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We demonstrate that it is possible to test models of gravity, such as Palatini fðRÞ and Eddington-inspired
Born-Infeld models, using seismic data from Earth. By incorporating additional limitations on Earth’s
moment of inertia and mass given from observational data, the models’ parameters can be restricted to
a 2σ level of accuracy. Our novel tool provides that the parameter β parametrizing the quadratic curvature
term in the gravitational Lagrangian of Palatini fðRÞ gravity is constrained to β ≲ 109 m2, while the
Eddington-inspired Born-Infeld gravity parameter ϵ is restricted to ϵ ≲ 4 × 109 m2. We also discuss further
enhancements to the proposed method, aimed at imposing even more stringent constraints on modified
gravity proposals.
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I. INTRODUCTION

Numerous proposals have been put forward to extend
general relativity (GR) in order to address the mysteries
of the dark sector of the Universe [1–8], as well as the
discrepancy between observations of the visible components
of galaxies and their dynamical mass [9], and the existence
of apparently “too massive” compact objects [10–15]. These
modifications to GR appear inevitable in the cosmological
regime although they must be significantly suppressed in
small-scale systems such as compact objects and the Solar
System. Moreover, the recent analyses of gravitational
parameter space diagram [16] indicates untested regions
where curvature values correspond to galaxies and (sub)
stellar objects. It is speculated that those untested domains,
which separate small scale systems from the cosmological
one, could shed light on corrections to GR.
Understanding the need for various but complementary

tests for the gravitational proposals and for filling the
mentioned gap, we proposed a new one, based on the
planetary seismology [17]. So far, only seismic data from
low-mass stars (asteroseismology) [18,19] and from the
Sun (helioseismology) [20,21] have been used to constrain
fundamental theories. Growing number and accuracy
of observational data on astrophysical bodies have
already helped to constrain or even to rule out some of
the existing theories of gravity; for example, multimes-
senger astronomy [22–26] excluded those models which
predict that the speed of gravitational waves is different
than the speed of light [27–33]. Another example is soft

equations of state, which were also ruled out in the
framework of GR1 because of inability to provide high
neutron stars’ masses [35–42].
However, in comparison to compact objects and even

stellar ones in which an equation of state as well as
atmospheric properties play a crucial role, carrying
at the same time large uncertainties related to their
description [43–45], Earth seismology provides data that
conveys information on the planet’s interior [46–51]. As we
will demonstrate, the seismic data, together with high
accuracy of Earth’s mass and moment of inertia measure-
ments, are a novel and remarkable tool to constrain models
of gravity, at the same time using a well-understood physics
such that one can avoid some of uncertainties related to
model’s assumptions.
Moreover, our knowledge on our planet’s interior has

been increased significantly in last years, not only thanks
to the improvements of seismographic tools [47,52–55],
but also due to reaching Earth’s interior’s temperatures and
pressures in laboratories. This allowed to study iron’s
properties2 and behavior in these regimes [56]. On the
other hand, new neutrino telescopes will also provide the
information on density, composition, and abundances of
light elements in the outer core in the deepest part of our
planet [57–60], decreasing even more uncertainties related
to Earth’s core characteristics.

*Corresponding author: awojnar@ucm.es
†aleksander.kozak@uwr.edu.pl

1However, in the framework of modified gravity proposals,
those equations of state are still a viable description of the matter
properties inside neutron stars; see [34] and references therein.

2Iron and its compounds are the main elements in Earth’s inner
and outer core.
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One can also be worried about the insignificance of the
modified gravity effects in planetary physics. Indeed,
the impact on the densities and thicknesses of the layers
is small but still notable [61–64], and in light of the
mentioned facts that we possess much more information
with better accuracy about the Solar System planets
[65–70], and in particular, about Earth [71],3 we are able
to use the available data to constrain theories. As we will
see, with our simplified approach, we can do it up to a 2σ
level of accuracy.
The paper is organized as follows. In Sec. II, we

introduce the basic notions relating to Earth’s modeling.
We also recall the main assumptions and tools used in the
preliminary reference Earth model (PREM), widely used
in geology and (exo)planet science. Ricci-based gravity
and the Earth model resulting from this proposal of
gravity are presented in Sec. III. Our methodology and
results are discussed in Sec. IV. In Sec. V, we draw our
conclusions.

II. PREM—SEISMOLOGY AND GRAVITY

In what follows, let us discuss the most used global
seismological Earth model, which is a starting point for the
more accurate Earth’s [48–51] and other terrestrial [73]
and even gaseous [74] (exo)planets’ models. The prelimi-
nary reference Earth model [47] is based on velocity-depth
profiles given by the travel-time distance curves for seismic
waves and on periods of free oscillations [46,75,76]. It
provides pressure, density, and elastic moduli profiles as
functions of depth, and as it will be clear in the further part,
the lacking element to determine them is a hydrostatic
equilibrium equation.
The PREM is a one-dimensional model and it adopts the

following assumptions:
(i) There is no exchange of heat between different

layers (adiabatic compression); therefore, there is
no additional term in the hydrostatic equilibrium
equation related to the temperature variation.

(ii) The planet is a spherical-symmetric ball in hydro-
static equilibrium given by

dP
dr

¼ −4πGρr−2
Z

r

0

ρr2dr≕ − ρg; ð1Þ

where the pressure P, density ρ, and acceleration of
gravity g are functions of the radial coordinate r
(or depth).

