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Previous work demonstrated effective laser frequency noise (LFN) suppression for Laser Interferometer
Space Antenna (LISA) data from raw phasemeter measurements using a Markov Chain Monte Carlo
(MCMC) algorithm with fractional delay interpolation (FDI) techniques to estimate the spacecraft
separation parameters required for time-delay interferometry (TDI) under the assumption of a rigidly
rotating LISA configuration. Including TDI parameters in the LISA data model as part of a global fit
analysis pipeline enables gravitational wave inferences to be marginalized over uncertainty in the
spacecraft separations. Here we extend the algorithm’s capability to perform data-driven TDI on LISA in
Keplerian orbits, which introduce a time-dependence in the arm-length parameters and at leastOðMÞ times
greater computational cost since the filter must be applied for every sample in the time series of sample size
M. We find feasibility of arm-length estimation on ∼day-long timescales by using a novel Taylor-expanded
version of the fractional delay interpolation filter that allows half of the filter computation to be calculated
and stored before MCMC iterations and requires shorter filter lengths than previously reported. We
demonstrate LFN suppression for orbiting LISA using accurate arm-length estimates parameterized by
Keplerian orbital parameters under the assumption of unperturbed analytical Keplerian orbits, and explore
the potential extension of these methods to arbitrary numerical orbits.
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I. INTRODUCTION

Astrophysical sources of gravitational waves (GW) in
the 0.1 mHz–0.1 Hz band will be detected through the
space-based LISA (Laser Interferometer Space Antenna)
mission set to launch in the mid 2030s. LISA combines
three spacecraft separated by a mean inter-spacecraft
distance of ∼2.5 × 106 km to measure the pathlength
change of the free-falling test masses induced by GWs
using laser interferometry [1].
Because LISA is in a rotating heliocentric orbit, the

interspacecraft distances will differ and vary in time,
leaving a fractional frequency fluctuation amplitude
of Δν

ν ¼ 10−13 Hz−1=2 remaining in the data. Typical GW
signals are found near 10−21 Hz−1=2, requiring laser
frequency noise (LFN) suppression. Time-delay interfero-
metry (TDI) is a well-studied algebraic operation to
suppress LFN adequately below other secondary noises
such as the test-mass acceleration and optical metrology
system noises for GW signal analysis [2]. TDI works by
linearly combining the LISA interferometric measurements
delayed appropriately by the light travel time between
spacecraft to synthesize a digital equal-arm interferometer.

The LISA mission will use psuedorandom noise phase
modulation (PRM) encoded in the measurements to obtain
the spacecraft separations L (i.e., “arm-lengths,” delays
L=c) needed in the TDI combinations.
There are alternative data-driven methods that provide a

back-up method to PRM that suppress LFN from the raw
LISA measurements such as [3–6]. This paper is an
extension of [5] to estimate the time-varying delays needed
for second-generation TDI that accounts for the helio-
centric motion of the LISA array using a Markov chain
Monte Carlo (MCMC) algorithm. The use of MCMC
methods to estimate arm length posteriors allows one to
marginalize over their uncertainty when computing the
LISA response function to GWs and opens the possibility
to integrate TDI into the LISA “global fit” as demonstrated
in [7]. High signal to noise GW sources were found to
require accurate orbital models that account for the arm
length time-dependence when computing the GW response
function [8], indicating the importance of quantifying the
spacecraft separation uncertainty.
Bayesian TDI builds upon time-delay interferometric

