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This paper studies the quasinormal mode spectrum of the scalar perturbation on the background of the
rotating accelerating black holes. The quasinormal frequency ω and the separation constant λ are calculated
using two methods: the continued fractions method and the direct integration method. The spectrum is
found to include three families of modes: the photon sphere modes, the acceleration modes, and the near
extreme modes. We investigate the effects of back hole parameters such as spin and acceleration. Empirical
formulas are presented for the numerical results, specifically for the acceleration modes in the small black
hole limit or the near extreme modes in the extreme black hole limit. An interesting phenomenon known as
eigenvalue repulsion is observed when the acceleration modes intersect with the near extreme modes at
certain parameter values. The strong cosmic censorship conjecture for spinning C-metric is respected.
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I. INTRODUCTION

Black holes (BHs) are compact objects characterized by
an event horizon in the Universe. Recently, BHs have
gained increasing attention in academia, owing to the
detection of gravitational waves [1–3], as well as the first
depiction of the BH picture [4]. According to the unique-
ness theorem [5], in four-dimensional spacetime, the most
general stationary asymptotically flat BH solution to the
electrovacuum Einstein field equations is the Kerr-Newman
BH [6]. The solution is uniquely characterized by the mass,
angular momentum, and the charge. However, the most
general solution including more parameters is the
Plebański-Demiański metric in the frame of general rela-
tivity [7,8]. This family of metric is of Petrov type D with
an aligned electromagnetic field and cosmological constant
Λ [8–10]. One can reduce the Plebański-Demiański metric
to different solutions with relevant physical interpretations
by certain transformations and limiting procedures.
An intriguing solution called the spinning C-metric

belongs to the general Plebański-Demiański family [11–14].
It describes a boost-rotation-symmetric stationary spacetime
that contains two causally separated rotating BHs accelerat-
ing away from each other in opposite spatial directions [15].
This metric is useful for understanding the behavior of
moving and accelerating BHs, such as those resulting from a
BH superkick [16–19]. A superkick may arise from the
dynamical processes such as scattering, grazing collision, or
merger of two equal-mass BHs [20]. During these events,
anisotropic gravitational radiation is emitted, leading to a net

emission of linear momentum. As a result, the final
remnants undergo gradual acceleration and acquire a recoil
velocity.
At the late time stage of such dynamical procedure, the

remnant BHs can be described by a perturbed state (e.g., the
ringdown stage of the binary BH merger). Besides, BHs
are always perturbed by macroscopic objects or fields in the
astronomical environment. The perturbations on the back-
ground of BHs generate the radiation wave characterized
by a set of damped oscillation frequencies, known as
quasinormal modes (QNMs) [21–24]. According to the
no-hair theorem [25], QNMs are only related to the
parameters of the background BH, but not to the specific
configuration of perturbations. QNMs provide a unique
perspective of BH observations and help us to determine
the parameters of observed BHs [26,27].
The QNM spectrum of BHs with acceleration and

charge, namely the charged C-metric, has been examined
in [28,29]. The charge C-metric possesses an acceleration
horizon that is analogous to the cosmological horizon of
Reissner-Nordström–de Sitter (RN-dS) BH. This similarity
enables the QNM spectrum to include three distinct
families of QNMs (the photon sphere modes, the accel-
eration modes, and the near extreme modes) [30,31]. The
acceleration horizon acts as a boundary that separates the
causality between the exterior and interior regions.
Imposing the outgoing boundary condition at the accel-
eration horizon leads to an exponential-law late time
behavior of perturbation for the charged C-metric, instead
of a power-law tail under the time domain analysis [28].
However, realistic BHs in our Universe are typically

nearly neutral and rotating, with electromagnetic charge
quickly neutralized by various mechanisms such as
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environment plasma, Schwinger pair creation, or Hawking
evaporation [31]. The spin of BH originates from the
collapse of rotating objects [32–34], the final angular
momentum of binary compact object mergers [35,36], or
even accretion of matter onto the BH.
In this paper, we study the scalar perturbations that are

governed by a separable master equation on the back-
ground of rotating accelerating BHs. The corresponding
QNM spectrum is numerically investigated in full param-
eter space instead analytically approximated in the Nariai-
type near extreme limit [37]. The QNM frequency and the
separation constant, which depend on each other, are
determined by two methods: the continued fractions
method and the direct integration method.
The QNM spectrum includes three distinct families of

