8π

Z
S0

�
1 −

1

2
θn

�
ϵS ¼

1

8π

�
A −

v
2

dA
dv

�
: ð3:57Þ

In addition, as θnjS ¼ 0, we have

QY
n jS ¼

1

8π
AjS ð3:58Þ

and so on any cross section S0 in the future of S, QY
n;S0 ≥

1
8π AjS ≥ 0 and the dynamical entropy associated with the
vector field ξ ¼ n is positive. This result can be generalized
to any dimensions.

4. Perturbation on Killing horizons

On a slightly perturbed stationary black hole event
horizon, θn is arbitrary small and positive, because
θnðv ¼ þ∞Þ ¼ 0. Thus, of course, the right hand side

of (3.53) is positive and we take ξ¼N κv∂v as the back-
ground Killing field, with κ being the surface gravity of
the stationary black hole. At first order in perturbation,38

we get from (3.52)39

THΔSY ¼ Δ
�
κA
16π

θ̄n

�
þ ΔM −ΩHΔJ − ϕHΔQþOðϵ4Þ

ð3:60Þ

where θ̄n ¼ v
A
dA
dv

40 and on cross sections of constant affine
parameter v the York entropy is given by

36However, the following theorem works for any ξ ¼ WðxAÞn
with W > 0. In other words, ξ must be future pointing in the
future of S.

37Of course, this is not the case for the light cone.

38Remember that according to our conventions, a linear
perturbation of the metric is of order ϵ2.

39We have to work out the ϵN θn term

1

16π

Z
ΔN

ϵN £ξθn ¼
1

16π

Z
ΔN

dvd2xA

v
ffiffiffi
γ

p
κv∂vθn

¼ 1

16π

Z
ΔN

dvd2xAκ∂vð
ffiffiffi
γ

p
θnÞ

−
1

16π

Z
ΔN

κϵN θ2n

¼ Δ
�
κAθ̄n
16π

�
þOðϵ4Þ ð3:59Þ

where the variation Δ is evaluated between two cross sections of
constant v.

40In general we have θn ¼ vffiffi
γ

p d
ffiffi
γ

p
dv ≠ v

A
dA
dv ¼ θ̄n. θn is local on

the cross section while θ̄n is not. However, the equality holds in
the spherically symmetric case.
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SY ¼ A
4

�
1 −

θ̄n
2

�
¼ 1

4

�
A −

v
2

dA
dv

�
: ð3:61Þ

It is worth emphasizing again that this entropy clearly
vanishes on Minkowski’s light cone and equals the
Bekenstein-Hawking entropy on a nonexpanding horizon.

How can we interpret the additional term ΔðκA
8π

θ̄n
θ̄n0
Þ in the

PPFL ? It is important to remember that this is a physical
process first law which is different from the equilibrium
state version, as explained in the introduction. In thermo-
dynamics, the law dE ¼ −PdV þ TdS relates two nearby
stationary solutions in phase space. This is strictly speaking
an identity, relating state variables defined at equilibrium.
Here, we study a physical process, and we are not at
equilibrium on any slice of constant v. This is why the
entropy needs not to be the Bekenstein-Hawking entropy,
but includes dynamical corrections. In that sense, it makes
much more sense to write the balance law dS ¼ Q

Text
þ Sc

than the identity dS ¼ dM
T − ΩH

dJ
T − ϕH

dQ
T on an arbitrary

portion of N . Furthermore, while the Dirichlet flux
vanishes at first order, it is not the case of the York flux,
giving a nonvanishing gravitational flux. We expect in
general a gravitational flux, even near equilibrium, because
the geometry varies along the dynamical event horizon N .
The Legendre transformation of the Dirichlet symplectic
potential (3.41) enables us to construct some flux (the York
flux) which takes into account the change of geometry on a
portion of the null horizon where no matter crosses it.
However it does not mean that we cannot make sense of

the entropy balance law for York potential for a perturbed
nonexpanding horizon. First we have to notice that in
vacuum, just before or after matter felt into the black hole,
Tμνξ

μnνϵN ¼ THSc ¼ 0, and we get from (3.52) the
linearized entropy balance equation (1.2)

THΔSY ¼ QY ¼ κ

16π
Δ
�
v
dA
dv

�
þOðϵ4Þ

¼ TH

8
ΔAþOðϵ4Þ ð3:62Þ

where we used the linearization at first order in vacuum of
(3.53), and where QY is the “heat flux” appearing in (1.2),
equal to the pullback of the Noether York current jYξ ¼
IξΘY − iξLY on the null horizon. It is worth noticing that
since the perturbation Tμν is of order ϵ2,

41 and since ξ is a
background Killing vector, then jYξ is closed at order ϵ2

from (2.2). Hence, from (3.62) we may be tempted to

associate an internal energy UY to the gravitational degrees
of freedom such that its variation is ΔUY ¼ QY ¼ TH

8
ΔA.

