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We perform a comprehensive numerical study of gravitational waves from stellar core collapse in the
massive scalar-tensor theory with the cubic and quartic self-interactions of the scalar field. We investigate
the dependence of gravitational waves on the self-interaction as well as the mass of the scalar field and the
conformal factor. We find that gravitational-wave spectra show a systematic difference between the cubic
and quartic self-interactions. We also find that this systematic difference is insensitive to the mass of the
scalar field and the conformal factor. Our results indicate that the type of the self-interaction could be
constrained by observations of gravitational waves using the future-planned detectors.
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I. INTRODUCTION

General relativity (GR) has passed a number of exper-
imental tests [1–3] and now is considered as the standard
theory of gravity. However, there are several difficulties to
be overcome in GR, such as the accelerating expansion of
the Universe and the renormalization of gravitational field.
The former is usually explained in the GR framework by
introducing dark energy, but it could be explained by a
modification of gravity [4]. As for the latter, the non-
renormalizability of GR implies that GR is the effective
theory at the low energy regime [5]. These difficulties
motivate us to explore modifications of GR.
Scalar-tensor (ST) theories [6,7] are ones of the well-

motivated classes of modified gravity. In ST theories, a
scalar field can cause the inflation [8]. Furthermore, the so-
called fðRÞ gravity [9], which can be recast into ST
theories, can explain the accelerating expansion of the
Universe [10]. In addition, the superstring theory, which is
a candidate of the renormalizable theory of gravity, induces
a coupling of scalar fields with gravitation as in ST theories
in the low energy limit [11]. Therefore, ST theories are
promising theories of modified gravity.
From a phenomenological viewpoint, ST theories are also

interesting because they induce a nonperturbative phenome-
non so-called spontaneous scalarization [12,13], in which
neutron stars have a large scalar charge due to tachyonic
instability of the scalar field. Because neutron stars exhibit-
ing a spontaneous scalarization are considered to be
energetically favorable, when the spontaneous scalarization
occurs, a new branch of stationary families of neutron stars
emerges [12]. The structure of a neutron star in ST theories
has been studied in the case of the static [14–16], slowly

rotating [17,18], and rapidly rotating cases [19]. These
studies show that the spontaneous scalarization has a
considerable effect on the structure of neutron stars. In
addition, a new possibility of the accretion induced des-
calarization of a neutron star has been proposed in Ref. [20].
The spontaneous scalarization could occur with appro-

priate parameters of ST theories. The parameters in ST
theories are constrained by several observations, such as the
Cassini satellite mission [21] and the orbital decay of binary
pulsars [22,23]. For ST theories with a massless scalar field,
the range of parameters which allows the spontaneous
scalarization, is quite narrow (see Refs. [19,24] for the
condition of the parameter for the spontaneous scalarization
and Refs. [2,3] for the constraint on the parameter). For ST
theories with a massive scalar field, on the other hand, a
broad region of parameters remains unconstrained for the
scalar-field mass μ≳ 10−15 eV [14].
It is known that ST theories allow scalar modes of

gravitational waves (GWs) to be emitted [2]. Hence, it is in
principle possible to test ST theories by observations of
GWs, and detection of scalar modes can provide smoking
gun evidence of the break of GR. For the detection of scalar
modes, four GW detectors are necessary [25] when GW
polarizations consist of two tensor modes and two scalar
modes.1

Advanced LIGO [26], Advanced VIRGO [27], and
KAGRA [28] are in operation, and GW observation O4
is running. LIGO-India is planned to participate in the
observation network from the late 2020s [29], and then it
becomes possible to test ST theories by GWs. Furthermore,

1When vector modes exist, six GW detectors are necessary to
probe all of the polarizations of gravitational waves [25].
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third-generation GW detectors, such as the Einstein
Telescope [30] and Cosmic Explorer [31], are planned in
the future. Note that the amplitude of scalar modes is
enhanced by the spontaneous scalarization [32], and scalar-
mode GWs from strongly scalarized neutron stars could be
detectable.
Gravitational collapse of a massive stellar core is one of

the promising sources of GWs. Massive stars with a zero-
age-main-sequence (ZAMS) mass MZAMS ≳ 8M⊙ would
undergo gravitational collapse at the end point of their
evolution and leave a neutron star or a black hole. Stellar
core collapse in the massive ST theory was studied in
spherical symmetry for the no self-interaction [32,33],
the quartic self-interaction [34,35], and the cubic self-
interaction [36], and basic features of scalar GWs are
clarified as follows. Scalar GWs become dispersive in
their propagation, and as a consequence, the observed
scalar GW signals are inverse chirp, quasimonochromatic,
and long-lived ones [32,33]. The amplitude of scalar GWs
decreases as one increases the scalar-field mass [32]. The
self-interactions of the scalar field suppress the scalar GW
signals in a frequency-dependent manner [35,36]. This
suppression indicates that if observed scalar GW signals
are suppressed in such a way, we may be able to refer to
the existence of self-interactions [35].
The properties of scalar GWs from stellar core collapse,

however, have not been studied in detail, systematically
changing the scalar-field mass and strength of self-
interactions simultaneously. In particular, the observed
spectra of scalar GWs for the quartic self-interaction have
not been clarified yet. Thus, we performed a comprehensive
numerical study of scalar GWs from collapse of a massive
stellar core in the massive ST theory, both with the cubic and
quartic self-interactions using our newly developed code.
We systematically investigate the dependence of scalar
GWs on the type and parameters of self-interactions as
well as the scalar-field mass and the conformal factor. As a
result, we find that the type of the self-interactions can be
constrained by observations of scalar GWs.
The paper is organized as follows. In Sec. II, formulation

and basic equations in the massive ST theory with spherical
symmetry are presented. In Sec. III, we outline the scalar
GWs propagation. In Sec. IV, we describe our numerical
setup, and in Sec. V, we present results of numerical
simulations. Finally, in Sec. VI, we present the summary.
Throughout the paper, we use geometrical units c ¼ G ¼ 1,
where c is the speed of light and G is the gravitational
constant, respectively.

II. FORMULATION

In this section, we summarize formulation of the
equations of motion for the metric, scalar field, and matter,
following [32,37].