modes: the photon sphere modes, the acceleration modes,
and the near extreme modes. The acceleration modes were
previously found in the boosted spacetime [28,29]. When
the BH spin becomes large, the photon sphere modes and
the near extreme modes branch off from the same set of
QNMs [38,39]. The photon sphere modes are associated
with the peaks of the potential barrier, while the near
extreme modes are related to the near horizon geometry of
the Kerr BH.
We find an intriguing phenomenon called eigenvalue

repulsion, which emerges from the intersection between the
acceleration modes and the near extreme modes. The
eigenvalue repulsion is a well-established phenomenon
in the energy level problems of simple quantum mechanical
models with self-adjoint Hamiltonians. This phenomenon
within the QNM spectrum governed by non-self-adjoint
operators, was first reported by Dias et al. in the cases
of Kerr-Newman BHs recently [40,41] and (higher-
dimensional) Kerr-dS BHs [42]. For the rotating accelerat-
ing BHs, the eigenvalue repulsion arises as a result of the
intersection between acceleration modes and near extreme
modes in the complex plane.
The QNMs can also be used to examine the strong

cosmic censorship (SCC) conjecture, which is associated
with an infinite blueshift of perturbations at the Cauchy
horizon [43,44]. Recent works demonstrate that the SCC is
violated by nearly extreme RN-dS BHs when considering
neutral scalar perturbations [30]. The exponential decay of
these perturbations can suppress the blueshift amplifica-
tions at the Cauchy horizon. However, the violation of SCC
is saved by the presence of charged massive scalars [31]
and SCC is respected by perturbations on the background
of Kerr-dS BHs [45]. In accelerating spacetimes, there also
exists a competitive mechanism between the blueshift
instability and the exponential decay of scalar perturbations
at the Cauchy horizon [28]. The SCC conjecture is violated
when considering scalar perturbations on the charged
C-metric [46] or conformally scalar accelerating BHs with
neither charge nor rotation [47]. In this paper, we inves-
tigate the spinning C-metric for perturbations.

The remainder of this paper is organized as follows. We
review the spinning C-metric and the perturbation equa-
tions separated from the master equation in Sec. II. In
Sec. III, the two methods we used are introduced. The
results are presented in Sec. IV. We give a summary and
some discussions in Sec. V. By convention, we employ the
geometric units G ¼ c ¼ 1.

II. ACCELERATING BLACK HOLE

A. Spinning C-metric

The spinning C-metric can be obtained by imposing
certain constraints on the Plebański-Demiański metric [8].
One can express the line element corresponding to the
spinning C-metric by using the Boyer-Lindquist-type
coordinates (t; r; θ;ϕ) [48],

ds2 ¼ 1

Ω

�
1

Σ
ðQ − a2Psin2θÞdt2

−
2asin2θ

Σ
ðQ − Pðr2 þ a2ÞÞdtdϕ

−
sin2θ
Σ

ðPðr2 þ a2Þ2 − a2Qsin2θÞdϕ2

−
Σ
Q
dr2 −

Σ
P
dθ2

�
; ð1Þ

with the definitions of functions

Ω ¼ 1 − αr cos θ; Σ ¼ r2 þ a2 cos2 θ;

P ¼ 1 − 2αM cos θ þ a2α2 cos2 θ;

Q ¼ Δð1 − α2r2Þ; Δ ¼ r2 − 2Mrþ a2; ð2Þ

where the parameters M, α, and a are related to the BH
mass, acceleration, and rotation, respectively. The spinning
C-metric reduces to the nonrotating vacuum C-metric when
a ¼ 0, to the vacuum Kerr metric when α ¼ 0, and to the
Schwarzschild metric when both a and α vanish.
There are conical singularities at the axis θ ¼ 0 and

θ ¼ π, indicating the existence of deficit angles. Without
loss of generality, we specify ϕ ∈ ½0; 2π=PðπÞÞ to remove
the conical singularity at θ ¼ π. However, at the opposite
pole (θ ¼ 0), the deficit angle persists and it is not possible
to remove both conical singularities simultaneously [28].
According to the expression of Q, we have r� ¼ M �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − a2

p
as the outer event horizon and the inner Cauchy

horizon and rα ¼ α−1 as the acceleration horizon related
three null hypersurfaces of the rotating accelerating BH.
Our calculation is limited to the spherical corona rþ < r <
rα [or α < αext ≡ 1=ð1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − a2

p
Þ] by convention. Such

constraint gives Q > 0; PðθÞ > 0 for r > 0; θ ∈ ½0; π�.
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The surface gravity at each horizon ri ∈ fr−; rþ; rαg is
given by