To understand better the property of the gravitational
flux and the application of the second law of thermody-
namics onN , we generalize the previous analysis and write
the balance law in the D dimensional spacetime.42 In that
case, (3.52) becomes

ΔQY
ξ ¼ 1

16π

Z
ΔN

σμνn £ξγμνϵN þ 2
D − 3

D − 2
ϵN £ξθn

þ
Z
ΔN

Tμνξ
μnνϵN ð3:63Þ

and the charge is

QY
ξ ¼ 1

8π

Z
S
W

�
1 −

θv∂v
D − 2

�
ϵS −

1

2
PAYAϵS ð3:64Þ

If we restrict ourselves now to the null diffeomorphisms
ξμ ¼ Wnμ, (3.63) becomes

ΔQY
Wn ¼

1

8π

Z
ΔN

WϵN

�
ðD − 3Þ

�
θn
θn0

−
�
θn
θn0

�
2
�

þ
�
1 −

D − 3

D − 2

�
σ2n

�
þ
�
1 −

D − 3

D − 2

�

×
Z
ΔN

WTμνnμnνϵN ð3:65Þ

with now θn0 ¼ D − 2. The multiplicative factor D − 3 in
front of the flux was expected because we know that we
should not get any pure gravitational flux for 3-dimensional
gravity,43 as the Weyl tensor vanishes.44 The analysis of the
balance law on the 3-dimensional light cone is held in
Appendix E. We can also notice that as in the four
dimensional case, the charge variation is positive as long
as the null energy conditions are satisfied, we choose
W > 0 and assume 0 ≤ θn ≤ θn0. Now, from (3.65), we can
get the first law for linearized perturbations around a
stationary horizon. We can choose WðxAÞ ¼ κ to be the
surface gravity of the background stationary black hole in
order to identify ξ with the background Killing vector such
that at infinity its timelike Killing component is normalized
to −1. Thus, we recover the Hawking temperature TH in
our formulas if we introduce the quantum of action ℏ. As
we just did, let us specialize now to (local) vacuum, with

41For the charged case the total stress energy tensor Tμν is not
of order ϵ2, so we have to add the Yang-Mills Lagrangian to the
Einstein-Hilbert one and compute the total Noether current,
which exterior derivative also vanishes at order ϵ4, as it is
done in [26].

42In general D dimensions, Sach’s analysis of the free data on
null hypersurfaces does not hold. We do not know what can be
identified as gauge andwhat can identified as gravitational degrees
of freedom in Bondi’s frame.

43Also there is no shear in D ¼ 3.
44The number of gravitational degrees of freedom at each point

in classical D dimensional gravity is just DðDþ1Þ
2

− 2D ¼ DðD−3Þ
2

.
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Tμν ¼ 0 on a portion of the horizon. Hence, at first order
(3.65) becomes

THΔSY ¼ ΔUY þOðϵ4Þ ð3:66Þ

with SY being the dynamical entropy

SY ¼ kB
4Gℏ

�
A −

v
D − 2

dA
dv

�
ð3:67Þ

and

UY ¼ 1

2
kBTH

D − 3

D − 2

A
2Gℏ

¼ UY
A∂A

ð3:68Þ

is analogous to an internal energy associated to the
gravitational degrees of freedom, where N ¼ D−3

D−2
A

2Gℏ the
number of independent gravitational degrees of freedom
on a slice of constant v if we assume equipartition (that is
highly nontrivial, mainly because we are studying charge
variations between nonequilibrium states).45 This internal
energy is similar to the one of a perfect gas with N
independent degrees of freedom. However, we should
point out that we could also have identified the internal
energy as46

UY ¼ 1

2
kBTH

D − 3

D − 2

A
2Gℏ

d lnA
d ln v

¼ UY
v ∂

∂v
ð3:69Þ

that is (3.68) multiplied by the factor d lnA
d ln v. This factor can

be interpreted as a kind of redshift. Indeed, the time
generator v ∂

∂v ¼ ∂

∂ ln v associated to the labeling of the slices
of N by the normal n ¼ v∂v is different from a more
intrinsic “time” generator A ∂

∂A ¼ ∂

∂ lnA associated to the
evolution of the geometry. As we know that the area of
cross sections A increases on the event horizon, the vector
A∂A can potentially be thought as a time generator.
Furthermore, near equilibrium, the dynamical physical
configuration variable that we can identify from the York
symplectic potential is the bare expansion θ̄n. We can study
the variations of this dynamical quantity in order to identify
an intrinsic time ¼ scale. We check that

dθ̄n
d lnA

¼ A
d
dA

�
v
A
dA
dv

�
¼ 1 −

v
A
dA
dv

− v
d2A
dv2

dA
dv

¼ 1þOðϵ2Þ

ð3:70Þ

where we used the Raychaudhuri equation in vacuum in
order to obtain the last equality. So lnA is the natural
timescale associated to the dynamical event horizon near
equilibrium (in the portions where there is no infalling
matter). Thus, in vacuum, the two internal energies (3.68)
and (3.69) are associated to two different “time generators”
∂

∂ lnA and ∂

∂ ln v and related to each other through

UY
A∂A

¼ d ln v
d lnA

UY
v∂v

ð3:71Þ

but (3.68) is the internal energy constructed from the most
physically relevant time generator on the near stationary
event horizon.

5. Spherical symmetry and phase transition

Let us consider an arbitrary point O in spacetime and the
bunch of light rays emanating from this point. Locally,
spacetime is flat and so the bunch of outgoing light rays is a
smooth submanifold which looks exactly like the outgoing
light cone in Minkowski spacetime. As long as the top-
ology of the bunch of light rays (if we remove O) is
SD−2 ×R,47 we can use the analysis of the previous
sections to define a local symmetry group and compute
charges and fluxes. The Weyl supertranslation charge
variation is given by (3.65)

