
Generalized free energy landscapes of charged Gauss-Bonnet-AdS black
holes in diverse dimensions

Ran Li1,† and Jin Wang 2,*

1Center for Theoretical Interdisciplinary Sciences, Wenzhou Institute,
University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325001, China

2Department of Chemistry and Department of Physics and Astronomy,
State University of New York at Stony Brook, Stony Brook, New York 11794, USA

(Received 4 May 2023; accepted 11 July 2023; published 25 August 2023)

The present study focuses on analyzing the generalized free energy function of D-dimensional charged
Gauss-Bonnet-AdS black holes. We examine fluctuating black holes that are in contact with thermal baths
at an arbitrary ensemble temperature, resulting in the corresponding Euclidean geometry with a conical
singularity at the event horizon. By properly regularizing the conical singularity, we have derived the
generalized free energy of fluctuating black holes in the canonical ensemble using the Euclidean
gravitational path integral approach. We demonstrate that the derived generalized free energy is consistent
with the definition from a thermodynamic perspective. Then we explore the free energy landscapes of
charged Gauss-Bonnet black holes in diverse spacetime dimensions and examine the corresponding
thermodynamics of the black hole phase transition. Finally, we discuss the generalized free energy
landscape of fluctuating black holes in the grand canonical ensemble.
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I. INTRODUCTION

Since the discovery of the black hole event horizon
radiating in a thermal spectrum with the temperature
proportional to its surface gravity [1], studying the phase
transition of black holes from the thermodynamic perspec-
tive has become an important topic in the intersection
among general relativity, thermodynamics, and statistical
physics. In recent years, by treating the cosmological
constant as thermodynamic pressure and introducing the
concept of thermodynamic volume of a black hole [2–6], it
is revealed that charged black holes in anti–de Sitter (AdS)
space exhibit analogous behavior to the van der Waals
fluids [7]. This observation stimulates a series of new
discoveries, such as reentrant phase transitions [8,9], triple
critical points [10,11] and multiple critical points [12,13],
holographic heat engine [14], Ruppeiner geometry and
microstructure of black holes [15], and topological classi-
fication of black holes [16], etc.
Within this context, the free energy landscape is shown

to be a valuable concept and tool for examining the
thermodynamics and kinetics of the black hole and its
phase transitions [17,18]. It is assumed that, during the
transition process from one local stable state to another, the
system can pass through a series of intermediate states.
These intermediate states are formed due to thermal

fluctuations. For this reason, they are also called fluctuating
black holes [19]. To properly describe fluctuating black
holes, one can introduce the order parameter and the
generalized free energy function. The generalized free
energy of the fluctuating black hole was initially defined
by using thermodynamic relations. In Ref. [20], it is
demonstrated that the generalized free energy can be
derived from gravitational action by using the Euclidean
path integral approach.
In this way, one can illustrate the topography of the

generalized free energy function graphically, which is also
known as the free energy landscape [21,22]. The free
energy provides the weight or the probability of each state
in the system. The free energy landscape can be used to
connect one state to another. If only one order parameter is
introduced to characterize the black hole’s microscopic
state, the free energy landscape provides an intuitive
representation of the one-dimensional topography of the
generalized free energy function. The free energy landscape
gives a global quantification and characterization of the
system, for example, global stability. It is well known
that the free energy landscape can provide not only the
topography that determines the thermodynamic stability of
the system, but also the thermal potential that drives the
dynamical process and the phase transition [23,24].
Because of the existence of thermal fluctuations, the

dynamical process of the black hole state transition and
phase transition is then described stochastically by using
the Langevin equation that gives the time evolution of the
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black hole order parameter and the Fokker-Planck equation
that gives the time evolution of the probability distribution
of the black hole states. Under these assumptions, it is
shown that the kinetics of the black hole state switching and
phase transition is mainly determined by the barrier height
of the free energy landscape [25–41]. A very interesting
example shows that, at the triple point of six-dimensional
Gauss-Bonnet gravity, the probability distribution of the
black hole states exhibits an oscillating behavior in the
dynamical transition process [42].
The one-dimensional free energy landscape has recently

been extended to two dimensions [43]. In the case of the
five-dimensional charged Gauss-Bonnet-AdS black hole in
the grand canonical ensemble [44,45], two order parameters,
black hole radius and charge, are introduced to characterize
the microscopic state of the charged Gauss-Bonnet-AdS
black hole. The generalized free energy as a function of the
black hole radius and charge is then defined in terms of the
thermodynamic relation in the grand canonical ensemble.
However, the derivation of the generalized free energy
function of the charged Gauss-Bonnet-AdS black hole from
the gravitational path integral approach was not yet been
carried out. In this work, we address this issue and aim to
derive of the generalized free energy function for Gauss-
Bonnet gravity in D-dimensional spacetime.
In the derivation of gravitational action of the fluctuating

black holes, there are two issues that should be carefully
managed [20]. One is to handle the conical singularity
in the Euclidean geometry of the fluctuating black hole.
Another one is to eliminate the bulk divergence due to the
volume infinity of the AdS space. For the first one, we
employ the smooth regularization method to compute the
conical singularity’s contribution to the action [46–49], and
for the second one, we use the subtraction trick to get the
finite part of the action for the AdS black holes [50]. After
derivation of the generalized free energy function from the
gravitational action, we discuss the free energy landscapes
for Gauss-Bonnet gravity inD ¼ 5,D ¼ 6, andD ≥ 7. It is
shown that, for D ¼ 5 and D ≥ 7, there is only one critical
point on the phase diagram representing the end point of the
coexisting curve of the small and the large black holes. For
D ¼ 6, there exist two cases; the first one is that there is
only one critical point, and the second one is that there are
two critical points and one triple point on the phase
diagram. The second case indicates that, at the phase
transition point, the shape of the free energy landscape
has three wells. For the first case, although the shape of the
landscape is a double well at the phase transition point, it
still has three wells at a specific temperature range. Based
on the topography of the landscape, we discuss the
thermodynamics of the phase transition. We also study
the generalized free energy function for Gauss-Bonnet
black holes in the grand canonical ensemble, which is
considered as the function of two order parameters. The

corresponding two-dimensional free energy landscapes are
also illustrated.
This paper is arranged as follows. In Sec. II B, we will

briefly review the basic facts about D-dimensional Gauss-
Bonnet-AdS black holes and introduce the Euclidean geom-
etry of the fluctuating Gauss-Bonnet AdS black hole. In
Sec. III, we calculate the partition function of Gauss-Bonnet
gravity in the canonical ensemble and derive the generalized
free energy function for fluctuating black holes. In Sec. IV,
by treating the generalized free energy as the function of the
black hole radius, we show free energy landscapes in diverse
dimensions. The thermodynamic stabilities and the corre-
sponding phase diagrams are discussed in detail. In Sec. V,
we give the generalized free energy of fluctuating black
holes in the grand canonical ensemble. Last, the conclusion
and the discussions are presented in Sec. VI.