κi ≡ j∂rQðrÞj
2ðr2 þ a2Þ

����
r¼ri

: ð3Þ

B. Perturbation equation

A separable master equation, describing the massless
field perturbations to the spinning C-metric with any spin s,
has been established by Bini et al. [48] in terms of gauge-
and tetrad-invariant quantities. This approach based on the
Newman-Penrose formalism was originally developed to
study perturbations on the background of the Kerr BH for
any spin. Imposing the separable solutions

φðt; r; θ;ϕÞ ¼ Ω2sþ1e−iωteimϕRðrÞYðθÞffiffiffiffi
P

p ; ð4Þ

the master equation can be separated into the radial part

0 ¼ Q−s d
dr

�
Qsþ1

dRðrÞ
dr

�
þ VradðrÞRðrÞ; ð5Þ

VradðrÞ ¼ −2rα2ðr −MÞð1þ sÞð1þ 2sÞ

þ ðða2 þ r2Þω − amÞ2
Q

− 2is

�
−
am∂rQ
2Q

þ ωMðr2 − a2Þ
Δ

−
ωrσ

1 − α2r2

�
þ 2λ; ð6Þ

and the following angular part:

0 ¼ 1

sin θ
d
dθ

�
sin θ

dYðθÞ
dθ

�
þ VangðθÞYðθÞ; ð7Þ

VangðθÞ ¼ −
2λ− sð1− α2a2Þ

P

þ 1

P2

�
−σ2s2cos2θþ 2σswcosθ−w2cos2θ

sin2θ

þ z2cos2θ− 2sσzcosθ− ðzþw− 4sαMÞ2

þ α2ððM2 − a2Þsin2θþ 4sa2 cosθð2sαM−wÞÞ
�
;

ð8Þ

where z≡ aωþ sαM, w≡ 2sαM −m, and σ ≡ 1þ a2α2.
The spin-weight parameter s of the above equations is set to
be 0 for the scalar perturbations in this study. The parameter
ω signals the oscillation frequency. To remove the conical
singularity along θ ¼ π, the azimuthal separation constant
m needs to be of the form m≡m0PðπÞ, where m0 is a
positive integer.

The separation constant λ, as an eigenvalue of the
spin-weighted spheroidal harmonics in the generalized
Teukolsky formalism, depends on ω in the presence of a
nonzero BH spin parameter a. λ can be written in familiar
form for certain limit cases of the parameters, e.g.,
λ ¼ −lðlþ 1Þ=2 with a ¼ 0, α ¼ 0 for the Schwarzschild
case [48], λ ¼ ð−Alm − a2ω2 þ 2amωÞ=2 with α ¼ 0 for
the Kerr case [49], and λ ¼ ð1=3 − λ0Þ=2 with a ¼ 0 for
the nonspinning C-metric case [28,29]. The symbols
(l; Alm; λ0) represent the separation constant for correspond-
ing references.
The calculation of QNM frequency ω is the eigenvalue

problems of (5) and (7) related to the QNM boundary
condition. Physically, only purely ingoing waves can exist
at the event horizon, while at the acceleration horizon, the
purely outgoing wave uniquely presents

RðrÞ ∼
� ðr − rþÞA; r → rþ;

ðrα − rÞB; r → rα;
ð9Þ

with A¼ −i½ω− am=ðr2þ þ a2Þ�=2κþ and B¼ −i½ω− am=
ðr2α þ a2Þ�=2κα. We also require the solution to be regular at
the interval boundaries of θ,

YðθÞ ∼
(
ðcos θ−1

2
ÞC; θ → 0;

ðcos θþ1
2

ÞD; θ → π;
ð10Þ

where C ¼ m
2−4Mαþ2a2α2 and D ¼ m

2þ4Mαþ2a2α2, to avoid the
disastrous divergence of solutions at θ ¼ 0; π. The more
evident boundary behavior discussion can be found in [48]
(also in [28] for nonspinning C-metric) where the pertur-
bation equation was transformed into the Schrödinger-
like form.
Remarkably, the separation content λ and the QNMω are

eigenvalues entangled with each other for the two equations
with proper boundary conditions (9) and (10). λ also
depends on the acceleration α of the accelerating BHs.
Our treatment follows the way of Leaver [49], i.e., given a
tentative value of ω, we solve λ from (7) and then judge
whether the corresponding solution of ω satisfies the QNM
conditions (9). The judgment of the two methods is similar:
the continued fractions equation (15) tends to be 0 for the
continued fractions method and the resulting determinant
(19) tends to be 0 for the direct integration method. This
program can be regarded as the root-finding problem of a
numerical function FðωÞ. A QNM can be found iteratively
with a beginning tentative ω sufficiently close to it. The two
methods will be introduced in detail in Sec. III.

