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The weak gravity conjecture indicates that extremal black holes in the low-energy effective field theory
should be able to decay. This criterion gives rise to nontrivial constraints on the coefficients of higher-order
derivative corrections to gravity. In this paper, we investigate the tidal deformability of neutral black holes
due to higher-order derivative corrections. As a proof of concept, we consider a correction of cubic order in
the Riemann curvature tensor. The tidal Love numbers of neutral black holes receive leading-order
corrections from higher-order derivative terms, since black holes in pure General Relativity have vanishing
tidal Love number. We conclude that the interplay between the tidal deformability of black holes and the
weak gravity conjecture provides useful information about the effective field theory.
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I. INTRODUCTION

The recent discovery of gravitational waves has provided
a powerful new tool to dig deeper into open questions
regarding the interaction of fundamental theory and obser-
vation, in particular in probing gravity in its most extreme
regime and in searching for signatures of new physics. One
of the most important prediction of General Relativity (GR)
are black holes. Within this theory, the black hole mass,
angular momentum, and electric charge uniquely define its
entire multipolar structure as well as its quasinormal modes
spectrum, whose observation can be used to probe the so-
called no-hair theorems and to test GR [1].
The multipolar structure of a compact object may be

modified under the presence of external fields, whose
gravitational interaction can result into tidal deformations.
Such effects are usually captured in terms of the tidal Love
numbers (TLNs) [2]. These strongly depend on the internal
properties and structure of the deformed body. TLNs are
also found to affect the dynamics of the inspiral of a binary
system of compact objects and impact the consequent
gravitational waves emission at the fifth post-Newtonian
order [3].

A powerful result of GR is that the TLNs of nonrotating
and spinning black holes are precisely zero [4–13]. This
result has generated an issue of “naturalness” in the gravi-
tational theory [10], and it has been connected with special
symmetries of the perturbation fields around black holes
[14–20] or to relations between conformal field theories and
black hole perturbations [21,22]. This property is, however,
broken in higher dimensions [14,23–25] and especially in the
context of modified gravity [26–28]. In this paper, as an
example case, we will be interested in a theory with a
ðRμν

ρσÞ3 correction. Such an operator naturally appearswhen
one includes six derivative terms in higher-derivative gravity
[29–31] andmay also begenerated at one-loop by integrating
out massive fields with coupling given by [32]
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in terms of the massesms,mf,mv of a spin-0, spin-1=2 and
spin-1 field, respectively. We will argue that this operator
represents the leading higher-order curvature correction that
gives rise to nonvanishing TLNs for neutral black holes.
Aside from the TLNs or quasinormal modes, black holes

also provide essential information about quantum gravity.
The strong gravity environment created by black holes is
sensitive to corrections to GR. Especially small black holes
are important as space-time curvature gets strong at the
horizon. Hawking radiation is one example. Effective field
theory (EFT) provides a convenient framework to system-
atically study higher-derivative corrections to GR. Most of
the complicated microscopic degrees of freedom are
effectively captured by effective operators at low energies.
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However, it iswell known that not every bottom-upEFTof
gravity can be consistently UV completed. Theories that do
not meet this requirement are said to be living in the
Swampland [33]. Of many UV consistency conditions, the
weak gravity conjecture (WGC) [34] is a well-studied
criterion for consistent quantum gravity theories. It is
conjectured that there must exist a state with charge to mass
ratio (in proper units) larger than unity. There has been
evidence for theWGC from the consideration of holography
[35–38], black hole entropy [39–41], cosmic censorship
[39,42–44], dimensional reduction [45–49] and importantly,
IR consistency [50–54]. The form of WGC we utilize deals
with extremal black holes in the EFT [41,50,52,55,56]. It
simply demands that black holes are able to decay and, as a
consequence, the small extremal black holes are the states
that satisfy the charge to mass ratio bound.
In this paper we establish for the first time a connection

between TLNs of black holes and UV consistencies of the
theory, in particular related to the WGC. As a proof of
concept, we focus on an admittedly tuned EFT containing
only a ðRμν

ρσÞ3 operator. This has the advantage of being
the leading operator beyond GR affecting the TLNs of
neutral black holes. We then show its impact on the black
holes’ tidal deformability and extremality relation. Let us
stress, however, that the argument is completely general
and can be applied as well to lower-dimensional operators
in the context of charged black holes. We compute the
spectrum of extremal black holes in the theory of interest,
and derive a bound on the coefficient of the operator. This
constraint carries over to TLNs of black holes in the theory.
Hence, measuring tidal deformations of black holes can
potentially provide valuable information about the effective
operators and particle spectrum of the UV theory.
The paper is organised as follows. In Sec. II we first

extract the WGC constraint on coefficient of the higher-
derivative operator ðRμν

ρσÞ3 by considering the spectrum of
extremal black holes. Then, in Secs. III and IV we compute
TLNs in the same theory for neutral black holes. We will
conclude that the WGC imposes a type of positivity bound
on the tidal deformability of black holes.

II. WEAK GRAVITY CONJECTURE
CONSTRAINTS ON EXTREMAL BLACK HOLES

In this section we review the basic idea of the WGC and
then apply the conjecture to derive constraints on the theory
of interest. The original conjecture [34] states that a
consistent theory of quantum gravity should contain a state
of charge to mass ratio (in proper units) greater than unity.
There are different aspects and different versions of the
WGC. We will focus on the infrared consistency of low-
energy effective theories that stems from the WGC
[41,50,52,55,56], which requires that extremal black holes
in the effective field theory be able to decay into subex-
tremal black holes.