II. EUCLIDEAN GEOMETRY OF THE
FLUCTUATING GAUSS-BONNET BLACK HOLE

In the dynamical process of the black hole state switch-
ing and phase transition, due to the influence of the thermal
fluctuations, one local stable black hole state can pass
through a series of intermediate black hole states to reach
another local stable state. These intermediate black hole
states are formed due to thermal fluctuations, which are
named as fluctuating black holes. Fluctuating black holes
are considered to be intermediate states during the black
hole state switching and phase transition process. In this
section, we consider the Euclidean geometry of the
fluctuating Gauss-Bonnet black hole.

A. D-dimensional Gauss-Bonnet black holes

We start with the metric of the general spherically
symmetric D-dimensional charged Gauss-Bonnet black
hole in AdS space, which is given by [51–53]

ds2 ¼ −fðrÞdt2 þ 1

fðrÞ dr
2 þ r2dΩ2

D−2; ð1Þ

where dΩ2
D−2 is the metric of the unit (D − 2)-dimensional

sphere. The blackening factor fðrÞ is given by

fðrÞ¼1þ r2

2α

"
1−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ4α

�
ω

rD−1−
q2

r2D−4−
1

L2

�s #
; ð2Þ

whereω and q are related to the mass and charge of the black
hole, α is the Gauss-Bonnet coupling constant, and L is the
AdS radius related to the cosmological constant Λ by the

equalityΛ ¼ − ðD−1ÞðD−2Þ
2L2 . It should be noted that, in order to

have awell-defined vacuum in the theory, the effectiveGauss-
Bonnet coefficient α should satisfy the constraint [44,45]

0 ≤
4α

L2
≤ 1: ð3Þ
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The Uð1Þ gauge field or the electromagnetic gauge field is given by

AtðrÞ ¼ −
1ffiffiffiffiffiffi
8π

p
ffiffiffiffiffiffiffiffiffiffiffiffi
D − 2

D − 3

r
q

rD−3 þΦH; ð4Þ

whereΦH ¼ 1ffiffiffiffi
8π

p
ffiffiffiffiffiffiffi
D−2
D−3

q
q

rD−3
h

is introduced to guarantee the regularity of the electromagnetic gauge field at the horizon. It is easy

to check that the metric together with the electromagnetic field given above solves the equations of motion derived from
varying the Einstein-Gauss-Bonnet action.
The black hole horizon is determined by the equation fðrhÞ ¼ 0. The black hole’s Hawking temperature is then given

by [1]

TH ¼ 1

4π
f0ðrÞjr¼rh

¼ ðD − 3Þr2h þ ðD − 1Þr4h=L2 þ ðD − 5Þα − ðD − 3Þq2=r2ðD−4Þ
h

4πrhðr2h þ 2αÞ : ð5Þ

The mass, charge, and Bekenstein-Hawking entropy of the
Gauss-Bonnet-AdS black hole are given by [54–57]

M ¼ ðD − 2ÞΩD−2

16π
ω

¼ ðD − 2ÞΩD−2

16π
ðrD−3

h þ rD−1
h =L2 þ αrD−5

h þ q2=rD−3
h Þ;

Q ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðD − 2ÞðD − 3Þ

8π

r
ΩD−2q;

S ¼ 1

4
ΩD−2rD−2

h

�
1þ 2αðD − 2Þ

ðD − 4Þ
1

r2h

�
; ð6Þ

respectively, where we have expressed these quantities by
using the black hole radius rh and the charge parameter q
for later convenience. There is a scaling symmetry of all the
quantities listed above:

rh → rhα1=2; q → qαðD−3Þ=2; P → Pα−1;

M → Mα−ðD−3Þ=2; S → Sα−ðD−2Þ=2; TH → THα
1=2;

ΦH → ΦH; F → Fα−ðD−3Þ=2; Ω → Ωα−ðD−3Þ=2;

ð7Þ

where F ¼ M − THS and Ω ¼ F −QΦH are the on-shell
free energies in the canonical ensemble and in the grand
canonical ensemble, respectively. Using this scaling sym-
metry, the Gauss-Bonnet coupling constant α can be
eliminated from the theory, which implies that one can
rescale the coupling constant to unity in the following
discussion in order to get the properties of the theory caused
only by the variations of the physical parameters [58].

B. Euclidean geometry of the fluctuating
Gauss-Bonnet black hole

We now consider the case that the Gauss-Bonnet black
hole is in contact with a thermal bath at a fixed temperature
T. This is to say that we have introduced the canonical

ensemble description of the black holes. The temperature of
the thermal bath is just the canonical ensemble’s temper-
ature. Because our aim is to study the Euclidean geometry
of the fluctuating Gauss-Bonnet black hole generated
during the phase transition process under the influence
of thermal noises, the intrinsic Hawking temperature of
the fluctuating black hole is not necessarily equal to the
temperature of the thermal bath, in general. This will
introduce a conical singularity in the Euclidean geometry
of the black hole.
First, we introduce the Euclidean time τ ¼ it by a Wick

rotation in the complex t plane. Then the metric becomes

ds2 ¼ fðrÞdτ2 þ 1

fðrÞ dr
2 þ r2dΩ2

D−2: ð8Þ

As we have discussed, the presence of the thermal bath or
the environment results in that the periodicity of Euclidean
time τ is determined by the canonical ensemble’s parameter
toward the relation

0 ≤ τ ≤ β; ð9Þ

where β ¼ 1
T is the inverse of the ensemble temperature T. It

should be noted that, in this setup, the period β of the
Euclidean time is unrelated to any parameters of the black
hole, such as mass, charge, or black hole radius, etc.
Near the horizon, by introducing the coordinate ρ as