III. METHOD

In our study, we employ the continued fractions tech-
nique to evaluate λ for angular parts and use both methods
to determine ω. The comparison of the two methods is
presented in Sec. IV C.
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A. Continued fractions method

The well-known Teukolsky equation with any spin was
solved by the continued fractions method on the back-
ground of Kerr BHs. In the seminal work by Leaver [49],
both the QNM frequency and the separation constant are
calculated using the continued fractions method.
Generally, the continued fractions method applies to

most second order linear homogeneous differential equa-
tions with variable z defined within the unit circle 0 <
jzj < 1 [21]. The singularities of the equation should be
removed outside the unit circle by redefining the coordi-
nates for the convergence of the Frobenius series.1 We
develop a new code, which is slightly different from
Leaver’s work.
Let us start with the construction of the Frobenius series,

RðrÞ ¼
�
r − rþ
r − r−

�
A
�
rα − r
r − r−

�
BXN

i¼0

ai

�
r − rþ
r − r−

rα − r−
rα − rþ

�
i
;

ð11Þ

YðθÞ ¼
�
cos θ − 1

2

�
C
�
cos θ þ 1

2

�
DXK

i¼0

bi

�
cos θ þ 1

2

�
i
;

ð12Þ

where the two series are truncated to order N, K, respec-
tively. The Frobenius series are imposed as the boundary
behaviors from the boundary conditions (9) for RðrÞ and
(10) for YðθÞ. All singular points appearing in equations are
removed outside the unit circle through the definition of
series. We will introduce the radial part as a template
because both parts share the same code in the following
discussion.
Substituting (11) into radial equation (5), in general, one

can obtain an N-term recurrence relation

XminðN−1;iÞ

j¼0

β̄ðNÞ
j;i ai−j ¼ 0; for i > 0: ð13Þ

The algebraic relation between coefficients ai allows one to
reduce (13) to a three-term recurrence relation

βð3Þ0;i ai þ βð3Þ1;i ai−1 þ βð3Þ2;i ai−2 ¼ 0; for i > 1;

βð3Þ0;1a1 þ βð3Þ1;1a0 ¼ 0; ð14Þ

step by step through an iterative program, where βi is
constituted by β̄j as a function of system parameters. The
resulting continued fractions equation is given by

βð3Þ1;1 −
βð3Þ0;1β

ð3Þ
2;2

βð3Þ1;2 −
βð3Þ
0;2β

ð3Þ
2;3

βð3Þ
1;3−���

¼ 0; ð15Þ

while we express a1=a0 from the two equations in (14) [49].
The equation above holds while ω is the QNM frequencies.

B. Direct integration method

The direct integration method has been introduced by
Pani [50] and employed to coupled perturbation equations
[51–53] or even the perturbations on the numerical solution
of hairy BHs [54,55]. It is a powerful method competent for
the decoupled perturbation equations of the analytic system
in this paper. The main idea is to match two nontrivial
solutions from opposite boundaries with corresponding
boundary conditions (9) at an arbitrary midpoint rm. The
ingoing solution Rin integrating from the event horizon
must be proportional to the outgoing solution Rout integrat-
ing from the acceleration horizon, while eigenvalue ω of
the solutions is QNM frequency.
This method begins with constructing the series approxi-

mation at boundaries,

SinðrÞ ¼ ðr − rþÞA
XN
i¼0

ciðr − rþÞi; at rþ; ð16Þ

SoutðrÞ ¼ðrα − rÞB
XN
i¼0

diðrα − rÞi; at rα: ð17Þ

These series are truncated to orderN. Plugging (16) into the
radial equation (5) one can solve the expression for each ci
in terms of c0. c0 is set to a nonvanishing constant (such as
1 in this paper) for approximating nontrivial solutions. This
solved series can be used as an approximate boundary
condition of ingoing solution Rin near the event horizon

Rinðrþ þ ϵÞ ¼ Sinðrþ þ ϵÞ; ð18Þ

with some small value ϵ. Then Rin is integrated from rþ þ ϵ
to rm. The procedure for solving Rout is similar. As a result,
one can construct the determinant,

Det ¼
����RinðrmÞ ∂rRinðrmÞ
RoutðrmÞ ∂rRoutðrmÞ

����: ð19Þ

The QNMs are obtained by imposing Det ¼ 0.

