
Energy extraction from rotating regular black hole
via Comisso-Asenjo mechanism

Zhen Li ,1,* Xiao-Kan Guo ,2,† and Faqiang Yuan 3,‡

1DARK, Niels Bohr Institute, University of Copenhagen, Jagtvej 128, 2200 Copenhagen Ø, Denmark
2Department of Applied Mathematics, Yancheng Institute of Technology, Yancheng 224051, China

3Department of Physics, Beijing Normal University, Beijing 100875, China

(Received 24 April 2023; accepted 7 August 2023; published 28 August 2023)

Recently, it has been demonstrated by Comisso and Asenjo that magnetic reconnection processes in the
ergosphere of a Kerr black hole can provide us with a promising mechanism for extracting the rotational
energy from it. In this paper, we study the energy extraction from the newly proposed rotating regular black
holes via this Comisso-Asenjo mechanism. This novel rotating regular black hole has an exponential
convergence factor e−k=r on the mass term characterized by the regular parameter k in the exponent. We
explore the effects of this regular parameter on the magnetic reconnection as well as other critical
parameters determining the Comisso-Asenjo process. The parameter spaces allowing energy extraction to
occur are investigated. The power, efficiency, and the power ratio to the Blandford-Znajek mechanism are
studied. The results show that the regularity of the rotating black hole has significant effects on the energy
extraction via the Comisso-Asenjo mechanism.
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I. INTRODUCTION

General relativity is the theory that best captures our
present understandings of gravitational interaction.
Gravitational waves [1–3] and black hole images [4,5]
have recently been observed, adding to the compelling
evidences for general relativity. However, general relativity
also encounters a number of difficulties and issues,
of which the singularity problem in classical general
relativity [6,7] is the most severe one. It is generally
accepted that singularities do not exist in nature and instead
show the limits of general relativity. The regular black
holes, which are solutions with horizons but are non-
singular in the sense that curvature invariants are finite
everywhere, can offer an alternative solution for the
singularity problem. In addition to the typical regular black
hole solutions such as the Bardeen and Hayward regular
black holes [8–10], many new regular black holes are
derived and studied recently (cf. the review [11]). To
construct such regular black hole solutions, one could
modify the shape function in the black hole metric in such
a way that the curvature invariants are finite. A highly
efficient way of obtaining a regular solution is to multiply
the mass function by an exponential factor e−k=r, and many
new regular black hole metrics have been generated by this
approach [12–21]. In particular, the regular rotating black

hole obtained this way [18,20,21], which are different from
those obtained by the Newman-Janis algorithm [22], have
attracted lots of attention, but the phenomenological studies
of such black holes are still very lacking. There are a few
works exploring this aspect, mainly focusing on the black
hole image and quasinormal mode effects [23–27], and
therefore other astrophysical tests of regular rotating black
holes are desirable.
A rapidly rotating black hole will produce an antiparallel

magnetic field configuration in the equatorial plane [28,29].
Both numerical simulations [30–33] and black hole
image [4,5] support that the main condition for this
configuration is realistic. Comisso and Asenjo have shown
in their remarkable paper [34] that this peculiar magnetic
field configuration could lead to a fast magnetic reconnec-
tion process inside the ergosphere when the aspect ratio of
the current sheet exceeds critical value [35–37], which can
convert an amount of magnetic energy into plasma particle
energy so that the plasma can escape from the reconnection
layer. We will denote this new mechanism as the Comisso-
Asenjo mechanism in order to distinguish with previous
attempts in magnetic reconnection [38]. Comisso-Asenjo
mechanism offers us a brand new way to extract energy
from the rotating black holes. It has also been shown in
many numerical simulations that there is always a dominant
point at which the reconnection process occurs [30,32,33].
In this Comisso-Asenjo magnetic reconnection process,
one part of the plasma or flux is accelerated and another
part is decelerated in the opposite direction. If the decel-
erated part has a negative energy and the accelerated part
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has an energy greater than its rest mass and thermal energy
at infinity, the energy is extracted from the rotating black
hole by magnetic reconnection [34]. The frame dragging
effect of a rapidly rotating black hole causes this process to
occur over and over again. In comparison with other energy
extraction mechanisms, such as the Penrose process [39,40]
and the Blandford-Znajek mechanism [41], such a mecha-
nism could be dominant in extracting the rotational energy
of black holes.
The energy extraction via Comisso-Asenjo mechanism