Typically, in an effective field theory of gravity, the black
hole geometry is corrected in the presence of higher-
derivative operators. Corrections to the geometry coming
from curvature invariants such as Rμν

ρσRρσ
μν, are propor-

tional to some negative power of the size of the black hole.
Therefore, higher-derivative corrections are more important
as the size of the black hole decreases. This is also
consistent with the intuition that smaller black holes are
more sensitive to UV degrees on freedom.
When it comes to extremal black holes, the charge to

mass ratio jQj=M is corrected in a way that the decay of
extremal black holes becomes a nontrivial story, as depicted
in Fig. 1. If the corrected extremal relation jQj=M is below
the GR relation, illustrated by the red curve in the figure,
then any decay of an extremal black hole into macroscopic
black holes must contain a super-extremal black hole with
naked singularity. Therefore, this is forbidden by the WGC.
On the contrary, if the corrected extremal relation lies above
the GR relation (illustrated by the green curve), then
extremal black holes can decay into subextremal black
holes. Consequently, the WGC effectively imposes con-
straints on the effective operators. It turns out that this
constraint is consistent with the relation between correc-
tions to entropy and extremality derived from the thermo-
dynamic point of view [32,57–59].
We now study extremal black holes in the specific theory

of interest.

A. Charged black holes in ðRμν
ρσÞ3

To demonstrate the idea that WGC constrains tidal
deformations of black holes, we consider a simple theory,
namely Einstein-Maxwell gravity corrected by a term cubic
in Riemann,

FIG. 1. The curves are indicating the charge jQj and massM of
extremal black holes in different effective theories. The dotted
line is the GR extremality relation. Subextremal black holes are
under the curves. Black hole configurations above the curves are
forbidden as they contain naked singularities. The green curve
represents a healthy effective field theory, since extremal black
holes can decay into subextremal black holes. The red curve
represents an effective field theory in which decay products of an
extremal black hole must contain states above the curves, and
therefore violates the weak gravity conjecture.
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where κ2 ¼ 8πG ¼ 1=M2

Pl, and α is a coefficient of dimen-
sion mass−2. One could also include four-derivative oper-
ators, such as R2, RμνRμν and RμνρσRμνρσ. However, we are
interested in the tidal deformability of neutral black holes in
later sections. SinceR andRμν both vanish for a neutral black
hole, while RμνρσRμνρσ can be expressed in terms of the
first two terms using the Gauss-Bonnet theorem in four
dimensions, they donotmodify the Schwarzschild geometry.

Moreover, one can also verify that they do not contribute to
the tidal Love numbers perturbatively for neutral black
holes.1 Therefore, ðRμν

ρσÞ3 is the first nontrivial term that
modifies a neutral black hole.2

We consider spherically symmetric, charged black hole
solutions of the form

ds2 ¼ −ftðrÞdt2 þ
1

frðrÞ
dr2 þ r2dΩ2;

F ¼ EðrÞdt ∧ dr: ð3Þ

The generic solution at OðαÞ is given by
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where rþ is the outer horizon, and

x ¼ rþ
r
; κ2q2 ¼ 2r−rþ: ð5Þ

Note that rþ is always the outer horizon, but the inner horizon receives correction from α, i.e., r− þOðαÞ is the inner
horizon. A neutral black hole corresponds to r− ¼ 0. In the extremal limit, rþ ¼ r− ¼ rh, and the above solution reduces to

ftðrÞ ¼
ðr − rhÞ2
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1This is due to the essential fact that the linearized equation of motion receives corrections that are either proportional to the
background fR̄; R̄μνg or to the linearized GR equation of motion fδR̄; δR̄μνg.

2There is another independent operator involving six derivatives, that is the parity-violating term R̃μν
ρσRρσ

κλRκλ
μν [29,30]. Such a

term would also modify a neutral black hole. However, it mixes parity even and odd perturbations and therefore introduces an ambiguity
in the definition of tidal Love numbers [27].
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Obviously, the charge of the extremal black hole is
corrected at OðαÞ,

Q ¼ 1

4π

Z
⋆F ¼ �q

�
1þ 12

ακ2

r4h

�

¼ �
ffiffiffi
2

p
rh
κ

�
1þ 12

ακ2

r4h

�
; ð7Þ

where we have used r� ¼ rh. There is also an OðαÞ
correction to the relation between the ADM mass and
the horizon rh,

M ¼ rh

�
1þ 236

21

ακ2

r4h

�
: ð8Þ

It follows that the charge to mass ratio of an extremal black
hole is

jQj
M

¼
ffiffiffi
2

p

κ

�
1þ 16

21

ακ2

r4h

�
: ð9Þ

Since the weak gravity conjecture demands that κjQjffiffi
2

p
M
≥ 1,

we have

α ≥ 0: ð10Þ

This is a nontrivial constraint on the effective theory in
Eq. (2).3 It must be emphasized that from the EFT point of
view, it is natural to include all four-derivative operators
composed of Rμνρσ and Fμν. For example, the operators
ðFμνFμνÞ2 and WμνρσFμνFρσ contribute to the charge-to-
mass ratio of extremal BHs at leading order Oðr−2h Þ, which
is larger than the one resulting from ðRμν

ρσÞ3. We further
comment on this in the conclusions after the discussion on
TLNs.
The dominant constraint depends however on the UV

theory one considers; in particular, assuming that ðFμνFμνÞ2
arises by integrating out heavy charged fermions and that
ðRμν

ρσÞ3 is obtained by integrating out a much lighter scalar
field, the bound resulting from the latter could be the
dominant one if there is a large hierarchy of masses
between the two particles. In other words, we consider a
slightly tuned EFT in which the leading-order contribution
comes from ðRμν

ρσÞ3. The simple theory we considered
above is just for the purpose of demonstrating the con-
nection between the WGC and TLNs. A detailed analysis
will be carried out in a following work.