ρ ¼
Z

drffiffiffiffiffiffiffiffiffi
fðrÞp ≃

2ffiffiffiffiffiffiffiffiffiffiffiffi
f0ðrhÞ

p ffiffiffiffiffiffiffiffiffiffiffiffi
r − rh

p
; ð10Þ

the metric of the Euclidean Gauss-Bonnet-AdS black hole
can be approximated by

ds2 ≃ ρ2d

�
2πτ

βH

�
2

þ dρ2 þ r2hdΩ2
D−2; ð11Þ

where βH ¼ 4π=f0ðrhÞ is the inverse Hawking temperature
of the Gauss-Bonnet black hole.
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We are considering the case that the Euclidean time τ has
an arbitrary period β. Therefore, near the horizon, the
Euclidean geometry of the fluctuating Gauss-Bonnet-AdS
black hole described by the metric (11) represents the
product manifold of a two-dimensional cone and a (D − 2)-
dimensional sphere [46–49]. The Euclidean geometry of
the fluctuating Gauss-Bonnet-AdS black hole is depicted in
Fig. 1. The manifold is not smooth in the present case. One
should note that, when the periodicity of the Euclidean time
is set to be the inverse Hawking temperature βH, the conical
singularity Σ degenerates into a two-dimensional disk and
the corresponding Euclidean geometry becomes regular.
From our previous work [20], we know that, when the
equilibrium condition β ¼ βH is satisfied, the black hole is
in a locally stable state. Otherwise, the black hole becomes
the fluctuating one on the free energy landscape.
For the fluctuating Gauss-Bonnet-AdS black hole, there

is a deficit angle 2πð1 − β
βH
Þ to describe the canonical

singularity Σ at the event horizon r ¼ rh. One can also
observe that, because of the existence of canonical singu-
larity, at the horizon rh, the Euclidean metric of the Gauss-
Bonnet-AdS black hole does not satisfy the equations of
motion for Einstein-Gauss-Bonnet gravity. However, in the
AdS bulk except the event horizon, the equations of motion
are still satisfied, because the metric or the geometry is
regular there. Therefore, to calculate the gravitational
partition function by using the semiclassical approximation
method, one just needs to compute the Einstein-Gauss-
Bonnet gravitational action on the singular Euclidean
manifold as a gravitational instanton, which is depicted
in Fig. 1, although special attention should be taken on the
conical singularity’s contribution.

III. PARTITION FUNCTION OF THE
FLUCTUATING GAUSS-BONNET BLACK HOLE

IN THE CANONICAL ENSEMBLE

In this section, we calculate the partition function of a
D-dimensional fluctuating Gauss-Bonnet-AdS black hole
by using the Gibbons-Hawking path integral approach [59].

A. Einstein-Gauss-Bonnet action

In the Gibbons-Hawking approach to black hole
thermodynamics, the partition function of a black hole
in the canonical ensemble is given by the gravitational path
integral [59]

ZgravðβÞ ¼
Z

D½g�e−IE½g�; ð12Þ

where β is the period of Euclidean time representing the
inverse temperature of the canonical ensemble, D½g� is
the measure of the functional integral, and IE½g� is the
Euclidean gravitational action. This functional integral
should be taken on all the Euclidean gravitational con-
figurations that satisfy the given boundary conditions.
However, for our purpose, by using the saddle point
approximation, we can just evaluate the functional integral
over the fluctuating black hole described by the Euclidean
metric (8). In this way, we can get

ZgravðβÞ ≃ e−IE½g�; ð13Þ

where g is the metric of the fluctuating Gauss-Bonnet black
hole given by Eq. (8).
For Einstein-Gauss-Bonnet gravity coupled with the

electromagnetic field, the Euclidean action is given by [56]

IE ¼ −
1

16π

Z
M

ffiffiffi
g

p
dDx

�
R − 2Λþ α

ðD − 3ÞðD − 4ÞLGB

− 4πFμνFμν

�
; ð14Þ

whereR is the Ricci scalar curvature,Λ is the cosmological
constant, and α is the Gauss-Bonnet coupling constant.
The Gauss-Bonnet term LGB is given by

LGB ¼ R2 − 4RμνRμν þ RμνλρRμνλρ: ð15Þ

It is well known that there should be boundary terms in
the action in order to ensure a well-defined variation
problem for the equations of motion [59]. In addition,
there should be counterterms to cancel the divergence
caused by the volume infinity of AdS bulk. However, in
the present work, we will utilize the background subtrac-
tion trick [60,61] to compute the finite part of the Euclidean
gravitational action. In this approach, the boundary terms
will be properly canceled, because the black hole’s cor-
rection to the AdS metric decays very rapidly at spatial
infinity. In the following, we will calculate the Einstein-
Gauss-Bonnet action on the singular Euclidean manifold
with the conical singularity at the interior boundary.

FIG. 1. A two-dimensional illustration of the Euclidean geom-
etry M that describes the fluctuating Gauss-Bonnet-AdS black
hole. Every point in this two-dimensional surface represents a
(D − 2)-dimensional sphere of radius r. The event horizon radius
is located at r ¼ rh, and the Euclidean time period is arbitrary
value β. The red point represents the conical singularity Σ at the
event horizon r ¼ rh. When β is equal to the inverse temperature
βH , the conical singularity disappears and the corresponding
Euclidean geometry becomes regular.
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B. Conical singularity’s contribution

In this subsection, we study the conical singularity’s
contribution to the action. Because the curvature tensor is
divergent at the conical singularity, a proper regularization
scheme is needed. Our strategy is described as follows.
First, we regulate the tip of the cone by using a smooth
function and calculate the relevant curvature tensors. Then,
we take the sharp limit in the end. It turns out that the
obtained result for the conical singularity’s contribution to
the action is independent of the smooth function used in the
regularization.
Our starting point is the Euclidean geometry described

by Eq. (8). The metric describes the manifold that has a
specific product structure of a two-dimensional cone and
(D − 2)-dimensional sphere. However, without the loss of
generality, we specify the metric to be in a more general
form as follows [62,63]:

ds2 ¼ dρ2 þ A2ðρÞdχ2 þ C2ðρÞdΩ2
D−2; ð16Þ

where ðρ; χÞ are the local cylindrical coordinates to para-
metrize the two-dimensional cone. The conical defect or
singularity is situated at ρ → 0, and the transverse space is
independent of the local cylindrical coordinates ðρ; χÞ in
this limit. In fact, the following calculations are indepen-
dent of the precise structure of the space transverse to the
two-dimensional cone, provided C0ð0Þ ¼ 0. One can define
the area of the conical defect to be CD−2ð0Þ times the area
given by the metric Ω2

D−2.
The strategy now is to regularize the conical singularity

in metric (16) by taking an arbitrary smooth function AðρÞ
satisfying the conditions A0ð0Þ ¼ 1 and A0ðϵÞ ¼ ð1 − δÞ,
where 2πδ is the deficit angle. With the metric (16), it is
straightforward to calculate that

R ¼ −
2A00ðρÞ
AðρÞ − 2ðD − 2ÞA

0ðρÞC0ðρÞ
AðρÞCðρÞ þ ðD − 2ÞðD − 3Þ ð1 − C0ðρÞ2Þ

C2ðρÞ − 2ðD − 2ÞC
00ðρÞ
CðρÞ ;