ΔQY
Wn ¼

1

8π

Z
ΔN

WϵN

�
ðD− 3Þ

�
θn
θn0

−
�
θn
θn0

�
2
�

þ 1

D− 2
σ2n

�
þ 1

D− 2

Z
ΔN

WTμνnμnνϵN ð3:72Þ

which is positive as long as the null energy conditions are
satisfied, W > 0 and θn0 ¼ D − 2 ≥ θn ≥ 0. Furthermore,
the Raychaudhuri equation

v∂vθn ¼ θn −
1

D − 2
θ2n − Tμνnμnμ − σ2n ð3:73Þ

tells us that if θnðv0; xAÞ ¼ D − 2, then θnðv > v0; xAÞ ≤
D − 2, exactly as in the four-dimensional case studied in
section III D 3. Hence, the analysis of this subsection
extends well to the general D dimensional case.
However, if we pick some point O in spacetime and look
at the outgoing light ray emanating from this point, the
expansion of this null congruence is θnðv; xAÞ ¼
θnð0; xAÞ ¼ D − 2 at least in a small neighborhood around
O. Therefore, we have that θnðv > 0; xAÞ ≤ D − 2.
Let us assume now that spacetime is spherically sym-

metric about O. The null hypersurface spanned by the light
rays emanating from O is smooth and its topology is

45Furthermore, equipartition only states that U ¼ αNkBT with
α can take a large range of values. However, only if the
Hamiltonian is quadratic in the configuration variable q, which
basically means that it is an harmonic oscillator, we have α ¼ 1

2
.

46Indeed, remember that in vacuum at first orderΔA ¼ Δðv dA
dvÞ

so there are several ways to remove the deltas.

47This is not true in general for sufficiently large value of the
affine parameter of the null geodesics.
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SD−2 ×R. If the geodesic congruence is future complete,
then the expansion θn is positive, and so the flux (3.72) is
positive and the charge QY

n increases. If a black hole forms,
then θn ultimately reaches 0 at infinity. If it is not the case,
the expansion θn converges to D − 2 at when the affine
parameter v goes to infinity. Indeed, there must exist some
parameter v0 such that there is no matter or shear crossing
the light cone for v > v0. In that case, (3.73) reduces to

v∂vθn ¼ θn −
1

D − 2
θ2n ð3:74Þ

in the region v > v0. As 0 < θn ≤ D − 2, the rhs is
positive. If it is the case,at infinity, we can prove that
the charge QY

n becomes infinite if D > 3. This is because
the gravitational flux does not fall off rapidly enough.
On the contrary, on the event horizon, the flux (3.72)
vanishes near v ¼ 0 and vanishes also for v → þ∞.
Hence, the system evolves from the stationary state where
the dynamical entropy (3.61) is SY ¼ 0 to the stationary
black hole state where SY ¼ A

4
(see Fig. 1). In that case, the

parameter θn varies fromD − 2 to 0. For all the outgoing null
hypersurfaces located at u ¼ u0 < 0, θn starts from D − 2
around r ¼ 0, decreases when matter crosses u ¼ u0 (but
never reaches 0) before increasing again when matter stops
falling and finally converges to θn ¼ D − 2. In other words

D − 2 ¼ lim
u→0

lim
v→þ∞

θn ≠ lim
v→þ∞

lim
u→0

θn ¼ 0: ð3:75Þ

These observations lead us to the conclusion that on the
event horizon, the transition between the two equilibrium

states where the flux and vanishes and the charges are
constant is analogous to a phase transition with order
parameter θn. The phase of high symmetry is the stationary
black hole. Indeed, while spherical symmetry is conserved
during thewhole process, this is not the case of time reversal
symmetry, as in the “Minkowski’s light cone phase,” the area
of the cross sections increases with increasing parameter v48

while on the stationary black hole the area of the cross
sections does not. A naive way of understanding it is to
remember that the physical properties of the flat light cone
are not invariant if we shift v to vþ v0 for arbitrary v0, or v to
eαv for arbitrary α. However, the physical properties of the
stationary black hole are invariant with respect to such shifts.
In other words, the physical properties of the spherically

symmetric light cone are noninvariant through (super)
translations, while they are under rotations. Indeed, let
consider the D − 1 dimensional metric qab

49 which is the
pullback of gμν on the light cone. We know that the group

DiffðSD−2Þ ⋉ RS
W ð3:76Þ

preserves the universal structure of the outgoing light cone,
including the light cone boundary O. However, they do
not all preserve the induced metric qab on the light
cone. Infinitesimal diffeomorphisms achieving this prop-
erty satisfy

£ξqab ¼ 0: ð3:77Þ

The generators of the rotation group satisfy (3.77), as the
light cone is spherically symmetric. However, all the Weyl
supertranslations satisfy (3.77) if the expansion θn vanishes,
and so the transformations that leave physics invariant are
the rotation group SOðD − 1Þ on the Minkowski light cone
phase, where θn ¼ D − 2 while it is given by

SOðD − 1Þ ⋉ RS
W ð3:78Þ

on the stationary black hole phase, in which θn ¼ 0. At a
very late stage of the collapse, the black hole is similar to an
eternal black hole. Therefore, as the affine supertranslations
are local symmetries which preserve the background struc-
ture and satisfy (3.77), they can be included in the symmetry
group of the stationary event horizon. This is because the
condition (3.77) is a local condition, so the fact that the light
cone has a boundary in the past is irrelevant. Thus, at very
late time, the symmetry group of the stationary black hole is
enlarged by all the supertranslations, and so it becomes

FIG. 1. Spherical symmetric collapse up to the formation of a
black hole. In this case, the event horizon is a light cone “bent” by
spacetime curvature once some matter entered it (blue arrows on
the picture). This event horizon possesses only one caustic, at
point O. The entropy SY evolves from 0 on the Minkowski light
cone to A

4
once the black hole has reached its stationary state.

48If we change v into u, the expansion changes sign, so θn ¼
−1 as on the incoming light cone.

