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Stabilization of the moduli in any higher-dimensional model is essential to obtain the lower-dimensional
effective theories where the stable values of the moduli appear as parameters that in turn determine various
observables in the present-day Universe. In this work, we obtain a new warped solution for a five-
dimensional fðRÞ higher-curvature gravity in an anti–de Sitter bulk. The higher-curvature term appears as a
natural generalization in the bulk-gravity action and is shown to modify the usual warped metric. The novel
feature of this modification leads to a geometric stabilization of the modulus/radion field in the underlying
effective theory on the visible 3-brane without the need for any external stabilizing field. It is further shown
that the stabilized value of the modulus resolves the well-known gauge hierarchy problem without any
unnatural fine-tuning of the model parameters. This new solution along with the stabilized modulus opens
up the possibilities of new observable signatures in the effective lower-dimensional theory where the
stabilized value of the modulus not only appears as a parameter in the lower-dimensional brane but also
decides the dynamics of the modulus i.e., the radion.
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I. INTRODUCTION

The search for extra spatial dimensions has been a
subject of active research interest for a long time. Ever
since Kaluza and Klein (KK) proposed a possible inter-
pretation of electromagnetism through extra an spatial
dimension, there has been a plethora of work exploring this
feature extensively in different contexts. This ranges from
issues related to small-scale Physics such as the resolution
of gauge hierarchy/fine tuning problem [1], the origin of
neutrino masses [2,3], fermion mass hierarchy [4], dark
matter to large-scale phenomena such as inflation [5,6],
bouncing [7–9] phenomena in cosmology, as well galactic
structure [10–12] in astrophysics. Moreover, the predictions
of the inevitable existence of extra dimension in the context
of string theory generated intense activities to unearth
such an exotic but hidden feature of space-time geometry.
Two extradimensional models namely large extra dimen-
sions [13–16] and warped extra dimensions [17–19] became
extremely popular in the beginning of this century. The
testing beds of these models ranged from collider physics to
cosmological/astrophysical scenarios. In all these models
one of the key signatures of the extra dimensions on a lower-
dimensional hypersurface (branes) has been the moduli
fields originating from various metric components in higher
dimensions. In the context of the fine-tuning problem
related to the large radiative corrections to Higgs mass,

the warped geometry model à la Randall and Sundrum [20]
particularly turned out to be very successful as it could
resolve the problem without introducing any intermediate
scale in theory. Interestingly, string theory can provide an
analog of such a warped extradimensional scenario through
a throatlike geometry [21] and Randall-Sundrum (RS)
model can capture the essential features of this throat
geometry in a simple way so that possible signatures of
extra dimensions in collider physics can be estimated
through various graviton KK modes [22–24] with a much
larger coupling (Tev−1 couplings) with the standard model
fields. However, the stabilization of these moduli fields to
their respective minima has been a key feature in order to
extract an acceptable physics on our Universe (3-branes).
In the low-energy effective theory in lower-dimensional
brane various parameters depend crucially on the stabilized
values of the moduli. Moreover, the fluctuation around this
stable value of the modulus leads to the dynamical radion
field whose interactions with the brane fields play a key role
in determining the signature of the extra dimension in
collider physics. As a result the mechanism of stabilizing the
hidden world of extra dimensions always occupies the
center stage of any theories with extra dimensions. In this
context, irrespective of the models, one requires additional
fields to generate an appropriate potential term for the
moduli so that the moduli can be stabilized to a desired
value. The origin of such a stabilizing field is often
unknown. In particular, for the warped geometry model,
it was shown by Goldberger and Wise [25,26] that a bulk
scalar field can ensure the modulus stabilization for appro-
priate choices of the scalar parameters. Such stabilization
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was further generalized by Csaki et al. [27] by taking the
back reaction of the scalar on the bulk geometry into
consideration. However as discussed, the origin of such
stabilizing field remained unexplained. In the context of
string theory also it was shown that flux of an external
tensor field [28] can result in moduli stabilization.
However, the string landscape leads to the well-known
swampland conjecture where a large class of vacua in the
effective theories turns out to be inconsistent. In particular
anti–de Sitter (AdS) bulk in general is accompanied by
inherent instability. In the present discussion, we work
with an AdS bulk just as the RS model which was
primarily invoked as a model to address the gauge
hierarchy problem and showed great promise to yield
interesting phenomenology and cosmology at the Tev scale
provided the only modulus can be stabilized to a desired
value without introducing any intermediate scale or fine-
tuning. Thus following the original work of Randall and
Sundrum, here also we focus our attention on a five-
dimensional model with an AdS bulk in the presence of
higher curvature terms. We will further comment on the
swampland conjecture in the context of our work in a
forthcoming section. In this work, we propose a novel
mechanism to stabilize the modulus in a five-dimensional
warped geometry model without the need for any exter-
nally employed field. Here we exhibit that the higher-
curvature geometry in the bulk results in modulus
stabilization without the need of invoking any external
bulk scalar field by hand. In the context of higher-
curvature fðRÞ model [29–33], it has been demonstrated
earlier that the scalar field in the dual scalar-tensor model
of the original bulk fðRÞ in principle can lead to such
stabilization of modulus [34–37]. However, that only
implies the stabilization of a conformally transformed
metric and does not correspond to the original warped
metric one uses to estimate the signatures of the moduli on
the lower-dimensional hypersurface. Our work here, on the
contrary, generalizes the original RS model with higher
curvature fðRÞ model. The inclusion of this bulk higher-
curvature term is arguably more realistic as the bulk
spacetime in this model is endowed with a negative
cosmological constant of the order of the Planck scale.
We derive a new warped metric in the form of perturbative
corrections to the original RS solution where the correction
is generated due to the higher curvature terms. We then
explicitly show that such a geometry not only explains the
gauge hierarchy problem but also leads to natural modulus
stabilization without the need for any external stabilizing
field. The additional degree of freedom associated with the
higher-curvature term in the background geometry is
responsible for this natural stabilization of the modulus
without the need for any external field. We once again
emphasize that without modulus stabilization, no higher-
dimensional theory will have any significance in the lower-
dimensional universe since the ground state of the modulus