R2 ¼ 4

�
A00ðρÞ
AðρÞ þ ðD − 2ÞA

0ðρÞC0ðρÞ
AðρÞCðρÞ − ðD − 2ÞðD − 3Þ ð1 − C0ðρÞ2Þ

4C2ðρÞ þðD − 2ÞC
00ðρÞ
CðρÞ

�
2

;

RμνRμν ¼
�
ðD − 2ÞA

0ðρÞC0ðρÞ
AðρÞCðρÞ þ A00ðρÞ

AðρÞ
�
2

þ
�
A00ðρÞ
AðρÞ þ ðD − 2ÞC

00ðρÞ
CðρÞ

�
2

þ ðD − 2Þ
�
A0ðρÞC0ðρÞ
AðρÞCðρÞ − ðD − 3Þ ð1 − C0ðρÞ2Þ

C2ðρÞ þ C00ðρÞ
CðρÞ

�
2

;

RμνλρRμνλρ ¼ 4

�ðD − 2ÞðD − 3Þ
2

�ð1 − C0ðρÞ2Þ
C2ðρÞ

�
2

þ
�
A00ðρÞ
AðρÞ

�
2

þ ðD − 2Þ
�
A0ðρÞC0ðρÞ
AðρÞCðρÞ

�
2

þ ðD − 2Þ
�
C00ðρÞ
CðρÞ

�
2
�
:

After some algebra, one can get

Rþ α

ðD − 3ÞðD − 4ÞLGB ¼ −
2A00ðρÞ
AðρÞ − 2ðD − 2ÞA

0ðρÞC0ðρÞ
AðρÞCðρÞ − 2ðD − 2ÞC

00ðρÞ
CðρÞ

− ðD − 2ÞðD − 3Þ ð1 − C0ðρÞ2Þ
C2ðρÞ þ 8αðD − 2Þ

ðD − 4Þ
A0ðρÞC0ðρÞC00ðρÞ

AðρÞC2ðρÞ

−
4αðD − 2Þ
ðD − 4Þ

A00ðρÞ
AðρÞ

ð1 − C0ðρÞ2Þ
C2ðρÞ − 4αðD − 2ÞA

0ðρÞC0ðρÞ
AðρÞCðρÞ

ð1 − C0ðρÞ2Þ
C2ðρÞ

− 4αðD − 2ÞC
00ðρÞ
CðρÞ

ð1 − C0ðρÞ2Þ
C2ðρÞ þ αðD − 2ÞðD − 5Þ

�ð1 − C0ðρÞ2Þ
C2ðρÞ

�
2

:

The idea is now to find out the singular part in the above expression. Because A0ð0Þ ¼ 1 and A0ðϵÞ ¼ ð1 − δÞ, A00ðρÞ is
singular in the vicinity of conical defect, because A00 ¼ OððA0ðϵÞ − A0ð0ÞÞ=ϵÞ is unbounded as ϵ → 0. In addition, because
CðρÞ remains smooth in the vicinity of conical defect, we can expand the function CðρÞ as CðρÞ ¼ C0 þ C2ρ

2 þ � � �.
Therefore, computing the gravitational Lagrangian in the vicinity of ρ ¼ 0 yields

Rþ α

ðD − 3ÞðD − 4ÞLGB ¼ −
2A00ðρÞ
AðρÞ −

4αðD − 2Þ
ðD − 4Þ

1

C2
0

A00ðρÞ
AðρÞ − 4ðD − 2ÞC2

C0

− ðD − 2ÞðD − 3Þ 1

C2
0

− 8αðD − 2ÞC2

C3
0

þ αðD − 2ÞðD − 5Þ 1

C4
0

þOðρÞ: ð17Þ
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It is clear that the Lagrangian is the sum of a regular part
[the terms involving C0, C2, and OðρÞ] and the unbounded
term A00=A.
When computing the integral of the above terms over a

small region around the conical singularity ρ ¼ 0, it is clear
that only the first two unbounded terms will contribute to
the result, which is given by

−
1

16π

Z
dDx

ffiffiffi
g

p �
Rþ α

ðD − 3ÞðD − 4ÞLGB

�

¼ 1

8π
ΩD−2rD−2

h ðA0ð0Þ − A0ðϵÞÞ
�
1þ 2αðD − 2Þ

D − 4

1

r2h

�

¼ −
1

4
ΩD−2rD−2

h

�
1 −

β

βH

��
1þ 2αðD − 2Þ

D − 4

1

r2h

�
: ð18Þ

To get this result, we have substituted C0 ¼ rh and the
deficit angle δ ¼ 2πð1 − β

βH
Þ into the above equation. The

final result is independent of the selection of the regulari-
zation function AðρÞ as promised. This is our main result
for the conical singularity’s contribution to the action.
Using the expression for black hole entropy in Eq. (6), it
can also be rewritten as −ð1 − β

βH
ÞS. It is shown that this

result is proportional to the deficit angle and the entropy of
the Gauss-Bonnet black hole.

C. Bulk’s contribution

Now, we consider the bulk’s contribution to the gravi-
tational action. Since the metric (8) is static, the time
integration gives rise to the period β of the Euclidean
time. The integration over the transverse space gives rise
to the volume of the (D − 2)-dimensional sphere.
The integration on the radial direction requires a little
algebra. It can be shown that the bulk action is given by a
closed form:

−
1

16π

Z
M=Σ

ffiffiffi
g

p
dDx

�
R − 2Λþ α

ðD − 3ÞðD − 4ÞLGB

�

¼ −
1

16π
βΩD−2rD−5

�
ðD − 2Þ

�
r2 þ r4

L2
þ αð1 − δD;5Þ − ðr2 þ 2α − αfðrÞÞfðrÞ

�

− r
�
r2 þ 2αðD − 2Þ

ðD − 4Þ ð1 − fðrÞÞ
�
f0ðrÞ

�
; ð19Þ

where the term αδD;5 appears only when D ¼ 5. Note that
the integrand in the action is just a total derivative of r. This
expression gives the indefinite integral of the action. It is
divergent when evaluating this expression at asymptotic
AdS spatial infinity. In order to regularize the bulk action,
one can employ the background subtracting method.
The procedure is first to terminate the r integral at a cutoff
boundary r ¼ r0, then to subtract off the action of the pure
AdS space, and finally to take the limit of r0 → þ∞ to
obtain the finite part of the bulk action [50,60,61].
One can set ω ¼ 0 and q ¼ 0 to get the background AdS

metric. The factor f0ðrÞ of the background AdS metric is
then given by

f0ðrÞ ¼ 1þ r2

2α

"
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4α

L2

r #
: ð20Þ

In the subtracting procedure, we have to match the Gauss-
Bonnet-AdS black hole metric with the background AdS
metric at the cutoff boundary r ¼ r0. Thus, the time
coordinate τ0 of the background AdS space should relate
to the time coordinate τ of the Gauss-Bonnet-AdS metric
by the following equation:

fðr0Þdτ2 ¼ f0ðr0Þdτ20: ð21Þ

This, in turn, gives the time periods in the action integrals
that are related by the relation