Let us now switch to study tidal Love numbers of neutral
black holes in the same effective theory, and find the
implications of the above constraint on the tidal deform-
ability of black holes.

III. TIDAL LOVE NUMBERS

In this section we review the basics of the computation of
tidal Love numbers. We start from their definition in the
Newtonian regime, and then move to their relativistic
computation for massless spin-1 and spin-2 tidal perturba-
tions in full GR, assuming for simplicity a Schwarzschild
black hole background. The interested reader can find a
more comprehensive discussion in Refs. [14,16,18].

A. Newtonian limit

Tidal Love numbers are defined as the response coef-
ficients of a spherically symmetric body under the action of
external tidal perturbations. Consider a spherical body of
mass M placed at the origin of a Cartesian coordinate
frame. One can adiabatically apply a static external
gravitational fieldUext perturbing the body. In the multipole
expansion, this field can be written as

Uext ¼ −
X∞
l¼2

ðl − 2Þ!
l!

ELrL; ð11Þ

in terms of the distance from the origin r, the multi-index
L≡ i1 � � � il, and the symmetric trace-free multipole
moments EL. In response to the external perturbation,
the body will deform and develop internal multipole
moments given by

IL ¼
Z

d3xδρðx⃗ÞxhLi; ð12Þ

as a function of the body’s mass density perturbation δρ
and xhLi ≡ xi1 � � � xil .
Adopting spherical coordinates, the external source and

induced response can be expanded in terms of spherical
harmonics Ym

l ,

Elm ≡ EL

Z
S2

dΩnLYm
l
�; Ilm ≡ IL

Z
S2

dΩnLYm
l
�; ð13Þ

where dΩ≡ sin θdθdϕ, and ni ≡ xi=jx⃗j. One can then write
the total potential of the system as

Utot ¼ −
GM
r

−
X∞
l¼2

Xl
m¼−l

Ylm

�ðl − 2Þ!
l!

Elmrl

−
ð2l − 1Þ!!

l!
Ilm
rlþ1

�
: ð14Þ

Assuming an adiabatic and weak-external tidal perturba-
tion, linear response theory dictates that the response

3We notice that in a five-dimensional theory with a compact
dimension, applying the WGC to various black holes implies that
the coefficient of ðRAB

CDÞ3 (in five dimensions) must be negative
[60]. However, it is not clear yet how it may impact the Wilson
coefficient of ðRμν

ρσÞ3 in four dimensions.
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multipoles should be proportional to the perturbing multi-
pole moments as

GIlmðωÞ ¼ −
ðl − 2Þ!
ð2l − 1Þ!! λlmðωÞr

2lþ1
h ElmðωÞ; ð15Þ

in terms of the characteristic size of the object rh. The
dimensionless coefficients λlm describe the response. They
are given in terms of the perturbation’s frequency ω in the
external inertial frame as

λlm ≃ klm þ iνlmðω −mΩÞ þ…; ð16Þ

as a function of the azimuthal harmonic number m and the
body’s angular velocity Ω. The real term in Eq. (16)
describes the conservative response, and the corresponding
coefficients klm are called tidal Love numbers, while the
imaginary contribution iνlm describes dissipation effects.
So far our discussion has been entirely based on the

Newtonian regime, which is only a long-distance approxi-
mation to the full general relativistic picture. In the following
we will therefore move to the computation of the tidal Love
numbers for a massless spin-1 and spin-2 tidal perturbations,
generalising the results found above to a fully relativistic
theory. For the purposes of our discussion we will focus on
static perturbations (ω ¼ 0), and we will outline the TLN
computation for a Schwarzschild black hole.

B. GR: Vector TLN

The vector TLN of a black hole is equivalent to its
electric polarizability and magnetic susceptibility. It can be
studied by considering a massless spin-1 vector field in the
background of a Schwarzschild black hole, which is
described by the Maxwell action

S ¼ −
Z

d4x
ffiffiffiffiffiffi
−g

p 1

4
F2
μν: ð17Þ

Because of the rotational invariance of the background, one
can expand the gauge potential Aμ into perturbations and
express them in spherical harmonics as

Aμ ¼
X
l;m

0
B@

a0Ym
l

arYm
l

aðLÞ∇iYm
l þ aðTÞϵji∇jYm

l

1
CA; ð18Þ

where the index i runs over the coordinates on the two
sphere, ∇i and ϵji are the covariant derivative and Levi-
Civita tensor with respect to γij on the 2-sphere, respec-
tively. The variables aðLÞ and aðTÞ denote the longitudinal
and transverse perturbations. On the 2-sphere, the variables
a0, ar and aðLÞ are parity-even, while aðTÞ is parity odd.
Thus they decouple. They are related to each other by
electromagnetic duality in four dimensions, and therefore

have equal TLN. For simplicity, we focus on aðTÞ for the
computation of the TLN.
Introducing the variable ΨV ¼ aðTÞ and going to tortoise

coordinates dr⋆ ¼ dr=f, where f ¼ 1 − rh=r, one can
write down the action for this perturbation as [14]

S ¼
Z

dtdr⋆

�
1

2
Ψ̇2

V −
1

2

�
∂ΨV

∂r⋆

�
2

−
lðlþ 1Þ

2r2
fΨ2

V

�
: ð19Þ

The corresponding equation of motion then takes the form

�
−
∂
2

∂t2
þ ∂

2

∂r2⋆
− fðrÞlðlþ 1Þ

r2

�
ΨV ¼ 0: ð20Þ

Focusing on the static limit ω ¼ 0 and assuming that the
background is asymptotically flat at spatial infinity (f → 1
as r → ∞), one finds that ΨV can be expanded asymptoti-
cally as