was first studied in the Kerr black hole [34] and recently
extended to many other rotating black holes [42–46]. All
the results show that the effects on the reconnection process
of non-Kerr black holes are significantly different from the
Kerr case. In this work, we aim to investigate the energy
extraction from the rotating regular black hole via Comisso-
Asenjo mechanism in the ergosphere. Because this process
could potentially produce more high-energy astrophysical
phenomena, it allows us to test the rotating regular black
hole hypothesis across a wider observational range.
This paper is organized as follows: We introduce the

rotating regular black hole spacetime in Sec. II. Then in
Sec. III, we will present the formulations of Comisso-
Asenjo mechanism, especially the equations of plasma
energy-at-infinity density per enthalpy and the conditions
for energy extraction from a regular rotating black hole to
occur. Next, based on the formulas in the last section, in
Sec. IV, we will explore the parameter spaces allowing
energy extraction from the rotating regular black hole via
Comisso-Asenjo mechanism. In Sec. V, we study the power
and efficiency of this mechanism with different parameter
combinations. We also compare the power ratio between
the Comisso-Asenjo mechanism and the Blandford-Znajek
mechanism in this section. In Sec. VI, we will make a
conclusion.

II. ROTATING REGULAR BLACK HOLE

The metric of rotating regular black hole that we will
discuss can be written in the Boyer-Lindquist coordinates
as [20,21]

ds2 ¼ gttdt2þ grrdr2þ gθθdθ2þ gϕϕdϕ2þ 2gtϕdtdϕ; ð1Þ

where the metric components are given by

gtt ¼ −
�
1 −

2Mre−k=r

Σ

�
gtϕ ¼ −

2aMre−k=r

Σ
sin2θ;

grr ¼
Σ
Δ
; gθθ ¼ Σ;

gϕϕ ¼
�
r2 þ a2 þ 2Mra2e−k=r

Σ
sin2θ

�
sin2θ; ð2Þ

with Σ ¼ r2 þ a2cos2θ and Δ ¼ r2 þ a2 − 2Mre−k=r. The
mass, specific angular momentum, and regular parameters,

M, a, and k, are assumed to be positive. The Kerr metric
could be retained when we set k=r ¼ 0. Here and after, we
use geometrized units with G ¼ c ¼ 1.
This spacetime is regular everywhere. We can see this

from the curvature invariants, for example, the Kretschmann
invariant K ¼ RabcdRabcd (Rabcd is the Riemann tensor):

K ¼ 4M2e
−2k
r

r6Σ6
ðΣ4k4 − 8r3Σ3k3 þ Ak2 þ Bkþ CÞ; ð3Þ

where A, B, and C are functions of r and θ,

A ¼ −24r4Σð−r4 þ a4cos4θÞ;
B ¼ −24r5ðr6 þ a6cos6θ − 5r2a2cos2θΣÞ;
C ¼ 12r6ðr6 − a6cos6θÞ − 180r8a2cos2θðr2 − a2cos2θÞ:

ð4Þ

For M ≠ 0, they are regular everywhere.
The solutions of equation

Δ ¼ r2 þ a2 − 2Mre−k=r ¼ 0 ð5Þ

give the horizons. However, there are no analytical sol-
utions. The numerical results of horizon structure as well as
the ergosphere with different parameters were discussed
in [18]. We will restrict our discussion on the value of
regular parameter k such that (5) has two distinct real
solutions (outer/event horizon and inner horizon), i.e., k
should be less than the critical value kEHc which decreases as
a increases.
Although the metric (1) mainly modifies the Kerr

spacetime inside the event horizon, they also affect the
spacetime outside the event horizon. One of the main
purposes of this paper is to examine how the exponential
convergence factor, represented by regular parameter k,
affect the magnetic reconnection process in the ergosphere.