β0 ¼
fðr0Þ1=2
f0ðr0Þ1=2

β

¼ 1 −
ωL2

4

0
B@1þ 1ffiffiffiffiffiffiffiffiffiffiffiffi

1 − 4α
L2

q
1
CA 1

rD−1
0

þO
�

1

rDþ1
0

�
: ð22Þ

Thus, the bulk action of the Gauss-Bonnet-AdS black hole
with the subtraction of the background AdS action is then
given by

IM=Σ ¼ 1

16π
ðD − 2ÞβΩD−2rD−5

h

�
r2h þ

r4h
L2

þ α

�

−
1

4

β

βH
ΩD−2rD−2

h

�
1þ 2αðD − 2Þ

ðD − 4Þ
1

r2h

�
; ð23Þ

where the limit r0 → ∞ is taken. It can also be written as

IM=Σ ¼ β

�
M −

1

2
QΦH

�
−

β

βH
S: ð24Þ
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D. Electromagnetic field’s contribution

In this subsection, we deal with the contribution to the
action from the electromagnetic field.
Because we consider the canonical ensemble with fixed

temperature and treat the electric charge Q as a fixed
parameter, we have to add a boundary term to guarantee
the fixed charge Q as a boundary condition at infinity. The
appropriate action for the electromagnetic field with the
boundary term is given by [64]

IEM¼1

4

Z
M
dDx

ffiffiffi
g

p
FμνFμν−

Z
∂M

dD−1x
ffiffiffi
γ

p
nμAνFμν; ð25Þ

where γ is the induced metric of the boundary ∂M and nμ is
the outward-pointing unit normal vector of the boundary.
The variation of the action IEM with respect to the
electromagnetic field gives

δIEM ¼ −
Z
M

dDx
ffiffiffi
g

p ð∇μFμνÞδAν

−
Z
∂M

dD−1x
ffiffiffi
γ

p
AνδðnμFμνÞ: ð26Þ

It is clear that the bulk term gives rise to the equations of
motion for the electromagnetic field and the surface term
yields δðnμFμνÞ ¼ 0 as the boundary condition for fixed
charge at AdS infinity.

By using the Stokes theorem, one can transform the bulk
integral into the surface integral. The action is then given by

IEM ¼ −
1

2

Z
∂M

dD−1x
ffiffiffi
γ

p
nμAνFμν: ð27Þ

In Euclidean space, the nonvanishing component of the
electromagnetic field is

Fτr ¼
i
8π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðD − 2ÞðD − 3Þ

p q
rD−2 ; ð28Þ

where there is an imaginary unit due to the time trans-
formation τ ¼ it. Note that there is also an imaginary unit i
in the electromagnetic potential. The outward-pointing unit
normal vector is nr ¼ 1=

ffiffiffi
f

p
. After some algebra, one can

finally get

IEM ¼ 1

16π
ðD − 2ÞβΩD−2

q2

rD−3
h

: ð29Þ

It can also be written as

IEM ¼ β

2
QΦH: ð30Þ

E. Generalized free energy in the canonical ensemble

At last, considering all the contributions discussed above, we have the gravitational action as follows:

IE ¼ 1

16π
ðD − 2ÞβΩD−2

�
rD−3
h þ 16π

ðD − 1ÞðD − 2ÞPr
D−1
h þ αrD−5

h þ q2

rD−3
h

�
−
1

4
ΩD−2rD−2

h

�
1þ 2αðD − 2Þ

ðD − 4Þ
1

r2h

�
; ð31Þ

where we have expressed the mass parameter ω as the function of black hole radius rh and restored the cosmological

constant as the thermodynamic pressure toward the relation P ¼ ðD−1ÞðD−2Þ
16πL2 .

For the canonical ensemble, the free energy is defined in the semiclassical approximation as

F ¼ −
1

β
lnZgravðβÞ

¼ IE
β

¼ 1

16π
ðD − 2ÞΩD−2

�
rD−3
h þ 16π

ðD − 1ÞðD − 2ÞPr
D−1
h þ αrD−5

h þ q2

rD−3
h

�
−
1

4
TΩD−2rD−2

h

�
1þ 2αðD − 2Þ

ðD − 4Þ
1

r2h

�
: ð32Þ

This is just the generalized free energy of the fluctuating Gauss-Bonnet-AdS black hole previously defined by using the
thermodynamic relation F ¼ M − TS [27,42]. To make it more explicit, we recall that the energy E and entropy S of a
canonical ensemble at the temperature T ¼ 1=β can be derived from the free energy as

E ¼ ∂

∂β
ðβFÞ ¼ 1

16π
ðD − 2ÞΩD−2

�
rD−3
h þ 16π

ðD − 1ÞðD − 2ÞPr
D−1
h þ αrD−5

h þ q2

rD−3
h

�
; ð33Þ

GENERALIZED FREE ENERGY LANDSCAPES OF CHARGED … PHYS. REV. D 108, 044057 (2023)

044057-7



S ¼ βðE − FÞ ¼ 1

4
ΩD−2rD−2

h

�
1þ 2αðD − 2Þ

ðD − 4Þ
1

r2h

�
: ð34Þ

It can be seen that the energy E and the entropy S are independent of the inverse temperature β. By identifying the energy E
as the black hole mass M, the thermodynamic definition of the generalized free energy is then given by

F ¼ M − TS ¼ 1

16π
ðD − 2ÞΩD−2

�
rD−3
h þ 16π

ðD − 1ÞðD − 2ÞPr
D−1
h þ αrD−5

h þ q2

rD−3
h

�

−
1

4
TΩD−2rD−2

h

�
1þ 2αðD − 2Þ

ðD − 4Þ
1

r2h

�
; ð35Þ

which coincides with the result Eq. (32) calculated from the
gravitational action on the singular Euclidean manifold as
an instanton. In this expression, the generalized free energy
F should be considered as the function of the black hole
radius rh. In the above equation, rh is treated as the order
parameter of the phase transition, the thermodynamic
pressure P is essentially the cosmological constant, α is
the Gauss-Bonnet coupling constant, q is the charge, and T
is the ensemble temperature that can be adjusted by the
exterior environment.
In summary, we have derived the generalized free energy

of Gauss-Bonnet black holes in D dimensions by using the
Euclidean gravitational path integral method. It should be
noted that the result is valid only in higher dimensions, i.e.,
D > 4. In Ref. [28], the thermodynamic definition of the
generalized free energy was invoked to study the phase
transition and its dynamical properties of four-dimensional
Gauss-Bonnet black holes. How to derive the generalized
free energy of four-dimensional Gauss-Bonnet black holes
from the path integral method is still a challenge, because
the Hawking-Bekenstein entropy of the four-dimensional
Gauss-Bonnet black hole has a logarithmic term, and it is
quite difficult to produce a logarithmic term in the gravity
theory with higher derivative curvature terms.