and fluctuations around that determine all the key signatures
and significance of a higher-dimensional model. There lies
the importance of our findings in the context of modulus
stabilization in a natural geometric way. We describe our
higher curvature five-dimensional model in Sec. II and then
in Sec. III we obtain a new warped geometric solution and
also the brane tensions using perturbative method.
Section IV elaborately describes the implications of our
results along with a derivation of the radion action and the
corresponding potential. In Sec. V, we conclude with a
discussion of our result and on various windows of future
work in both small and large-scale physics that are opened
from our new warped solution with a naturally and
geometrically stabilized modulus.

II. FRAMEWORK: BRANEWORLD SCENARIO
IN f ðRÞ THEORY

The Randall-Sundrum model considers a nonfactorizable
five-dimensional metric, with the 4D flat metric multiplied
by an exponential warp factor which is a function of the
extra dimension. The nature of the extra dimension
ϕ∈ ½−π; π� is angular and is subjected to S1=Z2 orbifolding
with fixed points 0 and π identified.There are two 4D flat
branes located at the orbifold fixed points ϕ ¼ 0 (Planck
brane)and ϕ ¼ π (visible=TeV brane) and the bulk has a
cosmological constant Λ. The five-dimensional action is

S ¼
Z

d5x
ffiffiffiffiffiffi
−g

p ðM3R − ΛÞ −
Z

d4x
ffiffiffiffiffiffiffi
−gi

p
Vi; ð1Þ

where M is the fundamental 5D mass scale (we are working
in natural units), R is the 5D Ricci scalar, Λ is the bulk
cosmological constant, Vi is the tension of the ith brane
[i ¼ hidðvisÞ] and ημν is the 4D metric. The RS solution
implies a negative bulk cosmological constant (the bulk is
AdS5), Λ ¼ −24M3k2 and brane tensions Vhid ¼ −Vvis ¼
24M3k2. The solution is

ds2 ¼ e−2krcjϕjημνdxμdxν þ r2cdϕ2: ð2Þ

Throughout the paper, we adopt the mostly positive
metric convention. The size of the extra dimension is set
by the compactification radius rc which is arbitrary here
(not set by any dynamics) and unless one provides a
mechanism to dynamically generate the compactification
radius rc that resolves the gauge hierarchy problem, the RS
solution is considered incomplete. This is particularly
alarming when one writes the effective field theory on
the brane. The modulus field must therefore be stabilized.
Here we explore the stabilization from the perspective of
fðRÞ gravity in the bulk. In the original RS model, the value
for the bulk cosmological constant was chosen to be of the
order of the Planck scale. This motivates us to work with
higher-curvature terms in the bulk which has significant
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contributions only on a high scale. For a generalized fðRÞ
theory in D ¼ 5 brane-world scenario, the action is given by