(iii) The planet consists of radially symmetric shells with
the given4 density jump between the inner and outer
core Δρ ¼ 600, central density ρc ¼ 13050 and
density at the mantle’s base ρm ¼ 5563 (in kg=m3).

Moreover, the mass equation,

M ¼ 4π

Z
R

0

r2ρðrÞdr; ð2Þ

and moment of inertia,

I ¼ 8

3
π

Z
R

0

r4ρðrÞdr; ð3Þ

where R is Earth’s radius, play a role of the constraints: they
are given by observations with a high accuracy [77,78].
On the other hand, the outer layers’ density profile (for

upper mantle) is described by the empirical Birch law,

ρ ¼ aþ bvp; ð4Þ

where a and b are parameters which depend on the material
in the upper mantle [47] (they depend on the mean atomic
mass), while vp is the longitudinal elastic wave. Together
with the transverse elastic wave vs, we can define the
seismic parameter Φs as

5

Φs ¼ v2p −
4

3
v2s : ð5Þ

It is related to the elastic properties of an isotropic material;
more specifically, it is related to the bulk modulus K (also
called incompressibility),

Φs ¼
K
ρ
: ð6Þ

By the definition of the bulk modulus,

K ¼ dP
d ln ρ

; ð7Þ

we can also express the seismic parameter in terms of the
material’s properties,

Φs ¼
dP
dρ

; ð8Þ

3And also on Mars when seismic data obtained from analyzing
waves created by marsquakes, thumps of meteorite impacts,
surface vibrations caused by activity in Mars’ atmosphere, and by
weather phenomena, e.g., dust storms [72], are ready.

4In the original PREM model, the central density is not the
theory’s free parameter but can be obtained by integrating the
relevant equations. Instead, one assumes the value of the density
below the crust, and all densities in the outer layers are described
by Birch’s law. In our approach, we use the PREM value, as we
do not indent to change the model in the outermost layer due to a
weak effect of modified gravity.

5See the derivation in, for example, [46].
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and hence, it carries the information on the equation of
state. Using this feature in (1),

dρ
dr

¼ −ρgΦ−1
s ; ð9Þ

together with the mass equation (2) and seismic data,
that is, the longitudinal and transverse elastic waves vp and
vs [47], one can obtain the density profile, as presented in
the Fig. 1.
It should be clear now how the planets’ models depend

on theory of gravity; modifying the hydrostatic equilibrium
(1) or mass equations (2), the density profile will vary with
respect to the one provided by the PREM. Let us also notice
that more realistic seismic models of Earth also used
Newtonian hydrostatic equilibrium equations [50]; there-
fore, they are also gravity model dependent. However,
equipped with gravity-independent Earth model [57–60],
as discussed in [17], can be a powerful tool in the nearest
future to constrain gravitational proposals.

III. EARTH MODEL IN RICCI-BASED GRAVITY

In what follows, let us discuss a class of metric-affine
proposals of gravity, the so-called Ricci-based gravity
(RBG) theories (see, e.g., [79]). This particular class’
action can be written as

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p
LGðgμν; RμνÞ þ Smðgμν;ψmÞ; ð10Þ

where g is the determinant of the space-time metric gμν,
while Rμν is the symmetric Ricci tensor, independent of the
metric as it has been constructed with the affine connection
Γ≡ Γλ

μν only. Let us now define an object Mμ
ν ≡ gμαRαν,

which we will use to construct the gravitational Lagrangian
LG such that we will deal with a scalar function being built
with powers of traces of Mμ

ν.
On the other hand, the matter action,

Sm ¼
Z

d4x
ffiffiffiffiffiffi
−g

p
Lmðgμν;ψmÞ; ð11Þ

in this proposal is minimally coupled to the metric, where
ψm are the matter fields. That is, the antisymmetric part
of the connection (torsion) is neglected as in the case of
minimally coupled bosonic fields,6 the problem trivializes
to the symmetric part only [79]. Similarly, we focus on the
symmetric part of the Ricci tensor to avoid potential
ghostlike instabilities [80,81]. Such an approach allows
us to consider many theories of gravity such as GR, Palatini
fðRÞ gravity, Eddington-inspired Born-Infeld (EiBI) grav-
ity [82] and many of its extensions [83].
Theories of gravity that can be included in the above

gravitational action have a nice feature: although the field
equations possess rather complicated forms, they can be
rewritten in a more convenient way (see, e.g., [83]),

Gμ
νðqÞ ¼

κ

jΩ̂j1=2
�
Tμ

ν − δμν

�
LG þ T

2

��
; ð12Þ

where jΩ̂j is a determinant of the deformation matrix
defined below, T ¼ gμνTμν is the trace of the energy-

momentum tensor of the matter fields Tμν ¼ − 2ffiffiffiffi−gp ∂Lm
∂gμν.

The Einstein tensor Gμ
νðqÞ is associated to a tensor qμν

such that the connection Γ results to be the Levi-Civita
connection of it,

∇Γ
μð

ffiffiffiffiffiffi
−q

p
qαβÞ ¼ 0: ð13Þ

This tensor, for the given formalism, is related to the space-
time metric gμν via the relation,

qμν ¼ gμαΩα
ν; ð14Þ

where Ωα
ν is the deformation matrix that depends on the

particular theory, that is, gravitational Lagrangian LG
considered. It turns out that LG can be expressed on shell
as a function of the matter fields and the space-time metric
gμν, so the deformation matrix Ωα

ν is also a function of

FIG. 1. The density profile given by the preliminary reference
Earth model [47] in which Newtonian gravity is assumed. The
velocities’ plots are obtained from data without using any theory
of gravity. The primary waves are the same as the longitudinal
waves, while the secondary waves are transverse in nature. The
units are in km=s for velocities, while the densities are in kg=m3.