49Here, we keep the Latin indices for tensors defined on
codimension one manifolds, and the Greek indices for tensor
defined on the D dimensional spacetime. We note qab ¼ gμν

←
.
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SOðD − 1Þ ⋉ RS
W ⋉ RS

T: ð3:79Þ

All the supertranslations become part of the symmetry
group if the order parameter θn we identified above
vanishes. However, on the stationary black hole solu-
tion, the charges associated to the affine supertranslations
vanish, while the charges associated to the Weyl super-
translations do not. In addition, the latter also vanish on the
light cone solution.50 Hence, it suggests that the entropy
going from 0 on the flat light cone to A

4
on the stationary

black hole might be a consequence of the appearance of
new states labeled by the Weyl supertranslations charge
aspect in a hypothetical Hilbert space. This observation
relates to the seminal work of Hawking, Perry, and
Strominger on the role of supertranslations in order to
solve the information loss paradox [77–79]. On a non-
expanding horizon, these charges are given by

QY
Wn ¼

Z
S
WðxAÞϵS ð3:80Þ

and so the charge aspect is the local area element ϵS.
However, for a stationary spherically symmetric black hole,
we can decompose WðxAÞ into spherical harmonics. The
charge (3.80) should vanish for all of them except for
l ¼ m ¼ 0. Therefore there is no other charge than the
total area. Nonetheless, even if a black hole forms from
the spherical collapse of a gas cloud, the collapse is not
perfectly spherically symmetric at all scales. It can be
spherically symmetric on a macroscopic scale, such that
the event horizon looks like a spherically symmetric light
cone, but not on a microscopic level, because stress energy
cannot be distributed homogeneously over all the angular
directions.51 Therefore, the value of the charges (3.80) for
higher-order spherical harmonics on the stationary phase
can give information about the microscopic details of the
gas that collapsed and formed the black hole. The precise
relation between the charge variation and the stress energy
flow across the event horizon is given by (3.72).

IV. OUTLOOK

In this paper, we interpreted the master equation (1.1)
contracted with a future null pointing diffeomorphism ξ to a
dynamical balance law for entropy, i.e., a second law of
thermodynamics. We discussed two possible choices of
canonical flux and analyzed the properties of the associated

thermodynamic potentials, i.e., the dynamical entropies
(1.4) and (1.7). In this framework, the entropy creation term
is Tμνξ

μnνϵN , and is positive if the null energy conditions
are satisfied. It may open a discussion about the physical
significance of the stress energy tensor. The following
discussion is actually quite independent to the technical
results obtained in this paper, but it was one of the main
motivations to start this work, so it might be a good idea to
talk a bit about these physical motivations at this stage.
The stress energy tensor Tμν is often regarded as the

covariant tensor associated to the energy density of matter,
which is the source of the gravitational field and bends and
distorts spacetime. However, if we interpret the master
equation as a second law of thermodynamics, it might be
relevant to think about Tμν as a measure of entropy creation.
Indeed, in nonrelativistic physics, energy is a conserved
quantity associated with the time translation symmetry by
Noether theorem, but the total energy of an isolated system
can always be shifted without modification of the dynam-
ics. In classical nonrelativistic physics, it seems that in all
physical principles that involve the energy of a physical
system or subsystem, entropy maximization is always the
underlying fundamental principle. For instance, even if
the Boltzmann factor depend explicitly on the energy of the
subsystem, low energy states are favored because they
allow the reservoir to access a greater number of micro-
states. Similarly, in nonrelativistic quantum mechanics, the
shift of the Hamiltonian only shifts the states of the system
by an overall phase, with no incidence on the dynamics.
However, the situation changes drastically in special
relativity. Indeed, in this theory, space and time are merged
in a subtle way, and so are space translation and time
translation generators, i.e., the momentum and the energy.
As a consequence, energy becomes a measure of inertia
(see [84] for a very nice review about the equivalence
between inertia and energy). In general relativity, the
equivalence principle assures the equivalence between
gravitational mass and inertia, and so between gravitational
mass and energy. Hence energy is basically the source of
gravitation, and indeed, we cannot “shift” the stress energy
tensor by an “arbitrary constant” anymore, as we could do
in nonrelativistic physics, because it is directly related to
spacetime curvature.
Of course, the exact meaning of energy in general

relativity is intricate. As it has been reviewed in Sec. II,
it is well known that the local stress energy tensor of a
diffeomorphism invariant theory vanishes on-shell up to a
boundary term, as the Euler-Lagrange equations are pre-
cisely the functional derivative of the Lagrangian with
respect to the metric. Thereby, it is well known that the
ADM or Bondi masses and angular momenta are charges
defined through the introduction of an additional boundary
structure at infinity. If the spacetime solution admits
a Killing field, we can also defined conserved currents
which can be interpreted as energy at infinity. However, as

50As we assume spherical symmetry, we expect that all the
superrotation charges vanish during the whole process. In other
words PA ¼ 0 in the coordinate system we chose adapted to the
spherical symmetry. As there is no flux in the stationary phases,
the charges vanish on any cross section.