A. Metric and scalar field

The action of the ST theory in the Jordan frame can be
written as [3,38]

SJ ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
1

16π
FðϕÞR −

1

2
gμν∂μϕ∂νϕ − UðϕÞ

�

þ Smat½gμν�; ð1Þ

where gμν is the metric in the Jordan frame, g is its
determinant, R is the Ricci scalar with respect to the metric
gμν, and ϕ is the scalar field, respectively. UðϕÞ and FðϕÞ
are the potential and the conformal factor associated with
the scalar field ϕ. Smat is the action of the matter fields.
The action Eq. (1) can be written in the different form, in

the so-called Einstein frame, where the nonminimal cou-
pling between the scalar field and the metric is removed.
This can be done by performing a conformal transformation,

g̃μν ≔ FðϕÞgμν; ð2Þ

and a redefinition of the scalar field by

∂φ

∂ϕ
≔

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3

4

�
∂

∂ϕ
lnF

�
2

þ 4π

F

s
: ð3Þ

The resulting action in the Einstein frame is given by

SE ¼
Z

d4x
ffiffiffiffiffiffi
−g̃

p
16π

ðR̃ − 2g̃μν∂μφ∂νφ − 4VðφÞÞ

þ Smat½g̃μν=F�; ð4Þ

where g̃ is the determinant of g̃μν, R̃ is the Ricci scalar with
respect to g̃μν, and VðφÞ ≔ 4πUðϕÞ=FðϕÞ2, respectively.
The variation of the action Eq. (4) gives the equations of

motion in the Einstein frame as

G̃μν ¼ 2∂μφ∂νφ − g̃μν∂λφ∂λφ − 2g̃μνV þ 8πT̃μν; ð5Þ

e∇λe∇λφ ¼ 2πT̃∂φ lnF þ ∂φV; ð6Þ

where G̃μν is the Einstein tensor with respect to g̃μν, e∇μ is
the covariant derivative associated with g̃μν, and ∂φ is the
partial derivative with respect to the scalar field φ. Tμν ¼
−2ð−gÞ−1=2δSmat=δgμν and T̃μν ¼ Tμν=F are the energy-
momentum tensor of matter fields in the Jordan frame and
Einstein frame, respectively, and T̃ ¼ g̃μνT̃μν.
As in the previous studies [32–37], we consider stellar

core collapse in spherical symmetry. Then, the line element
in the Einstein frame is given by

ds̃2 ¼ g̃μνdxμdxν ¼ −Fα2dt2 þ FX2dr2 þ r2dΩ2: ð7Þ
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Here, α and X can be written as

ffiffiffiffi
F

p
α ¼ expðΦÞ;

ffiffiffiffi
F

p
X ¼

�
1 −

2m
r

�
−1=2

; ð8Þ

where Φ is the metric potential and m is the mass function
[37]. Then, the equations of motion for the metric Eq. (5)
are given by

∂rΦ ¼ FX2

�
m
r2

þ 4πrg̃rrT̃rr þ
r
2F

ðη2 þ ψ2Þ
�
− FX2rV;

ð9Þ

∂rm ¼ −4πr2g̃ttT̃tt þ
r2

2F
ðη2 þ ψ2Þ þ r2V; ð10Þ

where we defined auxiliary scalar fields [37],

ψ ≔
1

α
∂tφ; η ≔

1

X
∂rφ: ð11Þ

The equations of motion for the scalar field Eq. (6) can
be reformulated in a first-order system as [32,37]

∂tφ ¼ αψ ; ð12Þ

∂tψ ¼ 1

r2X
∂rðr2αηÞ − rXαψ

�
ηψ þ 4π

αX
T̃tr

�
þ αψ2

∂φF

2F

− 2παT̃∂φF − αF∂φV; ð13Þ

∂tη ¼
1

X
∂rðαψÞ− rXαη

�
ηψ þ 4π

αX
T̃tr

�
þ αψη

∂φF

2F
: ð14Þ

For the conformal factor F and the potential V, we
follow [34,36]. The explicit forms are

FðφÞ ¼ expð−2α0φ − β0φ
2Þ; ð15Þ

V3ðφÞ ¼
1

2
ω2�ðφ2 þ λ3jφj3Þ; ð16Þ

V4ðφÞ ¼
1

2
ω2�

�
φ2 þ λ4

2
φ4

�
: ð17Þ

Here, α0 and β0 are dimensionless coupling parameters,
which determine the deviation from GR at the first post-
Newtonian order [6,13]. The characteristic frequency
associated with the scalar-field mass is given by

ω� ≔
μ

ℏ
; ð18Þ

where ℏ is the Planck constant. λ3 and λ4 are dimensionless
parameters that determine the strength of the cubic
and quartic self-interactions, respectively. Note that our

definition of λ4 is the same as that in Ref. [34] but different
from that in Ref. [35], in which the dimensional quantity
λ04 ≔ ω2�λ4=4 is used instead of λ4.

B. Matter field

The equations of motion for the matter fields in the
Einstein frame are obtained from the Bianchi identity as

e∇λT̃μλ ¼ −
1

2
T̃ð∂φ ln FÞg̃μλ∂λφ: ð19Þ

For the matter field, we adopt a perfect fluid in the Jordan
frame, for which the energy-momentum tensor is given by

Tμν ¼ ρhuμuν þ Pgμν; ð20Þ

with the density ρ, the pressure P, the specific enthalpy h,
and the four-velocity uμ. In this case, we also solve the mass
conservation law in the Jordan frame,

∇μðρuμÞ ¼ 0: ð21Þ

Here, ∇μ is the covariant derivative associated with gμν. In
spherical symmetry, the four-velocity is given as follows:

uμ ¼ W½α−1; v=X; 0; 0�; ð22Þ

where v is the radial velocity and W ¼ ð1 − v2Þ−1=2 is the
Lorentz factor.
The equations of motion for the matter field Eq. (19) are

basically those of the standard general relativistic hydro-
dynamics in spherical symmetry, which can be transformed
into a flux conservative form by introducing the conserved
variables [37],

D ≔ ρWXF−3=2; ð23Þ

S ≔ ρhW2vF−2; ð24Þ

τ ≔ðρhW2 − PÞF−2 −D; ð25Þ

as

∂t

2
64
D

S

τ

3
75þ 1

r2
∂r

8<
:
αr2

X

2
64

Dv

Svþ P=F2

S −Dv

3
75
9=
; ¼

2
64
sD
sS
sτ

3
75; ð26Þ

where source terms are

sD ≔ −αDðψ þ vηÞ ∂φF
2F

; ð27Þ
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sS ≔ αXFðSv− τ −DÞ
�
8πr