6Moreover, even fermionic particles, for example, degenerate
matter, can be effectively described by a fluid approach, given by,
for example, the perfect fluid energy-momentum tensor.
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them. Its determinant is denoted by vertical bars as in
Eq. (12). Moreover, it is obvious now from the form of (12)
that RBG theories provide the second-order field equations,
which in vacuum, that is, Tμ

ν ¼ 0, reduce to the GR
counterparts. This also means that there is no extra degree
of freedom propagating in these theories apart from the
usual two polarization of the gravitational field.
We are interested in the nonrelativistic limit of the

field equations (12). In the case of Palatini fðRÞ [84]
and EiBI [85,86] gravities, the Poisson equation can be
written in the form,

∇2ϕ ¼ κ

2
ðρþ α∇2ρÞ ð15Þ

where ϕ is gravitational potential, κ ¼ 8πG while α a
theory parameter, taking the forms α ¼ 2β for Palatini fðRÞ
(β is the parameter accompanying the quadratic term)
and α ¼ ϵ=2 for EiBI (ϵ ¼ 1=MBI, with MBI being the
Born-Infeld mass).7

The nonrelativistic hydrostatic equilibrium and mass
equations are

dϕ
dr

¼ −ρ−1
dP
dr

; ð16Þ

M ¼
Z

4π0r̃2ρðr̃Þdr̃; ð17Þ

or, specifically,

dP
dr

¼ −ρ
�
GMðrÞ

r2
þ βκ

dρ
dr

�
for Palatini fðRÞ; ð18Þ

dP
dr

¼ −ρ
�
κMðrÞ
8πr2

þ κϵ

4

dρ
dr

�
for EiBI; ð19Þ

which clearly differ from (1) because of the correction term
in the Poisson equation (15). We also notice that in the
nonrelativistic limit, the relation between the parameters is
ϵ ¼ 4β; thus, we will denote now the modified gravity
correction by the parameter β in the further part of the
paper. Therefore, because of the further numerical analysis,
we will rewrite those equations as

dρ
dr

¼ −ρgeffΦ−1
s ; ð20Þ

where, analogously to (1) and (9), we have introduced

geff ¼
GMðrÞ

r2
þ βκ

dρ
dr

:

There already exist bounds on both proposals. It was
showed that in the case of Palatini gravity, the value of β is
related to the curvature regime [88]. It is so because of the
fact that the Palatini curvature scalar is proportional to the
trace of the energy-momentum tensor resulting that its
value also does. On the other hand, the analytical exami-
nation of the weak-field limit yields that jβj≲ 2 × 108 m2

[88], while further studies demonstrated that the Solar
System experiments cannot deliver bounds on the para-
meters because of the microphysics uncertainties [84].
Considering EiBI gravity, the parameter ϵ lies within
−6.1 × 1015 ≤ ϵ ≤ 1.1 × 1016 m2 at 5σ confidence level
according to the newest bound [89]. Other bound of those
or higher orders were obtained earlier in [90–93]. Similarly
to general relativity, none of the considered models is able
to explain the galaxy rotation curves [94,95], so there is no
bound obtained with the galaxies catalogs yet.
Since we do not have yet a gravity-independent model

of Earth, in the further part then we will assume that
PREM is an accurate model of our planet such that we will
use it, together with the mass and moment of inertia
constraints, to constrain the Ricci-based gravity. As we
will see, we will prove that the seismic data of Earth can
be indeed used to restrict models of gravity to a 2σ level of
accuracy at least.

IV. NUMERICAL APPROACH AND RESULTS

The dataset that served as a basis for our calculations was
obtained from [47] and references therein; it features
measured values of longitudinal and transverse seismic
waves velocities for corresponding depths. Based on this
data and having made assumptions about the values of the
free parameters of the PREM: the density jump between the
inner and outer core, as well as the density at the base of
the lower mantle (we neglect the upper mantle and the crust
since we assume Birch’s law there), one can calculate the
density profiles and integrate the result to get the total mass
and the polar moment of inertia. These values were treated
as a measure of the accuracy of the model, and it was these
numbers that we compared our results to. The PREM
predicts the value of Earth’s mass with very good accuracy;
the measured value is M⊕ ¼ ð5.9722� 0.0006Þ × 1024 kg
[77], whereas PREM gives MPREM ¼ 5.9721 × 1024 kg.
The situation is a bit worse when one considers the polar
moment of inertia: the value determined experimentally
is I⊕ ¼ ð8.01736� 0.00097Þ × 1037 kgm2 [78], while
PREM yields IPREM ¼ 8.01897 × 1037 kgm2, which is
∼1.5σ away from the expected value. This clearly results
from the fact that PREM is a one-dimensional model, and it
does not incorporate an important aspect that Earth is not a