S ¼ M3

Z
d5x

ffiffiffiffiffiffi
−g

p
fðRÞ −

Z
d4x

ffiffiffiffiffiffiffi
−gi

p
Vi: ð3Þ

Λ is included in fðRÞ. From now on, we shall set M ¼ 1 for
ease of calculations.
We are interested to study the nature of warped solutions

when the bulk is described by fðRÞ. Consider the RS-like
metric ansatz

ds2 ¼ e−2AðyÞημνdxμdxν þ BðyÞ2dy2; ð4Þ

where, y ¼ rcϕ.
The field equations describing a general fðRÞ theory are

RMNfRðRÞ −
1

2
gMNfðRÞ þ gMN□fRðRÞ −∇M∇NfRðRÞ

¼ 1

2
TMN: ð5Þ

The indicesM,N run from (0, 1, 2, 3, 5) where 5 denotes
the extra dimension. fRðRÞ denotes derivative of fðRÞ with
respect R, and the energy-momentum tensor is given by

TðmÞ
MN ¼ −2ffiffiffiffiffiffi−gp δLm

δgMN ;

where Lm stands for the Lagrangian corresponding to the
matter of some kind. For this metric, the nonzero Christoffel
symbols are Γ5

55 ¼ BðyÞ0=BðyÞ,Γ5
μν ¼ ημνe−2AðyÞAðyÞ0=

BðyÞ2 and Γμ
5ν ¼ −δμνAðyÞ0.

R ¼ −4
BðyÞ3 ½2AðyÞ

0B0ðyÞ þ BðyÞð5AðyÞ02 − 2AðyÞ00Þ� ð6Þ

R55 ¼ −4
�
A0ðyÞB0ðyÞ

BðyÞ − A00ðyÞ þ A0ðyÞ2
�

ð7Þ

Rμν ¼
1

BðyÞ3 ημνe
−2AðyÞ½BðyÞðA00ðyÞ − 4A0ðyÞ2Þ

− A0ðyÞB0ðyÞ� ð8Þ

Considering a leading order higher curvature correction, we
propose to solve Eq. (5) for fðRÞ ¼ Rþ αR2 − Λ (α is
dimensionless). Using the metric ansatz Eq. (4) in Eq. (5),
we obtain the fðRÞ gravity equations of motion (for
the bulk),

6A0ðyÞ2 − 6k2BðyÞ2 þ α

�
−
160A0ðyÞ2B0ðyÞ2

BðyÞ4 þ 64A0ðyÞ
BðyÞ3 ð2A00ðyÞB0ðyÞ þ A0ðyÞB00ðyÞ − 4A0ðyÞ2B0ðyÞÞ

−
8

BðyÞ2 ð−4A
00ðyÞ2 þ 5A0ðyÞ4 þ 8A000ðyÞA0ðyÞ − 32A0ðyÞ2A00ðyÞÞ

�
¼ 0; ð9Þ

1

BðyÞ7 f3BðyÞ
4A0ðyÞB0ðyÞ þ BðyÞ5ð6A0ðyÞ2 − 3A00ðyÞÞ − 6k2BðyÞ7 þ α½−240A0ðyÞB0ðyÞ3

− 80BðyÞB0ðyÞð3B0ðyÞð2A0ðyÞ2 − A00ðyÞÞ − 2A0ðyÞB00ðyÞÞ − 8BðyÞ2ð12A000ðyÞB0ðyÞ þ 8A00ðyÞB00ðyÞ
−16A0ðyÞ2B00ðyÞ þ 37A0ðyÞ3B0ðyÞ þ 2A0ðyÞðB000ðyÞ − 36A00ðyÞB0ðyÞÞÞ
− 8BðyÞ3ð−2A0000ðyÞ þ 12A00ðyÞ2 þ 5A0ðyÞ4 þ 16A000ðyÞA0ðyÞ − 37A0ðyÞ2A00ðyÞÞ�g ¼ 0: ð10Þ

III. PERTURBATIVE APPROACH

Consider α to be small such that R2 in fðRÞ is a small
correction in the R solution, In this backdrop, consider the
following ansatz for AðyÞ and BðyÞ:

AðyÞ ¼ kyþ αA1ðyÞ ð11Þ

BðyÞ ¼ 1þ αB1ðyÞ ð12Þ

Here, k y denotes the unperturbed RS-like part of thewarp
factor, with k ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