51For instance, if the gas is a perfect gas made of non-
interacting atoms, the stress energy is focused on the location
of the atoms and not between them. Of course, on a macroscopic
scale, the stress energy is homogeneous.
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stressed out and discussed in Sec. II, the term Tμνξ
μnνϵN

must be interpreted as the black hole entropy variation at
first order and not as the energy flux crossing the horizon.
Hence, if the interpretation of the balance law (1.1) as an

analog to a second law of thermodynamics is regarded as
physically relevant, the “source” of gravity is nothing more
that a dissipation term. Such an interpretation also implies
that the positive energy conditions, in particular the null
energy conditions, play a central role in order to understand
gravity. Indeed, even if there is no assumption a priori for
positive energy conditions in general relativity (or any other
theory of gravity), it is well known that many theorems fail
if they are not satisfied, in particular Hawking’s classical
area theorem [62] and Penrose’s singularity theorem [85].
The null energy conditions are satisfied for nonexotic
classical matter, and arguments have already been given
to understand it as a consequence of gravity [65]. However
it is also well known that these positive energy conditions
are violated for quantum matter [86], even if some physical
quantities remain bounded. For instance, the average null
energy condition on a null line remains true [87] and there
exist inequalities analogous to the null energy conditions
that are indeed satisfied at the quantum level [88].
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APPENDIX A: ELECTROMAGNETIC
BALANCE LAW

Here we derive a famous result, the energy conservation
formula for electromagnetism, using the tools presented in
Sec. II. We use the same notations as in Sec. II. Here, the
dynamical fields are the vector potential Aμ and the back-
ground field is gμν, such that δξAμ ¼ £ξAμ and δgμν ¼ 0.
However, ξ is a Killings field, i.e., £ξgμν ¼ 0. We start from
(2.10) that we can now write as

−djξ ¼
δL
δAμ

£ξAμ

¼ δL
δAμ

ðiξFÞμ þ
δL
δAμ

ðdiξAÞμ ðA1Þ

We can define n through its relation to a volume form on
the boundary ofM, such that we can write ϵM ¼ n ∧ ϵ∂M
and by integrating (A1) over M we get

−
Z
∂M

jξ ¼
Z
M

δL
δAμ

ðiξFÞμ þ
δL
δAμ

ðdiξAÞμ
Z
∂M

ð∇νFμνiξAþ Tμ
νξνÞnμϵ∂M ¼

Z
M

δL
δAμ

ðiξFÞμ þ∇νFμν
∂μðiξAÞϵM

Z
Σ2

Tμ
νξνnμϵΣ2

−
Z
Σ1

Tμ
νξνnμϵΣ1

¼ −
Z
N
Tμνξ

μnνϵN þ
Z
M

JμξνFνμϵM ðA2Þ

where we used the Bianchi identity∇μ∇νFμν ¼ 0 to get the
third line. If ξ ¼ ∂

∂t is a timelike Killing field, we get the
famous balance law

Δe ¼ −
Z
N
πiniϵN þ

Z
M

JiEiϵM ðA3Þ

where πi ¼ ðE × BÞi in the Poynting vector, Ei is the
electric field, Ji the three dimensional charged current and

e ¼ 1

2
ðE2 þ B2Þ ðA4Þ

is the electromagnetic energy.

APPENDIX B: SYMMETRY GROUP ON A NULL
HYPERSURFACE AT FINITE DISTANCE

1. Boundary structure preserving symmetry group

In this appendix, we aim to find the most general group
of diffeomorphism such that

δξnμ ¼ 0

δξnμ ¼ 0

δξkn ¼ 0 ðB1Þ

where nμ is a null normal of N and kn being its unaffinity
defined by kn ¼ −lμnν∇νnμ. This symmetry group has
already been found in [45], and is claimed to be the group
which preserves the universal structure of the null
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hypersurface N , defined as the set of diffeomorphisms ξ
such that on N

£ξnμ ¼ βnμ

£ξnμ ¼ βnμ

£ξkn ¼ βkn þ £nβ: ðB2Þ
It is shown in [45] Appendix D that the diffeomorphisms
satisfying (B2) also satisfy (B1), but the reverse is not
explicitly worked up. Hence, as we started the discussion
from the equations (B1), we derive the symmetry group
which satisfies them. Following [54] and Sec. III, we work
in a set of coordinates such that the null hypersurface N is
located at u ¼ 0, and the affine parameter v parametrizes
the null geodesics on N . Hence, the vector n ¼ ∂

∂v is
tangent to the null geodesics and has vanishing unaffinity.
As we study a (portion) of null hypersurface N with
topology B × R we define the set set of coordinates
ðu; v; xAÞ in a neighborhood of N such that a general
metric in this neighborhood of N can be written as52

ds2 ¼ −u2Fdv2 þ 2ð−1þ uGÞdudvþ guudu2

þ 2uPAdxAdvþ 2guAdxAduþ gABdxAdxB ðB3Þ
On N , (B3) becomes

ds2 ¼u¼0 − 2dudvþ guudu2 þ 2guAdudxA þ gABdxAdxB

ðB4Þ
Now, we see from (B3) that the vector n defined nμ ¼
fð ∂

∂vÞμ with f > 0 is null, hypersurface orthogonal on N ,
and future-oriented. On N , its associated normal form is
nμ ¼ −f∂μu. Furthermore, we can construct a vector l such
that lμ ¼ 1

f ð ∂

∂uÞμ, implying that

lμnμ ¼N − 1 ðB5Þ
In this setup, we can take a closer look to the Eq. (B1) and
try to find out the infinitesimal diffeomorphisms ξ satisfy-
ing them. By combining the first two equations of (B1) we
get on N

£ξnμ ¼ gμν£ξnμ: ðB6Þ

Furthermore, as ξ is tangent toN , the development of the u
component of ξ around the null hypersurface u ¼ 0 should
be written as ξu ¼ −uWðv; xAÞ þOðu2Þ. From this con-
sideration, a short computation shows us that on N