7The similarity of the Poisson equation in those two gravity
proposals is not a coincidence—the EiBI gravity in the first
order approximation reduces to Palatini gravity with the quadratic
term [87]. On the other hand, only the quadratic term R2 enters
the nonrelativistic equations since further curvature scalar terms
enter the equations on the sixth order [84].
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perfect sphere. This, obviously, poses some problems
when trying to assess the “goodness” of alternative gravity
models. Therefore, in our calculations, we decided to try to
obtain the value determined using PREM, while keeping
the uncertainties coming from measurements. We assume
that, given a more accurate, three-dimensional Earth model,
one would be able to increase the accuracy of the
predictions (i.e., get closer to the mean value obtained
empirically), but the errors coming from experiments
would remain the same. For this reason, we aim at the
following values with accompanying errors:

Mtarget ¼ ð5.9721� 0.0006Þ × 1024 kg;

Itarget ¼ ð8.01897� 0.00097Þ × 1037 kgm2: ð21Þ

We adopted a brute-force approach to the problem of
determining the values of the theory’s free parameters:
intervals not only of possible values of both the density
jump and the density at the base of the mantle were
assumed (being reasonably close to the experimentally
measured values) but also of the central density. This value
is determined by the PREM given the total Earth’s mass and
its polar moment of inertia. We decided to make it a free
parameter and to allow it to change within a certain interval.
Overall, the calculations were performed using a Python

script with ðρc; ρm;ΔρÞ (central density, density at the base
of the mantle, density jump between inner and outer core)
taken from the following sets:

ρc ∈ ½13050; 13150� kgm−3;

ρm ∈ ½5500; 5600� kgm−3;

Δρ ∈ ½590; 740� kgm−3: ð22Þ

The variability of these three parameters was introduced in
order to address the uncertainty in determining the exact
values of the densities inside Earth. For example, it is
estimated that the density jump value between the inner and
outer core ranges from 300 kgm−3 to 900 kgm−3, depend-
ing on Earth’s hemisphere [96]; other authors’ estimates lie
within 600–700 kgm−3 [97]. The inner core density’s
values lie between 12760 kgm−3 (at the inner-outer core
boundary) and 13090 kgm−3 (at the center) [98]; we
decided to take the maximum value and consider deviations
of 50 kgm−3 from it. Finally, the density at the base of the
lower mantle assumed in the original PREM model was
5550 kgm−3 [47], but it was shown that deviations from
PREM’s values by as much as 50 kgm−3 can improve the
goodness of the density fitting function [99].

FIG. 2. 1σ confidence regions of the theory parameters ðρc; ρm;ΔρÞ for different values of the β parameter, being of order 108 m2. The
darker color corresponds to lower values of the central density, while the brighter one—to higher. The range of the central density is
shown in the color bar below the figures. The units are kg=m3.
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We performed the calculations for different values of
β, ranging from β ¼ 108 m2 up to β ¼ 9 × 1011 m2. It
must be stressed once again that the model we are using
is very simple, and therefore, the main aim of our
computations is to check which parameters would be
crucial to a more sophisticated analysis and also to assess
the order of magnitude of β, at which the effects of MG
are still in agreement with the observationally determined
constraints. The results of these calculations are shown in
Figs. 2 and 3. Since we assumed that the PREM is a valid
model of the planet, the uncertainties for the parameter
resulting from the moment of inertia and mass allows us
to put an upper bound for the parameter β. On the other
hand, the PREM, as discussed, is not the best model of
Earth; therefore, the density parameters can differ with
respect to those we assumed. As can be seen in Figs. 2
and 3, there always exists a region for a given value of the
theory parameter for which all three density parameters
result in a good agreement with experimental measure-
ments (this has been verified numerically also for larger
values of β). However, Δρ and ρc admit much wider
ranges of their values, not taking out of the 1σ region for
the mentioned uncertainties related to them, in compari-
son to ρm, which, for a given value of the β parameter,
and for a set range of the remaining two density

parameters, can differ by no more than 2–3 kgm−3 from
the value assumed in our calculations in order to remain
within the 1σ region. If we were to incorporate bigger
uncertainty of this parameter, we would have to either
increase the range of ρm and Δρ, or the range of β (or
both). The range of ρm, however, changes only slightly
with different values of ρc and Δρ, as can be verified by
looking at Figs. 2 and 3. On the other hand, the impact of
the theory parameter β on possible ranges of ρm is much
more pronounced. To put it differently: large uncertainty
in the determination of ρm is related to a bigger range
of β parameter’s allowed values (i.e., yielding results in
agreement with the measurements). Therefore, for exam-
ple, for the value β ¼ 109 m2, deviations from the PREM
value of ρm leading to the same values of the mass and
the polar moment of inertia, resulting from the mere
change of the theory’s parameter (i.e., with respect to
β ¼ 0) is very small, being equal to 0.02%, while the
uncertainty of the PREM model in the worst case, that is,
with the deviations about 50 kgm−3, is 0.9%, keeping Δρ
and ρc unchanged. This would increase our upper bound
almost to 1011 m2. Clearly, reducing the uncertainty of
ρm by considering a better model of Earth will result in
improving our bounds on a given model of gravity, as
discussed in the further part of the paper.