III. ENERGY EXTRACTION VIA
COMISSO-ASENJO MECHANISM

In this section, we present the Comisso-Asenjo formulas
[34] of calculating the energy at infinity associated with
accelerated/decelerated plasma in the spacetime (1). It is
more convenient to evaluate the plasma energy density in
the “zero-angular-momentum-observer” (ZAMO) frame [47].
The metric (1) in ZAMO frame takes the form of a
Minkowski metric

ds2 ¼ −dt̂2 þ
X3
i¼1

ðdx̂iÞ2 ¼ ημνdx̂μdx̂ν; ð6Þ

where

dt̂ ¼ αdt; dx̂i ¼ ffiffiffiffiffi
gii

p
dxi − αβidt ð7Þ
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with

α ¼
�
−gtt þ

g2ϕt
gϕϕ

�1=2

; βϕ ¼
ffiffiffiffiffiffiffigϕϕ

p
ωϕ

α
: ð8Þ

We define ωϕ ¼ −gϕt=gϕϕ as the angular velocity of the
frame dragging due to the rotating regular spacetime.
For a contravariant vector aμ in the Boyer-Lindquist

coordinates, when transformed into the ZAMO frame,
which we denote by âμ, the following relation is obtained:

â0 ¼ αa0; âi ¼ hiai − αβia0; ð9Þ

and we also have the covariant vector âμ transformation
relations

â0 ¼
1

α
a0 þ

X
i

βi

hi
ai; âi ¼

1

hi
ai: ð10Þ

The one-fluid approximation energy-momentum tensor
of this system, in Boyer-Lindquist coordinates, takes
form of

Tμν ¼ pgμν þ wUμUν þ Fμ
δFνδ −

1

4
gμνFρδFρδ ð11Þ

where p, w, Uμ, and Fμν are, respectively, the proper
plasma pressure, enthalpy density, four-velocity, and
electromagnetic field tensor. With this energy-momentum
tensor, we can get the “energy-at-infinity” density e∞ ¼
−αgμ0Tμ0 ¼ e∞hyd þ e∞em [38], where e∞hyd and e∞em are,
respectively, the hydrodynamic energy-at-infinity density
and the electromagnetic energy-at-infinity density, and they
are given by

e∞hyd ¼ αðwγ̂2 − pÞ þ αβϕwγ̂2v̂ϕ;

e∞em ¼ α

2
ðB̂2 þ Ê2Þ þ ðB̂ × ÊÞϕ; ð12Þ

where γ̂ ¼ Û0 ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

P
3
i¼1ðdv̂iÞ2

q
, B̂i ¼ ϵijkF̂jk=2,

Êi ¼ F̂i0 are the Lorentz factor, the components of mag-
netic and electric fields, respectively. Here, vϕ denotes the
azimuthal component of the plasma outflow velocity in the
ZAMO frame [48]. The hat above these quantities means
that we evaluate the quantity in the ZAMO frame.
Just as Comisso and Asenjo [34], we also assume that a

considerable portion of the magnetic energy is converted
into kinetic energy of plasma during the Comisso-Asenjo
magnetic reconnection process, one can ignore the con-
tribution of e∞em in the total energy, which leads to
e∞ ≈ e∞hyd. In addition, considering the plasma element is
incompressible and adiabatic, we have [38]

e∞ ¼ α

�
wðγ̂ þ βϕγ̂v̂ϕÞ þ p

γ̂

�
: ð13Þ

One should note that the incompressible and adiabatic
assumptions are consistent with each other. According to
the incompressible approximation (see Ref. [38]), plasma
fluid is made up of tiny, spatially separated elements with a
constant volume. Similar to a soft ball, the element has a
thin, light, closed, adiabatic skin and its volume is also
constant. Here, we made the assumption that plasma gas
pressure has no effect on the plasma and only has an inertia
effect on the plasma dynamics. Due to the assumption that
the plasma gas inside the ball is incompressible and
adiabatic, the temperature in the ball is also expected to
be constant.
We would like to introduce the local rest frame in order

to investigate the localized magnetic reconnection process,
x̄μ ¼ ðx̄0; x̄1; x̄2; x̄3Þ, in which the directions of x̄1 and x̄3

are, respectively, parallel to the radial direction x̄1 ¼ r the
azimuthal direction x̄3 ¼ ϕ. The local rest frame of plasma
rotates with Keplerian angular velocityΩK in the equatorial
plane from the perspective of Boyer-Lindquist observer,
which is given by