IV. FREE ENERGY LANDSCAPE IN DIVERSE
SPACETIME DIMENSIONS

In this section, we will discuss the free energy
landscape of Gauss-Bonnet black holes in diverse space-
time dimensions. Free energy landscape is an intuitive
representation of the generalized free energy function.
Free energy landscape can have different shapes at
different ensemble temperatures. In general, for the first-
order phase transition of small and large Gauss-Bonnet
black holes, the free energy landscape has the shape of a
double well.

A. Critical point from generalized free energy

First, let us discuss how to determine the critical point
from the generalized free energy function. Hawking
temperature has a special meaning on the free energy
landscape. When the ensemble temperature is equal to
the Hawking temperature, the black hole is in an
equilibrium state with the thermal bath. In this case,
the black is locally stable. The thermodynamically stable
black hole states correspond to the local extreme points
of the generalized free energy function. They are deter-
mined by the equation

∂F
∂rh

¼ ðD − 2Þ
16π

ΩD−2

�
ðD − 3ÞrD−4

h þ 16πPrD−2
h

ðD − 2Þ þ ðD − 5ÞαrD−6
h − ðD − 3Þ q2

rD−2
h

− 4πTrD−5
h ðr2h þ 2αÞ

�
¼ 0: ð36Þ

This equation gives us the relation between the ensemble
temperature T and the black hole radius rh when the
black hole is in equilibrium. It is easy to check that
solving the ensemble temperature T from the above
equation gives the expression of the Hawking temper-
ature TH as shown in Eq. (5).
In general, it can be observed that, when the ensemble

temperature is in a specific range, the free energy landscape
has the shape of a double well. This is to say that there exist
a minimal temperature Tmin and a maximum temperature
Tmax. When T < Tmin and T > Tmax, the shape of the free
energy landscape is a single well and no phase transition

can occur. When Tmin < T < Tmax, the free energy land-
scape is a double well and there is a first-order phase
transition between the small and the large black holes. If the
minimal and the maximum temperatures coincide, i.e.,
Tmin ¼ Tmax, the system lies at the critical point.
On the free energy landscape, the appearance or the

disappearance of the double-well shape corresponds to the
equation ∂

2F
∂r2h

¼ 0, which also indicates that there is an

inflection point. The minimal temperature Tmin and the
maximum temperature Tmax are then determined by the
following equation:
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∂
2F
∂r2h

¼ ðD − 2Þ
16π

ΩD−2

�
ðD − 3ÞðD − 4ÞrD−5

h þ 16πPrD−3
h þ ðD − 5ÞðD − 6ÞαrD−7

h

þ ðD − 2ÞðD − 3Þ q2

rD−1
h

− 4πTððD − 3ÞrD−4
h þ 2αðD − 5ÞrD−6

h Þ
�

¼ 0: ð37Þ

Combining Eqs. (36) and (37) and eliminating T, we can get the equation

16πP
ðD − 2Þ r

3
hðr2h þ 6αÞ − ðD − 3Þr3h − ðD − 9Þαrh þ 2ðD − 5Þ α

2

rh
þ ðD − 3Þ q2

r2D−7
h

ðð2D − 5Þr2h þ 2ð2D − 7ÞαÞ ¼ 0: ð38Þ

When the minimal and the maximum temperatures coincide at the critical point, the above equation has two equal roots.
This condition gives us the critical pressure and the critical temperature, as well as the critical black hole radius. However,
this equation is highly nonlinear, but the numerical solution can be easily obtained.

T=0.07

0 2 4 6 8
- 10

0

10

20

30

rh

F(
r h
)

T=0.0811

0 1 2 3 4 5 6 7
0

1

2

3

4

5

6

rh

F(
r h
)

T=0.082

0 1 2 3 4 5 6 7
0

1

2

3

4

5

rh

F(
r h
)

T=0.0832

0 1 2 3 4 5 6 7
1

2

3

4

5

rh

F(
r h
)

T=0.087

0 1 2 3 4 5 6 7
- 2

- 1

0

1

2

3

4

5

rh

F(
r h
)

T=0.0941

0 2 4 6 8

- 10

- 5

0

5

10

rh

F(
r h
)

FIG. 2. Free energy landscape for D ¼ 5. The horizontal and vertical axes are the black hole order parameter rh and the generalized
free energy FðrhÞ, respectively. In this plot, P ¼ 0.008, α ¼ 0.1, and q ¼ 1. When 0.08686 < T < 0.1472, the landscape is of the shape
of a double well. Otherwise, it is a single well. The red points represent Gauss-Bonnet-AdS black holes in the equilibrium state, while the
blue points represent the inflection points on the landscape.
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Note that a similar analysis of how to determine the
critical point from the free energy landscape has been
performed in Ref. [28], where four-dimensional Gauss-
Bonnet-AdS black holes were considered. Here, we will
consider the case of D > 4. As discussed in the following,
there may be two critical points on the phase diagram when
D ¼ 6. In this case, one should numerically solve the
equations more carefully.

B. D= 5

For D ¼ 5, the generalized free energy can be explicitly
given by

F ¼ 3π

8

�
r2h þ

4π

3
Pr4h þ αþ q2

r2h

�
−
π2

2
Tr3h

�
1þ 6α

r2h

�
:

ð39Þ

In analogy to the liquid-gas phase transition, there is also a
critical point on the phase diagram for the small and large
Gauss-Bonnet black hole state switching and phase tran-
sition. As previously discussed, the critical point can be
determined numerically. For q ¼ 1 and α ¼ 0.1, the critical
pressure is Pc ¼ 0.0165, the critical temperature is
Tc ¼ 0.113, and the critical black hole radius is
rch ¼ 2.084. When the pressure is below the critical pressure,
there is a small and large black hole state switching and
phase transition in the Gauss-Bonnet gravity system.
Free energy landscape is a powerful tool for studying the

thermodynamics of a phase transition. In Fig. 2, we have
plotted the generalized free energy as a function of the
black hole radius for P ¼ 0.008. At different temperatures,
the landscapes takes on different shapes, as illustrated.
At T ¼ 0.07, there is only one stationary state (repre-

sented by the red point) on the landscape, which represents
the stable Gauss-Bonnet black hole. In this case, there
is no phase transition. As the temperature increases to