ranging (TDIR) which estimates the arm lengths from raw
interferometer measurements by minimizing the power of
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the residual LFN [6] which relies on fractional delay
interpolation (FDI) [9] to estimate the required nanosecond
precision delays that occur between samples telemetered to
Earth. Our previous work used an MCMC to estimate the
delays in a rigidly rotating LISA scenario where the clock-
wise and counterclockwise light travel times differ but
remained time-independent. We found that a shorter filter
length can be used by limiting the maximum frequency in
the likelihood function to reduce data loss in the presence
of data gaps. This work extends the ideas of Bayesian data-
driven TDI to assess feasibility in the realistic case of LISA
heliocentric motion. We review second-generation TDI and
describe the relevant LISA measurement details in Sec. II.
We introduce a new highly efficient formulation of the
Lagrange FDI filter in Sec. III B and examine the computa-
tional optimization that would be crucial for Bayesian TDI
methods. We explore the MCMC in Sec. III, and a way to
parameterize the arm length time dependence in the case of
LISA on Keplerian orbits in Sec. IVA. Finally we dem-
onstrate a promising method to estimate arm lengths in the
realistic case of arbitrary non-Keplerian orbits that account
for all other forces other than solar gravitational motion in
Sec. IV B.

II. LISA MEASUREMENT DESCRIPTION
AND SECOND-GENERATION TDI

We use the LISA Simulation software [10] for the data
simulation to account for the heliocentric motion of the
rotating array and therefore follow the LISA labeling
conventions used there. The arm length labels in reference
to each spacecraft are demonstrated in Fig. 1. The meaning
of the first and second indices of a measurement has
essentially been alternated from the notation in [5], and we
again follow the split interferometry design described
in [11]. The science measurement sij contains the GW
signal and is the measurement exchanged between two

separate spacecraft; sij is received on spacecraft i from j.
The test mass measurement εij is the motion of the test
mass on spacecraft i that is adjacent to spacecraft j, and the
reference measurement on τij interferes the light between
the two optical benches on a given spacecraft and the i
indice is denoted as the receiving. The distance between
two spacecraft (LijðtÞ, i.e. “arm lengths,” “delays”) will
differ depending on the direction the laser light is traveling
due to the Sagnac effect [LijðtÞ ≠ LjiðtÞ]. The i indice in
the arm length denotes the receiving spacecraft and the
j indice denotes the emitting spacecraft. We ignore
all secondary noises and GW in the simulated data
(Sec. III C) for this demonstration but we show the laser
phase noise pij on the optical bench on spacecraft i that is
adjacent to spacecraft j that enters in the three interfero-
metric measurements given in Eqs. (1) and (2) and include
our assumption of the test-mass acceleration noise nTMij and
optical metrology system noise nOMS

21 placement. Cyclic
permutation of both indices for both sets of Eqs. (1) and (2)
yield the remaining 12 measurements.

s21 ¼ p12;21 − p21 þ nOMS
21

τ21 ¼ p23 − p21

ε21 ¼ p23 − p21 − 2nTM21 ð1Þ

s23 ¼ p32;23 − p23 þ nOMS
23

τ23 ¼ p21 − p23

ε23 ¼ p21 − p23 þ 2nTM23 ð2Þ

A. TDI 2.0 for LISA in heliocentric orbit

The main purpose of this work is to demonstrate
feasibility of Bayesian-estimated arm-lengths for the real-
istic orbiting LISA scenario. The heliocentric motion of the
three spacecraft array introduces a time dependence on
LijðtÞ with L̇ij ∼ 10 m=s which leaves fractional frequency
fluctuations present on Oð10Þ times above the secondary
noises in the GW signal-rich portion of the LISA band
[2,12] if the “first generation” combinations in the previous
Bayesian TDI work [5] are used. The “second-generation”
(i.e., TDI 2.0) combinations average out the time-
dependent effects by linearly approximating each light
path (LijðtÞ ≈ Lij þ L̇ijt) and synthesizing two equal light
paths that now strongly depend on the order that each
one-way beam is applied [13] which now requires non-
commuting delay operators Dij in the second-generation
combinations. LFN is suppressed sufficiently to first order
in spacecraft distance velocities L̇ij. We continue use of the
common 16-linkMichelson combinations [Eq. (6)] denoted
with a “2” subscript [X2ðtÞ, Y2ðtÞ, Z2ðtÞ] since they
are second-generation combinations. The ;DijDmn

notation

FIG. 1. Arm length labeling convention in relation to spacecraft
number. Figure does not reflect that each spacecraft contains two
test masses and two optical measurement systems.
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indicates the time delay operator DmnDij that acts on a
function fðtÞ as given in Eq. (3), and similarly for more
delays; the operator closest to a measurement is applied
first and subsequent delays act on the measurement and
previously-applied delays. The use of a semicolon indicates
the delays do not commute to keep standards in the
literature. The first order expansion to the arm length rate
of change is shown in Eq. (5), and the comma ;DijDmn

notation denotes constant valued estimates of commuting
operators.