P
F2

þm
r2

−
∂φF

2F2X
η− rV

�

þ αX
F

m
r2
Pþ 2αP

rXF2
− 2rαXSηψ −

3

2
αη

P
F2

∂φF

F

−
1

2
rαXðη2 þ ψ2Þ

�
τþDþ P

F2

�
ð1þ v2Þ− αX

P
F
rV;

ð28Þ

sτ ≔ −rαX
�
τ þDþ P

F2

�h
ð1þ v2Þηψ þ vðη2 þ ψ2Þ

i

þ α
∂φF

2F

�
Dvηþ

�
Sv − τ þ 3

P
F2

�
ψ

�
: ð29Þ

To close the system, we adopt a hybrid equation of state
(EOS) [39,40], following the previous studies [32–37].
This EOS consists of a cold part Pcold and a thermal part
Pth as

P ¼ Pcold þ Pth: ð30Þ

Here, the cold part is written as the piecewise polytropic
EOS,

Pcold ¼
�
K1ρ

Γ1 ρ ≤ ρnuc

K2ρ
Γ2 ρ > ρnuc

; ð31Þ

and the thermal part is the Γ-law type EOS given by

Pth ¼ ðΓth − 1Þρðϵ − ϵcoldÞ; ð32Þ

where ρnuc ¼ 2 × 1014 g=cm3 is the nuclear density, ϵ is the
specific internal energy, and ϵcold is its cold part,

ϵcold ¼
8<
:

K1ρ
Γ1−1

Γ1−1
ρ ≤ ρnuc

K2ρ
Γ2−1

Γ2−1
þ K1ρ

Γ1−1
nuc

Γ1−1
− K2ρ

Γ2−1
nuc

Γ2−1
ρ > ρnuc

: ð33Þ

We set K1 ¼ 4.9345 × 1014 cgs [41], and K2 is obtained
from the continuity of the pressure at ρ ¼ ρnuc. Parameters
of the hybrid EOS are ðΓ1;Γ2;ΓthÞ. Because spectra of
scalar GWs depend weakly on the EOS [35] so that we fix
ðΓ1;Γ2;ΓthÞ ¼ ð1.3; 2.5; 1.35Þ in all simulations following
previous studies [34–36].

III. SCALAR MODES OF GRAVITATIONAL
WAVES: PROPAGATION AND OBSERVATION

A. Propagation of scalar GWs

In the wave zone, the propagation equation of scalar
GWs in the quartic self-interaction is well approximated
by [34,35]

∂
2
t σ − ∂

2
rσ þ ω2�σ þ λ4ω

2�
σ3

r2
¼ 0; ð34Þ

where σ ≔ rφ is the rescaled scalar field. Note that the
interaction term decays as r−2 (in the case of the cubic self-
interaction, r−1 [36]). Therefore, if we extract the scalar
field at rex, which is sufficiently far away from the source of
GWs, the mass term dominates, and subsequent evolution
obeys a simple wave equation in the flat spacetime,

∂
2
t σ − ∂

2
rσ þ ω2�σ ¼ 0: ð35Þ

Following [35], we set this extraction radius for the
quartic self-interaction as rex ≈ 2.53λC, where λC ≈ 1.97 ×
104ðμ=10−14 eVÞ−1 km is the reduced Compton wave-
length of the scalar field. Note that with this value of
rex, it has been shown [34] that the nonlinear term in the
propagation equation (34) is small enough so that we may
use Eq. (35) for the subsequent propagation.
For the cubic self-interaction, we also adopt the same

extraction radius rex ≈ 2.53λC following Ref. [36]. We
confirmed that observed GW spectra do not change
drastically when we adopt the extraction radius of 10rex.
Equation (35) gives the dispersion relation and the group

velocity,

ω2 ¼ k2 þ ω2�; ð36Þ

vg ¼
dω
dk

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ðω�=ωÞ2

q
: ð37Þ

It is found that low frequency (ω < ω�) modes decay
exponentially and higher frequency modes propagate faster
(so-called inverse chirp [32,33]). For an event at a typical
astrophysical-scale distance, the time lag between different
frequency modes will stretch out, and consequently, scalar
GWs will be detected as quasimonochromatic signals,
lasting for many years [32,33]. Note that these characteristic
features of scalar GWs (inverse chirp, quasimonochromatic,
and long-lived) are caused by the scalar-field mass [32,33].
The dispersive nature of scalar GWs causes difficulties in

numerical calculations [32,33]. Scalar GWs at the obser-
vation radius Dobs are significantly different from those at
the extraction radius rex adopted in the numerical simu-
lations. This means that, unlike usual tensor modes of GWs,
we can not simply regard scalar GWs extracted at rex as the
observed signals. To overcome this, we employ the sta-
tionary phase approximation to propagate σðt; rexÞ toward
Dobs [32,33]. Using this procedure, the scalar GWat Dobs is
given as [32,33]

σðt; DobsÞ ¼ Aðt; DobsÞ cos½ϕðt; DobsÞ�; ð38Þ
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Aðt; DobsÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðΩ2ðtÞ − ω2�Þ3=2
πω2�ðDobs − rexÞ

s
jσ̃ðΩ; rexÞj; ð39Þ

ϕðt; DobsÞ ¼ −ΩðtÞtþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ω2ðtÞ − ω2�

q
ðDobs − rexÞ

−
π

4
þ argfσ̃ðΩ; rexÞg; ð40Þ

where σ̃ is the Fourier transform of σ. ΩðtÞ is the character-
istic frequency arising from the stationary phase approxi-
mation and is given by [32,33]

ΩðtÞ ¼ ω�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ½ðDobs − rexÞ=t�2

p ðt > Dobs − rexÞ: ð41Þ

In this work, we set Dobs ¼ 10 kpc following [32,36].
Note that ΩðtÞ shows the inverse chirp structure: it reaches
ω� as t → ∞, and low frequency modes ðω < ω�Þ never
reach Dobs.