FIG. 3. 1σ confidence regions of the theory parameters ðρc; ρm;ΔρÞ for different values of the β parameter, being of order 109 m2. The
darker color corresponds to lower values of the central density, while the brighter one—to higher. The range of the central density is
shown in the color bar below the figures. The units are kg=m3.
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Some comments concerning the integration technique
are in order. First of all, the modified hydrostatic equilib-
rium equation features a derivative of the inverse of the
seismic parameter ΦS, depending on the seismic velocities.
For simplicity, we fitted a curve to the data points and
obtained up to the third-order polynomials, whose coef-
ficients are in agreement with analytical approximations
done by Dziewoński et al. in [47]. Secondly, the integration
itself was carried out employing the Euler method with
ðρc; ρmÞ treated as initial conditions at corresponding
boundaries, and Δρ used to compute the density at the
base of the outer core.
We also computed the errors for a more clear situation of

fixed values ðρc; ρm;ΔρÞ, being in good agreement with the
assumed target mass and moment of inertia (i.e., within 1σ
from the mean values), for different values of the parameter
β in order to see what the order of magnitude, at which the
deviations exceed 1σ and 2σ, turns out to be. The results of
this simple assessment are shown in Fig. 4.
A quick analysis of Fig. 4 suggests that assuming the

knowledge of exact values of the PREM’s parameters,
the effects of modified gravity become noticeable and
start exceeding the 2σ accuracy level when β is of order
∼109 m2, which is similar to or lower than the upper limits
placed on the value of these parameters in other works
[88,93]. As one can see, the mass of the planet seems to be
slightly more sensitive to the change of the parameter β
than the polar moment of inertia. This is due to the fact that

the outermost layers of the planet, which are unmodified,
give a more significant contribution to the overall moment
of inertia than they do in the case of the mass since to
calculate the moment of inertia one raises the radius to
the fourth power, while the computation of mass requires
second power. However, note that even a small change in
the core’s structure and composition of the terrestrial
planets can have a significant effect on the moment of
inertia [100–108].
Figures 2 and 3 reveal that, as stated before, the density

jump between the inner and outer core, combined with an
increase in the central density, has a small impact on the
overall mass and moment of inertia—at least within the 1σ
region, while the value of the density at the base of the
mantle has a dramatic effect on those quantities. This is
caused by the intuitive fact that the greater value of the
jump is compensated by an increase in the central density.
One can clearly observe that the bright-blue region is
shifted towards bigger values of the density jump, meaning
that a more dense core corresponds to a bigger density
difference between the inner and outer core. However, the
mantle base density determines the density profile for the
outer layers and its increase cannot be compensated by a
decrease in any other quantity’s value (for a fixed value
of β). Since the mass and the moment of inertia are
determined with very good accuracy, even a small change
in the boundary conditions (here, the density at the base of
the mantle) has a measurable impact on the empirically

FIG. 4. Relative absolute error for the mass and the moment of inertia of Earth. Red dots represent errors for the moment of inertia,
while blue ones correspond to the mass. The dark green stripe represents a 1σ region for both quantities, while the light green denotes a
2σ region. The green region denotes the uncertainties for both mass and moment of inertia because, for either of them, the ratio of σ to
the mean value is similar (≈0.01%). The values of ðρm; ρc;ΔρÞ chosen for numerical calculations are ð5563; 13050; 600Þ kg=m3,
respectively.
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determined quantities. In Fig. 3, the effect of modified
gravity becomes visible. Interestingly, the region becomes
shifted toward greater values of the inner-outer core density
jump, and toward lower values of the density at the base of
the mantle. The admissible region of the mantle density is
in all cases rather small, approximately equal to 4 kgm−3,
which most likely not only exceeds the accuracy of today’s
experimental techniques but also might be irrelevant when
a nonisotropic model would be taken into account (struc-
tural differences between various parts of the base of the
mantle, such as local inhomogeneities, shifts in the boun-
dary between layers, and so on, might be greater than the
uncertainty related to the choice of the theory of gravity).

V. SUMMARY AND CONCLUSIONS

The present study was designed to determine if planetary
seismology can be used to constrain models of gravity.
Because of our previous works, in which we have proposed
the procedure [17] performed here and in which we have
studied in detail the structure and density profile depend-
encies on modified gravity [61,62], we were convinced that
constraining gravitational models would be possible.
However, it was not sure if one can do that with simplified
Earth modeling as demonstrated in this work because of the
observational uncertainties. As proved in the presented
study, one can put an upper bound on the value of the β
parameter, for which the deviations of Earth’s mass and
polar moment of inertia do not exceed 2σ. This value is, for
fixed density parameters (resulting from the PREM) inside
the planet, of order ∼109 m2, that is, β ≲ 109 m2 for
Palatini fðRÞ gravity, and ϵ≲ 4 × 109 m2 for EiBI one.8

The seismic data [47], which we have used in our
analysis, consist of the longitudinal and transverse elastic
waves’ velocities and the depth of their propagation.
Both elastic waves carry information about the matter
properties inside Earth that can be encoded with the help
of the seismic parameter, appearing in the (modified)
hydrostatic equilibrium and Poisson equations. Solving
them with respect to various values of a theory’s parameter
and boundary/initial conditions (such as central and jump
densities between layers), we obtain density profiles,
differing with respect to the preliminary reference Earth
model [47] which is based on the Newtonian gravity. On
the other hand, the observational values of Earth’s mass and
moment of inertia strongly constrain density profiles, and,
as a result, the theory parameter. Even though the model
was rather simplistic, it was still possible to constrain the