ΨV ≃ c1rlþ1

�
1þ � � � þ kðlÞV

�
r
rh

�
−2l−1

þ � � �
�
: ð21Þ

The first term ∼rlþ1 denotes the external tidal field applied
at spatial infinity, while the second term ∼r−l encodes the

quadrupolar response. The coefficient kðlÞV denotes the axial
(magnetic) vector tidal Love number, and its value depends
on the assumed background geometry.
An obvious problem with the above definition is a

possible ambiguity due to an overlap between the source
series generated by the gravitational nonlinearity and the
response contribution [11,16,23], where subleading cor-
rections to the source appear to have the same power in r as
the response in the physical case l∈N. In order to get
around this ambiguity and properly define the Love
numbers through a matching procedure, one needs to
compute the graviton corrections to the source term and
subtract them from the full GR solution. An alternative
approach consists of an analytic continuation to the
unphysical region l∈R [11], where the source and
response series do not overlap. However obtaining such
a solution can be challenging, and for simplicity we will
ignore it in the rest of the paper.
Furthermore, we stress that the functional form of the

field profile can be more complicated than Eq. (21) due to
the presence of logarithmic corrections multiplying the
response contribution, coming from EFT loop integrals and
resulting into a running Love number for l≳ 3. Such
logarithms are, however, found to cancel out when sum-
ming over all loop diagrams for Schwarzschild black
holes [61].
To conclude this discussion, let us comment on the

relation between the static response coefficient calculated
above and the coefficients which appear in the point-
particle effective field theory approach. This connection
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is important in order to provide a gauge invariant definition
of the TLN.
The worldline effective field theory approach is based on

the fact that, at very large distance, a black hole behaves as
a point particle, and corrections due to the object’s finite
size and internal structure are encoded in higher-derivative
operators in the effective theory. Focusing on couplings to a
tidal magnetic field, the worldline operator can be built
starting from the magnetic field Bab ≡ Fab ¼ ∂aAb − ∂bAa,
such that the effective field theory action is given by

S ¼ 1

2

Z
dτ

�
e−1gμν

dxμ

dτ
dxν

dτ
− em2

�
−
1

4

Z
d4xFμνFμν

þ
X∞
l¼1

1

2l!

Z
dτe

�
λðBÞl

2
ð∂ða1 � � � ∂al−1BalÞTbÞ2

�
: ð22Þ

The first term describes the free point particle action,
expressed in terms of the worldline vielbein e, while the
last operator encodes the magnetic susceptibility of the

black hole, proportional to the coefficient λðBÞl , with ð� � �ÞT
indicating the trace-free symmetrized part of the enclosed
indices. Following Ref. [14], one can relate this Wilson

coefficient with the tidal response coefficient kðlÞV by
matching the gauge-invariant magnetic field as
Bij ¼ ΨV∇½iϵkj�∇kYm

l , such that

λðBÞl ¼ kðlÞV ð−1Þl π
3
2

2l−2
Γð1

2
− lÞ

Γð1
2
Þ2 r2lþ1

h : ð23Þ

This result shows that the coupling to B2 operators in the
worldline EFT is absent when the magnetic polarizability
vanishes, and that they have the same sign for any l∈N.

C. GR: Tensor TLN

The spherical symmetry of the background geometry
allows us to decompose metric perturbations into scalar,
vector and tensor spherical harmonics:

htt ¼
X
l;m

ftðrÞH0ðt; rÞYm
l ;

htr ¼
X
l;m

H1ðt; rÞYm
l ;

hrr ¼
X
l;m

frðrÞ−1H2ðt; rÞYm
l ;

hti ¼
X
l;m

½H0ðt; rÞ∇iYm
l þ h0ðt; rÞϵji∇jYm

l �;

hri ¼
X
l;m

½H1ðt; rÞ∇iYm
l þ h1ðt; rÞϵji∇jYm

l �;

hij ¼
X
l;m

r2½Kðt; rÞγijYm
l þGðt; rÞ∇ði∇jÞTY

m
l

þ h2ðt; rÞϵkði∇jÞ∇kYm
l �: ð24Þ

The perturbations H0; H1; H2;H0;H1;K; G belong to the
parity-even sector, while h0, h1, h2 belong to the parity-odd
sector on the 2-sphere. At the linearized level, the two types
of perturbations decouple in any theory that is parity
invariant [such as (2)].
For proof of principle, we focus on parity-odd perturba-

tions. Since there is only one physical combination of these
degrees of freedom, we will work in Regge-Wheeler gauge
[62], defined by the condition h2 ¼ 0. Following Ref. [63],
one can introduce an additional auxiliary field χ, such that
the action becomes

SRW ¼
Z

dtdr

�
2χ

�
ḣ1 þ

2

r
h0 − h00

�
− χ2

þ 2f þ 2rf0 − lðlþ 1Þ
r2

fh21

þ lðlþ 1Þ − 2f − 2rf0

r2f
h20

�
: ð25Þ

We can now integrate out h0 and h1 to obtain an action for χ
only. Their equations of motion then set

h0 ¼ −
rf

ðl − 1Þðlþ 2Þ ð2χ þ rχ0Þ;

h1 ¼ −
r2

ðl − 1Þðlþ 2Þf χ̇: ð26Þ

Lastly, introducing the Regge-Wheeler perturbation varia-

ble ΨRW ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2r2
ðl−1Þðlþ2Þ

q
χ, the action reduces to

SRW ¼
Z

dtdr⋆

�
1

2
Ψ̇2

RW −
1

2

�
∂ΨRW

∂r⋆

�
2

−
1

2
VRWðrÞΨ2

RW

�
;