B. Scalar GW observations

The strain amplitude of the scalar GW consists of a
breathing mode hb ¼ 2α0φ and a longitudinal mode hl ¼
ðω�=ωÞ2hb [32,33,36]. Antenna pattern functions for scalar
modes are Fsðθ;ϕÞ ≔ Fb ¼ −Fl ¼ − sin2 θ cosð2ϕÞ=2,
which depends on the sky location ðθ;ϕÞ of the source
of GWs [2]. As a result, the scalar GW signal is

hðtÞ ¼ Fsðhb − hlÞ ¼ 2α0Fs

�
1 −

�
ω�
ω

�
2
�
φ: ð42Þ

In this work, we used the sky-location-averaged root mean
square value [32] for simplicity,

F̄s ≔

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiZ
dΩF2

sðθ;ϕÞ
s

¼
ffiffiffiffiffiffi
4π

15

r
: ð43Þ

The signal to noise ratio ρ is defined as

ρ2 ¼ 4

Z
∞

0

df
jh̃ðfÞj2
SnðfÞ

; ð44Þ

where h̃ðfÞ is the Fourier transform of hðtÞ and SnðfÞ is the
one-sided noise power spectral density. For a (quasi)
monochromatic signal, the signal to noise ratio is approxi-
mated as

ρ ≈

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SoðΩ=2πÞ
SnðΩ=2πÞ

s
; ð45Þ

where
ffiffiffiffiffi
So

p
is the power spectral density of the scalar GW

signal and is given by [32,36]

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
So

�
Ω
2π

�s
≔ α0

ffiffiffiffi
T

p
F̄s

Aðt; DobsÞ
Dobs

�
1 −

�
ω�
Ω

�
2
�
: ð46Þ

Here, T is the duration of an observation and we set T ¼ 2
months following [32,36].

IV. NUMERICAL SETUP

In the present study, we perform two sets of simulations.
In the first set, we fix the parameters of the conformal factor
[see Eq. (15)] to be ðα0; β0Þ ¼ ð10−2;−20Þ following
previous studies [35,36], while we varied the scalar-field
mass μ and the self-interaction parameters λi of the
potential [see Eqs. (16) and (17)] in the ranges shown in
the upper panel of Fig. 1.
Taking into account the result that the amplitude of the

scalar field is small as jφj < 1 (see Fig. 16), we set the
range of λ4 to be larger than that of λ3. In the first type of

FIG. 1. Top panel: the range of μ − λi space with fixed
ðα0; β0Þ ¼ ð10−2;−20Þ. Black diamonds and green boxes show
values of λ3 and λ4, respectively. The red-filed area shows the
parameter region, where observational constraints from binary
pulsars should be considered. Bottom panel: the range of β0 − α0
space with fixed ðμ; λ3; λ4Þ ¼ ð10−14 eV; 106; 108Þ.
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simulations, a strong scalarization occurs in the neutron star
formed after the collapse for most of the parameters ðλi; μÞ
as found in Refs. [35,36] (see also Appendix D).
For the second set, we fix the scalar-field mass and the

self-interaction parameters as μ ¼ 10−14 eV, λ3 ¼ 106, and
λ4 ¼ 108, respectively, while the parameters of the con-
formal factor ðα0; β0Þ are varied in the ranges shown in the
lower panel of Fig. 1 to see the dependence of scalar GWs
on them. We set these values of ðα0; β0Þ in the range where
a strong scalarization can occur in the neutron star formed
after the collapse. The adopted values of ðα0; β0Þ satisfy the
current observational constraints for the massive scalar
field. Note that the constraints are more relaxed for the
massive scalar field [14,18] (see also Ref. [3] for current
constraints on the massless ST theory).
For the initial model of stellar core collapse, we adopt a

nonrotating presupernova model with solar metallicity in
Ref. [42]. We use the model with the mass of 12M⊙ (this
model is denoted as s12 in Ref. [32]) and set vanishing
scalar fields initially. In the hydrodynamics simulation, we
need to set the atmosphere density ρatmo. In this study, we
adopt ρatmo ¼ 1 g=cm3.
According to [32], we use a grid consisting of a uniform

grid with a grid spacing of Δr ¼ 100 m up to r ¼ 40 km
and a nonuniform grid with a logarithmically spacing up to
Rout. We set Rout ¼ 5 × 106 km for models with μ ¼
10−15 eV and Rout ¼ 5 × 105 km for the other scalar-field
mass models.
Note that grid resolution at rex is important to extract

scalar GWs. In this study, the maximum frequency of
scalar GWs is given by fmax ≔ Ωmax=2π ≈ 3.1 × 102ðμ=
10−14 eVÞ Hz, where Ωmax is the characteristic frequency
Eq. (41) at the observer’s retarded time 1 yr. The minimum
wavelength associated with this maximum frequency is
λmin ≔ c=fmax ≈ 9.7 × 102ðμ=10−14 eVÞ−1 km. The grid
resolution which sufficiently resolves λmin is needed,
and we set λmin=Δr ≈ 100 at rex for models with μ ¼
10−14 and 10−13 eV. For models with μ ¼ 10−15 eV, we set
λmin=Δr ≈ 80 to reduce the computation cost.2 With these
values of Δr, our main results are not affected by Δr. Note,
however, that in the much higher frequency range
(f > fmax), the amplitude of Fourier spectra damps due
to a lack of grid resolution (see Appendix B).
In reference to Refs. [32,37], we constructed a new

numerical code which can simulate spherical core collapse
in the massive ST theory with self-interactions, and details
of the code are in those references. Results of some test
simulations will be found in Appendix A.

V. RESULTS

A. Overall features of scalar GW signals

General features of collapse dynamics and evolution
of the scalar field agree well with those in the previous
studies [32,35,36], as briefly summarized in Appendix D.
As a consequence, overall features of scalar GW signals
also agree well as shortly outlined below.
Figure 2 shows time evolution of the scalar field at the

extracted radius σðt; rexÞ ¼ rexφðt; rexÞ (upper panels),
Fourier spectra σ̃ðf; rexÞ of the scalar field σðt; rexÞ (middle
panels), and observed spectra

ffiffiffiffiffiffiffiffiffiffiffi
SoðfÞ

p
(lower panels) for

the quartic self-interaction with ðα0; β0Þ ¼ ð10−2;−20Þ. As
can be seen in Fig. 2, the self-interaction of the scalar field
suppresses scalar GWs, and the suppression is more
prominent for the larger self-interaction parameter λ4
(see the upper and middle panels) as found in the previous
studies [34,35]. We computed the observed spectra

ffiffiffiffiffiffiffiffiffiffiffi
SoðfÞ

p
using the stationary phase approximation and found that the
observed spectra are also suppressed more for the larger λ4,
with showing the inverse chirp feature.
In Fig. 2, we also show the dependence of the scalar GW

signals on the scalar-field mass (compare panels in the first,
second, and third columns). The amplitude of both extracted
and observed scalar GWs decrease as one increases the
scalar-field mass as found in the previous study [32]. We
also found that the observed GW spectra shift towards
higher frequencies when the scalar-field mass is increased.
This is simply because the characteristic frequencyΩðtÞ that
determines the range of observed spectra linearly shifts as
one varies the scalar-field mass [see Eq. (41)].
In Fig. 3, we show the results of the scalar GW signals for

the cubic self-interaction. We found that the general features
of the scalar GW signals are qualitatively similar to those
for the quartic self-interaction. That is, the suppression of
the GW amplitude is more significant for the larger self-
interaction parameter λ3 [36]. From a quantitative view-
point, however, the suppression of the scalar GW signals
depends on the type of the self-interaction in a systematic
manner. We found that the type of the self-interaction can be
constrained using this systematic dependence of scalar GWs
as described in the next subsection.
Note that extracted and observed scalar GW spectra for

models with μ ¼ 10−15 eV decrease in the higher fre-
quency range ðf > 10 HzÞ due to a lack of grid resolution.
However, this numerical feature does not affect our findings
(see Appendix B).