DmnDijfðtÞ ¼ fðtÞ;DijDmn
ð3Þ

¼ f

�
t −

Lijðt − LmnðtÞ=cÞ
c

−
LmnðtÞ

c

�
ð4Þ

≈ f;DijDmn
þ ḟ;DijDmn

L̇ijLmn ð5Þ

Cyclic permutation of both indices of Eq. (6) yield the
Y2ðtÞ and Z2ðtÞ combinations for the light paths of the other
two spacecraft.

X2ðtÞ ¼ ½D12D21D13D31 − I �
× ½ðη13 þ η31;D13

Þ þ ðη12 þ η21;D12
Þ;D31D13

�
− ½D13D31D12D21 − I �
× ½ðη12 þ η21;D12

Þ þ ðη13 þ η31;D13
Þ;D21D12

� ð6Þ

The intermediary variables ηij in Eq. (6) are combina-
tions of the interferometric measurements that remove 3 of
the 6 LFN terms, essentially making the LFN the same on
both optical benches on a given spacecraft. Cyclic permu-
tation of both indices twice for both equations of Eq. (7)
provide the 6 intermediary variables.

η12 ¼ s12 þ
τ12 − ε12

2
þD12

ðτ21 − ε21Þ
2

−D12

τ21 − τ23
2

η13 ¼ s13 þ
τ13 − ε13

2
þD13

ðτ31 − ε31Þ
2

þ τ12 − τ13
2

ð7Þ

III. BAYESIAN ESTIMATION OF
TIME-DEPENDENT SPACECRAFT

SEPARATIONS

A. MCMC

The MCMC algorithm utilizes Bayes’ theorem to esti-
mate the posterior distribution pðθ⃗jd⃗Þ of the delay para-

meters θ⃗ ¼ D⃗ijðtÞ given the data d⃗¼fX̃2ðfÞ; Ỹ2ðfÞ;Z̃2ðfÞg
which are the Fourier-transformed TDI combinations, and
various parameterizations for the LijðtÞ time dependence

are described in Sec. IVA. The FDI filter described in
Sec. III B is applied at each iteration of the chain to
precisely determine the measurement time series delayed
by the proposed arm-length. The prior distribution is
uniform in all data models tested, but the parameters
and parameter ranges vary depending on the data as
described in Sec. IV.
The log likelihood function neglecting constant normali-

zation factors is given in Eq. (8).

lnpðd⃗jθ⃗Þ ¼
Xfmax

i¼fmin

�
− lnðjCjÞi −

�XX;Y;Z
j;k

d†
jC

−1
jk dk

�
i

�
; ð8Þ

where fmin ¼ 10−4 Hz and fmax is restricted to 0.03 Hz
instead of 1 Hz which is typically the assumed maximum of
the LISA band. Interpolation error increases dramatically at
frequencies near the 1 Hz maximum and we previously
found in [5] that a 0.1 Hz restriction (just below the transfer
frequency f� ¼ c=L) yields better parameter accuracy using
a lower sampling rate and significantly shorter filter length.
We restrict the likelihood calculation to below 0.03 Hz
to reduce the computational cost of time-varying FDI
filters and examine LFN suppression to the most relevant
parts of the LISA band. Assuming that LFN is white noise in
the LISAband 10−4 − 1 Hzwith fractional frequency power
spectral density (PSD) SLFNy ¼ 10−26 Hz−1, contributions to
the likelihood integral above 0.03 Hz are negligible.
The noise covariance matrix CðfÞ describes the TM and