VRWðrÞ ¼ f
lðlþ 1Þ

r2
−
3ff0

r
: ð27Þ

The equation of motion of ΨRW takes the form
�
−
∂
2

∂t2
þ ∂

2

∂r2⋆
− VRWðrÞ

�
ΨRW ¼ 0: ð28Þ

As before, focusing on the static limit and assuming
asymptotic flatness at spatial infinity, one finds that ΨRW
can be expanded asymptotically as

ΨRW ¼ c1rlþ1

�
1þ � � � þ kðlÞRW

�
r
rh

�
−2l−1

þ � � �
�
: ð29Þ

The coefficient kðlÞRW denotes the axial (magnetic) tensor
tidal Love number.
In the worldline effective field theory approach, we

consider coupling the black hole point particle to gravity.
To determine the tidal response of the point particle and
match it to the Love numbers found in the full theory, one

DE LUCA, KHOURY, and WONG PHYS. REV. D 108, 044066 (2023)

044066-6



has to include higher-derivative worldline couplings to the
graviton, usually built from the Weyl tensor Cμνρσ. The

magnetic part can then be constructed as Bð2Þ
abjc ≡ C0abc,

such that the corresponding worldline effective action at
quadratic order in the graviton fluctuation gμν ¼
ημν þ 2hμν=MPl is given by

S ¼ 1

2

Z
dτ

�
e−1gμν

dxμ

dτ
dxν

dτ
− em2

�

þ
Z

d4x
ffiffiffiffiffiffi
−g

p �
R
2κ2

þ…

�

þ
X∞
l¼1

1

2l!

Z
dτ

λðCBÞ
l

2
ð∂ða1 � � � ∂al−2Bð2Þ

al−1alÞT jbÞ
2: ð30Þ

The last operator encodes the magnetic susceptibility of the
black hole. The Wilson coefficient λðCBÞ

l can be related to
the tidal response coefficient kRW using the matching
C0rij !r→∞∇½iϵkj�∇kYm

l r
−1ΨRW, to obtain [14]

λðCBÞ
l ¼ −kðlÞRWð−1Þl

lþ 1

l
π

3
2

2l−2
Γð1

2
− lÞ

Γð1
2
Þ2 r2lþ1

h : ð31Þ

This equation shows therefore how to relate the response
coefficients in the worldline EFT to the tidal Love number
computed within GR, and it highlights that they have
opposite sign for any l∈N.

IV. NEUTRAL BLACK HOLES IN ðRμν
ρσÞ3

In this Sectionwe describe the calculation of the tidal Love
numbers for vector and tensor perturbations in the case of
neutral black holes, including a ðRμν

ρσÞ3 correction in the
Lagrangian. Recall that the corrected black hole background
metric in this case is given by Eq. (4) with r− ¼ 0:

ft ¼
ðr − rhÞ

r

�
1þ ακ2

rr3h

�
98

�
rh
r

�
5

−
10

r4
r5h − r5

rh − r

��
;

fr ¼
ðr − rhÞ

r

�
1þ ακ2

rr3h

�
−
10

r5
r6h − r6

rh − r

��
: ð32Þ

A. Vector TLN

The presence of a term ðRμν
ρσÞ3 in the action for a spin-1

tidal field has the effect of modifying the background
metric of a neutral black hole, as shown above, but
otherwise leaves the vector field equation of motion
invariant. The latter is given by

∇νFμν ¼ 0; ð33Þ

in terms of the vector field strength Fμν. The corresponding
axial perturbation satisfies then the equation of motion in
the static limit

d2Ψl

dr2⋆
− ftðrÞ

lðlþ 1Þ
r2

Ψl ¼ 0; ð34Þ

where the tortoise coordinate is now defined as
dr⋆ ¼ dr=

ffiffiffiffiffiffiffiffiffi
frft

p
. This equation can be solved perturba-

tively in the coupling strength α. Considering the multipole
moments l ¼ 1 and l ¼ 2, and imposing regularity of the
solution at the black hole horizon rh, the solution at zeroth
order in α has the following form:

Ψð0Þ
l¼1 ¼ c1r2;

Ψð0Þ
l¼2 ¼ c1

�
r3 −

3

4
r2rh

�
; ð35Þ

in terms of a dimensional constant c1. We stress that we
have made use of the fact that the metric perturbations fr
and ft coincide at zeroth-order in α. The absence of an
induced dipolar or quadrupolar term implies that the dipole
and axial vector TLNs of an unperturbed neutral black hole
are both zero.
At first order in α, the metric perturbations fr and ft

receive a correction, as shown in Eq. (32). Expanding the
solution as Ψ ¼ Ψð0Þ þ αΨð1Þ, one finds that the first-order
solutions are given by

Ψð1Þ
l¼1 ¼ −c1

κ2

r2h

�
4

�
rh
r

�
þ 3

�
rh
r

�
2

þ 12

5

�
rh
r

�
3

− 22

�
rh
r

�
4
�
;

Ψð1Þ
l¼2 ¼ −c1

κ2

rh

�
15

2

�
r
rh

�
2

þ 219

20

�
rh
r

�
2

−
197

5

�
rh
r

�
3

þ 33

2

�
rh
r

�
4
�
: ð36Þ

Combined with (35), the full solutions in the asymptotic regime r → ∞ thus take the form,

Ψl¼1 ¼ Ψð0Þ
l¼1 þ αΨð1Þ

l¼1 ≃ c1r2
�
1þ kðl¼1Þ

V

�
rh
r

�
3
�
;