B. Dependence of the suppression of scalar GWs
on the self-interaction

As noticed in Ref. [35], the spectra of the extracted scalar
GW signals σ̃ðf; rexÞ for the models with the self-interaction
are suppressed compared to that for the no self-interaction
model in a frequency dependent manner (see the middle
panels of Figs. 2 and 3). Thanks to the comprehensive

2In this estimate, we use the light speed instead of the exact
phase velocity vp ¼ ½1 − ðω�=ωÞ2�−1=2 for simplicity. If we use
this proper phase velocity, the minimum wavelength changes by
about 3 × 10−3%. This slight difference has no effect on the
condition for Δr at rex.
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parameter study performed in this paper, we found that the
“frequency dependence” of the suppression of scalar GWs
found in Ref. [35] shows two characteristics as follows.
(1) Our results suggest that the suppression of the scalar

GWs in the low frequency appears as the bifurcation
or the deviation from the no self-interaction case
towards the lower frequency, not as overall decrease
of the amplitude (see the middle panels of Figs. 2
and 3). Furthermore, the frequency (hereafter noted

as fbif ) at which the bifurcation takes place depends
on the parameter λi: fbif is higher for the larger λi.

(2) After the bifurcation, the GW spectra decline
towards the lower frequency. Our results indicate
that the “frequency dependence”, that is, the
slope of the declined spectra depends systematically
on the type of the self-interaction but not on the
parameter λi within the same self-interaction. This is
likely to because it is the power-law index of the

FIG. 2. Time evolution of the scalar field σðt; rexÞ at rex ≈ 2.53λC (top panels), Fourier spectra σ̃ðf; rexÞ of σðt; rexÞ (middle panels),
and observed spectra

ffiffiffiffiffiffiffiffiffiffiffiffi
SoðfÞ

p
at Dobs ¼ 10 kpc (bottom panels) for the quartic self-interaction. The scalar-field mass is

μ ¼ 10−15; 10−14, and 10−13 eV from left to right panels, and parameters of the conformal factor are ðα0; β0Þ ¼ ð10−2;−20Þ. Top
panels: the lower horizontal axes are the retarded time normalized by ω�, and those ranges are the same for each scalar-field mass
0 ≤ ω�tret ≤ 30. The upper horizontal axes are the retarded time. Middle panels: for models with μ ¼ 10−13 eV, averaged spectra (thin
curves) are shown together. The gray-filed area ðf < ω�=2π ¼ 2.42ðμ=10−14 eVÞ HzÞ shows nonpropagating modes. Bottom panels:
sensitivity curves of GW detectors are also plotted: Advanced LIGO (black line), Einstein Telescope (black dashed line), and Cosmic
Explorer (gray line). Symbols represent different observer’s retarded times: tobs;ret ¼ 1, 3, 10, 30, 100, 250, 500, and 1000 yr from right
to left on each plot following [32,36].
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self-interaction that dominates the slope of the
spectra as in the no self-interaction case.

As a consequence of the above characteristic dependence
of the extracted scalar GW spectra on the self-interaction, the
observed spectra also exhibit the corresponding features.
Figure 4 shows the observed spectra

ffiffiffiffiffi
So

p
for the models

with the scalar-field mass μ ¼ 10−13 eV. The observed
spectra also show deviation from the no self-interaction
case towards the lower frequency, and the slope of the
declined observed spectra also depends systematically on the
type of the self-interaction. Note that the observed spectra
show further declination near the cutoff frequency ω�. We
found that the declined observed spectra in an intermediate
frequency range [Oðω�=2πÞ≲ f ≲ fbif ] can be reasonably
described by a single power law as a function of the
frequency irrespective of λi:

ffiffiffiffiffi
So

p
∝ f0.65 for the quartic

self-interaction and
ffiffiffiffiffi
So

p
∝ f1.3 for the cubic self-interaction.

It is remarkable that the power-law index of the GW spectra
for the cubic self-interaction is approximately twice larger
than that for the quartic self-interaction.
We checked that the power-law index of the declined

observed spectra is converged (seeAppendixB) and does not
depend on the extraction radius if it is larger than rex adopted
in this paper: when we adopt the extraction radius 10rex, we
confirmed that the power-law index is unchanged. The result
that the power-law index of the declined observed spectra for
the cubic self-interaction is approximately twice larger than
that for the quartic self-interaction does not depend on the
scalar-field mass and the conformal factor as shown in the
next subsection. We also explored the impact of the pro-
genitor and EOS on the power-law index and found that the
power-law index is insensitive to them (see Appendix C).
Thus, our result suggests that we could constrain the type of
the self-interaction by the observation of scalar GWs.

FIG. 3. Similar to Fig. 2, but for the cubic self-interaction.
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C. Influence of the mass of the scalar field and
conformal factor

1. Influence of the scalar-field mass

In this subsection, we investigate the influence of the
scalar-field mass on the power-law index of the declined
spectra. Since the power-law index does not depend on λi,
we focus on the specific models with λ4 ¼ 108 for the
quartic self-interaction and λ3 ¼ 106 for the cubic self-
interaction.
Figure 5 shows rescaled observed spectra

ffiffiffiffiffiffiffiffiffiffi
Soω�

p
for

the models with μ ¼ 10−15; 10−14, and 10−13 eV. The
horizontal axis is the rescaled frequency ω=ω�. The
rescaling of

ffiffiffiffiffi
So

p
and ω by ω� eliminates the effect of

the shift of the amplitude and the frequency range of
observed spectra which appears when the scalar-field mass

is varied. From Fig. 5, we found that the power-law index
does not significantly change as one varies the scalar-
field mass and the behavior of the observed spectra is
still described well by

ffiffiffiffiffi
So

p
∝ f0.65 for the quartic self-

interaction and
ffiffiffiffiffi
So

p
∝ f1.3 for the cubic self-interaction.