ΩK ¼ dϕ
dt

¼
−gtϕ;r þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2tϕ;r − gtt;rgϕϕ;r

q
gϕϕ;r

: ð14Þ

Based on the transformation relation of vectors between
Boyer-Lindquist and ZAMO coordinates, we can also
obtain the above Keplerian angular velocity observed in
the ZAMO frame, which is given by

v̂K ¼ ΩK
ffiffiffiffiffiffiffigϕϕ

p
α

− βϕ: ð15Þ

If we denote the outflow velocity observed in the local rest
frame as vout, then the outflow velocity observed in the
ZAMO frame is

v̂ϕ� ¼ v̂K � vout cosðξÞ
1� v̂Kvout cosðξÞ

; ð16Þ

where � represent the outflow velocity with corotating (þ)
and counterrotating (−) direction relative to the rotation of
the black hole. They also correspond to the accelerated part
and decelerated part of the plasma, respectively. In (16),
ξ ¼ arctanðv̄1=v̄3Þ is the plasma orientation angle, v̄1 and
v̄3 are the radial and azimuthal components of plasma
velocities in the local rest frame.
With the above Eqs. (13) and (16), we can get the

energy-at-infinity density of the reconnection outflows as
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e∞� ¼ αγ̂K

�
ð1þ v̂KβϕÞγoutw� cosðξÞðv̂K þ βϕÞγoutvoutw

−
p

ð1� cosðξÞv̂KvoutÞγoutγ̂2K

�
; ð17Þ

where γout ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v2out

p
and γ̂K ¼ 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v̂2K

p
. From

[34], Comisso and Asenjo have derived that vout is related
to the properties of plasma magnetization and it could be
expressed as

vout ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
σ0

σ0 þ 1

r
; ð18Þ

where σ0 ¼ B2
0=w0 is the plasma magnetization upstream

of the reconnection layer, B0 is the asymptotic macroscale
magnetic field and w0 is the enthalpy density of the plasma.
Then, the plasma energy-at-infinity density per enthalpy
ϵ∞� ¼ e∞�=w becomes [34]

ϵ∞� ¼ αγ̂K

�
ð1þ βϕv̂KÞð1þ σ0Þ1=2 � cosðξÞðβϕ þ v̂KÞσ1=20

−
1

4

ð1þ σ0Þ1=2 ∓ cosðξÞv̂Kσ1=20

γ̂2Kð1þ σ0 − cos2ðξÞv̂2Kσ0Þ
�
; ð19Þ

where we have assumed that p ¼ w=4. Equation (19) has
exactly the same form as the one in the Kerr black hole
case (see Ref. [34]), and the differences are the geometry
quantities that are now replaced by spacetime metric (1).
Just like in the Penrose process [39,40], if the following

conditions should be satisfied

ϵ∞− < 0; Δϵ∞þ ¼ ϵ∞þ −
�
1 −

Γ
4ðΓ − 1Þ

�
> 0 ð20Þ

for a relativistic hot plasma, i.e., Γ ¼ 4=3, then we have
Δϵ∞þ ¼ ϵ∞þ . Consequently, black hole energy can only be
extracted if the decelerated part of plasma in a magnetic
reconnection process acquires negative energy as measur-
able at infinity, while the accelerated part of the plasma in
the same magnetic reconnection process acquires energy at
infinity larger than its rest mass and thermal energies.

IV. PARAMETER SPACES FOR ENERGY
EXTRACTION

The expression of energy at infinity Eq. (19) depends
on several critical parameters: the black hole mass M,
the black hole spin a, the dominant reconnection radial
location r (so-called X point [30,32–34]), the plasma
magnetization σ0, the orientation angle ξ and the regular
parameter k. For simplicity, we will choose units by setting
M ¼ 1 in the rest of this paper, then a, r, and k are
measurable in the unit ofM, while σ0 and ξ are dimension-
less parameters.