Ψl¼2 ¼ Ψð0Þ
l¼2 þ αΨð1Þ

l¼2 ≃ c1r3
�
1þ kðl¼2Þ

V

�
rh
r

�
5
�
: ð37Þ
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From these one can extract the tidal response coefficients as

kðl¼1Þ
V ¼ −4

ακ2

r4h
;

kðl¼2Þ
V ¼ −

219

20

ακ2

r4h
: ð38Þ

The corresponding Wilson coefficients in the worldline
effective field theory approach are then

λðBÞl¼1 ¼ −16π
ακ2

rh
;

λðBÞl¼2 ¼ −
73

5
πrhακ2: ð39Þ

This result shows that a positive value for the coupling α, as
dictated by the WGC, would result in a negative axial-
vector tidal Love number.
Proceeding to the computation for higher l, we know

that the extraction of the Love number is not well defined,
as discussed in the previous section. In particular, the
perturbative solution at l ¼ 3 is given by

Ψl¼3 ¼ c1

�
r4 −

4r3rh
3

þ 2r2r2h
5

�

þ c1ακ2
�
−
40

3

�
r
rh

�
3

þ 8

�
rh
r

�
2

−
�
184616

1225
−
704

7
ln

�
r
rh

���
rh
r

�
3

þO
��

rh
r

�
4

;

�
rh
r

�
4

ln

�
r
rh

���
: ð40Þ

By identifying the coefficient of r−l, one finds

“kl¼3
V ” ¼ ακ2

r4h

�
−
184616

1225
þ 704

7
ln

�
r
rh

��
; ð41Þ

where a running behavior appears.
Let us also stress that, in principle, a nonvanishing vector

TLN may arise if one considers the four-derivative term
containing the field strength Fμν, e.g., RμνρσFμνFρσ studied
in [64]. However, since this term neither modify the
background solution nor generate any linear tensor
response for neutral black holes, we have neglected it in
our analysis.

B. Tensor TLN

In this section we compute the TLN in the parity-odd
sector of tensor perturbations, where only h0, h1 and h2 in

Eq. (24) are relevant. We further choose Regge-Wheeler
gauge h2 ¼ 0. The quadratic action, in terms of h0, h1 in a
neutral black hole background, of the theory (2) is

Sð2Þ ¼
Z

dtdr

�
1

4κ2

�
h00 −

2

r
h0 þ ḣ1

�
2

þ j2 þ 2 − 2f − 6rf0 − r2f00

4κ2r2f
h20

þ f
4f þ 6rf0 þ r2f00

4κ2r2
h21 þ αL̃½h0; h1�

�
; ð42Þ

where j2 ¼ lðlþ 1Þ, and f ¼ 1 − rh=r. We have written
ft ¼ f þ αδft, fr ¼ f þ αδfr and collected allOðαÞ terms
in αL̃. The explicit form of the latter is given in Appendix.
The first line in (42) is the same as in GR, while the second
line includes terms coming from theOðαÞ corrections to the
background metric as well as the quadratic action from the
αðRμν

ρσÞ3 operator.
We now extract the gauge-invariant variable by intro-

ducing once again an auxiliary field χ as in [63],

Sð2Þ½h0; h1; χ� ¼
Z

dtdr

�
1

4κ2

�
h00 −

2

r
h0 þ ḣ1

�
2

þ j2 þ 2 − 2f − 6rf0 − r2f00

4κ2r2f
h20

þ f
4f þ 6rf0 þ r2f00

4κ2r2
h21

−
1

4κ2

�
h00 −

2

r
h0 þ ḣ1 − χ

�
2

þ αL̃½h0; h1�
�
: ð43Þ

It is obvious that χ is a gauge invariant variable [65], since
its equation of motion gives

χ ¼ h00 −
2

r
h0 þ ḣ1: ð44Þ

Since we are treating α perturbatively, one can introduce

h0 ¼ hð0Þ0 þ αhð1Þ0 ;

h1 ¼ hð0Þ1 þ αhð1Þ1 ;

χ ¼ χð0Þ þ αχð1Þ: ð45Þ

Keeping terms up to first order in α, the quadratic action
becomes

DE LUCA, KHOURY, and WONG PHYS. REV. D 108, 044066 (2023)

044066-8



Sð2Þ½hð0Þ0 ; hð0Þ1 ; χð0Þ; hð1Þ0 ; hð1Þ1 ; χð1Þ� ¼ Sð2Þ½hð0Þ0 ; hð0Þ1 ; χð0Þ� þ α

Z
dtdr

�
1

2κ2

�
hð0Þ00 −

2

r
hð0Þ0 þ ḣð0Þ1

��
hð1Þ00 −

2

r
hð1Þ0 þ ḣð1Þ1

�

þ j2 þ 2 − 2f − 6rf0 − r2f00

2κ2r2f
hð0Þ0 hð1Þ0 þ f

4f þ 6rf0 þ r2f00

2κ2r2
hð0Þ1 hð1Þ1

−
1

2κ2

�
hð0Þ00 −

2

r
hð0Þ0 þ ḣð0Þ1 − χð0Þ

��
hð1Þ00 −

2

r
hð1Þ0 þ ḣð1Þ1 − χð1Þ

��
: ð46Þ

It is clear that hð1Þ0 and hð1Þ1 are now Lagrange multipliers. Their equations of motion give

hð0Þ0 ¼ rh − r
j2 − 2

ð2χð0Þ þ rχð0Þ0Þ;

hð0Þ1 ¼ r3

ðj2 − 2Þðrh − rÞ χ̇
ð0Þ: ð47Þ

After substituting these back to the action (46), we are left with an action for χð0Þ and χð1Þ only.4 The equation of motion for χ
from this action can be recast in the Regge-Wheeler form after rescaling χ by