£ξnμ ¼ ωξnμ ðB7Þ

with

ωξ ¼ −lμ£ξnμ ¼ ξν∂νf þ ∂uξ
u: ðB8Þ

Hence, on N , £ξnμ ¼ ωξnμ from (B6) and so we get the
following set of equations:

½ξ; n�v ¼ ωξ

½ξ; n�A ¼ 0: ðB9Þ

The second equation of (B9) gives ∂vξAðv; xBÞ ¼ 0, so

ξAðv; xBÞ ¼ ξAðxBÞ ¼ YAðxBÞ: ðB10Þ

The infinitesimal diffeormorphisms (B10) are the lineari-
zations of the diffeormorphisms of theD − 2-sphere. Then,
the first equation of (B9) can be rewritten as:

∂uξ
u þ ∂vξ

v ¼ 0 ðB11Þ

and so

ξvðv; xAÞ ¼
Z

v

v0

Wðv0; xAÞdv0 ðB12Þ

Now, we turn to the third equation of (B1). As on N
δξnμ ¼ δξnμ ¼ 0, we have δξkn ¼ −nμlνδξΓ

ρ
μνnρ, which

gives the condition

δξkn¼N lμ∂μðnνnρ£ξgνρÞ ¼ 0 ðB13Þ

As we still have nμ ¼ f∂μv, (B13) becomes

δξkn ¼N
1

f
∂uðf2£ξgvvÞ

¼ −2f∂vWðv; xAÞ ¼ 0 ðB14Þ

so Wðv; xAÞ ¼ WðxAÞ and from (B11) and (B12) we
deduce ξv ¼ TðxAÞ þ vWðxAÞ. Hence, the general linear-
ized diffeomorphisms satisfying (B1) are

ξ¼ðTðxBÞþvWðxBÞÞ∂v−uWðxBÞ∂uþYAðxBÞ∂A ðB15Þ

in accordance with [45], where the components T para-
metrize the affine supertranslations, the components W the
Weyl supertranslations, and the components YA the super-
rotations. It also is the same group as the BMSW symmetry
group at null infinity [66], extending the famous BMS
group. The bracket of two vectors ðT1;W1; YA

1 Þ and
ðT2;W2; YA

2 Þ gives the following algebra [45]

T3 ¼ T1W2 − T2W1 þ YA
1 ∂AT2 − YA

2 ∂AT1

W3 ¼ YA
1 ∂AW2 − YA

2 ∂AW1

YA
3 ¼ YB

1 ∂BY
A
2 − YB

2 ∂BY
A
2 ðB16Þ

52We see in (B3) that gvv ¼N Oðu2Þ. This is needed because v is
an affine parameter. Indeed, a short calculation shows that
∂

∂v
ν∇ν

∂

∂v
μ ¼ Γμ

vv ¼ 0 only if ∂ugvv ¼N 0.
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The algebra is closed, and it is worth noticing that the
subalgebras are also closed, in particular the subalgebra
comprised of the vectors with T ¼ 0. This symmetry group
preserves the location of the corners of constant affine
parameter v. Hence, if we consider surfaces N with
nontrivial boundaries ∂N , we should get rid of the affine
supertranslations which move the boundaries and restrict
ourselves to the symmetry group spanned by the Weyl
supertranslations and the superrotations.

2. Newman-Unti gauge

However, in the main text we proceeded to a gauge
fixing, and chose to work in the Newman-Unti gauge, as
in [54]. Hence we choose guu ¼ guA ¼ 0 and guv ¼ −1
everywhere in (B3). If we make this choice, the vector lμ ¼
1
f

∂

∂u
μ is null, and is the auxiliary vector of nμ adapted to the

foliation v. If we work with the metric (3.10), we also
require that the diffeomorphisms ξ preserves this gauge.
Hence, in addition of (B1), we impose

£ξguu ¼ 0 ⇒ ∂uξ
v ¼ 0

£ξguA ¼ 0 ⇒ ∂uξ
A ¼ gAB∂Bξv ðB17Þ

such that our diffeomorphisms of interest are

ξ ¼ ðTðxBÞ þ vWðxBÞÞ∂v − uWðxBÞ∂u
þ ½YAðxBÞ þ ugAC∂CðT þ vWÞ�∂A þOðu2Þ ðB18Þ

as in [81]. Hence, all the components of ξ are fixed at
first order.

APPENDIX C: LOCAL TEMPERATURE

In this appendix, we define a notion of local temperature
associated to some observers moving close to the null
hypersurface along the lines drawn by the Weyl super-
translation field. Indeed, choose a point P close toN 53 with
coordinates ðvP; xAPÞ and consider the one dimensional
curve defined by xA ¼ xAP, v ≥ vP, and uv ¼ 1

2W2. The Weyl
supertranslation vector field tangent to H is given by54

ξ ¼ Wðv∂v − u∂uÞ ðC1Þ

has norm ξμξμ ¼ −1þOð 1
W2Þ on H, and the norm of the

acceleration vector field is given by

a2 ¼ gμνξρ∇ρξ
μξσ∇σξ

ν ¼ −W2 þOðWÞ ðC2Þ
In order to get these formulas, the acceleration W must be
large compared to the tidal forces and the gravitational
twist, exact relations are given below. Locally, through the
equivalence principle, the observer is uniformly accelerat-
ing with norm W in flat spacetime with a local Killing
horizon. If the accelerationW is large compared the inverse
proper time after which the curvature become non-
negligible, the observer accelerating along H perceives a
thermal spectrum [89,90]. Indeed, in quantum theory, the
local Unruh temperature is