2. Influence of the conformal factor

We also investigate the influence of the conformal factor
on the power-law index of the observed spectra. In this
subsection, we present results of models with μ ¼ 10−14 eV,
λ4 ¼ 108 for the quartic self-interaction, and λ3 ¼ 106 for
the cubic self-interaction.
Figure 6 shows observed spectra with fixed β0 and varied

α0 (left panel) and fixed α0 and varied β0 (right panel). We
found that the power-law index of observed spectra is also

FIG. 5. Rescaled observed spectra
ffiffiffiffiffiffiffiffiffiffi
Soω�

p
with λ4 ¼ 108 for the quartic self-interaction (left panel) and λ3 ¼ 106 for the cubic self-

interaction (right panel). The horizontal axis is the rescaled frequency ω=ω�. The gray-filed area ðω=ω� < 1Þ shows the no scalar GW
signals area.

FIG. 4. Observed spectra for the quartic self-interaction (left panel) and the cubic self-interaction (right panel). The scalar-field mass is
μ ¼ 10−13 eV. The gray-filed area ðf < ω�=2π ¼ 24.2 HzÞ shows the no scalar GW signals area. Since low frequency modes ðω < ω�Þ
never reach Dobs, observed spectra damp exponentially near the cutoff frequency ω�.
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insensitive to the conformal factor for the broad region of
parameters ðα0; β0Þ. On the other hand, the parameters of
the conformal factor have impacts on observations of scalar
GWs. The amplitude of scalar GWs directly depends on α0
[h ∝ α0, see Eq. (42)] and consequently, the detectability of
scalar GWs also depends on it.

VI. SUMMARY

We performed a comprehensive study of scalar GWs in
the massive ST theory with the cubic and quartic self-
interactions. We constructed a new numerical code in
reference to Refs. [32,37], and all simulations in this work
were done by this code.
Thanks to the comprehensive and systematic parameter

study, we found that the effect of the self-interactions on the
extracted scalar GWs appears as the characteristic decli-
nation towards the lower frequency of their spectra com-
pared with the no self-interaction case in the low frequency
range. As a consequence, the observed spectra

ffiffiffiffiffi
So

p
for the

models with the self-interactions also show the correspond-
ing declination. We furthermore found that the observed
spectra in the intermediate frequency range can be well
described by a single power law as

ffiffiffiffiffi
So

p
∝ f0.65 for the

quartic self-interaction and
ffiffiffiffiffi
So

p
∝ f1.3 for the cubic self-

interaction, irrespective of λi. Our result that the power-law
index of the observed spectra for the cubic self-interaction
is approximately twice larger than that for the quartic self-
interaction does not depend on the mass of the scalar field
and the conformal factor. Furthermore, we confirmed that
the power-law index is also insensitive to the mass of the
progenitor and EOS (see Appendix C). All these results
indicate that we may constrain the type of the self-
interaction of the scalar field if we could extract the
information of the power-law index of the observed spectra
in future GW observations.
The amplitude of observed spectra depends on many

parameters, such as ðμ; λi; α0; β0Þ, and it is difficult to

determine all these parameters. However, to constrain the
type of the self-interaction, we need only to extract the
power-law index of observed spectra, thanks to its insen-
sitivity to parameters other than the self-interaction type.
Therefore, the constraint on the type of the self-interaction
could be given by the one long-term observation of scalar
GWs in principle. Note, however, that when the coefficient
of the self-interaction term λi is lower, the declination of
the spectra occurs at the frequency more close to (or even
less than) the cutoff frequency ω�. In such a case, it is
difficult to constrain the type of the self-interaction
because the observed spectra damp exponentially towards
the lower frequency, irrespective of the type of the self-
interaction.
Since

ffiffiffiffiffi
So

p
decreases as D−3=2

obs [see Eqs. (39) and (46)],
for most of the models with μ ¼ 10−14 eV, scalar GW
signals at around 100 Hz could be detectable by Cosmic
Explorer up to an events at ∼100 kpc, where the signal to
noise ratio is ρ ∼ 10.
In this paper, we employed the stationary phase approxi-

mation to propagate scalar GWs toward Dobs. This method
is appropriate for the no self-interaction case. For the self-
interaction case, however, it is not very clear that the
stationary phase approximation gives a correct result or not.
To check this, we should solve the propagation equa-
tion (34) to properly propagate scalar GWs. Furthermore,
we did not consider rotation and magnetic fields, which
may play important roles in this paper. In addition, we
focus on the stellar core collapse to a neutron star in this
paper. The case of collapse to a black hole remains to be
explored. These issues are left for future work.
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FIG. 6. Observed spectra with fixed μ ¼ 10−14 eV, λ4 ¼ 108 for the quartic self-interaction, and λ3 ¼ 106 for the cubic self-
interaction, while ðα0; β0Þ are varied. The gray-filed area ðf < ω�=2π ¼ 2.42 HzÞ shows the no scalar GW signals area. Left panel:
observed spectra rescaled by α0 with varied α0 and fixed β0 ¼ −20. The rescaling of

ffiffiffiffiffi
So

p
by α0 eliminates the effect of the shift of the

amplitude of
ffiffiffiffiffi
So

p
which appears when α0 is varied [see Eq. (46)]. Right panel: observed spectra with varied β0 and fixed α0 ¼ 10−2.
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APPENDIX A: CODE TESTS

In this appendix, we show results of two code tests:
(i) the shock tube problem and (ii) the Oppenheimer-
Snyder collapse. Since these are the special and general

relativistic tests, we set vanishing scalar fields initially and
parameters of the conformal factor to be α0 ¼ β0 ¼ 0 in
both tests.

1. Shock tube

The relativistic shock tube problem is the special
relativistic hydrodynamics test problem. Thus, we fix the
metric as the Minkowski spacetime at all times,

α ¼ 1; X ¼ 1; ðA1Þ

and we adopt the Cartesian coordinate 0 ≤ x ≤ 1 with the
uniform grid spacing Δx ¼ 10−3. We use the Γ-law type
EOS with Γth ¼ 5=3. Following [43], we set the initial
profile as shown in Table I. Note that we set the pressure of
the right side (x > 0.5) to be the nonzero value, but the
small value, unlike Ref. [43].
Figure 7 shows profiles of the density, pressure, and

velocity at t ¼ 0.4. As can be seen from Fig. 7, the
numerical solutions agree well with the exact solutions,
which demonstrates the capability of our code in special-
relativistic hydrodynamics.