Now, we will show that Comisso-Asenjo mechanism is a
viable mechanism to extract energy from regular rotating
black holes in a significant range of parameter spaces. In
order to compare with the literature, the structure of figures
in this section are in reference to the Comisso and Asenjo
original paper [34].
First, let us consider how the orientation angle ξ and

plasma magnetization σ0 affect the energy-at-infinity per
enthalpy ϵ∞þ and ϵ∞− . For this purpose, taking r ¼ 1.5,
a ¼ 0.89, and k ¼ 0.1, we plot ϵ∞þ and ϵ∞− as a function of
σ0 with different ξ in Fig. 1. We can see that ϵ∞þ increases
with the plasma magnetization σ0 while ϵ∞− decreases with
the plasma magnetization σ0. It is easy to satisfy the
condition Δϵ∞þ ¼ ϵ∞þ > 0, however, the orientation angle
is essential for ϵ∞− to be negative. In order to satisfy the
energy extraction conditions (20), the orientation angle
should be small enough. The restriction could be relaxed if
the plasma magnetization σ0 is large enough since it can
subtract the increase of ϵ∞− due to increase of orientation
angle ξ.
To investigate the impact of regular parameter k on ϵ∞þ

and ϵ∞− , we plot ϵ∞þ and ϵ∞− as a function of regular
parameter k in Fig. 2 by taking r ¼ 1.6, a ¼ 0.89, and
ξ ¼ π=12 with different plasma magnetization σ0. From
both upper plot and lower plot, we can see that ϵ∞þ and ϵ∞−
all decrease as the regular parameter k increases. Again,
ϵ∞þ > 0 is well satisfied regardless of what the plasma
magnetization σ0 is. However, in order to extract energy
from the black hole, the condition ϵ∞− < 0 is not so
straightforward to be met. It requires that the regular
parameter k should be large enough. What is more, from
both plots, we can see that a large plasma magnetization
σ0 is always beneficial for extracting energy from the
black hole.

FIG. 1. The behaviors of ϵ∞þ (dotted curve) and ϵ∞− (solid curve)
as a function of plasma magnetization σ0 ∈ ½0; 10�, with different
orientation angle ξ ¼ π=12; π=6; π=4. The dominant reconnec-
tion radial location is taken as r ¼ 1.5, with black hole spin
a ¼ 0.89 and regular parameter k ¼ 0.1. The black solid line is
ϵ∞þ ¼ ϵ∞− ¼ 0 as reference.
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Let us now examine the parameter space of the dominant
reconnection radial location r and black hole spin a that
permit the realization of energy extraction from black hole
via magnetic reconnection. The results are shown in two-
dimensional r − a parameter space plots, see Figs. 3 and 4.
In Fig. 3, we have three plots; they correspond to different
regular parameters k ¼ 0, 0.05, 0.1, respectively, by taking
ξ ¼ π=12. The k ¼ 0 case is the Kerr black hole as
reference. The critical black hole spin, under which the
rotating black hole has two horizons, decreases as the
regular parameter k increases. We only show the region
below those critical black hole spin. As the regular
parameter k increase, the radii of the outer event horizon
and outer ergosphere decrease while that of the light ring
increases. The allowed region for ϵ∞þ > 0 (gray area) is
widening in the r dimension while shrinking in the a
dimension. The regions where ϵ∞− < 0 have a great
dependency on the plasma magnetization σ0; the larger
σ0, the larger the region with ϵ∞− < 0. The increase in the
regular parameter k will make smaller the black hole spin a

available for ϵ∞− < 0. Regarding Fig. 4, we aim to exam the
effects of orientation angle ξ on the r − a parameter space
by taking σ0 ¼ 100, k ¼ 0.1. We can see that the smaller
orientation angle ξ, the larger region with ϵ∞− < 0.