OMS noises that remain after TDI application in the d†
j and

dk terms. We assume equal and constant arm lengths in the
calculation ofCðfÞ and use the sameCðfÞ that is applied to
the rigidly rotating LISA scenario so that all diagonal
elements are given by Eq. (9),

Cjj ¼ 16 sin2ð2πfLÞSOMS
y þ ð8 sin2ð4πfLÞ

þ 32 sin2ð2πfLÞÞSOMS
y ð9Þ

and all off-diagonal elements are given by Eq. (10)

Cjk ¼ ð4STmy þ SOMS
y Þð−4 sinð2πfLÞ sin ð4πfLÞÞ ð10Þ

since we are focused on arm length estimation in the case of
data containing LFN-only. We found no effect on arm
length estimation when the delay parameters were included
in the unequal-arm noise covariance matrix in [5], but we
could similarly derive the second-generation noise covari-
ance matrix elements in future studies that include TM and
OMS noises in the data.
We assume the TM and OMS noise PSDs converted to

fractional frequency are as given in [1] shown in Eq. (11).
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STMy ðfÞ ¼ ð2πfcÞ−2ð3 × 10−15Þ2
�
1þ

�
4 × 10−4

f

�
2
��

1þ
�

f
8 × 10−3

�
4
�

Hz−1

SOMS
y ðfÞ ¼

�
2πf
c

�
2

ð1.5 × 10−11Þ2
�
1þ

�
2 × 10−3

f

�
4
�

Hz−1: ð11Þ

B. Optimized Lagrange fractional delay
interpolation filter

This work extends upon the ideas of Bayesian data-
driven TDI [i.e., time-delay interferometric ranging
(TDIR)] [5] to include time-varying delays. TDIR was
first introduced in [6] and relies heavily on the ideas of [9]
which showed that by interpolating between integer sam-
ples to land on delay estimates at nanosecond precision and
minimizing the power of the residual LFN, one can perform
TDI from the raw interferometric measurements and obtain
LFN suppression sufficiently below the secondary noises.
We previously used the same Lagrange-windowed frac-
tional delay interpolation (FDI) filter as shown in [9] and
adjusted the filter length requirements for the sampling rate
and cutoff frequency for the data simulated in [5]. Now that
the delays are time-varying, re-use of the same Lagrange
filter would require a new Nth order filter for every Mth
sample where M is the number of samples in the data. The
previously used Lagrange filter is too computationally
costly for updating the filter each sample when working
with stochastic sampling algorithms such as an MCMC, so
we adapted the Lagrange-windowed sinc filter based off
of [14] to remove half of the computation out of every
MCMC iteration which dramatically reduces total cost and
is described as follows. Equation (12) is the FDI process for
a constant delay that is applied to every sample of the time
series.

fðn−DÞ¼fðnÞ�wLðDÞsincðn−DÞ

¼
XðN−1Þ=2

k¼−ðN−1Þ=2
fðnþkÞwLðk;DÞsincðD−kÞ ð12Þ

The Lagrange window is given in Eq. (7) of [9]. We used
the convolution theorem and computed the Fourier trans-
forms of the LISA measurements before beginning MCMC
iterations which significantly reduced the computation time
in the constant delay case. Now, the overall delay applied to
a measurement is a function of time so the interpolation
filter is different for each sample in the time series
[Eq. (13)].

fðn −DnÞ ¼ fðnÞ � wLðDnÞsincðn −DnÞ ð13Þ

We implement a Taylor series expansion of the delayed
signal based on [14] in terms of the difference operator

Δf½n� ¼ f½n� − f½n − 1�;

powers of the LISA measurements f½n� and factorial
polynomials of the delays

D½k� ¼ DðDþ 1Þ…ðDþ k − 1Þ

to result in Eq. (14).

fðn −DnÞ ¼
XN
k¼0

Δ½k�f½n� ð−DnÞ½k�
k!