Palatini parameter β (EiBI parameter ϵ) using the data
collected here on Earth.
However, our approach carries with it various limita-

tions, caused by assumptions and simplifications. The first
and most crucial one, already discussed previously in the
text, is the spherical symmetry. Earth is not a perfect sphere;
moreover, the moment of inertia is sensitive to rotation and
particular symmetry induced by it. It is already a problem
with the PREM, whose density profile does not produce a
moment of inertia which is in good agreement with the
observational value within its accuracy. One of the ways to
overcome this problem without incorporating a nontrivial
Earth’s geometry could be estimating the equatorial
moment of inertia in comparison to the polar one by
applying travel time ellipticity corrections in the PREM
by the use of expressions for the ellipsoidal correction of
travel time provided in [51,111]. Apart from it, the PREM
and our models are one dimensional, and in addition,
assume spherical layers. Taking into account their imper-
fections and varying density jumps will also have a nonzero
effect on the moment of inertia and mass. The adiabatic
compression, that is, assuming that the temperature does
not vary with depth is yet another improvement which we
need to take into account in our future work. Moreover, the
PREM does not take into account the travel times of
seismic waves that sample the boundaries of the outer and
inner core—because of this reason it should not be used
for body wave studies in these regions as we did in our
simplified approach. Instead, one could use the model
AK135-F [112,113], which is a more accurate model of
those regions as it takes into account the complexity of core
waves in comparison to the PREM. Also, one could use
equations of state to model density and bulk moduli of the
core [114] instead of relying on seismic data from that
region, which can be subjected to uncertainties in the
density jumps at the inner and outer core boundaries.
One may also be concerned about using Birch’s law for

the outer layers in modified gravity. As already mentioned,
it is an empirical law whose coefficients were obtained
experimentally. Although gravity has something to say
about matter properties (such as, for example, chemical
potential [115] and chemical reaction rates [116], specific
heat [117], Debye temperature, and crystallization proc-
esses [118], or equation of state [119,120]), in this case, we
can safely use it. However, this law should be determined
again if we deal with seismic data fromMars—note that the
coefficients depend on the kind of material the outer layers
are made of, which differ for each terrestrial planet.
In addition to utilizing more accurate models such as

AK135-F and improving the description of the inner core,
there are further potential extensions of this research. These
include incorporating data from satellite geodesy and
considering the nonspherical spatial distribution of mass.
By comparing the theoretical model of Earth’s gravitational
potential, expressed in terms of spherical harmonics and

8On the other hand, the strong regime studies indicate the order
∼108 m2 [109] for Palatini gravity while for the EiBI one the
upper limit of the parameter is ≲6 × 106 m2 [110]. Note however
that this bound was obtained from analytical considerations,
without taking into account analysis of uncertainties; therefore, it
does not provide confidence levels.
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adjusted according to a given theory of gravity (taking into
account the small correction in geff ), with the model derived
from satellite geodesy, it is anticipated that higher accuracy
constraints on gravity models can be achieved compared to
the results obtained in this study.
In spite of its current limitations, the study certainly

offers a great tool for constraining theories of gravity.
Equipped with a quite simple Earth model, we have been
able to constrain the most popular Ricci-based gravities
up to 2σ. Let us recall that it is a result of the fact that: we
take into account matter and its properties (no vacuum,
dust, or simple equations of state as usually considered in
most approaches) and that one does not to use many
assumption on the matter description since they are
encoded into the seismic wave data. As demonstrated
by some of us [43], including more realistic physics for
the matter properties allows to better control the uncer-
tainties related to such a description and to modified

gravity effect, finally providing more stringent bounds on
the theory parameters. Apart from it, improving even
more the points mentioned above, the method will
provide even stronger constraints while future neutrino
telescopes will allow using the planet’s model which is
gravity independent, reducing even more uncertainties
related to the physical properties of the inner core. Work
is currently underway in this direction.
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[81] J. Beltran Jiménez and A. Delhom, Eur. Phys. J. C 80, 585
(2020).

[82] D. N. Vollick, Phys. Rev. D 69, 064030 (2004).
[83] J. Beltran Jimenez, L. Heisenberg, G. J. Olmo, and D.

Rubiera-Garcia, Phys. Rep. 727, 1 (2018).
[84] J. D. Toniato, D. C. Rodrigues, and A. Wojnar, Phys. Rev.

D 101, 064050 (2020).
[85] M. Banados and P. G. Ferreira, Phys. Rev. Lett. 105,

011101 (2010).
[86] P. Pani, V. Cardoso, and T. Delsate, Phys. Rev. Lett. 107,

031101 (2011).
[87] P. Pani and T. P. Sotiriou, Phys. Rev. Lett. 109, 251102

(2012).
[88] G. J. Olmo, Phys. Rev. Lett. 95, 261102 (2005).
[89] P. Banerjee, D. Garain, S. Paul, R. Shaikh, and T. Sarkar,

Astrophys. J. 924, 20 (2022).
[90] S. Jana, G. K. Chakravarty, and S. Mohanty, Phys. Rev. D

97, 084011 (2018).
[91] J. Casanellas, P. Pani, I. Lopes, and V. Cardoso, Astrophys.

J. 745, 15 (2012).
[92] P. P. Avelino, Phys. Rev. D 85, 104053 (2012).
[93] S. Banerjee, S. Shankar, and T. P. Singh, J. Cosmol.

Astropart. Phys. 10 (2017) 004.
[94] A. Hernandez-Arboleda, D. C. Rodrigues, and A. Wojnar,

Phys. Dark Universe 41, 101230 (2023).
[95] A. Hernandez-Arboleda, D. C. Rodrigues, J. D. Toniato,

and A. Wojnar, arXiv:2306.04475.
[96] D. N. Krasnoshchekov and V. M. Ovtchinnikov, Doklady

of the Academy of Sciences of the USSR Earth sciences
sections 478, 219 (2018).