T ¼ 0.0811, an inflection point (blue) appears on the free
energy landscape along with the stationary point. The
stationary point still represents the stable black hole state,
while the inflection point marks the emergence of the large
black hole and the intermediate black hole states in the
Gauss-Bonnet gravity system. When the temperature further
increases to T ¼ 0.082, the landscape takes on a double-well
shapewith two locally stable states and one unstable state, all
represented by the red points on the landscape. In this case,
the free energy of the left stationary point is lower than
that for the right stationary point, indicating that the small
black hole state represented by the left stationary point is the
globally stable state in thermodynamics. At the phase
transition point T ¼ 0.0832, the potential depths of the left
and right stationary points become equal, allowing small and
large black hole states to coexist. As the temperature
continues to rise to T ¼ 0.087, a similar analysis can be
performed to obtain that the large black hole state is the
globally stable one. Finally, at T ¼ 0.0941, another inflec-
tion point appears, and the shape of the landscape begins
to restore the shape of a single well. This describes the
dependence of the thermodynamics of the black hole state
switching and phase transition on the ensemble temperature.
Based on the discussion of the influence of the ensemble

temperature on the free energy landscapes, we have also
studied the phase structure of charged Gauss-Bonnet-AdS
black holes in five dimensions by plotting the coexisting
curve on the “T − P” plane (refer to Fig. 3). For a fixed
thermodynamic pressure that is below the critical value,
one can numerically determine the ensemble temperature
at which the two wells on the free energy landscape have the
same depth. By varying the pressure, one can obtain the
coexisting curve on the T − P plane numerically. Therefore,
the coexisting curvemarks the phase transition point at which
both small and large black holes can exist simultaneously.
This curve terminates at the critical point, which is denoted
by a black point on the phase diagram. It is also marked
that for the region above (below) the coexisting curve, the
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FIG. 4. Phase diagram for D ¼ 6 in the T − P plane, with
q ¼ 0.08 and α ¼ 1. The black point represents the critical point,
and the curve is the coexisting curve. SBH and LBH represent
small and large Gauss-Bonnet black holes, respectively.
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FIG. 3. Phase diagram for D ¼ 5 in the T − P plane. In this
plot, α ¼ 0.1 and q ¼ 1. The black point represents the critical
point. “SBH” and “LBH” represent small and large Gauss-
Bonnet black holes, respectively. The curve is the coexisting
curve of the small and large black holes.
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small (large) Gauss-Bonnet-AdS black hole is the globally
stable state. As a result of our analysis, we have gained
insight into the behavior of charged Gauss-Bonnet black
holes and their thermodynamic properties from the gen-
eralized free energy and the corresponding landscapes.

C. D= 6

For D ¼ 6, the generalized free energy is given by

F ¼ 2π

3

�
r3h þ

4π

5
Pr5h þ αrh þ

q2

r3h

�
−
2π2

3
Tr4h

�
1þ 4α

r2h

�
:

ð40Þ

The critical point can also be easily obtained by solving
Eq. (38) numerically. In the following, we will discuss two
cases: one critical point and two critical points.
We first consider that there is only one critical point on

the phase diagram, which is plotted in Fig. 4. The phase
diagram can be numerically obtained as discussed for
D ¼ 5 case. It is shown that for q ¼ 0.08 and α ¼ 1, the
critical pressure is Pc ¼ 0.01972 and the critical temper-
ature is Tc ¼ 0.11236. In this case, there are only two
Gauss-Bonnet AdS black hole phases which will domi-
nate when varying the thermodynamics parameters,
although an additional two black hole states will emerge
at a very small temperature range. The dominated black
hole state is always the small or the large Gauss-Bonnet
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FIG. 5. Free energy landscape for D ¼ 6, with P ¼ 0.008, α ¼ 1, and q ¼ 0.08. The horizontal and vertical axes are the black hole
order parameter rh and the generalized free energy FðrhÞ, respectively. The landscapes are of the shape of a double well when
0.11166 < T < 0.111963. Otherwise, it is a single well. The phase transition critical temperature is T ¼ 0.11178. The red points
represent Gauss-Bonnet-AdS black holes in the equilibrium state, while the blue points represent the inflection points on the landscape.
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AdS black hole. The additional two black hole states
emerge at the ensemble temperature where the large
Gauss-Bonnet AdS black hole is the thermodynamically
stable state. To see this point more explicitly, we present
the free energy landscapes for different ensemble temper-
atures in Figs. 5 and 6.
We show the shape of the landscapes for D ¼ 6 at

different ensemble temperatures in Fig. 5. Compared with
the free energy landscapes for the D ¼ 5 case, the varying
of the shape of landscapes along with the ensemble
temperature seems trivial. When the temperature is low,
the shape of the landscape is a single well. As the
temperature increases, the double-well shape of the land-
scapes begins to emerge and then disappears at a specific
temperature. Finally, it restores the single-well shape.
However, this is not the full story.
A detailed analysis indicates that in a very narrow

temperature range, i.e., when 0.1119595 < T <
0.1119668, the landscapes have the shape of three wells,
as depicted in Fig. 6. In the left panel, it can be observed
that there are five locally extremal points (indicated by
red points), which is different from the case of double-well
landscapes shown in Fig. 5. The right panel is an enlarged
plot of the rectangular region in the left panel. It is clear that
there are three wells on the landscape. The large Gauss-
Bonnet-AdS black hole represented by the minimum point
in the rightmost well is the thermodynamically stable state.
Within the rectangular region of the left panel, there are
four extremal points, indicating the emergence of an
additional two black hole phases. One of the emerged
phases is unstable, and the other phase is locally stable.
However, the emerged locally stable phase is not the
globally stable one, since its free energy is always greater
than that of the large black hole. In this case, there is no
triple point where three phases coexist, and, therefore, the
two emerged phases will disappear quickly.
Now, we consider the case that the system has a triple

point on the phase diagram. In Fig. 7, the phase diagram for
q ¼ 0.08 and α ¼ 1.05 is plotted. There are two critical

points. One critical point with the coordinates (0.109883,
0.0201336) denotes the end point of the coexisting curve
for the small black hole phase and the intermediate
black hole phase, and the other one with the coordinates
(0.109669, 0.0188013) is the end point of the coexisting
curve for the large black hole and the intermediate black
hole. In addition, there is a triple point with the coordinates
(0.109523, 0.0186373), denoting the coexisting phase of
the three branches of black holes.
We also plot the free energy landscapes for this case in