2. Oppenheimer-Snyder collapse

The Oppenheimer-Snyder collapse is the general relativ-
istic test problem, in which pressureless dust collapses to a
black hole in spherical symmetry. We set the initial condition
as below following [44]. Dust with the total baryon mass of
M ¼ 1M⊙ is uniformly distributed in the sphere of which
the radius is R ¼ 10M. In the outside of this dust sphere,
we set the atmosphere density ρatmo ¼ 1 g=cm3. We use the
polytropic EOS with K ¼ 10−20 and Γ ¼ 5=3 [44] to set the
small pressure.
We use the coordinate in which the line element is

given by Eq. (7) with F ¼ 1, and we set the radial
coordinate 0 ≤ r ≤ 20M with the uniform grid spacing

FIG. 7. The density (red), pressure (green), and velocity (cyan)
at t ¼ 0.4. Solid and dashed lines represent exact and numerical
solutions, respectively. The density and pressure are normalized
by 10 and 20, respectively.

TABLE I. The initial condition for the shock tube problem [43].

Hydrodynamics variables x ≤ 0.5 x > 0.5

Density ρ 10 1
Velocity v 0 0
Pressure P 13.33 10−10

FIG. 8. Snap shots of the density (left panel) and α (right panel). Solid and dashed lines represent exact and numerical solutions,
respectively. The density ρðt; rÞ is normalized by the initial value ρ0 ≔ ρðt ¼ 0; rÞ.
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Δr ¼ 2.5 × 10−3M. Figure 8 displays snap shots of the
density (left panel) and α (right panel). The numerical
solutions show good agreement with the exact solutions,
which shows the validity of our code in the general
relativistic collapse in spherical symmetry.

APPENDIX B: CONVERGENCE CHECK

In this appendix, we show the convergence test of our
code. We set parameters to be μ ¼ 10−13 eV, α0 ¼ 10−2,
and β0 ¼ −20 and use the cubic self-interaction potential
with λ3 ¼ 103 in this convergence test.
To check the convergence of our code, we performed

three core collapse simulations with different uniform
grid resolutions inside r ¼ 40 km: Δrlow ¼ 100 m,
Δrmed ¼ 50 m, and Δrhigh ¼ 25 m. Different total grid
points are used for each grid resolution: Nlow ¼ 5000,
Nmed ¼ 10000, and Nhigh ¼ 20000, respectively.
The convergence factor Q of a quantity q is defined by

Q ≔
qlow − qmed

qmed − qhigh
¼ ðΔrlowÞn − ðΔrmedÞn

ðΔrmedÞn − ðΔrhighÞn
; ðB1Þ

where n is the accuracy of the numerical calculation. For
our grid condition, Q ¼ 2 and Q ¼ 4 are expected for the
first-order and second-order convergence, respectively.
Figure 9 shows differences between extracted scalar wave-
forms with different grid resolutions. From Fig. 9, numeri-
cal solutions converge between the first and second order,
which we expected.
For another diagnosis, we also checked the conservation

of the total baryon mass in the computation domain as

shown in Fig. 10. From Fig. 10, the total baryon mass is
conserved by about 10−2% for all grid resolutions, and the
finer grid resolution improves the conservation of the total
baryon mass.
Finally, we checked the dependence of scalar GW signals

on the grid resolution. As shown in Fig. 11, the extracted
spectra damp in the higher frequency region ðf ≳ 103 HzÞ
due to a lack of grid resolution. In the lower frequency
region, on the other hand, the GW spectra converge
well. From Figs. 11 and 12, in particular, the slope of
the extracted and observed spectra does not change.

FIG. 9. Differences between extracted scalar waveforms with
different grid resolutions. σA is the extracted waveform with ΔrA
for A ¼ low;med; and high. Q1 and Q2 are the first-order and
second-order convergence factors, respectively.

FIG. 10. The conservation of the total baryon mass in the
computation domain. MB;0 is the initial total baryon mass.

FIG. 11. Extracted spectra with Δrlow, Δrmed, and Δrhigh.
The gray-filed area ðf < ω�=2π ¼ 24.2 HzÞ shows nonpropagat-
ing modes.
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Therefore, we believe that our discussion to distinguish the
self-interaction of the scalar field based on the power-law
index of the declined observed spectra is not affected by the
grid resolution.

APPENDIX C: DEPENDENCE OF THE
POWER-LAW INDEX ON THE EOS

AND PROGENITOR

In this appendix, we check the dependence of scalar GWs
on the progenitor and EOS paying particular attention to the
power-law index of the spectra. Detailed studies for the
dependence of the dynamics of the collapse and emission of
GWs on the EOS will be found in Refs. [32,35]. Here, we
set parameters to be μ ¼ 10−13 eV, α0 ¼ 10−2, β0 ¼ −20,
λ3 ¼ 106 for the cubic self-interaction, and λ4 ¼ 108 for the
quartic self-interaction.

1. Core collapse simulations with a hybrid EOS
with a continuous speed of sound

In this paper, following the previous studies [32–37], we
adopt the cold part of the hybrid EOS as the piecewise
polytropic EOS Eq. (31), in which the sound speed is
discontinuous at ρnuc. Thus, we investigate the effects of the
discontinuous speed of sound on the power-law index of
the declined observed spectra. Note that the dependence of
the emission of GWs on the parameters ðΓ1;Γ2;ΓthÞ has
been studied in Refs. [32,35]. It is found that the GW
spectra do not strongly depend on the parameters.
The piecewise polytropic EOS with a continuous speed

of sound, so-called generalized piecewise polytropic EOS,
is given by [45]

Pcold ¼
�
K1ρ

Γ1 ρ ≤ ρnuc

K̃2ρ
Γ2 þ Λ ρ > ρnuc

; ðC1Þ

ϵcold¼
8<
:

K1ρ
Γ1−1

Γ1−1
ρ≤ ρnuc

K̃2ρ
Γ2−1

Γ2−1
−Λ

ρþ Γ1K1ρ
Γ1−1
nuc

Γ1−1
− Γ2K̃2ρ

Γ2−1
nuc

Γ2−1
ρ> ρnuc

: ðC2Þ

Here, the additional constant term Λ is given as
follows [45]:

Λ ¼
�
1 −

Γ1

Γ2

�
K1ρ

Γ1
nuc; ðC3Þ

and makes the sound speed to be continuous at ρnuc. Note
that in the generalized piecewise polytropic EOS, the
coefficient K̃2 is determined from the differentiability of
the pressure at ρnuc, so K̃2 ≠ K2. On the other hand, Λ is
determined from the continuity of the pressure at ρnuc. We
set the parameters of the EOS to be the same values as the
main text of this paper: ðΓ1;Γ2;ΓthÞ ¼ ð1.3; 2.5; 1.35Þ
and K1 ¼ 4.9345 × 1014cgs.
Figure 13 shows observed spectra for the hybrid EOS

consisting of the generalized piecewise polytropic EOS
Eq. (C1) and the thermal part Eq. (32). From Fig. 13, the
power-law index of the declined observed spectra is
unchanged.