ð14Þ

The Δ½k�f½n� powers of the measurements are computed
and stored for a given Nth order filter before running the
MCMC iterations and Δ½k�f½n� ¼ ΔΔ½k−1�f½n�. Paper [14]
quotes 3N − 2 additions and 3N − 1 multiplications for an
Nth order filter per output sample. Storing the Δ½k�f½n�
factors of Eq. (14) beforehand further reduces the new
filter’s additions to N per output sample. This results in
approximately 30 times greater computational speed
improvement for one MCMC iteration on one hour of
data. Following standard guidelines set by the LISA
Consortium for interpolating filters, the filter is shifted
so that the nth sample to delay is centered in the middle of
the filter and both even and odd filter lengths can be used.
This new Lagrange filter formulation also requires

shorter filter lengths than the standard Lagrange-windowed
sinc or Lagrange polynomials. The previous Bayesian
TDIR work that used Eq. (12) found that the minimum
filter length N required was ≈ 23 for a sampling rate
fs ¼ 4 Hz and a likelihood function maximum frequency
of 0.1 Hz. The new Taylor series representation requires
N ¼ 7 for the same sampling specifications resulting in
4 seconds of data saved each time the delay estimation
process must be recomputed to account for gaps in
mission data.
Additionally, the code implements an algebraically-

reduced and optimized version of the TDI combinations
by substituting Eq. (7) into Eq. (6) and combining terms
with the same delay operator combination so that each
unique delay sequence need only be applied once which
significantly reduces run-time. We implement the ḟ;Dij

term
in Eq. (5) by taking the NumPy numerical gradient of the
delayed signal with second order central differences of the
interior points and first order forward and backwards
differences for the end samples.
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C. Data

We use the LISA Instrument software to simulate the
interferometric measurements sij, τij, and εij. They are
given in units of fractional frequency fluctuations for a
given sampling rate, data duration, data content, reference
frame and orbit model using LISA Orbits. We assume a 4 Hz
sampling rate with varying duration depending on the orbit
model used. We are demonstrating feasibility of Bayesian
TDIR for second-generation TDI, so we consider LFN only
for now, which excludes the optical metrology system
(OMS), test mass (TM), clock and all other optional noises
as well as GWs. We previously showed the effect of the
presence of OMS and TM noises on arm length estimation
in Ref. [5], and found that the MCMC produced adequate
posterior estimates and LFN suppression for the rigidly
rotating LISA configuration assumption. We assume no up-
sampled on-board physics and therefore no anti-aliasing
filter, and keep the remaining arguments to LISA Instrument at
their default settings. Since we are interested in examining
Bayesian estimates of time-varying arm lengths, we explore
both the Keplerian and the numerically computed ESA
(European Space Agency) orbit models in LISA Orbits as
input to LISA Instrument. The Keplerian orbit model
assumes the center of mass of the LISA constellation is
on a heliocentric orbit. A more realistic numerical orbit
model ESA Orbits accounts for gravitational forces from
the Earth and other planetary bodies, as well as other non-
gravitational forces [15]. The LISA Instrument output is in
units of frequency fluctuations Hz and we convert to

fractional frequency fluctuations HzHz−1 so we implement
the suggestion given in [16] to mitigate for the Doppler
shift caused by the armlength variation in Eq. (6) by using
the Doppler delay operator in place of delay operators.
Since the second-generation combinations suppress LFN

to first order in the spacecraft distance velocities, we
analyzed a linear parametrization of the time-dependence
by estimating all 6 Lij and 3 L̇ij (since L̇ij ≈ L̇ji). While we
do see LFN suppression in this parametrization [Fig. 2(b)],
a comparison of the true LijðtÞ in the Keplerian orbit model
to the linear expansion is shown in Fig. 2(a). Even on data
segments with a duration of Oð1Þ hour, the log-likelihood
difference between the use of linear approximated LijðtÞ
and true LijðtÞ was greater than expected for a 9-parameter
model. We additionally tried a quadratic approximation
which added three more L̈ij parameters but all expansion-
based LijðtÞ parameterization methods result in biased
posterior estimates, so a more accurate parametrization is
required.