−Λ=12
p

and A1 and B1 are the first order
perturbative corrections respectively. Substituting the above

ansatz for AðyÞ and BðyÞ into Eqs. (9) and (10), and
considering only up to the leading-order correction in α
we get

−40k4 − 12k2B1ðyÞ þ 12kA0
1ðyÞ ¼ 0 ð13Þ

−3A00
1ðyÞ þ 12kA0

1ðyÞ þ 3kB0
1ðyÞ − 12k2B1ðyÞ − 40k4 ¼ 0

ð14Þ

Solving Eqs. (13) and (14),

A1ðyÞ ¼
1

2
b0ky2 þ

10k3

3
y ð15Þ
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B1ðyÞ ¼ b0y: ð16Þ

In principle, one can explore higher-order corrections as
well, however, since we have considered α to be small we
restrict ourselves to this order. Therefore,

AðyÞ ¼ k̃yþ βy2 ð17Þ

BðyÞ ¼ 1þ αb0y; ð18Þ

where k̃ ¼ kþ 1
3
10αk3 and β ¼ 1

2
αb0k.

A. Brane tensions

We have solved Eq. (10) for the bulk and obtained
Eqs. (17) and (18). Now, we impose the Z2 symmetry at the
boundaries where the branes are located. We want to
calculate the leading-order corrections to the warp factor
in this setup. Consider VhidðvisÞ ¼ V0

hidðvisÞ þ αV1
hidðvisÞ,

where V0
hidðvisÞ are the tensions of hid(vis) brane in RS

model. Solving Eq. (10) in the presence of branes (up to
leading order), we obtain

Vhid ¼ −Vvis ¼ 12kþ 40αk3: ð19Þ
The brane tensions become more positive(negative)

respectively.

IV. 4D EFFECTIVE THEORY

Consider the low-energy fluctuations about the solution
Eq. (4)

ds2 ¼ e−2Aðjϕj;xÞgμνðxÞdxμdxνþBðjϕj;xÞ2TðxÞ2dϕ2: ð20Þ

The 5D scalar curvature for this metric is

R ¼ ð1þ αb0TðxÞjϕjÞe2TðxÞjϕjðk̃þβTðxÞjϕjÞ4R

− ð∂μTðxÞÞ2
2jϕje2TðxÞjϕjðk̃þβTðxÞjϕjÞ

TðxÞð1þ αb0TðxÞjϕjÞ3
Kðx; jϕjÞ

− ∂μ∂
μTðxÞ 2e2TðxÞjϕjðk̃þβTðxÞjϕjÞ

TðxÞð1þ αb0TðxÞjϕjÞ
× Pðx; jϕjÞ −Qðx; jϕjÞ; ð21Þ

where the functions Kðx; jϕjÞ;Pðx; jϕjÞ and Qðx; jϕjÞ are
defined in Appendix A 1 Here we no longer have a constant
curvature solution, unlike RS. As α → 0, we recover the RS
limit. We will use Eqs. (20) and (21) to derive the effective
action for the modulus field, which will contain a non-
minimally coupling between TðxÞ and the 4D scalar
curvature, kinetic terms, and the potential energy for the
modulus field. We will study the scale of gravitational
interaction and whether we can resolve the gauge hierarchy
issue in the backdrop of this model. We will show that both
these can be achieved without any hierarchy in the
fundamental parameters of the theory. We will show that
the higher-curvature degrees of freedom will generate a
potential for the modulus field with a minimum at such
rc ¼ hTðxÞi which ensures the resolution of gauge hier-
archy and that the fundamental scale of gravity remains
unaffected.

A. Strength of gravitational interaction

In order to determine the strength of gravitational inter-
action on the visible brane, we consider the effective action
(reintroducing M assuming the modulus is stabilized),

Seff ⊃
Z

d4x
Z

π

−π
rcdϕM3

ffiffiffiffiffiffi
−ḡ

p
e2AðjϕjrcÞ4R ð22Þ

¼
Z

d4x
Z

π

−π
rcdϕM3BðjϕjrcÞe−2AðjϕjrcÞ

ffiffiffiffiffiffi
−g

p 4R; ð23Þ

where rc ¼ hTðxÞi, ð4ÞR denotes the four-dimensional Ricci
scalar made out of gμνðxÞ, in contrast to the five-dimensional
Ricci scalar, R, made out of ḡμν ¼ e−2AðjϕjrcÞgμνðxÞ.
Therefore, we can see that the 4D and 5D Planck scales
are related,