2. Dependence on the progenitor

We also investigate the dependence of the power-law
index of the GW spectra on the progenitor. Here, we adopt a
massive progenitor model with mass of 40M⊙ [42] (the
model s40 in Ref. [32]). Figure 14 shows observed GW

FIG. 12. Observed spectra with Δrlow, Δrmed, and Δrhigh. The
gray-filed area ðf < ω�=2π ¼ 24.2 HzÞ shows the no scalar GW
signals area.

FIG. 13. Observed spectra for the generalized piecewise poly-
tropic EOS. The gray-filed area ðf < ω�=2π ¼ 24.2 HzÞ shows
the no scalar GW signals area.
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spectra for this progenitor model. It is found that the power-
law index of the spectra is unchanged. This is likely to
because the structure of the core does not strongly depend
on the progenitor mass (see Ref. [32] for a more detailed
study of the dependence of collapse dynamics and scalar
GWs on the progenitor in the case of the massive ST theory
without self-interactions).

APPENDIX D: COLLAPSE DYNAMICS

In this appendix, we briefly summarize the dynamics of
the collapse.

1. Overall features of the dynamics of the collapse

Figure 15 shows time evolution of the central density (left
panel) and the central value of the scalar field (right panel) as
functions of the normalized time ω�t for the quartic self-
interaction. The scalar-field mass and self-interaction param-
eter are fixed as μ ¼ 10−14 eV and λ4 ¼ 108, while ðα0; β0Þ
are varied. Except for the model with ðα0; β0Þ ¼
ð10−2;−10Þ, a scalarized neutron star is formed promptly
after the core bounce. The core bounce time is ω�tb ≈ 0.56
for the models with ðα0; β0Þ ¼ ð10−4;−20Þ; ð10−2;−40Þ
and ω�tb ≈ 0.26 for the model with ðα0; β0Þ ¼ ð1;−20Þ.
This is the so-called single-stage collapse [32,35,36]. For the
model with ðα0; β0Þ ¼ ð10−2;−10Þ, on the other hand, the
core experiences two bounces before the strongly scalarized
neutron star is formed. In this model, the core collapses to a
weakly scalarized neutron star after the first bounce at
ω�tb ≈ 0.56, and then it subsequently collapses to a strongly
scalarized neutron star after the second bounce at
ω�tb;2 ≈ 19. This is the so-called multistage collapse found
in the previous studies [32,36].

2. Influence of the self-interaction on the dynamics
of the collapse

As shown in the previous studies, we found that the
scalarization of a neutron star is suppressed by the self-
interaction of the scalar field. Figure 16 shows time
evolution of the central density and the central scalar field
for the quartic self-interaction (top panels) and cubic self-
interaction (bottom panels) for different values of μ and λi.
The values of ðα0; β0Þ are fixed as ð10−2;−20Þ. As can be
seen in Fig. 16, the self-interaction suppresses the scalariza-
tion of a neutron star (compare models with λi ¼ 0 and
λi ≠ 0) as found in the previous studies [35,36].

FIG. 15. Time evolution of the central density ρc ≔ ρðt; r ¼ 0Þ (left panel) and the central scalar field φc ≔ φðt; r ¼ 0Þ (right panel)
for the quartic self-interaction. The scalar-field mass and self-interaction parameter are fixed as μ ¼ 10−14 eV and λ4 ¼ 108, while
ðα0; β0Þ are varied. The lower horizontal axis is the normalized time ω�t, and upper horizontal axis is the time t for only the GR model.
The model with ðα0; β0Þ ¼ ð10−2;−10Þ is the two-stage collapse model, and the second core bounce time of this model is ω�tb;2 ≈ 19.

FIG. 14. Observed spectra for the progenitor model with mass
of 40M⊙. The gray-filed area ðf < ω�=2π ¼ 24.2 HzÞ shows the
no scalar GW signals area.
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We also found that the suppression of the scalarization is
more prominent for the more massive scalar field. In
addition, we found a complicated scalarization process
for the cubic self-interaction model with μ ¼ 10−13 eV
and λ3 ¼ 106, thanks to the comprehensive parameter study
performed in this paper. This complicated scalarization
process is likely to be explained as follows. In this model,
the prompt collapse to a strongly scalarized neutron star is
prevented due to the self-interaction, and the core collapses
to a weakly scalarized neutron star at the bounce at
ω�tb ≈ 5.6. At the bounce, the released gravitational energy
is smaller than that of the prompt collapse to a strongly
scalarized neutron star, and a weaker shock is formed. As a
consequence, the accretion onto the core continues and

pushes back the shock, triggering the subsequent scalariza-
tion of the neutron star at ω�t ≈ 10.5. This result indicates
that when λ3 is above some critical value, the self-interaction
not only suppresses the scalarization of a neutron star, but
can also affect time evolution of the scalar field.3

The dynamics of the collapse depend on the scalar-field
mass, self-interaction parameters, and the conformal factor.
However, this information is weakly imprinted in observed
scalar GW signals. This is likely due to the inverse chirp
structure of the scalar GW signals.

FIG. 16. Similar to Fig. 15, but for the models with fixed ðα0; β0Þ ¼ ð10−2;−20Þ, while μ and λi are varied. Top and bottom panels are
for the quartic self-interaction and cubic self-interaction, respectively. Note that for the cubic self-interaction model with μ ¼ 10−13 eV,
ρc and φc for the model with λ3 ¼ 105 are also shown.

3The previous study [36] shows that the self-interaction
eliminates one intermediate stage from the multi-stage collapse
to a black hole when λ3 reaches the critical value.
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