FIG. 2. The behaviors of ϵ∞− (upper plot) and ϵ∞þ (lower plot) as
a function of the regular parameter k ∈ ½0; 0.1�, with different
plasma magnetization σ0 ¼ 1, 5, 10. The dominant reconnection
radial location is taken as r ¼ 1.6, with black hole spin a ¼ 0.89
and orientation angle ξ ¼ π=12. The black solid line in the upper
plot is ϵ∞− ¼ 0 as reference.

FIG. 3. The parameter space (r − a) with ξ ¼ π=12 and three
different regular parameters k ¼ 0 (upper plot), 0.05 (middle
plot), and 0.1 (lower plot). The colored regions are ϵ∞− < 0 with
σ0 ¼ 1, 5, 10, 50. The gray area is the region where ϵ∞þ > 0.
Black solid curves, black dotted curves, and black dot dashed
curves are the radii of the outer event horizon, light ring, and
outer ergosphere, respectively.
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V. ENERGY EXTRACTION POWER
AND EFFICIENCY

The power and efficiency of energy extraction via the
Comisso-Asenjo mechanism are significant to the black
hole evolution and its astrophysical phenomena. In this
section, we will investigate the energy extraction power and
efficiency of the rotating regular black hole (1). In [34],
Comisso and Asenjo have proposed that these two
quantities essentially depend on how quick the plasma
with negative energy-at-infinity density are absorbed by
the black hole per unit time. The power can be well
estimated by [34]

Petr ¼ −ϵ∞− w0AinUin; ð21Þ

where the reconnection inflow four-velocity Uin ¼
Oð10−1Þ and Oð10−2Þ, respectively, refer to the collision-
less [49–51] and collisional regimes [52,53]. Ain is the
cross-sectional area of the inflowing plasma, which can be
estimated as Ain ∼ r2E − r2ph for rapid rotating regular black
holes, with rE and rph are the outer ergosphere and light
ring of the rotating regular black hole, respectively.
We will investigate the power mainly in the collisionless

regime, which is consistent with [34], and it also allows for
a higher energy extraction rate than the collisional regime.
In Fig. 5, we demonstrate the ratio Petr=w0 as a function

of the dominant reconnection radial location r for a
rapidly spinning black hole (1) in the collisionless regime
Uin ¼ 0.1, with different plasma magnetization σ0 ¼ 10,
100, 1000, 10000 by taking a ¼ 0.89, ξ ¼ π=12, and
k ¼ 0.1. As the plasma magnetization σ0 increases, the
power extracted from the black hole rises monotonically.

The power peaks at those positions near the limiting
circular orbit or light ring and then gradually declines.
We also show the ratio Petr=w0 as a function of the

regular parameter k in Fig. 6. with different plasma
magnetization σ0 ¼ 10, 100, 1000, 10000 by taking
r ¼ 1.5, a ¼ 0.89, ξ ¼ π=12, and Uin ¼ 0.1. The power
increases monotonically for the increasing values of the
regular parameter k. In addition, along with the plasma
magnetization σ0, the power rises monotonically as well.
Next, we evaluate the efficiency of energy extraction. It

is convenient to define the efficiency as [34]

η ¼ ϵ∞þ
ϵ∞þ þ ϵ∞−

: ð22Þ

FIG. 4. The parameter space (r − a) with σ0 ¼ 100, k ¼ 0.1
and different orientation angle ξ. The colored regions are ϵ∞− < 0
with ξ ¼ π=20; π=12; π=6; π=4, respectively. The gray area is the
region where ϵ∞þ > 0. Black solid curves, black dotted curves,
and black dot dashed curves are the radii of the outer event
horizon, light ring, and outer ergosphere, respectively.

FIG. 5. Petr=w0 as a function of the dominant reconnection
radial location r with different plasma magnetization σ0 ¼ 10,
100, 1000, 10000, by taking a ¼ 0.89, ξ ¼ π=12, k ¼ 0.1, and
Uin ¼ 0.1. The vertical dotted line indicates the limiting circular
orbit, i.e., light ring rph.