M2
Pl ¼

M3

k
½1 − F ðα; k; rc;M; b0Þ�; ð24Þ

where

F ðα;k;rc;M;b0Þ¼ eP̃ðrc;α;k;M;b0Þ−
1

3
ffiffiffiffiffi
b0

p 10
ffiffiffi
π

p ffiffiffi
α

p
k5=2eQ̃ðrc;α;k;M;b0Þ

n
erf½Ñðrc;α;k;M;b0Þ�−erf½S̃ðrc;α;k;M;b0Þ�

o
; ð25Þ

where erfðxÞ ¼ 2ffiffi
π

p
R
x
0 dte

−t2 and the expressions for P̃, Q̃ Ñ, and S̃ can be found in Appendix A 2. From Fig. 1, we can see

for krc > 1, F ðα; k;M; b0; rcÞ → zero and hence MPl ≈M similar to the case of [20].

B. Physical mass scale

The matter fields on the visible brane couple to the low-energy gravitational field ḡvisμνðxÞ ¼ e−2AðπrcÞgμνðxÞ. The
Lagrangian for the Higgs field can be written as (set M ¼ 1 again)
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Svis ⊃
Z

d4x
ffiffiffiffiffiffiffiffiffiffi
−ḡvis

p n
ḡμνvisDμH†DνH − λðjHj2 − v20Þ2

o
:

ð26Þ

The canonical Higgs field will be written as eAðrcπÞH,

Seff ⊃
Z

d4x
ffiffiffiffiffiffi
−g

p n
gμνDμH†DνH−λðjHj2−e−2AðrcπÞv20Þ2

o
:

ð27Þ

Therefore, the physical mass scale on the visible brane is
given by

v≡ e−AðrcπÞv0: ð28Þ

Therefore, to generate the TeV scale from MPl, we only
require AðπrcÞ ∼ 30. This can be achieved for b0 ∼
Oð1 − 10Þ, α ∼Oð0.1Þ and rc ∼Oð1 − 10Þ. Again, we
do not require large hierarchies between the fundamental
parameters α; rc; b0; k, (where these parameters have been
rendered dimensionless by suitable rescaling with Planck
scale). Therefore, in this model as well, it is possible to keep
the scale of gravity unchanged while the scale of Higgs gets
exponentially suppressed.

C. Modulus stabilization

Goldberger and Wise developed a mechanism for
stabilizing the modulus field, wherein they incorporated
a scalar field in bulk, generating a potential for the
modulus field, with a minimum at rc. Also, from scalar-
tensor theories of gravity, one can establish a mathematical
equivalence between the scalar degrees of freedom and
higher powers of R in fðRÞ theory. Here we show that the
introduction of higher-curvature fðRÞ gravity in the bulk
containing a R2 term alone can stabilize the modulus
field TðxÞ.
From, Eq. (3), considering only the bulk action, the

modulus potential is obtained by integrating out the extra
dimension,

VðTÞ¼2

Z
π

0

dϕTe−4Aðϕ;TÞBðϕ;TÞðRþαR2−ΛÞ
���
potential part

:

ð29Þ

Assuming the form of Aðϕ; TÞ and Bðϕ; TÞ from Eqs. (17)
and (18), we can obtain the modulus potential from
Eq. (29). Further, one can argue that the contribution
coming from the alpha correction in the exponential part
of the warp factor is negligible as compared to the
contribution coming from the RS part. The modulus
potential is finally obtained as follows:

VðTÞ ≈ constþ PEi

�
−
4kð1þ b0πTαÞ

b0α

�

þ e−4kπT

60466176

(
C1 þ C2Tþ C3

ð1þ b0πTαÞ

−
C4 þ C5T

b02ð1þ b0πTαÞ2
þ C6

b0 þ b02πTα

þ C7 þ C8Tþ C9T2

ð1þ b0πTαÞ3

þ C10 þ C11Tþ C12T2 þ C13T3

ð1þ b0πTαÞ4
)
; ð30Þ

where EiðxÞ ¼ −
R∞
−x dte

−t=t and the details of the param-
eters have been provided in the Appendix.
The following plots describe the functional dependence

of the modulus potential on TðxÞ. The modulus potential
has a minimum for a stabilized value of TðxÞ, which in turn,
plays a crucial role in modulus stabilization.
Our analysis reveals the following features:
(i) Stabilization can be achieved for 0 < α < 1, sug-

gesting that our perturbative approach works.
(ii) As α ⟶ 0, stabilization no longer holds.
(iii) To be consistent with f0ðRÞ > 0, we obtain

the following bound on the model parameters i.e.,
α > 0 and b0 > 0.