IV. RESULTS

We investigate the QNM spectrum of rotating accelerat-
ing BHs. The mass M is fixed to 1 and hence all the
physical quantities below are written as the simple dimen-
sionless forms with M such as Mω ¼ ω. We only present

1One can apply the continued fractions method beyond the
convergence condition, as discussed in Appendix of [28].
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the mode with the separation constant λ with the largest real
part (i.e., l ¼ m0 for the Schwarzschild case) in this paper.

A. Spectrum

We identify three families of scalar QNMs, including
photon sphere (PS) modes, acceleration (A) modes, and
near extreme (NE) modes, in the spectrum of the spinning
C-metric under the scalar perturbation. The fundamental
mode (also called the dominant mode) corresponds to the
slowest damped mode in the QNM spectrum. However, the
presence of three distinct families of modes necessitates a
distinguishable labeling convention. Specifically, for given
parameters (m0; a; α), we refer to the n ¼ 0 mode as the
mode with the largest imaginary part for each of the three
families and label the overtones for each of the three
families as n ¼ 1; 2;…. We also adopt a convention of
utilizing subscripts in the abbreviation for each QNM
family (e.g., PS0 to denote the n ¼ 0 photon sphere mode).
The fundamental mode can be determined by comparing
the n ¼ 0 modes of each QNM family.
Figure 1 illustrates the behavior of the n ¼ 0 modes for

each family as a function of the parameter a or α. Both the
real and imaginary parts of the PS0 modes depicted by the
blue line converge to zero with increasing α, but remain
finite values while a → 1. In the extreme BH limit (a → 1),
the near extreme modes become dominant in the QNM

spectrum and tend to be on the real axis with a vanishing
imaginary part, as demonstrated by the green line in the
upper right panel of Fig. 1. On the other hand, the bottom
right panel of Fig. 1 demonstrates that the acceleration
modes (the yellow line) become the fundamental modes in
the limit α → 0, in which the acceleration horizon tends to
radial infinity. This QNM spectrum shares similarities with
those observed in prior works of the charged C-metric [28]
and the RN-dS BH [30]. We introduce the three families of
QNMs in the following.

1. Photon sphere modes ωPS

The photon sphere is defined as the trapping region ofBHs
where null particles are forced to travel in circular unstable
orbits. In the eikonal limit (m ∼ l ≫ 1), the decay timescale
ωI of the PS mode is directly related to the instability
timescale of null geodesics near the photon sphere. The
oscillation frequency ωR of PS modes is associated with the
orbital frequency of null geodesics [56,57].

2. Acceleration modes ωA

Acceleration modes exclusively arise from the damped
perturbations in the boosted spacetime. The imaginary part
of acceleration modes exhibits a linear relationship with the
surface gravity at the acceleration horizon of the Rindler
space,

FIG. 1. Real (left) and imaginary (right) parts of n ¼ 0 modes for both three families vs a (upper) with m0 ¼ 0; α ¼ 0.05 or vs α
(bottom) with m0 ¼ 0; a ¼ 0.995. The markers “x” denote the QNM value in the Kerr limit (α ¼ 0) determined by Leaver’s work. The
black lines are calculated by the formula (20) in bottom right panel or (21) in the upper right panel, which provide very good
approximant to QNMs.
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ImðωAÞ ≃ −κRα ðmþ nþ 1Þi; ð20Þ

with only a weak dependence on the rotation parameter. It
is intriguing that the acceleration modes in a BH spacetime
exhibit a dependence on κRα rather than the surface gravity
κα for the accelerating BH, which was first reported in [28].
We depict the relationship (20) by the black line in the
bottom right panel of Fig. 1, which is well consistent with
the numerical results of acceleration modes. The intriguing
dependence is also evident in the de Sitter modes for the
RN-dS BH, which can be attributed to the role of the
surface gravity at the cosmological horizon in governing
the accelerated expansion of the RN-dS spacetime [30].
We show the acceleration modes with difference m0 and

n in Fig. 2. The black solid line represents the formula (20)
and the black dotted line employs the same formula but
replacing κRα by κα. It is obvious that the linear dependence
on κRα provides the better approximant. By comparing
Figs. 1 and 2, the acceleration modes are seen to emerge
from the zero mode (ω ¼ 0), which is related to a constant
solution for the radial equation (5) [31]. In the left part of
Fig. 2, we have the acceleration modes with nonvanishing

real part, while the nonzero m0 breaks the symmetry
ωR → −ωR. The effect of the BH on these modes may
be encoded in the modified azimuth number m and its
real part.