χð0Þ þ αχð1Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðj2 − 2Þ

p
r

ðΨð0Þ þ αΨð1ÞÞ: ð48Þ

The resulting equations are

�
−∂2t þ ∂

2
r� þ

�
1 −

rh
r

�
3rh − j2r

r3

�
Ψð0Þ ¼ 0;

�
−∂2t þ ∂

2
r� þ

�
1 −

rh
r

�
3rh − j2r

r3

�
Ψð1Þ ¼ S½Ψð0Þ�; ð49Þ

where ∂r� ¼ ð1 − rh=rÞ∂r. The explicit form of the source
term S½Ψð0Þ� is given in Appendix.
We are now ready to study the static limit where Ψ only

depends on r. It should be emphasized that the static limit
should be taken in the gauge invariant combination Ψ
instead of h0 and h1. Then the solution for h0, h1 are
calculated from Ψ. Following the procedure in the previous
sections, the regular solution for Ψl¼2 is

Ψl¼2 ¼ c1r3 þ
ακ2

rh
c1

�
−240

�
rh
r

�
2

þ 250

�
rh
r

�
3
�
: ð50Þ

Therefore the tidal Love number in the Regge-Wheeler
variable for l ¼ 2 is5

kðl¼2Þ
RW ¼ −240

ακ2

r4h
: ð51Þ

Correspondingly, the coupling in the worldline effective
action is

λðCBÞ
l¼2 ¼ 480πrhακ2: ð52Þ

This result shows that a positive value for the coupling α, as
dictated by the WGC, would result in a positive parity-odd
tidal Love number. See Fig. 2 for a pictorial representation.
When one continues the analysis to higher l, the story

becomes subtle, as mentioned earlier, since the identifica-
tion of the Love number is unclear. For instance, the
perturbative solution at l ¼ 3 is

Ψl¼3 ¼ c1r4 þ c1ακ2
�
−
25

3

�
r
rh

�
3

− 480

�
rh
r

�
2

þ 125

49

�
−391þ 448 ln

�
r
rh

���
rh
r

�
3

þO
��

rh
r

�
4

;

�
rh
r

�
4

ln

�
r
rh

���
: ð53Þ

One can still identify the coefficient of 1=rl, which is

“kðl¼3Þ
RW ” ¼ 125

49

ακ2

r4h

�
−391þ 448 ln

�
r
rh

��
: ð54Þ

However, it is unclear whether this is still the Love number
as it is no longer the dominating tail. The same issue

4Of course, even though hð1Þ0 ; hð1Þ1 are gone in the Lagrangian,
there are still equations of motion relating them to χð0Þ, χð1Þ.

5A similar computation has been performed in Ref. [66] for the
metric tensor perturbations ðh;HÞ, without however estimating
the TLN for the more appropriate gauge invariant variable.
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appears when one consider a tidal scalar field in the same
background [61].
We conclude this section with a final remark on the

assumed response function. In particular, we have computed
only the “linear” response of the black hole to the external
tidal perturbation. In principle a αðRμν

ρσÞ3 term would
generate also a nonlinear responsewhen the nonlinear source
term in the equation of motion is taken into account. At each
order of the perturbative series in α, the nonlinear source are
simply the product of lower-order terms in the series. For
instance, at OðαÞ and l ¼ 4, a source proportional to
ðCl¼2Þ2 should appear, where Cl¼2 is the magnitude of
the source tidal field. However, it mixes parity-odd and -even
modes, and requires the use of Clebsch-Gordan coefficients
between vector and tensor spherical harmonics. The com-
putation of this responsewould be quite challenging, and the
extraction of the corresponding TLN is still not well defined.
We have therefore neglected this contribution for the sake of
our discussion.

V. CONCLUSIONS

Within the low-energy effective field theory, extremal
black holes should be able to decay according to the WGC.
The latter sets nontrivial bounds on the sign of the
coefficients of higher-order derivative corrections to GR.
On the other hand, the presence of these operators can have
an impact on the multipolar structure of black holes.
Indeed, even though neutral black holes in pure GR are
characterized by a vanishing tidal Love number, which
measures the static deformability of compact objects under
external tidal perturbations, the presence of these higher-
order derivative corrections can modify this result and give
rise to a nonzero tidal Love number.
As a proof of concept, in order to explicitly show the

connection between TLNs and the WGC, we have focused
on a αðRμν

ρσÞ3 term in the effective action of gravity, which
can arise in a theory with higher derivatives or by integrating
out heavy massive fields [32]. We showed that the WGC
dictates only positivevalues for the couplingα, assuming that
the coefficients of the four-derivative operators are small
enough compared to α. By computing the tidal deformability
of neutral black holes, which is insensitive to four-derivative

operators and receives leading-order correction from α, we
concluded that only positive values for the tidal Love
numbers (in the point particle effective action) are allowed
in this specific example. As a consequence, if negative TLNs
is measured for neutral BHs, in order to obey the WGC, it
signals that there must exist relevant four-derivative oper-
ators that correct the charge-to-mass ratio for extremal BHs.
Given the dimensionful nature of this coupling, we stress

that integrating out massive fields with a lower cut-off scale
would eventually enhance the tidal Love numbers, and that
a positive value for the coupling may imply the existence of
a very light bosonic field in the theory. On the other hand,
the detection of a negative tidal Love number may give
bound the coefficients of four derivative operators in order
to satisfy the WGC. Among the four-derivative operators,
those composed of Rμνρσ and Fμν, such as α1κ4ðFμνFμνÞ2
and α3κ

2WμνρσFμνFρσ , will contribute to the charge-to-
mass ratio of extremal BHs, on top of αðRμν