(iv) Therefore, we have 0 < α < 1 and b0 > 0 to obtain
modulus stabilisation in ghost-free quadratic fðRÞ
gravity.

(v) For a fixed value of b0, as the value of α increases,
stabilization occurs for a smaller value of TðxÞ.

(vi) For a fixed value of α, as the value of b0 increases,
the minima of the potential shifts, and now the
stabilization occurs for a smaller value of TðxÞ.
In Fig. 2(a), stabilization occurs at hTðxÞi ≈ 1,
whereas in Fig. 2(b), stabilization occurs at
hTðxÞi ≈ 0.4.

Furthermore, in Figs. 2(c) and 2(d) we have taken the
derivative of the modulus potential, which further reinstates
our claim about the occurrence of the minima. The

FIG. 1. Parameters: α ¼ 0.489, Λ ¼ −1, and b0 ¼ 1.19.
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stabilizing value of the radion field, hTðxÞi is obtained
for dVðTÞ=dT ¼ 0.
In Figs. 2(c) and 2(d), the critical points occur at

hTðxÞi ≈ 1 and hTðxÞi ≈ 0.4, respectively, which in turn,
correspond to the minima of the modulus potential as
portrayed in Figs. 2(a) and 2(b). On the other hand, on
expanding the exponential up to the next order correction
in α in Eq. (29), only the position of the minima gets
shifted and now stabilization can be obtained for a smaller
value of α, for a given value of b0.
Further, we can numerically integrate the modulus

potential obtained in Eq. (29). Numerical integration
yields the following plot. From Fig. 3, hTðxÞi ≈ 1, same
as that in Fig. 2(a), suggesting that our analytic esti-
mate works.

D. Swampland conjecture
and cosmological implications

Swampland constraints in string-inspired models [38–41]
help to eliminate a large class of extra-dimensional theories.
To explain the cosmological expansion in various epochs,
the associated scalar field T and its potential VðTÞ need to
satisfy a set of constraints. The constraints put conditions on
VðTÞ, the field range ΔT, and derivatives ∂TVðTÞ and
∂
2
TVðTÞ. These constraints in turn are related to the equation
of state. The swampland of string theory comprises con-
sistent lower-dimensional effective field theories coupled to
gravity. The slope conditions imply that the scalar field,
such as T (the radion in this scenario), must satisfy the
conditions: VðTÞ > 0 and j∂TVðTÞ=VðTÞj ∼Oð1Þ. From
Figs. 2(b) and 4, it may be seen that for the appropriate

FIG. 2. Plots of modulus potential and its derivative for different values of α and b0.

0 1 2 3 4 5

–0.0059430

–0.0059428

–0.0059426

–0.0059424

–0.0059422

–0.0059420

–0.0059418

T

V(
T)

FIG. 3. Plot of V(T) vs T, obtained from numerical integration,
for α ¼ 0.49 and b0 ¼ 1.19.

0 1 2 3 4 5

0.005

0.010

0.015

0.020

T

V(
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FIG. 4. V(T) vs T for α ¼ 0.484 and b0 ¼ 22.35.
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choice of parameters one can satisfy the conditions on the
scalar sector which emerges from the swampland conjec-
ture. The corresponding numerical estimate for our model is
VðTÞ > 0 for α ≈ 0.484 and 21.4 < b0 < 23.
From Fig. 4 it may be seen that the radion potential V(T)

closely corresponds to the Starobinsky inflaton potential
VðTÞ ∼ αð1 − e−

ffiffi
α

p
TÞ2. As the radion scalar rolls down to

the stable minimum, the scalar spectral index of the
curvature perturbations ns and the scalar to tensor ratio r
can now be determined from the corresponding slow-roll
parameters for e-folding around 60. It may further be noted
that the radion scalar here rolls down to the vacuum with a
nonvanishing value for the ground-state energy leading to a
possible source of dark energy. A detailed analysis of these
to determine the appropriate choices for the parameters of
the theory will be considered in future work.