Text ¼
Wℏ

2πckB
ðC3Þ

where the fundamental constants have been reintroduced
on purpose. As ℏ

2πckB
is very small, we need large accel-

eration in order to get sensitive Unruh temperature,
consistently to the approximations we made in order to
write ξμξμ ¼ −1 and aμaμ ¼ −W2 on H. This temperature
should be measured by the thermometer of an observer
accelerating locally alongH. However we could have chose
another curve of constant local acceleration, and so the
local temperature would be different. In any case, the
quantity W is not relevant in the local balance law (3.25),
as it appears as a global multiplicative factor, and we
can usually normalize it to one. Nevertheless, it gives a
thermodynamic interpretation of the formula (3.25) from
the point of view of an observer who is locally acceleration
along H and can carry a locally well defined notion of
temperature, if the acceleration W is large enough. We
compute exact relations in the remaining of this section.
The metric near N is given by (3.10) and so the inverse

metric is given by

g−1 ¼ u2ðgABPAPB þ FÞ∂u∂u − 2∂u∂v þ 2uPA
∂u∂A

þ gAB∂A∂B ðC4Þ
where PA ¼ gABPB. As we will be interested in constant
external temperature, we will take WðxAÞ ¼ W to simplify
the calculations. The norm of ξ on H is given by

ξμξμ ¼ −1 −
F

4W2
ðC5Þ

Our first assumption is to setW2 ≫ F ¼ − 1
2
∂
2
ugvv þ oðu2Þ.

Hence the acceleration must be much bigger than the
local tidal force. However, in order to have measurable
temperature, we need huge proper acceleration, of the order
ckB
ℏ at least. Hence, this assumption seems to be relevant for
our purpose, and for the following we will assume that
ξνξ

ν ¼ −1. The next step is to compute the acceleration
vector given by

53By close to N , we mean that the distance between one point
of N and P is smaller the curvature scale, such that there exists a
small region of spacetime including a bunch of points ofN and P
in which the curvature effects are negligible.

54In the Rindler coordinate system in flat spacetime, we have
u ¼ 1ffiffi

2
p

W
e−Wτ and v ¼ 1ffiffi

2
p

W
eþWτ where τ is the proper time of the

accelerating observer with proper acceleration W. Hence at
proper time τ, she is at (uðτÞ; vðτÞ, so the Killing boost tangent
to the curve has components ξu ¼ du

dτ ¼ −Wu and ξv ¼ dv
dτ ¼þWv. The difference between this case and the present analysis is

that in flat spacetime ξ is a global Killing field everywhere
spanning an exact Killing horizon.
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ξν∇νξ
μ ¼ aμ ðC6Þ

The computation gives

av ¼ W2v
�
1 −

F
2W2

�

au ¼ W2u

�
1 −

1

4W2

∂F
∂ ln v

þ 1

2W2
PA ∂PA

∂ ln v
þ F
W2

−
P2

2W2
þ 1

4W3
−

1

4W4
PA

∂AF

�

aA ¼ W2

�
PA

4W4
F þ gAB

2W2

∂PB

∂ ln v
þ 1

8W4
gAB∂BF −

PA

W2

�
ðC7Þ

Then, the norm of the acceleration is given by

a2 ¼ 2guvavau þ 2gAvavaA þ gvvavav þ gABaAaB

¼ −W2

�
1 −

F
2W2

��
1 −

1

4W2

∂F
∂ ln v

þ 1

2W2
PA ∂PA

∂ ln v
þ F
W2

−
P2

2W2
þ 1

4W3
−

1

4W4
PA

∂AF

�

þW2

�
1 −

F
2W2

��
P2

4W4
F þ PA

2W2

∂PA

∂ ln v
þ 1

8W4
PA

∂AF −
P2

W2

�
− u2v2W2

�
1 −

F
2W2

�
F

þW4gAB

�
PA

4W4
F þ gAC

2W2

∂PC

∂ ln v
þ 1

8W4
gAC∂CF −

PA

W2

��
PB

4W4
F þ gBC

2W2

∂PC

∂ ln v
þ 1

8W4
gBC∂CF −

PB

W2

�

¼ −W2 þOðWÞ ðC8Þ

The last equality of (C8) makes sense only if the
physical quantities F ¼ − 1

2
∂
2
ugvv and PA ¼ ∂ugAv verify

F
W2 ≪ 1 (the same condition as in (C5) in order to have

the norm of ξ equal to −1) and PA
W ≪ 1. Furthermore, the

derivatives of F and PA with respect to the “time” ln v
and the angular coordinates A must also be very small
compared to W2 and W respectively. Hence, we have to
consider large enough accelerations, much larger than
the local tidal forces and gravitational twist and their
variations. However, as already noticed, we need sig-
nificant accelerations in order to get a noninfinitesimal
Unruh temperature. If these conditions are satisfied, then
(C8) gives us

jaj ¼
ffiffiffiffiffiffiffiffi
−a2

p
¼ W ðC9Þ

on H. Of course, (C5) and (C9) are norms so they are
invariant under a change of frame. Locally, the observer
can always consider that spacetime is flat, and hence as
he is submitted to constant acceleration W for any point
on H, and sees locally an Unruh temperature given
by (C3).