[97] G. G. R. Buchbinder, Phys. Earth Planet. Inter. 5, 123
(1972).

ALEKSANDER KOZAK and ANETA WOJNAR PHYS. REV. D 108, 044055 (2023)

044055-10

https://doi.org/10.1103/PhysRevD.97.084040
https://doi.org/10.1103/PhysRevD.97.084040
https://doi.org/10.1016/j.physrep.2020.07.001
https://doi.org/10.1016/j.physrep.2020.07.001
https://doi.org/10.3847/2041-8213/aa991c
https://doi.org/10.1103/PhysRevD.96.123012
https://doi.org/10.1103/PhysRevD.96.123012
https://doi.org/10.1103/PhysRevD.97.021501
https://doi.org/10.1103/PhysRevD.97.021501
https://doi.org/10.3847/2041-8213/aaa401
https://doi.org/10.3847/2041-8213/aaa401
https://doi.org/10.3847/0004-637X/832/2/167
https://doi.org/10.1038/s41550-019-0880-2
https://doi.org/10.3847/2041-8213/ab75f5
https://doi.org/10.1093/mnras/sty2174
https://doi.org/10.1093/mnras/sty2174
https://doi.org/10.1103/PhysRevD.108.024016
https://doi.org/10.1103/PhysRevD.108.024016
https://doi.org/10.1140/epjc/s10052-023-11659-9
https://doi.org/10.1140/epjc/s10052-023-11659-9
https://doi.org/10.1103/PhysRevD.107.044025
https://doi.org/10.1016/0031-9201(81)90046-7
https://doi.org/10.1016/0031-9201(81)90046-7
https://doi.org/10.1029/2007JB005169
https://doi.org/10.1029/2007JB005169
https://doi.org/10.1111/j.1365-246X.1991.tb06724.x
https://doi.org/10.1111/j.1365-246X.1991.tb06724.x
https://ds.iris.edu/ds/products/emc-referencemodels
https://ds.iris.edu/ds/products/emc-referencemodels
https://ds.iris.edu/ds/products/emc-referencemodels
https://doi.org/10.1111/j.1365-246X.1991.tb06724.x
https://doi.org/10.1111/j.1365-246X.1991.tb06724.x
https://doi.org/10.1016/j.pepi.2021.106802
https://doi.org/10.1016/j.pepi.2021.106802
https://doi.org/10.1016/j.pepi.2018.11.006
https://doi.org/10.1016/j.pepi.2018.11.006
https://doi.org/10.1029/2020JB020545
https://doi.org/10.1029/2020JB020545
https://doi.org/10.1038/s41467-023-36074-2
https://doi.org/10.1103/PhysRevLett.127.205501
https://doi.org/10.1038/s41567-018-0319-1
https://doi.org/10.1038/s41567-018-0319-1
https://doi.org/10.1051/epjconf/201920704008
https://doi.org/10.1051/epjconf/201920704008
https://doi.org/10.1051/epn/2021103
https://doi.org/10.1142/S0219887822501572
https://doi.org/10.1142/S0219887822501572
https://doi.org/10.3390/universe8010003
https://doi.org/10.1103/PhysRevD.104.104058
https://doi.org/10.1103/PhysRevD.105.124053
https://doi.org/10.1029/1999JE001057
https://doi.org/10.1126/science.278.5344.1749
https://ntrs.nasa.gov/citations/19950023923
https://ntrs.nasa.gov/citations/19950023923
https://ntrs.nasa.gov/citations/19950023923
https://doi.org/10.1029/96JE02125
https://doi.org/10.1029/96JE02125
https://doi.org/10.1086/117108
https://mars.nasa.gov/insight/spacecraft/instruments/seis/
https://mars.nasa.gov/insight/spacecraft/instruments/seis/
https://mars.nasa.gov/insight/spacecraft/instruments/seis/
https://doi.org/10.1093/mnras/stv1397
https://doi.org/10.1093/mnras/stv1397
https://doi.org/10.48550/arXiv.0707.2895
https://doi.org/10.1007/s10569-011-9352-4
https://doi.org/10.1007/s10569-011-9352-4
https://doi.org/10.1007/s00190-014-0768-y
https://doi.org/10.1007/s00190-014-0768-y
https://doi.org/10.1088/1361-6382/aa9151
https://doi.org/10.1140/epjc/s10052-018-6506-5
https://doi.org/10.1140/epjc/s10052-018-6506-5
https://doi.org/10.1140/epjc/s10052-020-8143-z
https://doi.org/10.1140/epjc/s10052-020-8143-z
https://doi.org/10.1103/PhysRevD.69.064030
https://doi.org/10.1016/j.physrep.2017.11.001
https://doi.org/10.1103/PhysRevD.101.064050
https://doi.org/10.1103/PhysRevD.101.064050
https://doi.org/10.1103/PhysRevLett.105.011101
https://doi.org/10.1103/PhysRevLett.105.011101
https://doi.org/10.1103/PhysRevLett.107.031101
https://doi.org/10.1103/PhysRevLett.107.031101
https://doi.org/10.1103/PhysRevLett.109.251102
https://doi.org/10.1103/PhysRevLett.109.251102
https://doi.org/10.1103/PhysRevLett.95.261102
https://doi.org/10.3847/1538-4357/ac324f
https://doi.org/10.1103/PhysRevD.97.084011
https://doi.org/10.1103/PhysRevD.97.084011
https://doi.org/10.1088/0004-637X/745/1/15
https://doi.org/10.1088/0004-637X/745/1/15
https://doi.org/10.1103/PhysRevD.85.104053
https://doi.org/10.1088/1475-7516/2017/10/004
https://doi.org/10.1088/1475-7516/2017/10/004
https://doi.org/10.1016/j.dark.2023.101230
https://arXiv.org/abs/2306.04475
https://doi.org/10.1134/S1028334X18020046
https://doi.org/10.1134/S1028334X18020046
https://doi.org/10.1134/S1028334X18020046
https://doi.org/10.1016/0031-9201(72)90081-7
https://doi.org/10.1016/0031-9201(72)90081-7