3. Near extreme modes ωNE

The third family of QNMs appears in the limit where the
location of the Cauchy horizon and event horizon tend to
coincide. We also found an approximation while a → 1,

ImðωNEÞ ≃ −κ−ðnþ 1Þi; m0 ¼ 0; 1; ð21Þ

ImðωNEÞ ≃ −κ−ðnþ 1=2Þi; m0 ≥ 2: ð22Þ

Such modes, branching with the familiar damped modes
beyond a critical value of a, have been found in the
spectrum of Kerr BHs and were called zero damping
modes. The approximation given in (22) is accurately
consistent with the analytic prediction presented in
[38,39] with sufficient large a and small α. Remarkably,
many similarities exist between the near extreme modes for
the rotating Kerr BH and the charged version for the RN

FIG. 2. Real (left) and imaginary (left) part of acceleration modes with different n;m0 vs α on the background of rotating accelerating
BHs where a ¼ 0.6. The black solid line is depicted by formula (20) with m0 ¼ n ¼ 0, and the black dotted lines are using the same
formula while replacing κRα by κα. The formula (20) characterized by κRα can provide better approximant than that by κα.

FIG. 3. Real (left) and imaginary (right) parts of PS0 modes vs α with m0 ¼ 0. The BH rotation parameter a of different curves is
shown in the frame. The dashed lines indicate the limit αext. The x markers denote QNM values in the Kerr limit (α ¼ 0) determined by
Leaver’ work and the gray dots are the analytic approximation ImðωPSÞ ¼ −ðnþ 1=2Þκþ in the Nariai BH limit [37].
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BH, although the physical interpretation of this correspon-
dence remains unclear [30].
We present more details about the impact of acceleration

α on the PS0 modes in Fig. 3. The PS0 modes with
difference a become the zero mode characterized by
vanishing real and imaginary parts in the limit α → αext.
The limit values αext for difference a are depicted by the
dashed lines, respectively. When α → αext, the rotating
accelerating BH becomes the near Nariai-type extremal
BH in which the event and acceleration horizon radii
approach each other. Then the scalar perturbation equation
produces a Pöshl-Teller potential and one can determine
the QNMs with an analytic approach [37]. We depict the
analytic approximant ImðωPSÞ ¼ −ðnþ 1=2Þκþ with the
gray dots in Fig. 3. The analytic approximant is in good
agreement with our numerical results.
Similar trends are observed in Fig. 4, where we show

the NE0 modes with increasing α. However, due to the
limitation of numerical calculation, we cannot provide
conclusive evidence as to whether or not the near extreme
mode also becomes zero mode when α → αext.

The eigenvalue repulsion phenomenon emerges while
the A0 line intersects with the NE0 line in Fig. 1. We pre-
sent the magnified plots (Figs. 5 and 6 corresponding
to the bottom right panel and the upper right panel of
Fig. 1, respectively) for the further examination of this
phenomenon.
In Fig. 5, each acceleration mode exhibits a rapid

decrease with increasing α, while the NE0 modes vary
slightly. As a crossover of two lines occurs, both the A0 line
and the NE0 line break into two pieces and connect with
each other. Consequently, a gap emerges between the two
kinks of the two new curves, diminishing the distinction
between the different families. However, the black line
calculated using (20) can still serve to distinguish between
the two modes. Similar phenomenons are observed while
the A1 line and A2 line intersect with the NE0 line.
In Fig. 6, a similar eigenvalue repulsion is presented.

This phenomenon arises when the acceleration modes
encounter the increasing near extreme modes at the
imaginary axis while a increases. The NE0 line breaks
into two pieces and the upper branch of this line connects
smoothly to the A0 family. Below, a continuous curve
including four modes exists. With increasing a, the A1 line
connects to the bottom part of the NE0 line, and then the
right part of the A0 line bridges the bottom part of the NE0

line and the NE1 line. There is also a gap between the kinks
of the two continuous lines.