IV. PERFORMANCE TESTING

A. Keplerian parametrization

The light travel time LijðtÞ is simply the time difference
between reception on spacecraft i from spacecraft j and we
follow the procedure written in the LISA Orbits documenta-
tion based on a post-Minkowskian expansion given that
the emission time is unknown upon reception which
ultimately depends on the positions [Eq. (15)], velocities

FIG. 2. (a) Linear approximation—true time dependence (ΔL32ðtÞ ¼ LLINEAR
32 − LTRUTH

32 ) for arm length L32ðtÞ for LISA in Keplerian
orbit on ∼1 hour of data. (b) TDI residuals X2ðfÞ (magenta), Y2ðfÞ (brown), Z2ðfÞ (red) using linear approximation compared to the
secondary noise reference curve (dashed gray) given by Eq. (9). Although the TDI residual suppresses LFN noise, the linear time
dependence is not sufficient for estimating Lij posteriors.
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and accelerations of the three spacecraft in the solar-system
barycentric (SSB) reference frame at the time of reception.
These quantities are derived from the orbital motion of
each spacecraft using the 6 Keplerian orbital elements
fa; e; ι;M0;Ω;ωg.

xiðtÞ¼rciðtÞ½cosνiðtÞðcosω cosΩi−sinω cos ι sinΩiÞ
−sinνiðtÞðsinω cosΩiþcosω cos ι sinΩiÞ�

yiðtÞ¼rciðtÞ½cosνiðtÞðcosω sinΩiþsinω cos ι cosΩiÞ
þsinνiðtÞðcosω cos ι cosΩi−sinω sinΩiÞ�

ziðtÞ¼rciðtÞ½cosνiðtÞ sinω sin ιþsinνiðtÞ cosω sin ι�; ð15Þ

where rciðtÞ ¼ að1 − e cos EiðtÞÞ is the distance to the
solar system barycenter and EiðtÞ is the eccentric anomaly
related to the true anomaly νiðtÞ by νiðtÞ ¼
arctan

ffiffiffiffiffiffi
1þe

pffiffiffiffiffiffi
1−e

p tan EiðtÞ
2
. The velocities are given by taking

the analytical derivative of Eq. (15), and the accelerations ̈ri
are

̈ri ¼ μ⊙
r⃗i
jr⃗ij3

;

where μ⊙ is the solar gravitational parameter μ⊙ ¼ GM⊙.
In the case of optimized Keplerian orbits for LISA, all 3

spacecraft share the same argument of perihelion ω and
semi-major axis a which defines the eccentricity e and
inclination ι given a tilt angle factor of δ ¼ 5=8 to minimize
the constellation breathing [17]. The eccentric anomalyEðtÞ
is related to the initial mean anomaly parameter M0 by
Kepler’s equation MðtÞ¼M0þðt−t0Þμ⊙a3 ¼EðtÞ−esinEðtÞ
and Mi0 ¼ M10

− 2ði − 1Þπ=3 for spacecraft i∈ f1; 2; 3g.
The longitude of the ascending node for spacecraft i is
Ωi ¼ Ω1 þ 2ði − 1Þπ=3. The longitude of the ascending
node is unconstrained due to the LISA orbit. When the
inclination ι ¼ 0, Ω is undefined, and our orbital elements
are described in ecliptic coordinates in the barycentric
reference frame. The LISA guiding center will be in an
Earth-leading orEarth-trailing heliocentric orbit,making the
inclination i ∼ 0. Therefore the only parameters required to
describe all 6 armlengths LijðtÞ in the Keplerian model are

θ⃗ ¼ fa;M01
;ωg → LijðtÞ:

While these assumptions do not address the realistic nature
of the future LISA spacecraft orbits, this model provides a
demonstration forMCMC-estimated time-dependent delays
for data simulations commonly used in current LISA mock
data challenges. Realistic LISA Orbits are considered in
Sec. IV B.
We use the EMCEE affine-invariant MCMC ensemble

sampler [18] on a 1-day duration of data simulated with the
Keplerian orbit model using the “stretch move” proposal

jumps. We use a uniform prior over each parameter with
pðaÞ ¼ U½1 AU − 2 × 108 m; 1 AUþ 1 × 108 m� which
spans the linear range over a 10 year LISA mission as
estimated in the numerical model given in [15] centered at
1 AU. The remaining angular orbital element priors are
pðM01