V. CONCLUSION

Our results reported in this work reveal the following
novel features. Gravity action in space-time in general can
contain curvature terms of various orders due to the
underlying diffeomorphism invariance. The terms con-
taining nth powers of curvature term are suppressed by
M−2n

P and therefore do not have much significance in our
nearly flat universe. However in a higher-dimensional
space-time with a bulk cosmological constant of the order
of the Planck scale, such higher-curvature terms are
expected to have a significant contribution to determining
the bulk geometry. This motivates us to generalize the
earlier work on the warped geometry model in a bulk
action to include higher-curvature fðRÞ action. We indeed
obtain new warped geometry solutions with new signa-
tures in the effective theory on our 3-brane. Such sig-
natures however depend critically on the stable value of
the modulus field which appears through various param-
eters in the effective lower dimensional theory. To extract
an acceptable lower-dimensional theory we, therefore,

need to generate a modulus potential on the 3-brane. It was
shown earlier that only Einstein’s action in the bulk fails to
generate any such modulus potential and one needs to
include an ad hoc external stabilizing field to achieve the
stabilization. Our work reported here brings out a remark-
able and novel feature of a natural geometric stabilization
mechanism of the modulus through the higher curvature
gravity terms which is known to be equivalent to the
presence of additional degrees of freedom in the bulk. The
new warped geometry not only addresses the resolution of
the gauge hierarchy problem successfully but also leads to
possible new signatures on the brane such as graviton KK
modes and their coupling to the standard model fields
along with new physics of the radion field from the
resulting modulus potential. Furthermore, this work opens
up the study of various cosmological implications dis-
cussed in Sec. IV D along with a possible mechanism of
reheating at the end of inflation. We envisage addressing
these in future work. This work thus brings out a novel
mechanism of the geometric radion-stabilization mecha-
nism which is at the root of all future studies of
cosmological as well as collider-based observations in
higher dimensional models.
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APPENDIX

1. 5D Ricci scalar

The expression for the 5D scalar curvature is
Eq. (21) where

R ¼ ð1þ αb0TðxÞjϕjÞe2TðxÞjϕjðk̃þβTðxÞjϕjÞ4R − ð∂μTðxÞÞ2
2jϕje2TðxÞjϕjðk̃þβTðxÞjϕjÞ

TðxÞð1þ αb0TðxÞjϕjÞ3
Kðx; jϕjÞ

− ∂μ∂
μTðxÞ 2e2TðxÞjϕjðk̃þβTðxÞjϕjÞ

TðxÞð1þ αb0TðxÞjϕjÞ
Pðx; jϕjÞ −Qðx; jϕjÞ; ðA1Þ

Kðx; jϕjÞ ¼ 12β2TðxÞ3jϕj3ð1þ αb0TðxÞjϕjÞ3 þ 2k̃ðαb0TðxÞjϕj þ 1Þ2ð2TðxÞjϕjð3βTðxÞjϕjðαb0TðxÞjϕj þ 1Þ − αb0Þ − 1Þ
− 2βTðxÞjϕjð7αb0TðxÞjϕj þ 5Þðαb0TðxÞjϕj þ 1Þ2 þ 3k̃2TðxÞjϕjðαb0TðxÞjϕj þ 1Þ3
þ 2αb0ðαb0TðxÞjϕjð2 − αb0TðxÞjϕjÞ þ 1Þ;

Pðx; jϕjÞ ¼ ðTðxÞjϕjðαb0ð3TðxÞjϕjðk̃þ 2βTðxÞjϕjÞ − 2Þ þ 3ðk̃þ 2βTðxÞjϕjÞÞ − 1Þ;

Qðx; jϕjÞ ¼ 2

TðxÞðαb0TðxÞjϕj þ 1Þ3 ½TðxÞð20β
2TðxÞ2jϕj2ðαb0TðxÞjϕj þ 1Þ þ 4βð5k̃TðxÞjϕjðαb0TðxÞjϕj þ 1Þ − 1Þ

þ k̃ðαb0ð5k̃TðxÞjϕj þ 2Þ þ 5k̃ÞÞ�: ðA2Þ
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2. Relationship between 4D and 5D Planck scale

In Sec. IVA we obtained the following expression for F :

F ðrc; α; k;M; b0Þ ¼ eP̃ðrc;α;k;M;b0Þ −
1

3
ffiffiffiffiffi
b0

p 10
ffiffiffi
π

p ffiffiffi
α

p
k5=2eQ̃ðrc;α;k;M;b0Þ

n
erf½Ñðrc; α; k;M; b0Þ� − erf½S̃ðrc; α; k;M; b0Þ�

o
;

where

P̃ ¼ −
1

3
πkrc

�
3πb0αrc þ

20αk2

M2
þ 6

�

Q̃ ¼ kð10αk2 þ 3M2Þ2
9b0αM4

Ñ ¼
ffiffiffi
k

p ð10αk2 þ 3M2Þ
3

ffiffiffiffiffi
b0

p ffiffiffi
α

p
M2

S̃ ¼
ffiffiffi
k

p ð3M2ðπb0αrc þ 1Þ þ 10αk2Þ
3

ffiffiffiffiffi
b0

p ffiffiffi
α

p
M2

:

3. Analytical estimate for the potential

The modulus potential was given by the following expression:

VðTÞ ⊃ 2

Z
π

0

dϕTBðϕ;TÞe−4Aðϕ;TÞðRþ αR2 − ΛÞ:

In Sec. IV C we obtained the following form of the modulus potential as given by Eq. (30):

VðTÞ ≈ constþ PEi

�
−
4kð1þ b0πTαÞ

b0α

�
þ e−4kπT

60466176

(
C1 þ C2T þ C3

ð1þ b0πTαÞ
−

C4 þ C5T
b02ð1þ b0πTαÞ2

þ C6

b0 þ b02πTα
þ C7 þ C8T þ C9T2

ð1þ b0πTαÞ3
þ C10 þ C11T þ C12T2 þ C13T3

ð1þ b0πTαÞ4
)
:

In the above expression, the associated parameters are given by the following values:

const ¼ −
1

60466176k2b03

�
−b0ð−16588800k5αþ 38400k4ð25

ffiffiffi
6

p
þ 108b0Þα2 þ 209952b03αð−12þ 25αÞ

þ 93312kb02ð−108þ 150αþ 125α2Þ − 100k3α2ð625αþ 20736b02αþ 480
ffiffiffi
6

p
b0ð216þ 5αÞÞ

þ 5k2b0αð311040b02α3 þ 625b02ð288þ 5αÞÞ þ 192
ffiffiffi
6

p
b0ð−11664þ 19440αþ 2700α2

þ 125α3Þ80e 4k
b0αk2ð829440k4 − 48000

ffiffiffi
6

p
k3αþ 24300b02αð−1þ 5αÞ

þ 25k2αð20736
ffiffiffi
6

p
b0 þ 125αÞ − 72kb0ð625α2 þ 2592

ffiffiffi
6

p
b0ð−3þ 5αÞÞÞEi

�
− 4k
b0α

�	
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P ¼ 1

7558272b03
f10e 4k

b0αð829440k4 − 48000
ffiffiffi
6

p
k3αþ 24300b02αð−1þ 5αÞ þ 25k2αð20736

ffiffiffi
6

p
b0 þ 125αÞ

− 72kb0ð625α2 þ 2592
ffiffiffi
6

p
b0ð−3þ 5αÞÞÞg;

C1 ¼ −
1

k2
209952b0αð−12þ 25αÞ þ 1

k
10077696 − 13996800α − 11664000α2;

C2 ¼
1

k
10077696b0πα − 20995200b0πα2;

C3 ¼
1

b02ð1þ b0πrcαÞ
16588800k3α;

C4 ¼ 960000
ffiffiffi
6

p
k2α2 þ 4147200k2b0α2;

C5 ¼ 960000
ffiffiffi
6

p
k2b0πα3;

C6 ¼ 10368000
ffiffiffi
6

p
kα2;

C7 ¼
�
2073600kþ 62500k

b02
þ 240000

ffiffiffi
6

p
k

b0

�
α3;

C8 ¼ 240000
ffiffiffi
6

p
kπα4 þ 125000kπα4

b0
;

C9 ¼ 62500kπ2α5;

C10 ¼ 11197440
ffiffiffi
6

p
α − 18662400

ffiffiffi
6

p
α2 −

�
2592000

ffiffiffi
6

p
þ 900000

b0

�
α3 −

�
120000

ffiffiffi
6

p
þ 15625

b0
þ 1555200b0

�
α4;

C11 ¼ 33592320
ffiffiffi
6

p
b0πα2 − 55987200

ffiffiffi
6

p
b0πα3 − ð2700000π þ 5184000

ffiffiffi
6

p
b0πÞα4 − ð31250π þ 120000

ffiffiffi
6

p
b0πÞα5;

C12 ¼ 33592320
ffiffiffi
6

p
b02π2α3 − 55987200

ffiffiffi
6

p
b02π2α4 − ð2700000b0π2 þ 2592000

ffiffiffi
6

p
b02π2Þα5 − 15625b0π2α6;

C13 ¼ 11197440
ffiffiffi
6

p
b03π3α4 − 18662400

ffiffiffi
6

p
b03π3α5 − 900000b02π3α6:
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