FIG. 6. Petr=w0 as a function of the regular parameter k with
different plasma magnetization σ0 ¼ 10, 100, 1000, 10000, by
taking r ¼ 1.5, a ¼ 0.89, ξ ¼ π=12, and Uin ¼ 0.1.
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If η > 1, then the energy will be extracted from the rotating
regular black hole.
In Fig. 7, we show the efficiency η as a function of the

dominant reconnection radial location r with different
black hole spin a ¼ 0.87, 0.88, 0.89, 0.90, taking
σ ¼ 100, ξ ¼ π=12, k ¼ 0.1. Note that when a ¼ 0.90,
the black hole is an extreme one for k ¼ 0.10. As reference,
we also plot the efficiency for the extreme black hole.
Regarding the nonextremal case, we can see from Fig. 7
that the efficiency significantly increases with location r
that is closer to the outer event horizon and decreases below
unity when it is close to the ergosphere. Thus, there are
peaks for efficiency and the peaks go to a large value and
shift to a small location r when black hole spin a increases.
In order to study the role of the regular parameter k on

the efficiency, we plot the efficiency as a function of the
regular parameter k with different plasma magnetization
σ0 ¼ 10, 100, 1000, 1000 in Fig. 8, taking r ¼ 1.5,
a ¼ 0.89, and ξ ¼ π=12. We can see that the efficiency
grows monotonically along with the increasing of regular
parameter k. The effects of plasma magnetization σ0 on the
efficiency is dropping exponentially as σ0 grows and is
almost the same for sufficiently large values.
Last but not least, we compare the powers of the energy

extractions via the Comisso-Asenjo and Blandford-Znajek
mechanisms, in the latter of which the black hole rotation
energy is extracted through a magnetic field that threads the
event horizon. Regarding the Blandford-Znajek mechanism,
in the so-called maximum efficiency conditions [54–56], the
power of energy extraction is given by [41,57,58]

PBZ ¼ κ

16π
Φ2

HðΩ2
H þ C1Ω4

H þ C2Ω6
H þOðΩ8

HÞÞ; ð23Þ

where κ is a numerical constant related to the magnetic field
configuration and C1, C2 are numerical coefficients. The

magnetic flux crossing the black hole event horizon is given
by ΦH ¼ 1

2

R
θ

R
ϕ jBrj ffiffiffiffiffiffi−gp

dθdϕ ¼ 2πðr2þ þ a2ÞB0 sinðξÞ,
where rþ is the event horizon. The angular velocity at the
event horizon isΩH ¼ 2arþe−k=rþ=ðr2þ þ a2Þ2. We assume
that the difference in the spacetime metric will only affect
the Blandford-Znajek process through geometry quantities,
since the basic magnetic field configurations are the same
to the Kerr case. Thus, we have only modified the geometry
quantities in the Blandford-Znajek power of Kerr black
hole and obtain Eq. (23). Then, the power ratio between
these two mechanism is

Petr

PBZ
∼

−4ϵ∞− AinUin

πκσ0ðr2þ þ a2Þ2sin2ðξÞðΩ2
H þ C1Ω4

H þ C2Ω6
HÞ

:

ð24Þ

By taking ξ ¼ π=12, κ ¼ 0.05, C1 ¼ 1.38, C2 ¼ −9.2,
respectively [34], we show the power ratio in Fig. 9 as a
function the plasma magnetization σ0 with different dom-
inant reconnection radial location r ¼ 1.3, 1.5, 1.7, the
near-extremal black hole spin a ¼ 0.89, 0.99 correspond-
ing to regular parameter k ¼ 0.1, 0, respectively. We can
see that all the power ratios rise sharply along with the
plasma magnetization that is closer to the critical value,
and then after their maximum value are attained, the
power ratios drop along with the plasma magnetization.
The reason why the power ratios [Eq. (24)] decrease as
the increase in the plasma magnetization is the different
dependency on the plasma magnetization. Since when
σ0 →∞, we havePetr ∼ σ1=20 and PBZ ∼ σ0, thus Petr=PBZ ∼
1=σ1=20 , which decrease with the increase in plasma mag-
netization. On the other hand, when σ0 ∼ 1, the force-free
electrodynamics approximation [41,57,58] of Blandford-
Znajek power becomes invalid. It is necessary to examine

FIG. 8. Efficiency η of the magnetic reconnection process
as a function of the regular parameter k with different plasma
magnetization σ0 ¼ 10, 100, 1000, 1000, taking r ¼ 1.5,
a ¼ 0.89, and ξ ¼ π=12.