B. Strong cosmic censorship conjecture

We follow the derivation from the case of Kerr-dS
BHs presented in [45]. One can convert the coordinates
ðt; r; θ;ϕÞ into the outgoing coordinates ðu; r; θ;ϕ0Þ where
the definition of new coordinates is given by

dt ¼ duþ r2 þ a2

Q
dr; dϕ ¼ dϕ0 þ a

Q
dr: ð23Þ

FIG. 4. Imaginary parts of n ¼ 0; m0 ¼ 0 near extreme modes
with different a vs α.

FIG. 5. The eigenvalue repulsion of Ai families and NE0 modes
with m0 ¼ 0; a ¼ 0.995. There are frequency gaps in the neigh-
borhood of two kinks of the two corresponding curves generating
from the connection between Ai modes (for any i ¼ 0; 1;…) and
NE0 modes. The black lines are depicted by formula (20).

FIG. 6. The eigenvalue repulsion among A0 modes, A1 modes,
NE0 modes, and NE1 modes with m0 ¼ 0; α ¼ 0.2 while varying
a. The solid lines are evaluated by (21) with n ¼ 0 and 1,
respectively.
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Then the corresponding separable solution is imposed by

φðu; r; θ;ϕ0Þ ¼ Ωe−iωueimϕ0
RðrÞYðθÞffiffiffiffi

P
p : ð24Þ

Now there are two independent solutions near the Cauchy
horizon,

φð1Þ ¼ Ωe−iωueimϕ0
Rð1ÞðrÞYðθÞ=

ffiffiffiffi
P

p
; ð25Þ

φð2Þ ¼ Ωe−iωueimϕ0 ðr − r−Þi½ω−am=ðr2−þa2Þ�=κ−

× Rð2ÞðrÞYðθÞ=
ffiffiffiffi
P

p
; ð26Þ

with some nonzero functions Rð1ÞðrÞ and Rð2ÞðrÞ. The
regularity of QNMs is determined by the nonsmooth
solution φð2Þ. The violation of SCC requires φð2Þ to be
locally square integrable, i.e., the condition that ð∂rφð2ÞÞ2 is
integrable gives

β > 1=2 where β≡ −
Imðω̄Þ
κ−

; ð27Þ

where ω̄ denotes the fundamental modes in the spectrum. In
other words, if a QNM ω with −ImðωÞ=κ− < 1=2 is
discovered, one can determine that the SCC conjecture
is respected under such perturbation for the given param-
eters (α, a). We depict −ImðωÞ=κ− for each family of
QNMs in Fig. 7 and demonstrate that the minimum value
among the three families is always below 1=2. These results
can be expected from (22), where the imaginary part of
near extreme modes with n ¼ 0,m0 ≥ 2 are proportional to
−iκ−=2 while a → 1. On the other hand, the charged
version of near extreme modes with n ¼ l ¼ 0 is propor-
tional to −iκ− in RN-dS BHs or the charged C-metric
[28,30]. The different behaviors of modes in the extreme
BH limit lead to different fates of SCC between charged
and rotating BHs.

C. Comparison of methods

The Table I shows QNMs calculated by the continued
fractions method and the direct integration method,

FIG. 7. −ImðωÞ=κ− for each family of QNMs with α ¼ 0.05.
The β is obtained by extracting the minimum value among three
families.

TABLE I. The comparison between two methods with different parameters. We display only the n ¼ 0 mode for each family. There
are some modes not provided because they are higher overtones at such parameter values, which is difficult to be determined by
numerical methods. As shown in this table, the two methods generally provide more consistent and accurate results for lower overtones.
The first row with the separation constant λ ¼ −1.09236715 regains the results given in [28], where the separation constant requires a
transformation λ0 ¼ −2λþ 1=3.

Parameters Families Continued fractions method Direct integration method

α ¼ 0.03 PS0 0.30327363 − 0.09736685i 0.30327413 − 0.09736639i
a ¼ 0 A0 −0.06189986i −0.06189984i
m0 ¼ 1 NE0 � � � � � �
α ¼ 0.2 PS0 0.09888222 − 0.08707878i 0.09888222 − 0.08707878i
a ¼ 0.6 A0 −0.21156725i −0.21156725i
m0 ¼ 0 NE0 � � � � � �
α ¼ 0.1 PS0 0.10742075 − 0.08685416i 0.10742077 − 0.08685417i
a ¼ 0.995 A0 −0.10804081i −0.10804147i
m0 ¼ 0 NE0 −0.05043962i −0.05043962i

α ¼ 0.05 PS0 � � � � � �
a ¼ 0.99998 A0 −0.05055091i −0.05033569i
m0 ¼ 0 NE0 −0.00315480i −0.00315558i