[98] D. L. Anderson, Theory of the Earth (Blackwell Scientific
Publications, Oxford, 1989).

[99] B. L. N. Kennett, Geophys. J. Int. 132, 374 (1998).
[100] J-L. Margot et al., J. Geophys. Res. Planets 117, E00L09

(2012).
[101] B. Brugger et al., European planetary science congress,

Report No. EPSC2018-404, 2018.
[102] G. Steinbrugge et al., Geophys. Res. Lett. 48.3,

e2020GL089895 (2021).
[103] H. Harder and G. Schubert, Icarus 151.1, 118 (2001).
[104] T. Spohn, F. Sohl, K. Wieczerkowski, and V. Conzelmann,

Planet. Space Sci. 49, 1561 (2001).
[105] M. A. Riner et al., J. Geophys. Res. Planets 113, E08013

(2008).
[106] J.-L. Margot, D. B. Campbell, J. D. Giorgini, J. S. Jao,

L. G. Snedeker, F. D. Ghigo, and A. Bonsall, Nat. Astron.
5, 676 (2021).

[107] A. S. Konopliv and C. F. Yoder, Geophys. Res. Lett. 23.14,
1857 (1996).

[108] K. C. Condie, Plate Tectonics and Crustal Evolution,
4th ed. (Butterworth-Heinemann, London, 1997).

[109] E. Lope-Oter and A. Wojnar, arXiv:2306.00870.
[110] P. P. Avelino, Phys. Rev. D 85, 104053 (2012).
[111] B. L. N. Kennett and O. Gudmundsson, Geophys. J. Int.

127.1, 40 (1996).
[112] B. L. N. Kennett, E. R. Engdahl, and R. Buland, Geophys.

J. Int. 122.1, 108 (1995).
[113] J-P. Montagner and B. L. N. Kennett, Geophys. J. Int.

125.1, 229 (1996).
[114] J. C. E. Irving, S. Cottaar, and V Lekic, Sci. Adv. 4.6,

eaar2538 (2018).
[115] I. Kulikov andP. Pronin, Int. J. Theor. Phys. 34, 1843 (1995).
[116] P. Lecca, J. Phys. Conf. Ser. 2090, 012034 (2021).
[117] R.Verma and P.Nandi, Gen.Relativ.Gravit. 51, 143 (2019).
[118] S. Kalita, L. Sarmah, and A. Wojnar, Phys. Rev. D 107,

044072 (2023).
[119] H-C. Kim, Phys. Rev. D 89, 064001 (2014).
[120] A. Wojnar, Phys. Rev. D 107, 044025 (2023).

PLANETARY SEISMOLOGY AS A TEST OF MODIFIED … PHYS. REV. D 108, 044055 (2023)

044055-11

https://doi.org/10.1046/j.1365-246x.1998.00451.x
https://doi.org/10.1029/2012JE004161
https://doi.org/10.1029/2012JE004161
https://doi.org/10.1029/2020GL089895
https://doi.org/10.1029/2020GL089895
https://doi.org/10.1006/icar.2001.6586
https://doi.org/10.1016/S0032-0633(01)00093-9
https://doi.org/10.1029/2007JE002993
https://doi.org/10.1029/2007JE002993
https://doi.org/10.1038/s41550-021-01339-7
https://doi.org/10.1038/s41550-021-01339-7
https://doi.org/10.1029/96GL01589
https://doi.org/10.1029/96GL01589
https://arXiv.org/abs/2306.00870
https://doi.org/10.1103/PhysRevD.85.104053
https://doi.org/10.1111/j.1365-246X.1996.tb01533.x
https://doi.org/10.1111/j.1365-246X.1996.tb01533.x
https://doi.org/10.1111/j.1365-246X.1995.tb03540.x
https://doi.org/10.1111/j.1365-246X.1995.tb03540.x
https://doi.org/10.1111/j.1365-246X.1996.tb06548.x
https://doi.org/10.1111/j.1365-246X.1996.tb06548.x
https://doi.org/10.1126/sciadv.aar2538
https://doi.org/10.1126/sciadv.aar2538
https://doi.org/10.1007/BF00674065
https://doi.org/10.1088/1742-6596/2090/1/012034
https://doi.org/10.1007/s10714-019-2630-2
https://doi.org/10.1103/PhysRevD.107.044072
https://doi.org/10.1103/PhysRevD.107.044072
https://doi.org/10.1103/PhysRevD.89.064001
https://doi.org/10.1103/PhysRevD.107.044025