FIG. 7. Efficiency η of the magnetic reconnection process
as a function of the dominant reconnection radial location r
with different black hole spin a ¼ 0.87, 0.88, 0.89, 0.90, taking
σ ¼ 100, ξ ¼ π=12, k ¼ 0.1. Note that the a ¼ 0.90 case is the
extreme black hole for k ¼ 0.10.
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the energy and angular momentum carried onto the rotating
regular black hole by the accreting plasmas. In this scenario,
the power ratios can only be seen as an effective or rough
comparison. We also found that the smaller the dominant
reconnection radial location r, the larger the power ratios. In
addition, the power ratio of a Kerr black hole (k ¼ 0) is
greater than the regular black hole (k ¼ 0.1), which shows
that, compared with the Kerr black hole, the Comisso-
Asenjo mechanism is less effective at extracting energy from
a regular black hole. Nevertheless, in a very broad parameter
range of the plasma magnetization σ0, the power ratio is
greater than 1, which means that the Comisso-Asenj
mechanism is a very promising and an important energy
extraction mechanism from rotating regular black holes.

VI. CONCLUSION

Rotating a regular black hole (1) is a very promising
solution to the singularity problem in general relativity. In
order to verify this proposal, the phenomenological study
of this spacetime is essential. In this work, we investigated
the energy extraction from a rotating regular black hole (1)
caused by Comisso-Asenj magnetic reconnection process
within the ergosphere.
With the assumption that a considerable portion of the

magnetic energy is converted into kinetic energy of plasma

during reconnection, we first present the Comisso-Asenjo
formulas of the plasma energy at infinity (19) associated
with the accelerated and decelerated part of the same
reconnection process as well as the conditions (20) for
extracting energy from the rotating regular black hole.
Then we specifically studied how the plasma magneti-

zation, orientation angle, and especially the regular param-
eter will affect the behavior of the plasma energy-at-infinity
per enthalpy ϵ∞þ and ϵ∞− by taking black hole spin and
dominant reconnection radial location as certain values.
It turns out that the small value of orientation angle and
large values of plasma magnetization and regular parameter
will be beneficial for the energy extraction via magnetic
reconnection from the rotating regular black hole. What
is more, in order to explore the effects of the other para-
meters settled down, we demonstrated the two-dimensional
(r − a) parameter space that satisfies the conditions (20).
We also show the effects of different regular parameter,
plasma magnetization, and orientation angle in the same
figures such that we can fully explore the parameter
spaces.
In the previous section, we also studied how these critical

parameters will affect the power and efficiency of the
energy extraction via the magnetic reconnection. The
power and efficiency all grow with the increasing of regular
parameter. It is interesting that the plasma magnetization
almost has no effect on the efficiency when it becomes
large enough.
Finally, we studied the power ratio of the energy

extraction via the Comisso-Asenjo mechanism to the
famous Blandford-Znajek mechanism. In a sufficient large
parameter range, the energy extraction via the Comisso-
Asenjo process is more powerful than the Blandford-
Znajek mechanism for extracting energy from the rotating
regular black hole. In addition, the Kerr case (k ¼ 0) is
more efficient than the regular black hole case (k ¼ 0.1).
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FIG. 9. Power ratio Petr=PBZ as a function of the plasma
magnetization σ0 with different dominant reconnection radial
location r ¼ 1.3, 1.5, 1.7 and [a ¼ 0.89, k ¼ 0.1] (dotted curve),
[a ¼ 0.99, k ¼ 0] (solid curve), by taking the orientation angle
ξ ¼ π=12. The coefficients are taken as κ ¼ 0.05, C1 ¼ 1.38,
C2 ¼ −9.2, respectively. The black solid line is Petr=PBZ ¼ 1 as a
reference.
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