Þ ¼ U½−π; π� to avoid incomplete distributions at
the prior boundaries and pðωÞ ¼ U½−π; 0� under the
assumption of clockwise rotation of the spacecraft. To
reduce computational cost even further for a day’s worth of
data with a time-varying FDI filter, we reduce the sampling
rate to 2 Hz and set the maximum frequency in the
likelihood function to fmax ¼ 0.03 Hz since we are pri-
marily concerned with LFN suppression while maintaining
a significant portion of the LISA signal band in the
analysis. The new FDI filter (Sec. III B) to delay the
measurements for each MCMC iteration now requires a
filter length of only N ¼ 7 which saves on run-time and
significantly reduces the amount of data loss.
Figure 3(a) shows the Δa;M01

and Δω posterior dis-
tributions and the 90% credible intervals centered around the
truth values used in the data simulation. The semimajor axis
and the initial mean anomaly of spacecraft 1 are represented
by differences from their truth values that were input into the
data simulation for figure clarity. The 1σ (dark blue) and 2σ
(blue) shaded contours are shown. Figure 3(b) show the
TDI residuals using the median posterior estimates for
fa;M01

;ωg compared to one of the science measurements
containing LFN to demonstrate sufficient noise suppression.
The boundaries of the 90% credible intervals also produce
TDI residuals well below the secondary noises.

B. A proposed Keplerian model for realistic numerical
LISA Orbits

The more realistic orbit model used in the data simu-
lation accounts for the other forces that act upon the LISA
spacecraft such as the gravitational force of other solar
system bodies, especially the Earth’s. The numerical model
described in [15] and used in LISA Orbits points out that the
Earth’s gravity leads to a linear drift in the semi-major axis
and is the most significant perturbation to analytical
Keplerian orbits. We tested whether our sampler could
estimate the time-varying spacecraft separations using an
adiabatic Keplerian model, fitting Keplerian orbital ele-
ments to the spacecraft orbits on short time segments. Now
the spacecraft motion cannot be described by 6 orbital
elements, but rather an osculating orbit with time-varying
orbital parameters for all three spacecraft. If we can sample
the orbital elements on a sufficiently short duration of data
such that the time-variance of the orbital parameters is
negligible for calculation of L⃗ij and sufficient LFN sup-
pression, the posterior results can be interpolated across a
chosen duration of LISA data to estimate the time-varying
Keplerian orbital elements on any chosen scale.
We began by looking at the position and velocity for

each spacecraft in the SSB time frame for 1 hour of
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numerical data and converted them to time-varying
Keplerian orbital elements. Figure 4 demonstrates adequate
LFN suppression using the first time sample of the

converted orbital elements as input to the position equa-
tions in Eq. (15), now with an “i” subscript after every
orbital element since they all differ for each spacecraft. Use
of the first sample for the M0i

parameter is crucial for
accurate spacecraft separations, but one could explore
using median values or other constant valued representa-
tions for the other parameters. We then examined sampling
this 18-parameter model with

θ⃗i ¼ fai; ei; ιi;M0i
;ωi;Ωig; i∈ f1; 2; 3g

for each spacecraft i on the hour-long data segment using
MCMC methods since constant values of the time-varying
parameters suppress LFN. This is a challenging parameter
model to sample, and work is still in progress to find the
best sampling techniques to gain efficiently processed
posteriors. We noticed it performed exceptionally better
when the uniform prior ranges for the semimajor axis were
narrowed from the 10-year expected range to a smaller
range indicating they may need adjustment depending on
the start time and duration of the segment. It is a realistic
expectation that some mission data will provide more
informative priors (e.g. narrowed uniform distributions)
to speed up sampling convergence.
Figure 5 compares the TDI residuals using the constant-

valued orbital elements to calculate the arm lengths versus
the true positions and velocities from the orbit simulation

FIG. 4. TDI residuals X2ðfÞ (orange), Y2ðfÞ (purple), Z2ðfÞ
(green) on 1 hour of arbitrary numerical orbit data using constant-
valued Keplerian orbital elements compared to the secondary
noise reference curve (dashed gray) given by Eq. (9).