ρσÞ3, as

jQj
M

¼
ffiffiffi
2

p

κ

�
1þ 2κ2

5r2h
ð4α1 − α3Þ þ

16

21

ακ2

r4h

�
: ð55Þ

If the TLNs of neutral BHs are negative (α < 0), the WGC
implies that

4α1 − α3 > −
40

21

α

r2h
: ð56Þ

Also, in this case we expect that the TLNs of extremal BHs
would be proportional to some combination of the oper-
ators’Wilson coefficients as k2 ∝ Oðα1; α3Þκ2=r2h, showing
that the connection between TLNs andWGCwould hold as
well for those objects. We leave a detailed analysis of these
operators to future work [67].
Constraints on the sign and size of the couplings of

higher-derivative terms in the effective action of gravity can
also be set from other observables, such as scattering
amplitudes. For example, the presence of terms like
Gauss-Bonnet operators are known to affect also the
graviton 3-point interaction, leading to violations of cau-
sality unless the value of the coupling α is very small,
independently of its sign [68]. Similarly, higher-derivative
terms may impact the graviton four-point function, which

FIG. 2. Pictorial representation of the tidal deformability of a black hole with a ðRμν
ρσÞ3 term and corresponding sign of the tensor tidal

Love number for the multipole l ¼ 2.
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can be used, using arguments of causality and unitarity, to
impose constraints on their coupling coefficients [29,69–72].
Furthermore, we stress that higher-derivative operators like
ðRμν

ρσÞ3may impact aswell on the black hole entropy,which
would be corrected by a term proportional to α, with the
entropy increasing only for positive values of α [66].
Finally, a complete unitarity analysis of all derivative-six

operators, composed of Rμν
ρσ and Fμν, along the line of

[52–54], would be valuable.
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APPENDIX: EXPLICIT FORM OF THE ACTION
AND EQUATION OF MOTION FOR Ψ

For completeness, we report the explicit form of the
action L̃½h0; h1� in Eq. (42) and the source term for the
equation of motion of the perturbation field Ψ in the tensor
sector of Eq. (49). The former is given by

L̃½h0; h1� ¼
ðj2 − 2Þrð5r4rh þ 5r3r2h þ 5r2r3h þ 161rr4h − 226r5h þ 5r5Þ − 6ðj2 − 2Þ2r2r4h þ 42ðr − rhÞð8r − 15rhÞr4h

2r8ðr − rhÞr3h
h20

þ 3rhð39rh − 10j2rÞḣ00h0
r7

þ 3rhð4ðj2 − 6Þrþ 27rhÞh000h0
2r6

þ 6rhð3r − 4rhÞh0000 h0
r5

þ 3rhðrh − rÞh00000 h0
r4

þ 6ðj2r − rhÞrhḧ0h0
r4ðr − rhÞ2

þ ð6r2h − 9rrhÞḧ00h0
r3ðr − rhÞ2

þ 3rhḧ
00
0h0

r2ðr − rhÞ

þ 3rhðð13j2 þ 10Þr2 − 3ð5j2 þ 24Þrhrþ 66r2hÞḣ1h0
r7ðr − rhÞ

þ 3rhðð4 − 8j2Þrþ 9rhÞḣ01h0
2r6

þ 6rhð3rh − 2rÞḣ001h0
r5

þ 3ðr − rhÞrhḣ0001 h0
r4

þ 3rh
⃛h1h0

r2ðr − rhÞ2
þ 3rh

⃛h01h0
r2ðrh − rÞ

þ h21ðj2 − 2Þð5r6 þ 6ðj2 − 2Þr4hr2 − 3ð2j2 þ 17Þr5hrþ 58r6hÞ
2r9r3h

þ 3rhð7j2r2 − 5ðj2 þ 5Þrhrþ 21r2hÞḣ0h1
r7ðr − rhÞ

þ 3rhðð12 − 8j2Þrþ 9rhÞḣ00h1
2r6

þ 3rhð6rh − 5rÞḣ000h1
r5

þ 3ðr − rhÞrhḣ0000 h1
r4

þ 6rh
⃛h0h1

r3ðr − rhÞ
þ 3rh

⃛h00h1
r2ðrh − rÞ

þ 6ðj2 − 2Þðr − rhÞ2rhh001h1
r7

þ 3rhð4ðj2 þ 4Þr − 33rhÞḧ1h1
2r6

þ 3rhð3r − 4rhÞḧ01h1
r5

þ 3rhðrh − rÞḧ001h1
r4

þ 3rhh⃜1h1
r2ðr − rhÞ

−
6ðj2 − 2Þð5r − 7rhÞðr − rhÞrhh01h1

r8
: ðA1Þ

We stress that in principle the expression can be further simplified. The source term is instead given by

1

κ2
S½Ψð0Þ� ¼

�
4ðr − rhÞ2ð5r5 þ 5r4rh þ 5r3r2h þ 5r2r3h − 211rr4h þ 194r5hÞ

r8r3h

�
∂
2
rΨð0Þ

−
�
2ðr − rhÞð5r6 − 5r5rh − 5r4r2h − 5r3r3h − 5r2r4h − 203rr5h þ 212r6hÞ

r9r3h

�
∂rΨð0Þ

−
�
2j2ð5r6 − 432r2r4h þ 900rr5h − 473r6hÞ

r9r3h
þ 6ð5r7 − 10r6rh þ 432r2r5h − 915rr6h þ 488r7hÞ

r10r3h

�
Ψð0Þ; ðA2Þ

where we have repeatedly used the equation of motion (49) for Ψð0Þ to reduce the higher-order derivative terms from
ðRμν

ρσÞ3.
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