APPENDIX D: COMPUTATION
OF ANOMALIES

Here we come back on the geometric quantities appear-
ing in the flux (3.25) and (3.47). An analysis of the

anomalies of the different physical quantities characterizing
the intrinsic and extrinsic geometries of the null hyper-
surfaces already appears in [91], see also [55], and we will
give a brief summary of the main results here. Let us
consider a null hypersurface N located at u ¼ 0, with
normal nμ ¼ −f∂μu on N . If ξ is tangent to N , we have

£ξnμ ¼ ωξnμ ðD1Þ

with

ωξ ¼ ξμ∂μ ln f þ ξu1 ðD2Þ

where ξu ¼ uξu1 þOðu2Þ. We restrict ourselves further to
the diffeomorphisms satisfying (B2) and preserving the
universal structure of the null hypersurface. They corre-
spond to an infinitesimal rescaling of the normal, and these
are precisely the class III transformations55 from [80].
Hence, a geometric quantity that is anomaly free must be
class III invariant, because such quantities are invariant
through a rescaling of the normal as in (3.17). It is straight-
forward to show from (D1) and (3.1), (3.3), (3.5), (3.6),
and (3.8) that

55A class III transformation acts on a Newmann-Penrose null
tetrad as ðn; l; m; m̄Þ → ðAn; A−1l; meiθ; m̄e−iθÞ, where n is the
normal, l an auxiliary vector while m and its complex conjugate
complete the basis.
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ΔξϵN ¼ ωξϵN

ΔξϵS ¼ 0

γαμγ
β
νΔξγαβ ¼ 0

Δξθ ¼ −ωξθ

Δξkn ¼ −ωξkn − nμ∂μωξ ðD3Þ
Hence, the anomaly of all the relevant physical quantities
on the null hypersurface depend linearly on ωξ. Now, we
compute the anomalies associated to the diffeomorphisms
(3.19). First, we need to compute the proportionality
coefficient ωξ appearing in (B7). Hence

ωξ ¼ −lμ£ξnμ
¼ −Wu∂u ln f þ ðT þ vWÞ∂v ln f þ YA

∂A ln f −W

ðD4Þ
We look for the diffeomorphisms ξ such that ωξ ¼ 0. There
are several interesting cases. If T ¼ W ¼ 0, then (D4)
reduces to

ωYA
∂A

¼ YA
∂A ln f ¼ 0 ðD5Þ

so if f is independent of xB all the diffeomorphisms ξ ¼
YA

∂A are nonanomalous. If W ¼ YA ¼ 0, then the anoma-
lous diffeormorphisms are the one satisfying ∂v ln f ¼ 0, so
f is independent on v. Third case, if T ¼ YA ¼ 0, then the
equation becomes

v∂v ln f − u∂u ln f ¼ 1 ðD6Þ
The solutions of (D6) are given by

f ¼ c1ðxAÞv −
c2ðxAÞ

u
ðD7Þ

but c2 ¼ 0 because f must be defined on the null hyper-
surfaceN located at u ¼ 0. Hence, as expected from (D1),
the property of anomaly freedom does not rely only on
the diffeomorphism ξ but also on the chosen normal n.
Therefore, when we choose the normal to be nμ ¼ vð ∂

∂vÞμ as
in Sec. III, we have

ωWðv∂v−u∂uÞþYA
∂A

¼ 0 ðD8Þ
but ωT∂v ≠ 0. We would have obtained a different result
with another choice of normal, as nμ ¼ ∂

μ
v for instance, for

which ωT∂vþYA
∂A

¼ 0 but ωWðv∂v−u∂uÞ ≠ 0. Hence, from
(D3), we understand that we can replace δξθn by £ξθn
for instance only for Weyl supertranslations and super-
rotations and disregarding the affine supertranslation, i.e.,
we consider only the nonanomalous diffeomorphisms

ξ ¼ Wðv∂v − u∂uÞ þ YAðxBÞ∂A ðD9Þ

in accordance to what we stated in the main text.

APPENDIX E: DYNAMICAL ENTROPY
OF THE 3D LIGHT CONE

This is an illustrative example of a system going through
a succession of equilibrium states. Let consider the null
hypersurface N spanned by outgoing light rays starting
from one point in flat spacetime in dimension D ¼ 3. We
still set nμ ¼ v∂μv. It is well known that there exists no black
hole solution in flat spacetime in dimensionD ¼ 3 because
the Weyl tensor vanishes, even if such solutions exist
for negative cosmological constant, as the BTZ black
hole [92,93]. However, we can still study the gravitational
flux throughN and the gravitational charges cross sections.
In dimension D ¼ 3, there is no shear and so there is no
gravitational flux, i.e., ΘD ¼ ΘY ¼ 0. Furthermore, the
charges of both prescriptions are equal. We can compute
the charges for a Weyl supertranslation ξ ¼ 2πðv∂v − u∂uÞ,
and define in consequence the entropy

S ¼ QD
ξ ¼ QY

ξ ¼ 1

4

�
A − v

dA
dv

�
ðE1Þ

The entropy variation on any portion of the null hyper-
surface N is entirely given by the entropy creation term

1

2π
ΔS ¼

Z
ΔN

Tμνξ
μnνϵN ¼ 1

2π
Sc ðE2Þ

that is positive if the null energy conditions are imposed,
as usual. Hence, on the outgoing light cone, the charge
vanishes near v ¼ 0, but increases as soon as some matter
crosses it. During this process, spacetime is not flat.
However, after some matter enteredN , spacetime becomes
flat again and the charges do not vary anymore. The
entropy of the new stationary state is just given by

S ¼ 2π

Z
ΔN

TμνnμnνϵN ≥ 0 ðE3Þ

However, this nonvanishing charge is not due the local
geometry of the null hypersurface, as spacetime is flat in
D ¼ 3 in the absence of matter and cosmological constant.
Hence, it accounts for the matter which crossed N in the
past. Hence, at any time v at which the charge is stationary
(no matter flux) the charge gives us the total matter flux that
entered N since v ¼ 0, but does not give any precision on
the history of the physical process.
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