FIG. 3. (a) Posteriors for θ⃗ ¼ fa;M01
;ωgL⃗ij parameterization on Keplerian orbital data. The semi-major axis and argument of

perihelion are shown as differences from truth values used in the simulation (Δa and Δω). 90% credible interval quantities are quoted
and 1σ (dark blue) and 2σ (blue) shaded contours are shown. (b) TDI residuals X2ðfÞ (green), Y2ðfÞ (purple), Z2ðfÞ (blue) using median
values from posterior distribution compared to the secondary noise reference curve (dashed gray) given by Eq. (9).
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used as input to the data simulation for a 1-day duration.
Figure 5(a) represents an approximation to the arm length
time dependence. It is the initial value of the time-
dependent Keplerian orbital elements, the same quantity
the MCMC would take as parameters. In reality, the orbital
elements themselves are time-dependent, which would
ultimately result in the true xiðtÞ, yiðtÞ, and ziðtÞ
Cartesian positions for each spacecraft i that were taken
from the data simulation used in Fig. 5(b). Constant values
still suppress LFN, but one needs to examine whether the
resulting logL values are comparable to the true positions
for accurate posterior distributions. For a sufficiently
sampled posterior chain, the Δ logL ∝ ND=2 where ND
is the model dimension. Therefore we would want the logL
difference to be ⪅ 9 for an 18-parameter Keplerian model.
We find that a duration of 9 hours of numerical LISA data
sampled at 4 Hz gives a Δ logL ¼ 7.4 using a filter length
N ¼ 7 and maximum frequency fmax ¼ 0.03 Hz. One
could sample 9 hour segments at a time of LISA data
and interpolate point estimates and credible intervals of the
resulting posterior distribution to estimate the LISA Orbits

independent of any mission ephemeris data as a back-up
and compliment to on-board phase modulating psuedor-
anging once future work demonstrates a successful
Bayesian sampling of the 18 parameter Keplerian model.

V. CONCLUSIONS AND FUTURE WORK

The goal of Bayesian data-driven methods for estimating
the TDI delays is acquiring posterior estimates on the arm

length parameters to be marginalized over when computing
the LISA response function to GWs. We demonstrate the
challenges and ways to mitigate them in the realistic LISA
scenario in heliocentric orbit. We use a Taylor-expanded
version of the FDI filter to compute and store approx-
imately half of the time-varying filter operations prior to
running MCMC iterations to significantly improve com-
putational efficiency. The time-dependent delays are esti-
mated using Keplerian orbital elements for the Keplerian
orbit model and provide a foundation for this parametriza-
tion in the realistic arbitrary orbit scenario. Future efforts to
build upon this data driven TDI strategy will move forward
with MCMC sampling algorithms to fully characterize the
LISA spacecraft orbits by individual estimation of approx-
imately 9 hour segments of data using a 4 Hz sampling rate
and interpolating segment posteriors. Arm length posteriors
can then be incorporated into the LISA response function to
GWs, and marginalization over arm-length uncertainty will
remove potential sources of bias during GW signal
parameter estimation. Future work could also include test
mass and optical metrology system noises in the simulated
data to examine their effect on the more realistic LISA
orbital assumptions explored here to make comparisons
with previous studies on the rigidly rotating LISA
configuration.
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FIG. 5. TDI residuals X2ðfÞ (orange), Y2ðfÞ (purple), Z2ðfÞ (green) on 1 day of arbitrary numerical orbit data using constant-valued
Keplerian orbital elements compared to the secondary noise reference curve (dashed gray) given by Eq. (9) for: (a) Initial values in time
for the Keplerian orbital elements of each S/C. (b) True positions and velocities from orbit data simulation.
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