Fig. 8. When T < 0.1094, only one stable black hole phase
with a relatively small radius appears on the landscape.
As the temperature increases to 0.1094, an inflection point
appears, which means that another locally stable black hole
phase with an intermediate radius appears. As the temper-
ature increases to 0.10951, the second inflection point
appears, which means that the third locally stable black
hole phase emerges. At the temperature T ¼ 0.109523, the
three locally stable black hole phases coexist, with the same
depth of the potential well. When we continue to increase
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FIG. 7. Phase diagram for D ¼ 6 with the triple point in the
T − P plane. In this plot, q ¼ 0.08 and α ¼ 1.05. The black point
represents the critical point. SBH, IBH, and LBH represent
the small, intermediate, and large Gauss-Bonnet black holes,
respectively.
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FIG. 6. Free energy landscape for D ¼ 6. The horizontal and vertical axes are the black hole order parameter rh and the generalized
free energy FðrhÞ, respectively. In this plot, P ¼ 0.008, α ¼ 1, and q ¼ 0.08. The right panel is the enlarged plot of the rectangular
region in the left panel. When 0.1119595 < T < 0.1119668, the landscape is of the shape of three wells.
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the temperature, the third and the fourth inflection points
will appear successively, which implies that the intermedi-
ate and small black hole phases disappear correspondingly.
At last, when T > 0.109627, there is left only one stable
black hole phase with a relatively large radius on the
landscape. Note that, when q ¼ 0, the generalized free
energy F given in Eq. (40) is the fifth-order polynomial
function of the order parameter rh. It is impossible to obtain
five extrema as shown in Fig. 8 in the absence of charge.
Therefore, the presence of the two critical points is
inherently due to the existence of charge [65].

D. D ≥ 7

We state that theD ≥ 7 case is similar to theD ¼ 5 case.
There is only one critical point on the phase diagram, which

is the end point of the coexisting curve of the small and
large Gauss-Bonnet black holes. When the pressure is
lower than the critical pressure, increasing the ensemble
temperature, the free energy landscape will change from a
single well to a double well and restore the shape of a single
well. When the temperature is lower (higher) than the
transition temperature, the single potential well is located at
the small (large) black hole radius, which means the small
(large) black hole state is thermodynamically stable.

V. GENERALIZED FREE ENERGY IN THEGRAND
CANONICAL ENSEMBLE

In this section, we discuss the generalized free energy
for Gauss-Bonnet gravity in the grand canonical ensemble.
In Sec. III, we have derived the generalized free energy
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FIG. 8. Free energy landscape for D ¼ 6. The horizontal and vertical axes are the black hole order parameter rh and the generalized
free energy FðrhÞ, respectively. In this plot, P ¼ 0.0186373, α ¼ 1.05, and q ¼ 0.08. The red points represent the equilibrium state
Gauss-Bonnet black holes, while the blue points represent the inflection points on the landscape.
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function in the canonical ensemble by using the Euclidean path integral approach. The generalized free energy in the grand
canonical ensemble can be obtained by using the Legendre transformation:

Ω ¼ F −QΦ

¼ 1

16π
ðD − 2ÞΩD−2

�
rD−3
h þ 16π

ðD − 1ÞðD − 2ÞPr
D−1
h þ αrD−5

h

�
þ Q2

2ðD − 3ÞΩD−2rD−3
h

−
1

4
TΩD−2rD−2

h

�
1þ 2αðD − 2Þ

ðD − 4Þ
1

r2h

�
−QΦ; ð41Þ

where we have replaced the parameter q with the electric
charge Q by using the relation in Eq. (6). The electromag-
netic potential Φ should be viewed as the thermodynamic
potential of the bath in the grand canonical ensemble. It
should be noted that the generalized free energy Ω is the
function of the order parameter rh and q, while T andΦ are
the external adjustable parameters.
In Refs. [44,45], it was shown that there exist a small and

large Gauss-Bonnet black hole phase transition in five
dimensions. For D ¼ 5, we have

Ω ¼ F −QΦ ¼ 3π

8

�
r2h þ

4π

3
Pr4h þ αþ Q2

3π3r2h

�

−
π2

2
Tr3h

�
1þ 6α

r2h

�
−QΦ: ð42Þ

This is just the generalized free energy that was defined
previously by using the thermodynamic relation in
Ref. [43]. In order to describe the thermodynamics of
the phase transition qualitatively, we plot the corresponding

FIG. 9. Two-dimensional free energy landscape for D ¼ 5. The generalized free energy is plotted as the function of the black hole
order parameters rh and Q. In this plot, P ¼ 0.5, α ¼ 0.01, and Φ ¼ 0.1. The ensemble temperatures are set to be 0.52, 0.524813,
0.526749, and 0.530519, respectively.
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free energy landscapes of the grand canonical ensemble at
different ensemble temperatures in Fig. 9.
In Fig. 9, we set p ¼ 0.5, α ¼ 0.01, and Φ ¼ 0.1. It is

shown that, when T < 0.524813 and T > 0.530519, the
shape of free energy landscapes is a single well, and when
0.524813 < T < 0.530519, the shape is a double well. At
the phase transition point T ¼ 0.526749, the corresponding
landscape has two potential wells with the same depth. All
these behaviors are similar to that of landscapes for the
canonical ensemble in D ¼ 5.

VI. CONCLUSION AND DISCUSSION

In summary, we have derived the generalized free energy
function of D-dimensional charged Gauss-Bonnet-AdS
black holes in terms of the path integral approach. It is
demonstrated that the derived generalized free energy is
consistent with the thermodynamic definition. We also
discuss the free energy landscapes for Gauss-Bonnet
gravity in diverse dimensions. For the canonical ensemble,
the free energy landscapes are one-dimensional curves with
the stable states represented by the lowest points in the
potential wells. Based on the generalized free energy
function and the landscapes, we discuss the corresponding

phase structures that are illustrated on the phase diagrams.
For D ¼ 5 and D ≥ 7, there is only one critical point on
the phase diagram. For D ¼ 6, there exist two cases: one
case with only one critical point on the phase diagram
and another case with two critical points and one triple
point on the phase diagram. We have explicitly plotted the
landscapes to exhibit the changes with the ensemble
temperature. In addition, based on the topography of the
landscape, we discussed the thermodynamics of the state
switching and the phase transition. For the Gauss-Bonnet
black holes in the grand canonical ensemble, the landscapes
are two-dimensional surfaces. We briefly study the shapes
of these landscapes at different temperatures.
In the present work, the thermodynamics of the state

switching and the phase transition for charged Gauss-
Bonnet-AdS black holes is discussed in detail. However,
thermodynamics alone cannot provide the full information
for the kinetics of the state switching and the phase
transition. Thermal fluctuations should be taken into account
in order to investigate the phase transition kinetics. For future
directions, it is interesting to study the state switching and
the phase transition process on two-dimensional landscapes
by using the stochastic dynamics method.
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