α ¼ 0.9 PS0 0.00187795 − 0.00176789i 0.00187795 − 0.00176789i
a ¼ 0.999 A0 � � � � � �
m0 ¼ 0 NE0 −0.00453841i −0.00453841i

α ¼ 0.15 PS0 0.10113821 − 0.09480198i 0.10113821 − 0.09480198i
a ¼ 0.1 A0 −0.16337640i −0.16337637i
m0 ¼ 0 NE0 � � � � � �
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respectively. The two methods provide precisely consistent
results.We also presentQNMswith some extreme parameter
choices (e.g., a → 1 for the first two rows, α → 0 for the
third row, and α → αmax for the fourth row) in Table II.
At such limit, only one method can give effective results,
and its imaginary part matches the corresponding approx-
imant. Another method becomes numerically unstable or
provides unreliable discontinuous results. We show that
the computable parameter spaces of the two methods are
complementary.

V. DISCUSSION

This study focuses on the scalar (s ¼ 0) QNM spectrum
of rotating accelerating BHs calculated numerically by two
methods (the continued fractions method and the direct
integration method). Three families of QNMs are identi-
fied, namely photon sphere modes, acceleration modes, and
near extreme modes. We examine the dependence of each
family on various parameters, such as BH rotation and
acceleration. We found that the acceleration modes dem-
onstrate a linear dependence with the surface gravity κRα at
the acceleration horizon of Rindler space in the small BH
limit (α → 0), while the near extreme modes are consistent
with (21) in the extreme BH limit (a → 1). The photon
sphere modes become dominant and tend to zero mode
while α approaches its extreme value αext. Our results are
reliable because of the good agreement of the comparison
between the two methods or the analytic approximations in
previous works. We also discuss the eigenvalue repulsion
phenomenon that occurs when the acceleration modes

intersect with the near extreme modes at certain values
of parameters. The distinction between different families of
modes is diminished or even destroyed by the eigenvalue
repulsion. The SCC conjecture is determined by β. We
found no evidence of SCC violation.
The gravitational (s ¼ −2) and electromagnetic (s ¼ −1)

perturbation of rotating accelerating BHs are still open
problems. The precise dependence of acceleration modes
on the surface gravity in theRindler space suggests that these
modes may exist beyond the spinning C-metric with axial
symmetry.Wededuce that, for rotatingBHs or even compact
objects without event horizon with arbitrary acceleration
directions, the imaginary part of their acceleration modes
should be approximately equal to the numerical results
presented in this paper. When the BH has a sufficient small
acceleration, such modes become the dominant or even the
fundamental modes in the gravitational wave spectrum.
Information about BHs, such as their spin and acceleration
direction, may be encoded in the real part of their accel-
eration modes. Therefore, providing a ringdown template
may enable us to search for moving and accelerating BHs in
gravitational wave signals. This then offers another way
alternative to the gravitational lensing [58] to distinguish
slowly accelerating BHs.
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TABLE II. The comparison between QNMs and the approximants from (20)–(22) or the analytic formula ImðωPSÞ ¼ −ðnþ 1=2Þκþ
presented in [37]. The approximants only show imaginary parts. Some modes were not provided due to the limitations of the
corresponding numerical methods.

Parameters Families Continued fractions method Direct integration method Approximation

α ¼ 0.1 NE0 1.20792690 − 0.00034947i � � � −0.00035052i
a ¼ 0.999999 NE1 1.20792630 − 0.00104781i � � � −0.00105157i
m0 ¼ 2 NE2 1.20792713 − 0.00174452i � � � −0.00175262i

α ¼ 0.05 NE0 −0.00022301i −0.00022617i −0.00022315i
a ¼ 0.9999999 NE1 −0.00044604i −0.00036142i −0.0004463i
m0 ¼ 0 NE2 −0.00066907i � � � −0.00066944i

α ¼ 0.002 A0 � � � −0.00200002i −0.002i
a ¼ 0.5 A1 � � � −0.00399363i −0.004i
m0 ¼ 0 A2 � � � −0.00599757i −0.006i

α ¼ 0.508 PS0 � � � 0.00088583 − 0.0018015i −0.00179944i
a ¼ 0.3 PS1 � � � 0.00092112 − 0.0053762i −0.00539831i
m0 ¼ 0 PS2 � � � 0.00054932 − 0.00908775i −0.00899718i
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